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1 Introduction

As it is usually defined, the vacuum for QFT on a generic curved spacetime relies on a

choice of observer or equivalently a choice of mode functions, and is hence non-unique. In

free scalar quantum field theory (FSQFT), the Sorkin-Johnston or SJ vacuum [1, 2] is a

proposal for an observer independent vacuum which is unique. The idea is to begin with

the covariantly defined spacetime commutator or Peierls bracket

[Φ̂(x), Φ̂(x′)] = i∆(x, x′), (1.1)

where the Pauli-Jordan (PJ) function i∆(x, x′) ≡ i (GR(x, x′)−GA(x, x′) ) and GR,A(x, x′)

are the retarded and advanced Green functions. The PJ function can be viewed as the in-

tegral kernel of a self-adjoint operator i∆̂ on a bounded region V of spacetime. Its non-zero

eigenvalues thus come in positive and negative pairs, providing a natural and covariantly
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defined mode decomposition into “SJ modes”. The positive part of the spectral decompo-

sition of i∆̂ is then defined to be the SJ Wightman or two-point function WSJ(x, x′).

It is therefore of interest to ask what new role, if any, the SJ vacuum plays in FSQFT

in cosmologically interesting spacetimes such as de Sitter. Using a particular limiting

procedure, it was argued in [3] that the SJ vacuum for global de Sitter spacetime can

be identified with one of the known Mottola-Allen α-vacua [4, 5] for each value of m2 =

m2
p + ξR > 01 for spacetime dimensions d ≥ 2, except for the conformally coupled massless

case m2 = m2
c = (d−2)

4(d−1)R ≡ ξcR, where the SJ vacuum was argued to be ill-defined. Since

there is no known de Sitter invariant Fock vacuum for the minimally coupled massless case

m = 0 [5], they also suggest that the m = 0 SJ vacuum is ill-defined. While general infrared

considerations might be consistent with the absence of an m = 0 SJ vacuum, the situation

for m = mc is puzzling.

An important subtlety in the construction of the SJ vacuum is the use of a bounded

region V of spacetime in defining i∆̂. This operator is Hermitian on the space of L2

spacetime functions, where

〈f, g〉 =

∫
V
dV f∗(x)g(x) (1.2)

defines the L2 inner product and V is a finite volume region of the full spacetime (M, g).

Thus the SJ vacuum of (M, g) can be obtained only in the limit V → M. A pertinent

question is whether the SJ construction is sensitive to exactly when this limit is taken.

In the literature there have been two approaches to constructing the SJ vacuum arising

from the choice of when to take this “IR limit”. The first and more fundamental approach

is what we dub the “ab initio” calculation where the eigenfunctions and eigenvalues of

i∆̂ are obtained in the bounded region V. The SJ vacuum WSJ(x, x′) is obtained as the

positive part of i∆̂. If WSJ(x, x′) remains well-behaved when V → M then this gives the

SJ vacuum in (M, g). This is the approach followed by [7] for the massless FSQFT in

the 2d causal diamond in Minkowski spacetime. The SJ two-point function was moreover

shown to be Minkowski-like near the center of the causal diamond, with the expected 2d

logarithmic behaviour. The ab initio calculation is however computationally challenging

since it is non-trivial to calculate the spectral (or eigen) decomposition of i∆̂ explicitly.

Indeed, the spectral decomposition of i∆̂ is known in very few examples other than the 2d

causal diamond [8–11].

The second, more computationally accessible approach, which we dub the “mode com-

parison” calculation, was adopted extensively in [3, 12]. The idea is to start with a set of

Klein Gordon (KG) modes {uq} in the full spacetime and restrict them to V. The SJ modes

{sk} in V are obtained from {uq} via a Bogoliubov transformation. The SJ modes are then

assumed to extend to the full spacetime only if the coefficients of this transformation are

well behaved in the IR limit. Furthermore, when the {sk} can themselves be identified

with a known set of KG modes, the SJ vacuum is identified with the corresponding known

KG vacuum in the full spacetime, rather than via an explicit calculation.

1Here mp is the physical mass. For a discussion on the meaning of mass in dS spacetime see [6].
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In these two calculations, the IR limit is taken differently. In the former, it is taken

after the finite SJ vacuum is constructed from the eigen decomposition in V, while in

the latter, the limit is taken after the mode comparison in the full spacetime restricted

to V. In the 2d causal diamond both calculations give the same result away from the

boundaries [7, 12]. However, this is in general not guaranteed and needs to be checked

case by case. The subtlety of when to take the limit was brought out in [8] for the case

of ultrastatic spacetimes. There, the finite V SJ vacuum was shown not to be equivalent

to that constructed from a Hadamard state, and in some cases, to be in an inequivalent

representation altogether. However, in taking the IR limit, both yield the same Hadamard

vacuum. It is the aim of this work to re-examine the de Sitter SJ vacuum from the

perspective that the nature of the SJ vacuum is sensitive to the manner in which the IR

limit enters its construction. This study is significant for the definition of the SJ vacuum,

since it is only if the ab initio calculation fails to survive the IR limit that we can definitively

say that there is no SJ vacuum.

We begin with the two known m = 0 vacua in de Sitter:2 the O(4) invariant Fock vac-

uum of [14] and the de Sitter invariant non-Fock vacuum of [15]. In the spirit of the mode

comparison calculation, we show that the SJ modes cannot be obtained via a Bogoliubov

transformation from the modes that define these two vacua. The calculation is done in a

symmetric [−T, T ] slab of global de Sitter spacetime and the coefficients of the transforma-

tion are seen to diverge as T → π/2 (the infinite volume limit). At present we do not have

an analytic ab initio calculation of the SJ modes in de Sitter spacetime. Instead we use a

causal set discretisation of a slab of de Sitter spacetime and obtain the causal set SJ vacuum

via the ab initio calculation. In the massive theory in 2d, our results are in keeping with the

findings of [3] and agree very well with the continuum Mottola-Allen α-vacua. On the other

hand, while the m = 0 SJ vacuum is well-defined, it appears to violate de Sitter invariance.

In the massive theory in 4d, our results show a substantial difference with the continuum

expressions of [3] and suggest that the causal set SJ vacuum, while de Sitter invariant,

differs from the Mottola-Allen α-vacua. For m = 0 and mc, interestingly, the SJ vacuum is

well-behaved, and also does not violate de Sitter invariance. In particular, at and around

m = mc, the SJ vacuum behaves as a continuous function of m, suggesting no singular

behaviour. While our numerical calculations are of course for a finite volume, by varying

the IR cutoff we find a convergence of the SJ vacuum, which supports our conclusions.

In section 2 we review the SJ construction, emphasising the role of the IR cutoff. In

section 3 we show that the m = 0 SJ modes in a slab of de Sitter spacetime can neither be

obtained from the O(4)-invariant Fock vacuum of [14] nor from the de Sitter invariant non-

Fock vacuum of [15] via a Bogoliubov transformation. In section 4 we review the causal set

discretisation of de Sitter spacetime and the construction of the causal set advanced and

retarded Green functions in de Sitter spacetime [16]. In section 5 we present our results

from numerical simulations using a causal set discretisation of a slab of de Sitter spacetime.

Our analysis begins with the massless FSQFT in 2d and 4d causal diamonds in Minkowski

2There is also a de Sitter invariant and shift invariant vacuum defined in [13]. In this paper, we do not

impose shift invariance.
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spacetime. We show that the SJ vacuum looks like the Minkowski vacuum in a smaller

causal diamond within the larger one, both in 2d and 4d. The former is consistent with

the calculations of [7]. Next we calculate the SJ vacuum in slabs of 2d and 4d global de

Sitter spacetime in the time interval [−T, T ] for different values of m. We vary T as well

as the density ρ to look for convergence. We compare our results with the Mottola-Allen

α-vacua and show that while they agree well with the SJ vacuum (for m > 0) in 2d, they

differ significantly in 4d. We also examine the eigenvalues of the PJ operator in 2d and 4d

de Sitter as a function of m and find no significant changes around m = 0 and m = mc. In

section 6 we discuss the implications of our results. The appendices contain details of de

Sitter spacetime, as well as some of the calculations required for the main text.

In this work we have used causal sets as a covariant discretisation of the continuum. In

causal set theory (CST) however, this discrete substratum is considered more fundamental

than the continuum. From the CST perspective therefore the SJ de Sitter vacuum that we

have obtained is physically more relevant to QFT in the early universe than any continuum

vacuum. Our result that the causal set SJ vacuum differs significantly from the continuum

vacua therefore suggests exciting new possibilities for CST phenomenology. An interesting

future direction is to extract observational consequences for the early universe using the

causal set SJ de Sitter vacuum.

The SJ vacuum can also be used to calculate Sorkin’s spacetime entanglement en-

tropy [17, 18] both in the continuum and in a causal set. The SJ vacuum is a pure state

with zero Sorkin entanglement entropy (SEE), but its restriction to a smaller region is not

pure. In 2d Minkowski spacetime, the SEE for a small causal diamond inside a larger one

exhibits the expected logarithmic scaling behaviour with the UV cutoff [19]. However, the

calculation of the SEE for the corresponding causal set construction exhibits a spacetime

volume law scaling, unless a subtle UV double truncation is used [20]. Since de Sitter

horizons are of special interest, the causal set SJ de Sitter vacuum can be used for calcu-

lating the SEE for de Sitter horizons. In a subsequent work we will show that the double

truncation procedure yields an area law for horizons in 4d de Sitter in the causal set [21].

