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1 Introduction

Detailed investigations of the Sachdev-Ye-Kitaev (SYK) model [1–12] have given an in-

teresting, highly nontrivial example of the AdS/CFT duality and a potential framework

for quantum black holes. The model, which can be studied at Large N , features emer-

gent reparametrization invariance at the IR critical point, with related out-of-time-order

correlators exhibiting quantum chaos, with a Lyapunov exponent characteristic of black

holes [2], providing the butterfly effect [13–20]. Random matrix theory interpretations have

been studied in [21–30]. Related models have been studied also [31–33] with various gener-

alizations [34–47]. The solution and properties are shared with tensor type models [48–75].

For all these theories, bi-local observables, as proposed in [76] in the context of O(N)

vector model/higher spin duality [77], provide a route to a bulk construction of the dual

theory with emergent space-time [78–80]. For the SYK model the IR and the near-IR limit

are solvable, with evaluations [2, 6, 8] of the invariant Schwarzian action representing the

boundary Gravity degrees of freedom possibly related to JT type [81, 82] dual theory [83–

87] (See also [88–97]).

From symmetry considerations, the center of mass and relative coordinates of the two

points in the bi-local fields can be interpreted as the coordinates of the Poincare patch of

AdS2 or dS2 [5–7] as in the simplest identification proposed in [76]. Indeed, the action of

fluctuations of the bi-local is a non-polynomial function of the AdS2 Laplacian, indicating

that the theory contains an infinite tower of fields. The bi-local propagator can be expressed

as a sum over poles, where each term in the sum is a non-standard AdS2 propagator with

non-trivial residues [7]. Remarkably, this tower can be realized as a Kaluza-Klein tower

coming from an additional third dimension [98, 99]. This reproduces the spectrum as

well as the propagator, including the enhanced propagator of [6]. The kinetic terms are

now standard: the nontrivial residues at the poles in the SYK propagator now appear as
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nontrivial wave functions. However, one should not expect that higher point functions [10]

can be reproduced by local interactions in this 3D picture [11]. The usefulness of an

additional dimension also appears in the description of Higher Spin theories [80].

Despite all these successes, the actual emergent space-time of the SYK model (or of any

other similar SYK-type models) is not yet understood. There are several reasons why the

AdS2 or dS2 on which the bi-locals live should not be considered to be the bulk spacetime

in the usual sense of AdS/CFT. Consider for concreteness the Euclidean partition function.

Changing variables to bi-local fields one reaches a solution (the propagator and quadratic

fluctuations) which features a Lorentzian signature, coming from the fact that the two

points of the bi-local become coordinates of a Lorentizan signature. On the other hand, we

expect that the dual theory should live in Euclidean spacetime EAdS2 [6]. One issue which

is detrimental to a potential Lorentzian identification associated with this data comes from

the factors of “ i ” which inevitably appears in a Lorentzian dual theory, but absent in the

SYK propagator. Secondly, the radial part of the AdS2 wave functions which appear in

the SYK propagator (whether or not we write this in the 3D language) are not the usual

normalizable AdS wave functions, but satisfy different boundary conditions. These unusual

wave functions are, however, required since these are the ones which diagonalize the SYK

kernel [5, 7]. This suggests that they might be better thought of as dS2 wave functions [6].1

In this paper we provide a key step towards a resolution of both issues. We will show

that a non-local transform relates the bi-local field to a field whose underlying dynamics is in

Euclidean AdS2. We will arrive at this transform following the same principles underlying

the derivation of the corresponding transform for the O(N) model in d = 3 [78, 79]: the idea

is to find a canonical transformation in the four dimensional phase space of the two points in

the bi-local such that the symmetries of EAdS2 are realized correctly. This suggets a simple

transformation kernel for the momentum space fields. It turns out that the corresponding

position space kernel is a H2 Radon transform. Radon transforms have appeared (explicitly

or implicitly) in discussions of AdS/CFT, most notably in [101–103, 105] where this is used

to go from the bulk to the kinematic space of the boundary field theory on a time slice.