2 The SJ vacuum

We begin with a short introduction to the SJ vacuum construction for FSQFT in a general

globally hyperbolic, finite volume V region of spacetime (M, g) [2, 3, 7, 12, 22].

The Klein Gordon (KG) equation in (M, g) is(
�̂−m2

)
φ = 0, (2.1)

where �̂ ≡ gab∇a∇b, and the effective mass m2 = m2
p+ ξR, where mp is the physical mass,

R is the scalar curvature of (M, g) and ξ is the coupling. Let {uq} be a complete set

of modes satisfying the KG equation in (M, g) and orthonormal with respect to the KG

symplectic form (or KG “norm”)

(f, g)KG =

∫
Σ

(f∗∇ag − g∗∇af)dSa, (2.2)
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where Σ is a Cauchy hypersurface in (M, g). The field operator can be expressed as a

mode expansion with respect to the set {uq}

Φ̂(x) ≡
∑
q

aquq(x) + a†qu
∗
q(x), (2.3)

with aq, a
†
q satisfying the commutation relations

[aq,a
†
q′ ] = δqq′ , [aq,aq′ ] = 0, [a†q,a

†
q′ ] = 0. (2.4)

The covariant commutation relations for the scalar field operator are given by the Peierls

bracket

[Φ̂(x), Φ̂(x′)] = i∆(x, x′), (2.5)

where the PJ function is

i∆(x, x′) ≡ i(GR(x, x′)−GA(x, x′)), (2.6)

with GR,A(x, x′) being the retarded and advanced Green functions, respectively. In terms

of the modes {uq}
i∆(x, x′) =

∑
q

uq(x)u∗q(x′)− u∗q(x)uq(x′), (2.7)

and the two-point function associated with them is

W (x, x′) ≡
∑
q

uq(x)u∗q(x′). (2.8)

On the other hand the SJ state or equivalently the SJ two-point function WSJ(x, x′) for

FSQFT, which as we will see below is constructed from the positive eigenspace of i∆̂, is

defined most generally by the following three conditions [22]

i∆(x, x′) = WSJ(x, x′)−WSJ(x′, x),∫
V
dV ′

∫
V
dV f∗(x′)WSJ(x′, x)f(x) ≥ 0, (Positive Semidefinite)∫

V
dV ′WSJ(x, x′)W ∗SJ(x′, x′′) = 0, (Ground state or Purity) (2.9)

where the integrals are defined over a finite spacetime volume region V in the full spacetime

(M, g). In order to construct the SJ vacuum explicitly, the PJ function is elevated to an

integral operator in V
i∆̂ ◦ f ≡ i

∫
V

∆(x, x′)f(x′)dVx′ (2.10)

which acts on L2 functions in V and where

〈f, g〉 =

∫
V
dVx f

∗(x) g(x) (2.11)

is the L2 inner product. Since ∆(x, x′) is antisymmetric in its arguments, i∆̂ is Hermitian

on the space of L2 functions in V. Its non-zero eigenvalues, given by

i∆̂ ◦ s̃k(x) =

∫
V
dVx′ i∆(x, x′)s̃k(x′) = λks̃k(x) (2.12)
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therefore come in pairs (λk,−λk), corresponding to the eigenfunctions (s̃+
k , s̃

−
k ) where s̃−k =

(s̃+
k )∗.3 This is the central eigenvalue problem in the ab initio calculation of the SJ vacuum.

It was shown in [22] that

Ker(�̂−m2
p) = Im(∆̂), (2.13)

where the operators are defined in V.4 This means that the eigenvectors in the image of

i∆̂ (i.e., excluding those in Ker(i∆̂)) span the full solution space of the KG operator. One

therefore has an intrinsic and coordinate independent separation of the space of solutions

into the positive and negative eigenmodes of i∆̂.5 The field operator thus has a coordinate

invariant or observer independent decomposition

Φ̂(x) =
∑
k

bksk(x) + b†ks
∗
k(x), (2.14)

where the SJ vacuum state is defined as

bk |0SJ〉 = 0 ∀k, (2.15)

and

sk =
√
λks̃

+
k (2.16)

are the normalised SJ modes6 which form an orthonormal set in Im(i∆̂) with respect to

the L2 norm

〈sk, sk′〉 = λkδkk′

〈s∗k, sk′〉 = 0. (2.17)

Using the spectral decomposition

i∆(x, x′) =
∑
k

sk(x)s∗k(x′)− s∗k(x)sk(x′), (2.18)

the SJ two-point function in V is the positive part of i∆̂

WSJ(x, x′) ≡
∑
k

sk(x)s∗k(x′). (2.19)

If WSJ(x, x′) remains well-defined as the IR cutoff is taken to infinity, this defines the SJ vac-

uum in the full spacetime (M, g). The SJ construction from the eigenvalue problem (2.12)

through to (2.19) is the ab intio calculation referred to in the introduction.

Alternatively, one can also obtain the SJ modes via a mode comparison calculation.

Given the equality in (2.13) between Im(∆̂) and the KG solution space, there must exist

3We adopt the notation that the s̃k are the un-normalised (with respect to the L2 norm) SJ eigenfunc-

tions, whereas the sk without the tilde are the normalised SJ eigenfunctions.
4In a spacetime of constant scalar curvature, m defined above is constant, and hence this result continues

to hold when mp is replaced by m.
5This is not unlike the polarisation in geometric quantisation.
6For dimensional considerations, see appendix D.
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a transformation between the KG modes {uq} in V and the SJ modes {sk}, even though

the former need not be orthonormal with respect to the L2 inner product. Let

sk(x) =
∑
q

uq(x)Aqk + u∗q(x)Bqk, (2.20)

where Aqk = (uq, sk)KG and Bqk = (u∗q, sk)KG. Further, if we act with i∆ on (2.20) and

use (2.7), we can also write Aqk =
1

λk
〈uq, sk〉 and Bqk = − 1

λk
〈u∗q, sk〉. Using the fact

that (2.18) and (2.7) must be equal, we get the algebraic relations∑
q

Aqk′A
∗
qk −Bqk′B

∗
qk = δkk′∑

q

Bqk′Aqk −Aqk′Bqk = 0. (2.21)

Additionally, if the KG modes themselves satisfy the L2 orthonormality condition

〈uq, uq′〉 = δqq′ , 〈u∗q, uq′〉 = 0, (2.22)

then the above equations simplify considerably as shown in [12].7 It is important to note

that since the L2 norm is defined for finite V, the above calculations are limited to finite

V. Moreover, there are potential subtleties in identifying Ker(�̂−m2) in V, starting from

the solutions in the full spacetime.

The question of course is whether the limits involved in the first and second approaches

(that is, whether finding the SJ modes before or after taking the infrared limit) commute.

A case in point is the 2d causal diamond in Minkowski spacetime where the SJ modes for

the massless scalar field are not simply linear combinations of plane waves, but also include

an important k dependent constant [7, 23], which is a solution for finite V. The two sets

of eigenfunctions of i∆ are

fk(u, v) = eiku − eikv (2.23)

gk(u, v) = eiku + eikv − 2 cos kL, (2.24)

where u and v are lightcone coordinates, and 2L is the side length of the diamond. The

eigenvalues are λk = L/k for both sets. For the f -modes, k is k = nπ/L with n =

±1,±2, . . . while for the g-modes k satisfies the condition tan(kL) = 2kL. In order to

make contact with the IR limit, W (x, x′) was studied in a small region in the interior of

the larger diamond, which to leading order was found to have the form of the (IR-regulated)

2d Minkowski vacuum [7]. A similar conclusion was reached in [12] using the Bogoliubov

prescription, and hence in this simple example, the results seem to be independent of the

limiting procedure.

7In assuming a discrete index q we are already working in a bounded region of spacetime.
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3 The massless de Sitter SJ vacuum

In [3] the mode comparison calculation was used to find the SJ modes in de Sitter spacetime.

A restriction of the Euclidean modes [24] (which themselves are one of the α-modes) in

global de Sitter to a finite slab V was used as the starting point. Assuming that these modes

are complete in Ker(�̂−m2) when restricted to V, they solve (2.21) to get the SJ modes

{sk}, (2.20). These can in turn be identified with one of the other (restricted to V) α-modes

depending on the value of m, and thence the SJ vacuum is identified with the corresponding

α-vacuum in the IR limit for each m. Surprisingly, however, this identification fails in the

conformally coupled massless case, mc = (d−2)
4(d−1)R, since the Bogoliubov transformation

breaks down. For this and the minimally coupled massless case, m = 0 (for which there is

no α-vacuum), it is suggested that the SJ prescription itself breaks down and that there is

no de Sitter SJ vacuum. In both these cases however, the SJ modes must be well-defined

when there is a finite T IR cutoff. Strictly, it is only if an ab initio calculation of the SJ two-

point functions fails to survive the IR limit that we can state that there is no SJ vacuum.

The KG modes for the massive scalar field in global de Sitter are the Mottola-Allen

α-modes which include the Euclidean modes as a special case. The mimimally coupled

massless scalar field is known not to admit a de Sitter invariant Fock vacuum (Allen’s

theorem) [5]. We note here that the proof of this theorem relies heavily on the use of the

KG inner product.

A question that poses itself then is: if an SJ vacuum for m = 0 did exist, would it

violate de Sitter invariance or the Fock condition? This question cannot be answered using

Allen’s theorem, because it does not apply to the SJ construction due to its use of the L2

inner product. Starting with a Fock vacuum defined with respect to an orthonormal basis

{φn(x)} of the solution space of the KG equation, Allen shows that for the m = 0 case the

symmetric two-point function defined by

G
(1)
λ (x, x′) = 〈λ|Φ(x)Φ(x′)|λ〉 =

∑
n

φn(x)φ∗n(x′) + φ∗n(x)φn(x′) (3.1)

must satisfy

G(1)(x, x′) +G(1)(x, x̄′) 6= C everywhere (3.2)

for some C ∈ R, where x̄′ represents the antipodal point of x′. In [5] the de Sitter invariant

G(1)(x, x′) fails to satisfy the required condition (3.2), leading to the conclusion that the

assumption that it is a Fock vacuum is false. Importantly the proof of condition (3.2)

relies on the use of the KG inner product and it no longer holds when we use the L2 inner

product for the vacuum state construction.8

It is also worth mentioning at this point that because the L2 inner product is only

defined in a finite region of spacetime,9 the entire prescription inherently breaks de Sitter

invariance. In the case of global de Sitter with an IR cutoff at [−T, T ], this is certainly the

8The use of the L2 inner product for the SJ modes suggests the possibility that the SJ vacuum exists in

a different sector of the theory.
9Allen’s theorem continues to hold in a finite region of spacetime as long as we choose this region to be

symmetric about τ = 0, where τ is the time in hyperbolic coordinates (A.5).
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case. Since the spatial part is compact we manage to preserve O(4) invariance. However,

the idea is, as in [3], to take the temporal cutoffs to infinity10 and make statements that

have full de Sitter invariance.

On the other hand, as in the 2d diamond, one might imagine that away from the

boundaries, there is an approximate isometry that is retained. However, even if the PJ

operator is itself approximately invariant, this does not imply that the two-point function

is, since the latter is simply the positive part of the PJ operator. It is only if the isometries

preserve the positive and negative eigenspaces separately that this can be the case.

Let us address this question by asking if the known de Sitter violating vacuum, the

so-called O(4) vacuum [14] is related to the SJ vacuum via a Bogoliubov transformation

as in [3]. We work in the conformal coordinates (A.9)

ds2 =
1

H2 sin2 η
[−dη2 + dΩ2(χ, θ, φ) ], (3.3)

where we have shifted T̃ → η = T̃ + π/2 so that η ∈ [0, π] and (χ, θ, φ) are coordinates on

S3. The O(4) modes are

uklm(x) = HXk(η)Yklm(χ, θ, φ), (3.4)

where k = 0, 1, . . . ; l = 0, 1 . . . k; m = −l,−l + 1, . . . l − 1, l. For k = 0,

X0(η) = A0

(
η − 1

2
sin 2η − π

2

)
+B0, (3.5)

and for k 6= 0

Xk(η) = sin3/2(η)(AkP
3/2
k+1/2(− cos η) +BkQ

3/2
k+1/2(− cos η)), (3.6)

where Pµν (x), Qµν (x) are independent, associated Legendre functions defined for real x ∈
[−1, 1] as in [25]:

Pµν (x) =

(
1 + x

1− x

)µ/2
2F1(−ν, ν + 1, 1− µ; (1− x)/2)

Γ(1− µ)
, (3.7)

Qµν (x) =
π

2 sinµπ

(
Pµν (x) cosµπ − Γ(ν + µ+ 1)

Γ(ν − µ+ 1)
P−µν (x)

)
. (3.8)

Note that the k 6= 0 modes are the same as the Euclidean modes. The Yklm are spherical

harmonics that satisfy ∫
dΩ(χ, θ, φ)YklmY

∗
k′l′m′ = δkk′δll′δmm′ . (3.9)

The coefficients for k = 0 are A0 = −iα, B0 = (1/4 + iβ)/α, where α, β ∈ R. The

coefficients for k 6= 0 are

Ak =

(
−1 + i√

2

)√
π

4k(k + 1)(k + 2)
, Bk =

−2i

π
Ak. (3.10)

10In the causal set case we cannot take these temporal cutoffs to infinity, but we try to reach an asymptotic

regime.
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These O(4) modes are orthonormal with respect to the KG inner product but as

mentioned in the last section, the Bogoliubov coefficients are defined by their L2 inner

products so we must evaluate these. We also need a choice of the finite spacetime region

V for the L2 inner product, we consider a slab of dS spacetime such that η ∈ (a, b), the

infinite volume limit corresponds to a→ 0, b→ π. We have

〈uklm, uk′l′m′〉 = H2

∫
dVxX

∗
k(η)Xk′(η)Y ∗klmYk′l′m′

=
1

H2
δkk′δll′δmm′

∫ b

a

dη

sin4 η
X∗k(η)Xk(η)

= δkk′δll′δmm′Tk, (3.11)

〈u∗klm, uk′l′m′〉 =
(−1)k

H2
δkk′δll′δmm′

∫ b

a

dη

sin4 η
(Xk(η))2

= δkk′δll′δmm′Dk. (3.12)

The factor (−1)k in the second expression is due to the choice of spherical harmonics with

the special property Y ∗klm = (−1)kYklm [3]. These equations define Tk and Dk (Tk is real by

definition). Also note that Tk and Dk will necessarily blow up in the infinite volume limit.

The Bogoliubov coefficients to obtain the SJ modes (2.20) from these O(4) modes

simplify to

Aqk =
1

λk

∑
n

(
δqnTqAnk + δqnD

∗
qBnk

)
=

1

λk
(TqAqk +D∗qBqk)

Bqk = − 1

λk

∑
n

(δqnDqAnk + δqnTqBnk) = − 1

λk
(DqAqk + TqBqk), (3.13)

where the index q implicitly contains the l and m indices and δll′ , δmm′ are omitted from

the expressions. Inserting these expressions into (2.21) we find that∑
q

{(T 2
q − |Dq|2)(Aqk′A

∗
qk −Bqk′B∗qk)} = λ2

kδkk′∑
q

{(T 2
q − |Dq|2)(AqkBqk′ −Aqk′Bqk)} = 0. (3.14)

A convenient parameterisation is

Aqk = δqk coshαk, Bqk = δqk sinhαk e
iβk . (3.15)

From (3.14) this gives

λk =
√
T 2
k − |Dk|2, (3.16)

which along with (3.13) implies that

λk coshαk = Tk coshαk +D∗k sinhαk e
iβk

or tanhαk e
iβk =

λk − Tk
D∗k

=
Tk − λk
|Dk|

ei(arg Dk+π). (3.17)
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Defining rk ≡
Dk

Tk
, we see after some algebra and use of the double angle formula for tanh

that βk = arg rk + π and αk = 1
2 tanh−1 |rk|. Thus the Bogoliubov coefficients depend (via

αk and βk) only on rk, which can be finite in the infinite volume limit even if Tk and Dk

diverge. Note that if |rk| = 1, αk and therefore the Bogoliubov coefficients diverge. When

this happens the SJ vacuum cannot be obtained through a Bogoliubov transformation.

From (3.11) and (3.12) one can see that the Bogoliubov transformation does not mix

different k’s. In particular, it does not mix k 6= 0 modes with the k = 0 mode. We already

know from [3] that the Euclidean modes (which are the same as the O(4) modes for k 6= 0)

do not admit a well-defined Bogoliubov transformation to the SJ modes (|rk| = 1 for these

modes) in the infinite volume limit. It immediately follows that the transformation from the

O(4) modes to the corresponding SJ state is ill-defined, and an SJ state with O(4) symmetry

cannot be derived in this way. In appendix B we calculate these transformations explicitly.

We also present the k = 0 transformation which turns out to be the only well-defined one.

In a similar manner, we also find that the modes that define the non-Fock but de Sitter

invariant vacuum of Kirsten and Garriga [15] are unable to produce an SJ vacuum via the

mode comparison method. The Kirsten and Garriga modes are closely related to the O(4)

modes, and in fact are identical to them for k 6= 0. For k = 0, we have

X0 =
H√

2

[
Q+

(
η − 1

2
sin 2η − π

2

)
P

]
. (3.18)

We use the same notation as in [15]. The coefficients of Q and P are solutions to the field

equation that satisfy the following commutation relations

[Q,P ] = i, [ak, Q] = [ak, P ] = 0, (3.19)

where ak are the annihilation operators associated to the k 6= 0 modes. The details of the

transformation between the Kirsten and Garriga modes and the SJ modes are presented

in appendix C. Again, we find that the k = 0 transformation is the only well-defined one.

4 The SJ vacuum on the causal set

While there is progress on finding the SJ modes via an ab initio calculation in some 2d as

well as higher dimensional examples [10, 11], the calculation in global de Sitter is consid-

erably more difficult. In the absence of this, we can still carry out numerical calculations11

using causal sets to study the two-point function. Causal sets are not only a natural covari-

ant discretisation of the continuum, but also may contain important signatures of quantum

spacetime. This makes the ab initio results in the causal set even more interesting than

the ab initio results in the continuum.

We begin this section with laying out some basic properties of CST.

11The bulk of the simulations for this work were done using Mathematica [26].
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4.1 Causal sets and sprinkling

A causal set C is a set together with an order-relation � that ∀x, y, z ∈ C satisfies the

following conditions:

1. Reflexivity: x � x

2. Antisymmetry: x � y � x⇒ x = y

3. Transitivity: x � y � z ⇒ x � z

4. Local finiteness: |{z ∈ C|x � z � y}| <∞

Here | · | denotes the cardinality of a set. The elements of C are spacetime events and the

order-relation � denotes the causal order between the events. If x � y we say “x causally

precedes y”, and we write x ≺ y if x � y and x 6= y. Causal relations on a Lorentzian

manifold (without closed timelike curves) obey conditions 1-3. Condition 4 ensures that

there are a finite number of events in any causal interval; this brings in discreteness.

Two useful ways of characterizing a causal set are the causal matrix C and the link

matrix L defined as

Cxy :=

{
1 if y ≺ x
0 otherwise

, Lxy :=

{
1 if y ≺ x and |(x, y)| = 0

0 otherwise
,

where (x, y) is the set of points that lie in the causal interval between x and y, and

the subscript xy refers to indices corresponding to elements x and y. We refer the reader

to [27–29] for more details on CST.

Sprinkling is the process of picking points randomly from a region of spacetime (M, g)

with a given constant density ρ. This generates a causal set corresponding to (M, g). The

number of points picked in each realisation follows a Poisson process whose mean depends

on the spacetime volume of the region. The causal ordering is inherited from the region’s

causal ordering restricted to the sprinkled points. The causal sets so obtained are said to

approximate (M, g).

Sprinkling into regions of Minkowski spacetime has been discussed elsewhere (see

e.g. [23]). Here we briefly describe the process for de Sitter spacetime.

A convenient coordinate system in which to do the sprinkling for de Sitter is the

conformal coordinate system of (A.9). This allows us to work with the simpler conformally

related metric in analyzing the causal structure of de Sitter spacetime. The sprinkling

can be done in two steps. In the first step we pick points randomly on the spatial part,

i.e., the sphere Sd−1. One simple way (by no means unique) to do this is to generate

normalised d-dimensional vectors. These will automatically lie on the surface of Sd−1. The

corresponding spherical coordinates can be obtained by using the standard Cartesian to

spherical coordinate transformation.

In the second step we need to obtain the temporal part of the coordinates. As is

evident from the metric, this isn’t uniformly distributed but depends on the conformal

factor. The effect of the conformal factor can be incorporated by defining a normalised

– 12 –
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(a) Conformal coordinates. (b) Global coordinates.

Figure 1. A sprinkling of N = 4000 elements for the time interval −1.4 < T̃ < 1.4, � = 1.

probability distribution with a probability density function equal to (H cosT )−d in the

region of interest. Picking points from this distribution will give us the temporal part

of the coordinates. Combining the coordinates from the two steps, we have the required

sprinkling. A typical sprinkling is shown in figure 1.

4.2 Green functions

The SJ vacuum is constructed from the advanced and retarded Green functions. In [30]

these were constructed for causal sets that approximate causal intervals12 in 2d and 4d

Minkowski spacetime. In [16] it was shown that the same construction can be extended to

a larger class of spacetimes, including de Sitter. These results are briefly summarised here.

The massive retarded Green function in a globally hyperbolic d-dimensional spacetime

(M, g), satisfies

(�x −m2)Gm(x, x′) = − 1√
−g(x)

δ(x− x′) . (4.1)

It can also be written as

Gm = G0 −m2G0 ∗G0 +m4G0 ∗G0 ∗G0 + . . . =

∞∑
k=0

(−m2)k G0 ∗G0 ∗ . . . G0︸ ︷︷ ︸
k+1

= G0 −m2G0 ∗Gm , (4.2)

where G0 is the massless retarded Green function satisfying (4.1) with m = 0. The convo-

lution A ∗B is defined as

(A ∗B)(x, x′) ≡
∫

ddx1
√
−g(x1)A(x, x1)B(x1, x

′) . (4.3)

Once we have G0, then, we can write down a formal series for Gm.

12These are also known as causal diamonds or Alexandrov intervals.
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On a causal set of size N and density ρ, if we have an analog of the massless retarded

Green function, K0(x, x′), we can propose a massive retarded Green function Km(x, x′) via

the replacement ∫
ddx→ ρ−1

∑
causal set elements

, (4.4)

leading to

Km = K0 −
m2

ρ
K0 ·K0 +

m4

ρ2
K0 ·K0 ·K0 + . . . = K0 −

m2

ρ
K0 ·Km, (4.5)

where the convolutions have become dot products of N×N matrices. The series terminates

and is well-defined for each pair of elements. We can rewrite the above equation in a

compact form as

Km = K0

(
I +

m2

ρ
K0

)−1

, (4.6)

where I is the N × N identity matrix. To establish a correspondence with the retarded

Green function in the continuum, we need to average over multiple sprinklings (with the

same density) of the causal set and then take the limit ρ→∞ i.e.

Gm(x, x′) = lim
ρ→∞
〈Km(x, x′)〉. (4.7)

In our analysis, due to computational limitations, we use single realisations of the causal

set and hence we also use the standard error of the mean (SEM) instead of the standard

deviation as an estimate of error.

In [30] it was shown that for 2d and 4d Minkowski spacetime,

K0(x, x′) :=


1

2
C(x, x′) d = 2
√
ρ

2π
√

6
L(x, x′) d = 4

(4.8)

and

Km(x, x′) :=


1

2
C(x, x′)

(
I +

m2

ρ
C(x, x′)

)−1

d = 2
√
ρ

2π
√

6
L(x, x′)

(
I +

m2

2π
√

6ρ
L(x, x′)

)−1

d = 4

(4.9)

are good causal set analogs of the corresponding massless and massive retarded Green

functions in the continuum. For comparison, the corresponding continuum retarded Green

functions are

G0(x, x′) :=


1
2 θ(t− t

′)θ(τ2(x, x′)) d = 2

1
2 θ(t− t

′)θ(τ2(x, x′))
1

2π
δ(τ2(x, x′)) d = 4

(4.10)

and

Gm(x,x′) :=


1

2
θ(t− t′)θ(τ2(x,x′))J0(mτ(x,x′)) d= 2

1

2
θ(t− t′)θ(τ2(x,x′))

(
1

2π
δ(τ2(x,x′))− m

4π

J1(mτ(x,x′))

τ(x,x′)

)
d= 4

, (4.11)
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where τ(x, x′) is the proper time between x and x′, and Jα is a Bessel function of the first

kind of order α.

The expectation values of the causal set expressions (4.8) are

〈K0(x, x′)〉 :=


1

2
θ(t− t′)θ(τ2(x, x′)) d = 2
√
ρ

2π
√

6
exp(−ρ V (x, x′)) d = 4

, (4.12)

where V (x, x′) is the spacetime volume of the causal interval between x and x′. We can see

by comparing the expressions above that in 2d, 〈K0(x, x′)〉 gives the continuum retarded

Green function even without taking the limit ρ→∞. This is not the case for m 6= 0 in 2d

or for any mass in 4d.

In the case of de Sitter spacetime, it was shown in [16] that the argument leading

to (4.6) can be used with a modified mass term m′2 = m2
p+(ξ−ξc)R = m2−ξcR = m2−m2

c .

This is possible because the scalar curvature R is a constant in de Sitter spacetime. The

causal set massless retarded Green functions given in (4.8) also carry over to de Sitter

spacetime, where they correspond to the mc case. Therefore starting from these, we can

obtain the retarded Green functions for other masses and arbitrary couplings using

Km = Kmc

(
I +

1

ρ
(m2 −m2

c)Kmc

)−1

. (4.13)

In our analysis below, we work with the minimally coupled massless and massive case

(ξ = 0, m = mp), as well as the conformally coupled massless case (ξ = (d−2)
4(d−1) , mp = 0).

Note that the special case in 4d de Sitter of m = mc =
√

2 is just the conformally coupled

massless case.

5 Causal set SJ vacuum from simulations

We now present our numerical simulations for the causal set SJ vacuum in the causal

diamonds in 2d and 4d Minkowski spacetime and slabs of 2d and 4d global de Sitter

spacetime. Where visible, error bars in the binned data reflect the SEM.

5.1 Causal diamond in 2d Minkowski spacetime

We begin by revisiting the analysis of WSJ for the massless FSQFT in a causal diamond

in 2d Minkowski spacetime [7]. The IR-regulated Minkowski two-point function is

Re[Wmink] = − 1

2π
ln(x) + c1, x = τ or |d|, (5.1)

where c1 depends on the IR cutoff. In [7] it was shown that in a small subregion in

the center of the causal diamond (i.e. away from the boundaries)

c1 ≈ −
1

2π
ln(λeγ), (5.2)

where γ is the Euler-Mascheroni constant and λ ∼ 0.46/L, and where 2L is the side length

of the diamond.
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Figure 2. Log-log plot of the eigenvalues of i∆ divided by density ρ (except for the continuum),

in the 2d causal diamond; m = 0.

(a) Causal. (b) Spacelike.

(c) Causal. (d) Spacelike.

Figure 3. (a)-(b) represent Re[WSJ] vs. geodesic distance for a sample of 100000 randomly selected

pairs, in the 2d causal diamond; m = 0. (c)-(d) are plots of the binned and averaged data with the

SEM.
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(a) Causal. (b) Spacelike.

(c) Causal. (d) Spacelike.

Figure 4. (a)-(b) represent Re[WSJ] vs. geodesic distance for all pairs within a sub-diamond with

side length 1/4 of that the full diamond, in the 2d causal diamond; m = 0. (c)-(d) are plots of the

binned and averaged data with the SEM. In both cases, the continuum IR-regulated Minkowski

Wightman function (5.1) has also been shown.

In our simulations, we work in units where the volume (in 2d this is an area) of the

diamond is unity, L = 1/2, V = 4L2 = 1. Therefore, when we compare to the continuum

function (5.1), we set c1 ≈ −0.0786.

Our results are shown in figures 2–4 and agree with the ab initio construction of [7].

Figure 2 is a log-log plot of the positive causal set SJ eigenvalues, along with the positive

continuum eigenvalues (discussed at the end of section 2). The two sets of eigenvalues are

in agreement up to a characteristic “knee” at which the causal set spectrum dips and ceases

to obey a power-law with exponent −1.13 There is a clear convergence of the spectrum

with causal set size N except that the knee is pushed to smaller eigenvalues as N increases.

Figure 3 shows scatter plots of Re[WSJ] for pairs of events that are causally and space-

like related; it also shows the binned and averaged plots where the convergence becomes

clear. The convergence with N is very good and tells us that we are in the asymptotic

regime. This is the kind of convergence we will look for when either a comparison with

the continuum is not possible or when there is a marked discrepancy with the continuum.

In order to compare with the continuum, WSJ was calculated in [7] for pairs of points in

13This behaviour and its role in calculating the SEE are discussed in [31].
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Figure 5. The binned and averaged plot for K0 vs. |τ | as N is varied, in the 4d causal diamond.

The black curve represents the expectation value (4.12) for N = 31k. We see an excellent match.

a small causal diamond in the center of the larger causal diamond and it was shown that

WSJ agreed with the Minkowski vacuum in (5.1). We carry out a similar comparison and

the results are shown in figure 4. This figure shows the scatter plots and the binned and

averaged plots for WSJ within a smaller diamond of side length 1/4 compared to that of

the original diamond it is concentric to. The continuum IR-regulated Minkowski curve is

also plotted. These plots confirm that away from the boundaries of the diamond Re[WSJ]

indeed resembles the Minkowski vacuum, as was shown analytically and numerically in [7].

5.2 Causal diamond in 4d Minkowski spacetime

Next we examine the massless FSQFT in a causal diamond in 4d Minkowski spacetime.

Unlike in 2d, we do not have an analytic ab initio calculation to compare with or refer to.

We will instead rely on convergence properties and comparisons with the continuum in a

small causal diamond within the larger one. Another difference with the 2d case is that

the causal set retarded Green function only agrees with the continuum one in the infinite

density limit. This was discussed above in section 4.2.

The 4d Minkowski two-point function is

Re[Wmink] =
1

4π2x2
, x = iτ or |d|. (5.3)

We work in units where the (top to bottom corner) height of the diamond is unity. In

figure 5 we plot binned and averaged values for the causal set retarded Green function (4.8)

along with its expectation value at finite density (4.12). The corresponding continuum

Green function (4.10) has a delta function on the lightcone and is therefore infinitely

sharply peaked there. While this is not the case in the causal set, the discrepancy grows

smaller as the density is increased.

In figure 6 we show the log-log plot of the SJ spectrum. This spectrum is qualitatively

similar to the spectrum in the 2d diamond, in that it obeys a power-law in the large eigen-

value regime, while exhibiting a knee in the UV (smaller eigenvalue regime) where it dips.

It moreover converges well as N is increased, except near the knee which, as in the 2d dia-

mond, shifts to the UV as N increases. This suggests that we are in the asymptotic regime.
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Figure 6. Log-log plot of the eigenvalues of i∆ divided by density ρ, in the 4d causal diamond;

m = 0.

(a) Causal. (b) Spacelike.

(c) Causal. (d) Spacelike.

Figure 7. (a)-(b) represent Re[WSJ] vs. geodesic distance for a sample of 100000 randomly selected

pairs, in the 4d causal diamond; m = 0. (c)-(d) are plots of the binned and averaged data with the

SEM. In both cases, the continuum Minkowski Wightman function (5.3) has also been shown in red.

In figure 7 we show the scatter and binned plots for Re[WSJ] as N is varied. The

convergence with increasing density suggests that the larger N values are approaching the

asymptotic regime. The Minkowski two-point function (5.3) is also included in this plot

and it clearly does not agree with WSJ in the full diamond. The small distance behaviour

shows an interesting departure from the continuum, softening the divergences.
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(a) Causal. (b) Spacelike.

(c) Causal. (d) Spacelike.

Figure 8. (a)-(b) represent Re[WSJ] vs. geodesic distance for all pairs within a sub-diamond with

height 1/2 of the full diamond, in the 4d causal diamond; m = 0. (c)-(d) are plots of the binned and

averaged data with the SEM. In both cases, the continuum Minkowski Wightman function (5.3)

has also been shown.

(a) Causal pairs. (b) Spacelike pairs.

Figure 9. Distribution of the number of causal and spacelike pairs n with magnitude of the

geodesic distance for N = 30k, in the 4d causal diamond.
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Figure 8 shows the scatter and binned plots for a smaller causal diamond of side length

1/2 compared to the larger diamond it is in the center of. Although the agreement of WSJ

with Wmink is not as good as in 2d, we see that as N increases, there is a convergence of

WSJ to Wmink. This suggests that as in 2d, the 4d diamond also shows an agreement with

the Minkowski vacuum far away from the boundary.

Figure 9 shows the distribution of pairs of points in the diamond as a function of the

proper time and distance. From this plot one can see that there are many fewer pairs

of points at small and large proper distance and times than in the intermediate regimes.

Nevertheless, the scatter plots and the error bars on the binned plots do not show significant

deviation in these regimes.

5.3 Slab of 2d de Sitter spacetime

The simulations in the 2d and 4d causal diamond help set the stage for the simulations in

slabs of 2d and 4d de Sitter spacetime, which we turn to in this and the next subsection. As

in the causal diamond examples, we will look for convergence of the causal set calculation

with N to establish that we are in the asymptotic regime. The slab in de Sitter spacetime

lies within the region [−T, T ]14 and we will probe our results’ sensitivity to T . We will also

look for convergence with T at fixed ρ, to show that the results are independent of the cutoff.

The Wightman function for the Euclidean vacuum in d spacetime dimensions is given

by15

WE(x, y) =
Γ[h+]Γ[h−]

(4π)d/2`2Γ[d2 ]
2F1

(
h+, h−,

d

2
;
1 + Z(x, y) + iε sign(x0 − y0)

2

)
, (5.4)

where Z(x, y) is defined by (A.2), h± = d−1
2 ± ν, ν = `

√
m2
∗ −m2, m∗ = d−1

2`

and 2F1(a, b, c; z) is a hypergeometric function. The symmetric two-point function, or

Hadamard function, for any other Allen-Mottola α-vacuum is [3]

Hαβ(x, x′) = cosh 2αHE(x, x′) + sinh 2α [cosβ HE(x̄, x′)− sinβ∆(x̄, x′)], (5.5)

where x̄ is the antipodal point of x. The Wightman function is related to H by 2W =

H + i∆. We will make comparisons with the α-vacua found to correspond to the SJ

vacuum in [3]. Since we work in even dimensions, these are α = 0 for m ≥ m∗ (yielding

the Euclidean vacuum), and

α =
1

2
tanh−1 | sinπν| and β = π

[
d

2
+ θ(− sinπν)

]
(5.6)

for m < m∗.

In this subsection we consider 2d de Sitter spacetime, and work in units in which the de

Sitter radius ` = 1. In 2d, m∗ = 0.5, and the conformal mass mc = 0. Hence the minimally

coupled and the conformally coupled massless cases coincide. Our simulations span slabs

14T is the cutoff in the conformal time defined in (A.9).
15The expression for WE in equation B.36 of [3] has a minor typographical error: the factor of 4π should

be raised to the power of d/2. See for example [32].
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(a) m = 0. (b) m = 2.3.

Figure 10. Log-log plot of the positive eigenvalues of i∆ at T = 1, in 2d de Sitter. In the massive

case on the right we plot the largest 3500 positive eigenvalues and the corresponding continuum

eigenvalues from the finite T mode comparison results of [3].

of different heights given by T values ranging from 1 to 1.5, while our N values range from

8k to 36k. We show the log-log plots of the PJ spectrum for the massless m = 0 and for

the massive m = 2.3 cases in figure 10. As in the 2d diamond, the causal set spectrum

exhibits a characteristic knee. The spectrum converges very well for both sets of masses,

with the knee shifting to the UV as N increases, as expected. We also compare the causal

set spectrum with the finite T continuum spectrum obtained via the mode comparison

method in [3]. As shown in figure 10 this spectrum does not seem to agree with the causal

set spectrum even though the latter convergences with N .

In the simulations whose results we present below, we examine two masses in detail:

m = 0 and m = 2.3,16 and vary over both the slab height T as well as the density ρ. For

m = 2.3, as can be seen in the scatter plots of figures 12, 14 and 16, WSJ agrees very

well with the SJ vacuum expected from the calculation in [3] (the Euclidean vacuum).

Furthermore, it appears that WSJ for a given T is simply the restriction of WSJ for a larger

T . This is also in agreement with the simulation results of [3].

For the massless case, the scatter plots of WSJ in figures 11, 13 and 15 do not show

convergence, but instead fan out, as a function of the proper time and distance. As the

density decreases, for T = 1.56, N = 36k, the scatter plot figure 15 shows a clustering into

two distinct sets. This shows that WSJ may not just be a function of proper time and

distance, and hence may not be de Sitter invariant.

In figure 17 the binned and averaged plots for WSJ show very good convergence with

N . While this is consistent with the narrowing of the m = 2.3 scatter plots at higher

densities, the convergence for m = 0 is not (since the m = 0 scatter plots do not narrow

much). Hence both the scatter plots and the binned plots are important in determining

convergence as well as understanding the nature of WSJ .

16This is an arbitrary choice of mass with no special physical significance. It allows for comparisons

with [3] who use a similar mass in their 2d de Sitter causal set simulations.
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(a) Causal m = 0. (b) Spacelike m = 0.

(c) Causal pairs. (d) Spacelike pairs.

Figure 11. N = 32000, T = 1, ρ = 1635.08, in 2d de Sitter. (a)-(b) represent Re[WSJ] vs. geodesic

distance for a sample of 100000 randomly selected pairs, and the red curve represents the mean

values with the SEM. (c)-(d) are plots of the distribution of pairs.

(a) Causal m = 2.3. (b) Spacelike m = 2.3.

Figure 12. N = 24000, T = 1, ρ = 1226.31, in 2d de Sitter. The scatter plot is Re[WSJ] vs.

geodesic distance for a sample of 100000 randomly selected pairs. The red curve represents the

continuum WE from (5.4).
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(a) Causal m = 0. (b) Spacelike m = 0.

(c) Spacelike pairs. (d) Spacelike pairs.

Figure 13. N = 36000, T = 1.5, ρ = 203.15, in 2d de Sitter. (a)-(b) represent Re[WSJ] vs. geodesic

distance for a sample of 100000 randomly selected pairs. The red curve represents the mean values

with the SEM. (c)-(d) are plots of the distribution of pairs.

(a) Causal m = 2.3. (b) Spacelike m = 2.3.

Figure 14. N = 36000, T = 1.5, ρ = 203.15, in 2d de Sitter. Re[WSJ] vs. geodesic distance for

100000 randomly selected pairs. The red curve represents the continuum WE from (5.4).
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(a) Causal m = 0. (b) Spacelike m = 0.

(c) Causal pairs. (d) Spacelike pairs.

Figure 15. N = 36000,−1.56 < T̃ < 1.56, ρ = 30.93, in 2d de Sitter. (a)-(b) represent Re[WSJ]

vs. geodesic distance for a sample of 100000 randomly selected pairs. The red curve represents the

mean values (of the data) with the SEM. (c)-(d) are plots of the distribution of pairs.

(a) Causal m = 2.3. (b) Spacelike m = 2.3.

Figure 16. N = 36000, T = 1.56, ρ = 30.93, in 2d de Sitter. Re[WSJ] vs. geodesic distance for a

sample of 100000 randomly selected pairs. The red curve represents the continuum WE from (5.4).
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(a) Causal m = 0. (b) Spacelike m = 0.

(c) Causal m = 2.3. (d) Spacelike m = 2.3.

Figure 17. Variation of binned and averaged Re[WSJ] with density at T = 1, in 2d de Sitter.

5.4 Slab of 4d de Sitter spacetime

Finally, we examine the 4d de Sitter SJ vacuum. Again, we work in units in which the de

Sitter radius ` = 1. In 4d, m∗ = 1.5 and mc =
√

2 ≈ 1.41.

In figure 18 we show the scatter plot of the causal set retarded Green function (4.13),

taking the conformally coupled massless case as an example. While the small τ discrepancy

with the continuum expression is expected and attributed to the local finiteness of the

causal set, the behaviour for large τ compares well with the continuum. Figure 19 shows

the log-log plot of the SJ spectrum for m = 0 and m = 2.3 for various N . We find that there

is excellent convergence with N in both cases, and again, as in the other cases we have seen,

there is a knee which shifts to the UV as N is increased. However, there is poor agreement

with the continuum values of the finite T spectrum calculated via the mode comparison

method in [3], as in the 2d case. In figure 20 we also show the spectrum for m varied

around m = 0 and m = mc ≈ 1.41. There is no unusual behaviour close to these masses.

Figures 21 and 22 are sample scatter plots of WSJ for m = 0 and m = 2.3. In figure 23

we fix T form = 0 and form = mc ≈ 1.41 and varyN to check for convergence with density;

for smaller proper times and distances, the convergence is not as good as it is for larger

proper times and distances. For m = 1.41 we also plot the Wightman function associated

with the Euclidean vacuum WE in (5.4). WE does not compare well with the causal set

WSJ. Next, in figure 24 we fix the density ρ = 9 and check the convergence with T , which
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Figure 18. K0 vs. |τ | for N = 32k, T = 1.42, ρ = 7.978,m = mc =
√

2, in 4d de Sitter. The black

curve represents the expectation value (4.12).

(a) m = 0, T = 1.5. (b) m = 2.3, T = 1.2.

Figure 19. Log-log plot of the positive eigenvalues of i∆, in 4d de Sitter. In the massive case on

the right we plot the largest 6000 positive eigenvalues and the corresponding continuum eigenvalues

from the finite T mode comparison results of [3].

we vary from 1.2 to 1.42. We find good convergence for various m values. However, the

Wightman function associated with the α-vacuum (5.5) as well as the Euclidean vacuum

WE once again do not compare well with the causal set WSJ for any of these masses. This is

somewhat surprising, since the discrepancy occurs well away from the massless minimally

and conformally coupled cases.

Further, in figure 25 we look at WSJ for varying masses at fixed T = 1.42 and ρ = 9.

We find that WSJ looks like a continuous function of m even as m is varied around mc.

Indeed, the large distance behaviour for all the masses is exactly the same. At smaller

distances, there is an interesting bifurcation as m changes: Re[W ] is positive for small

masses and negative for large masses. This figure also shows the number of pairs as a

function of distances. The discrepancies in the small distance behavior could be attributed

to the small number of pairs there.

Our simulations thus strongly suggest that the causal set 4d de Sitter WSJ differs from

the Mottola-Allen α-vacua for all masses.
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(a) Near m = 0. (b) Near m = 1.41.

Figure 20. Log-linear plot of the first 500 positive eigenvalues of i∆ at T = 1.42, ρ = 9, in 4d de

Sitter.

(a) Causal T = 1. (b) Spacelike T = 1.

(c) Causal T = 1.2. (d) Spacelike T = 1.2.

Figure 21. m = 0, N = 32000, in 4d de Sitter. Re[WSJ] vs. geodesic distance for 100000 randomly

selected pairs, and the red curve represents the mean values with the SEM.
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(a) Causal T = 1. (b) Spacelike T = 1.

(c) Causal T = 1.2. (d) Spacelike T = 1.2.

Figure 22. m = 2.3, N = 32000, in 4d de Sitter. Re[WSJ] vs. geodesic distance for a sample

of 100000 randomly selected pairs. The red curve shows the Euclidean two-point function WE

from (5.4).
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(a) Causal m = 0, T = 1.3. (b) Spacelike m = 0, T = 1.3.

(c) Causal m = 1.41, T = 1.4. (d) Spacelike m = 1.41, T = 1.4.

Figure 23. Re[WSJ] vs. geodesic distance with varying density, in 4d de Sitter. The blue curve

shows the Euclidean two-point function as a reference.

(a) Causal m = 0. (b) Spacelike m = 0.

– 30 –



J
H
E
P
0
7
(
2
0
1
9
)
0
0
9

(c) Causal m = 0.7. (d) Spacelike m = 0.7.

(e) Causal m = 1.41. (f) Spacelike m = 1.41.

(g) Causal m = 1.5. (h) Spacelike m = 1.5.

Figure 24. Re[WSJ] vs. geodesic distance with varying T for various m at ρ = 9, in 4d de

Sitter. The red and blue curves represent the corresponding continuum α- and Euclidean two-point

functions respectively. The inset figures represent the zoomed-out versions. In (e)-(f), for m =
√
2

there is no corresponding α-vacuum, and in (g)-(h) the α-vacuum and Euclidean vacuum coincide.
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(a) Causal T = 1.42. (b) Spacelike T = 1.42.

(c) Causal T = 1.42. (d) Spacelike T = 1.42.

(e) Causal pairs. (f) Spacelike pairs.

Figure 25. Re[WSJ] vs. geodesic distance with varying m at ρ = 9, in 4d de Sitter. (e)-(f) show

the distribution of pairs.
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6 Discussion

Our simulations suggest that the CST 4d de Sitter SJ vacuum for all masses, while de

Sitter invariant, is not equivalent to any of the Mottola-Allen α-vacua. Moreover, contrary

to the conclusions of [3] which are based on a mode comparison calculation, we find that

the CST SJ vacuum is well-defined both for m = 0 and m = mc in 2d and 4d de Sitter. In

2d, where these two masses are equal, the CST SJ vacuum does not seem to be de Sitter

invariant. In 4d on the other hand, as already mentioned above, the massless (as well as

m = mc) de Sitter CST SJ vacuum is de Sitter invariant.

Our simulations are by necessity limited to a finite region of de Sitter, given by the IR

cutoff T and a finite density ρ. However, the convergence results we find are convincing

and indicate that the CST SJ vacua will not change significantly as T → π/2 (the infinite

volume limit). The convergence with density is especially good at larger proper times and

distances. At smaller proper times and distances there is an approach to an asymptotic

form, though not exact convergence. Put together these results suggest that the CST SJ

vacuum converges to a continuum SJ vacuum with the two-point function approximately

given by figures 23 in section 5.

Our results show a discrepancy with the results of [3] in 4d de Sitter spacetime. One

possibility, as with any numerical finding, is simply that our densities and T values are not

large enough to make the comparison. However, it seems an unlikely explanation given the

apparent convergence we have found with density and T . We believe that it instead arises

from the differences in how IR limits enter into the ab initio versus the mode comparison

calculations. Thus, our work strongly suggests that the SJ state for 4d de Sitter is an

altogether new de Sitter vacuum.

The SJ vacuum in de Sitter spacetime clearly requires further study. An analytic ab

initio calculation in the continuum is challenging, but perhaps can be carried out in a corner

of the parameter space. Moreover, since the SJ state is the unique state that satisfies (2.9),

each of the Mottola-Allen α-vacua must violate at least one of the SJ conditions. These

ideas are currently being investigated. From the CST perspective, our results bring new

light to questions of relevance to early universe phenomenology. Given that the continuum

is an approximation to an underlying causal set, the natural vacuum for FSQFT on a 4d de

Sitter-like causal set is the SJ vacuum we have obtained. Since this CST SJ vacuum differs

markedly from the standard continuum 4d de Sitter vacua, it suggests that early universe

phenomenology could be very different from what one expects from standard continuum

calculations.
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A De Sitter spacetime

In this appendix we review de Sitter spacetime, mostly following the discussion in [33].

We define the coordinate systems that we work with, as well as the definition of geodesic

distance that we use to evaluate or proper times and distances.

de Sitter spacetime dSd can be thought of as a surface in Md+1. This surface is

characterized by the constraint

−X2
0 +X2

1 + . . .+X2
d = ηABX

AXB =
1

H2
, (A.1)

where A and B run from 0 to d. This is a hyperboloid in Md+1 with “radius” ` ≡ 1
H . This

is also, topologically, R×Sd−1, where the Sd−1 corresponds to a surface with constant X0.

This (d− 1)-sphere has a radius ≡ 1
H2 +X2

0 .

Assume that on the surface dSd we can assign coordinates xa, then corresponding to

each point on the surface we can define vectors XA(x), in Md+1. Each of these must satisfy

(1). We can define another useful quantity as follows:

Z(x, y) = H2ηABX
A(x)XB(y) = cos θ. (A.2)

We can think of this as an inner product between two d+ 1-vectors that represent points

x and y on the surface dSd. If there is some angle θ between these two vectors in Md+1,

then the above expression can be written (in exact analogy with the usual “dot product”)

in terms of this angle, and the magnitude cancels out with the H2 in front.

Now for two points on the surface separated by an angle θ, the geodesic distance (in

exact analogy with a sphere) is given by d(x, y) = 1
H θ, where 1

H plays the role of radius.

Therefore we have [5]

d(x, y) =
1

H
cos−1 Z(x, y). (A.3)

The advantage of this relation is that in general the geodesic distance is given by

d(x, y) =

∫ x

y
dµ

√
ηAB

dXA

dµ

dXB

dµ
, (A.4)

where XA(µ) is a parameterized geodesic between points x and y. In general, this integral

can be difficult to evaluate. However the closed-form expression of Z(x, y) allows it to be

trivially evaluated once coordinates are assigned to the surface dSd. The values Z > 1,

Z = 1 and −1 < Z < 1 correspond to pairs of points that can be joined by timelike, null,

and spacelike geodesics, respectively.

A useful set of coordinates to characterize global de Sitter spacetime are the hyperbolic

coordinates. In these, the metric takes the form

ds2 = −dτ2 +
1

H2
cosh2(Hτ) dΩ2

d−1, (A.5)
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where −∞ < τ < ∞ and Ωd−1 are coordinates on Sd−1. These coordinates are related to

those in (A.1) by

X0 =
1

H
sinh τ (A.6)

Xi =
1

H
wi cosh τ, i = 1, . . . , d,

where wi are coordinates on the sphere Sd−1:

w1 = cos θ1, (A.7)

w2 = sin θ1 cos θ2,
...

wd−1 = sin θ1 . . . sin θd−2 cos θd−1,

wd = sin θ1 . . . sin θd−2 sin θd−1,

and where 0 ≤ θi < π for 1 ≤ i ≤ d− 2 and 0 ≤ θd−1 < 2π.
∑d

i=1

(
wi
)2

= 1 and

dΩ2
d−1 =

d∑
i=1

(
dwi
)2

= dθ2
1 + sin2 θ1dθ

2
2 + . . .+ sin2 θ1 . . . sin

2 θd−2dθ
2
d−1 (A.8)

is the metric on Sd−1.

Another useful set of coordinates are the conformal/cylindrical coordinates obtained

by setting H dτ/ coshHτ = dT̃ in the above metric

ds2 =
1

H2 cos2 T̃

(
−dT̃ 2 + dΩ2

d−1

)
, (A.9)

where −π/2 < T̃ < π/2. In these coordinates the volume of a region of height 2T (i.e.

conformal time T̃ ∈ [−T, T ]) and radius ` is given by

V (T, d) =
2πd/2`d

Γ(d2)

∫ T

−T
secd T̃ dT̃ . (A.10)

In our cases of interest,

V (T, 2) = 4π`2 tanT (A.11)

V (T, 4) =
4

3
π2`4 tanT (cos 2T + 2) sec2 T. (A.12)

The following are some other useful identities relevant to de Sitter spacetime that relate

the Ricci scalar R to other commonly used scales — the cosmological constant (Λ), the de

Sitter radius (`) and the Hubble constant (H):

R =
2d

d− 2
Λ = d (d− 1)H2 =

d (d− 1)

`2
, (A.13)

where Λ =
(d− 1)(d− 2)

2
H2. (A.14)
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The critical mass17 is

m∗ =
d− 1

2`
. (A.15)

In d = 4, R = 4Λ = 12H2 = 12/`2 and m∗ =
3

2`
.

B Mode comparison to O(4) modes

In this appendix, we evaluate the expressions that yield the Bogoliubov transformation

between the SJ modes and the O(4) modes, as discussed near the end of section 3. We

remind the reader that if |rk| = 1, then αk and therefore the Bogoliubov coefficients diverge

and the transformation becomes ill-defined.

Evaluation of r0 in the O(4) case. We put in the values of A0, B0 and substitute

η − π/2 = x, then

T0 =
2α2

H2

∫ b′

0

dx

cos4 x

{(
x+

sin 2x

2

)2

+ t

}
, (B.1)

D0 =
−2α2

H2

∫ b′

0

dx

cos4 x

{(
x+

sin 2x

2

)2

+ d

}
, (B.2)

where t =
1

α4

(
1

16
+ β2

)
and d =

−1

α4

(
1

4
+ iβ

)2

. So we have

r0 =
D0

T0
= −ε+ d

ε+ t
where ε =

∫ b′

0

dx

cos4 x

(
x+

sin 2x

2

)2

∫ b′

0

dx

cos4 x

. (B.3)

These integrals are well-behaved at the lower limit and diverge as b′ → π/2, so we can

approximate them by their values near the upper limit. We get

lim
b′→π/2

ε =
π2

4
,

r0 = −π
2 + 4d

π2 + 4t
. (B.4)

Evaluation of rk (k 6= 0) in the O(4) case.

Tk =
1

H2

∫ π

0

dη

sin4 η
sin3 η (A∗kP +B∗kQ)(AkP +BkQ) (B.5)

Here we have suppressed the indices and arguments on the Legendre functions P and Q.

We substitute − cos η = x⇒ sin η dη = dx and
dη

sin η
=

dx

1− x2
. We then get

Tk =
1

H2
(|Ak|2T

(1)
k + (A∗kBk +B∗kAk)T

(2)
k + |Bk|2T

(3)
k ),

17For more details see [34].
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where

T
(1)
k =

∫ 1

−1

dx

1− x2
(P

3/2
k+1/2(x))2 (B.6)

T
(2)
k =

∫ 1

−1

dx

1− x2
P

3/2
k+1/2(x)Q

3/2
k+1/2(x) (B.7)

T
(3)
k =

∫ 1

−1

dx

1− x2
(Q

3/2
k+1/2(x))2. (B.8)

Similarly Dk =
(−1)k

H2
(A2

kD
(1)
k + 2AkBkD

(2)
k +B2

kD
(3)
k ) with D

(i)
k = T

(i)
k .

From the definitions of the associated Legendre functions we have:18

P
3/2
k+1/2(x) =

(
1+x

1−x

)3/4F (−k−1/2,k+3/2,−1/2;(1−x)/2)

Γ(−1/2)
(B.9)

Q
3/2
k+1/2(x) =

π

2
k(k+1)(k+2)

(
1−x
1+x

)3/4F (−k−1/2,k+3/2,5/2;(1−x)/2)

Γ(5/2)
. (B.10)

The above integrals become

T
(1)
k =

1

(Γ(−1/2))2

∫ 1

−1
dx

(1+x)1/2

(1−x)5/2
F 2(−k−1/2,k+3/2,−1/2;(1−x)/2) (B.11)

T
(2)
k =

πk(k+1)(k+2)

2Γ(−1/2)Γ(5/2)

∫ 1

−1
dxF (−k−1/2,k+3/2,−1/2;(1−x)/2) (B.12)

×F (−k−1/2,k+3/2,5/2;(1−x)/2)

T
(3)
k =

(πk(k+1)(k+2))2

(2Γ(5/2))2

∫ 1

−1
dx

(1−x)1/2

(1+x)5/2
F 2(−k−1/2,k+3/2,5/2;(1−x)/2). (B.13)

All of the above integrals are divergent. However it turns out that the ratios

T
(2)
k /T

(1)
k , T

(3)
k /T

(1)
k → 0, therefore we have

rk = (−1)k
A2
k

|Ak|2
= ei(argAk+kπ), (B.14)

whence we find that |rk| = 1.

C Mode comparison to non-Fock modes

Transformation between the non-Fock de Sitter invariant modes of [15] and the

SJ modes

The PJ function in terms of the modes we use in this appendix, is

i∆(x, x′) = i
H2

2

(
f(x)− f(x′)

)
+
∑
q

uq(x)u∗q(x
′)− u∗q(x)uq(x), (C.1)

18We will write F instead of 2F1.
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where f(x) = ηx − 1
2 sin 2ηx − π

2 , and for simplicity q refers to the principle index and we

will omit the angular indices. The SJ modes then are

sk(x) =
1

λk
〈i∆(x, x′), sk(x

′)〉 =
∑
q

(
uq(x)Aqk + u∗q(x)Bqk

)
+ i

H2

2
Ck+ i

H2

2
f(x)Dk, (C.2)

where uq are the O(4) modes and Aqk = 1
λk
〈uq, sk〉, Bqk = − 1

λk
〈u∗q , sk〉, Ck = 1

λk
〈f, sk〉,

and Dk = − 1
λk
〈1, sk〉. Using (C.2) we have the inner products

1

λk′
〈sk, sk′〉 =

∑
q

(
A∗qkAqk′ −B∗qkBqk′

)
+ i

H2

2
(C∗kDk′ −D∗kCk′) = δkk′ (C.3)

1

λk′
〈s∗k, sk′〉 =

∑
q

(
Aqk′Bqk −AqkBqk′

)
+ i

H2

2
(DkCk′ − CkDk′) = 0. (C.4)

Again using (C.2) and the definition of the coefficients, we have

Aqk =
1

λk

∑
n 6=0

(
〈uq, un〉Ank + 〈u∗q , un〉∗Bnk

)
+ i

H2

2λk
���

�:0〈uq, 1〉Ck + i
H2

2λk
��

��:0〈uq, f〉Dk, (C.5)

where the last two inner products vanish because q 6= 0 and 〈Yq, Y0〉 = 0, where the Y ’s

are spherical harmonics. Similarly,

Bqk = − 1

λk

∑
n 6=0

(
〈u∗q , un〉Ank + 〈u∗q , un〉∗Bnk

)
. (C.6)

The definitions of Aqk and Bqk for q 6= 0 and k 6= 0 are the same as in the O(4) case, and

they are therefore ill-defined.

Ck =
1

λk

∑
q

(
���

�:0〈f, uq〉Aqk +
�
��
�*0

〈f, u∗q〉Bqk

)
+ i

H2

2λk
〈f, 1〉+ i

H2

2λk
〈f, f〉 (C.7)

Dk = −i H
2

2λk
〈1, 1〉 − i H

2

2λk
〈1, f〉. (C.8)

Let Ck = Dk = 0 for k 6= 0,19 and Aqk = Bqk = 0 for k = 0.20 We can then write

Aqk = δqk coshαk, Bqk = δqk sinhαke
iβk , and (C.3)–(C.4) become

−iH
2

2
(D∗0C0 − C∗0D0) = 1, (C.9)

C0D0 − C0D0 = 0. (C.10)

19Justification for Ck = Dk = 0 when k 6= 0: if Ck = i
Hαk

eiθk , Dk = αk
H
eiθk , then from (C.3) we need

that −iH
2

2
(D∗kCk′ − C∗kDk′) = ei(θk′−θk) ∝ δkk′ . Therefore we must choose only one special value of k for

which Ck and Dk are not 0. From the equation in the second sentence of the next footnote, we see that

this special value of k is k = 0.
20Justification for Aqk = Bqk = 0 when k = 0: let Aqk, Bqk 6= 0 for some q. Then (C.3) becomes

A∗q0Aq0 − B∗q0Bq0 − iH
2

2
(C0D

∗
0 − C∗0D0) = 1. But then 〈s0, sq〉 = λq

(
A∗q0Aqq −B∗q0Bqq

)
= 0. This is

solved by either a) Aq0 = − sinhαqe
−iβq , Bq0 = − coshαq, or b) Aq0 = 1/ coshαq, Ba0 = eiβq/ sinhαq. But

neither of these solutions yield vanishing 〈s0, s∗q〉. Therefore we must have Aqk = Bqk = 0.
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The constraint (C.10) is trivially satisfied, and (C.9) is satisfied if we choose

C0 =
i

Hα
eiθ, D0 =

α

H
eiθ (α, θ ∈ IR). (C.11)

Plugging these into (C.7) we get

2λ0

iH2

i

αH
= 〈f, 1〉 i

αH
eiθ + 〈f, f〉 α

H
eiθ. (C.12)

〈f, 1〉 vanishes, leaving

α2 =
2λ0

H2〈f, f〉
. (C.13)

Similarly, from (C.8) we get

α2 =
〈1, 1〉H2

2λ0
. (C.14)

Together (C.13) and (C.14) yield

α2 =

√
〈1, 1〉
〈f, f〉

= |const|, (C.15)

where const is a non-zero and finite constant. Hence C0 and D0 are finite and well-defined.

D Dimensional analysis

Dimensional analysis tells us what are the right quantities to compare.

Dimensional analysis in the continuum. The retarded Green function satisfies the

KG equation (4.1) so we have21 [G] = 2 − d = [∆]. The eigenvalue equation for the PJ

operator is

(i∆ fk)(x) =

∫
dVy i∆(x, y)fk(y) = λk fk(x). (D.1)

Therefore [λk] = 2. The SJ two-point function is the positive part of the PJ operator and

is given by

W (x, y) =
∑
k

λk f̃k(x)f̃∗k (y) (λk > 0), (D.2)

where f̃k are the normalised (in the L2 norm) eigenfunctions. So we have, [f̃k] = −d/2,

[W ] = 2− d.

Note. If we define the SJ modes as fSJk =
√
λk f̃k then we get [fSJk ] = 1− d/2.

21[ ] refers to length dimension.
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Dimensional analysis in the causal set. The Green function in the causal set is given

by (4.6), where [m2/ρ] = d − 2 and we can get the dimension of K0 by requiring that

[K0m
2/ρ] = 0, which yields [K0] = 2− d = [G] = [i∆].

We use the following correspondence to define the analogs of integral operators in the

causal set ∫
dVy →

1

ρ

∑
y

. (D.3)

The eigenvalue equation is given by a matrix equation

1

ρ
i∆fk = λk fk . (D.4)

Here [λk] = 2. These eigenvalues can be compared with the continuum eigenvalues.22 As

in the continuum, we have23 [f̃k] = −d/2 and [fSJk ] = 1− d/2. For the two-point function

we have [W ] = 2− d. Therefore, W can also be compared directly with its counterpart in

the continuum.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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