Indeed the space on which the bi-locals live is a version of kinematic space. However, unlike

these papers we are not working on a time slice in the bulk - rather our transform takes

unequal Euclidean time fields on EAdS2 to bi-locals. Though mathematically identical,

our transform is conceptually somewhat different. The necessity of a Radon transform in

this context has been in fact mentioned in [6].

This transformation takes the particular combinations of Bessel functions which ap-

pear in the SYK propagators to the modified Bessel functions which appear in the standard

EAdS2 propagator.In addition we find extra leg factors which resemble the leg pole fac-

tors of the c = 1 matrix model . In that case these were necessary to relate the collective

field [106] to the tachyon field of the dual 2D string theory and reproduce the S-Matrix [107–

113] (for a recent improved understanding see [114]). The leg poles represent discrete states

of the 2D string and analogously it is tempting to suggest that the leg pole factors also

arise from similar bulk degrees of freedom, which remain to be identified. An explicit

1This has been suggested by J. Maldacena [100].
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correspondence between the SYK propagator and the propagator of macroscopic loop op-

erators [107]that we establish supports this interpretation.

The content of the paper is as follows: in section 2, we review relevant aspects of

the bi-local solution of the model and illuminate the dS2 nature of the wave functions.

In section 3, we introduce the Leg transformations and their meaning. In section 4, Leg

factors and the Propagator is discussed. Section 5 is reserved for conclusions.

2 Question of dual spacetime

In this section, we clarify the question regarding the signature of the SYK dual

gravity theory.

The Sachdev-Ye-Kitaev model [2] is a quantum mechanical many body system with

all-to-all interactions on fermionic N sites (N � 1), described by the Hamiltonian

H =
1

4!

N∑
i,j,k,l=1

Jijkl χi χj χk χl , (2.1)

where χi are Majorana fermions, which satisfy {χi, χj} = δij . The coupling constant Jijkl
are random with a Gaussian distribution with width J . The generalization to analogous

q-point interacting model is straightforward [2, 6]. After the disorder averaging for the

random coupling Jijkl, there is only one effective coupling J in the effective action. The

model is usually treated by replica method. One does not expect a spin glass state in this

model at least in the leading order of 1/N [4] so that we can restrict to the replica diagonal

subspace [7]. The Large N theory is simply represented through a (replica diagonal) bi-local

collective field:

Ψ(t1, t2) ≡ 1

N

N∑
i=1

χi(t1)χi(t2) , (2.2)

where we have suppressed the replica index. The corresponding path-integral is

Z =

∫ ∏
t1,t2

DΨ(t1, t2) µ[Ψ] e−Scol[Ψ] , (2.3)

where Scol is the collective action:

Scol[Ψ] =
N

2

∫
dt
[
∂tΨ(t, t′)

]
t′=t

+
N

2
Tr log Ψ − J2N

2q

∫
dt1dt2 Ψq(t1, t2) . (2.4)

Here the trace term comes from a Jacobian factor due to the change of path-integral vari-

able, and the trace is taken over the bi-local time. One also has an appropriate order

O(N0) measure µ[Ψ]. There is another formulation with two bi-local fields: the fundamen-

tal fermion propagator G(t12) and the self energy Σ(t12). This is equivalent to the above

formulation after elimination of Σ(t12). In this paper, we focus on this Euclidean time

SYK model.

Fluctuations around the critical IR saddle point background Ψ0(t1, t2) can be studied

by expanding the bi-local field as [7]

Ψ(t1, t2) = Ψ0(t1, t2) +
1√
N

Ψ(t1, t2) , (2.5)
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where Ψ0 is the IR large N saddle-point solution and Ψ is the fluctuation. At the quadratic

level, we have a quadratic kernel K. The diagonalization of this quadratic kernel is done

by the eigenfunction uν,ω and the eigenvalue g̃(ν) as∫
dt′1dt

′
2K(t1, t2; t′1, t

′
2)uν,ω(t′1, t

′
2) = g̃(ν)uν,ω(t1, t2) . (2.6)

The quadratic kernel K is in fact a function of the bi-local SL(2,R) Casimir

C1+2 =
(
D̂1 + D̂2

)2 − 1

2

(
P̂1 + P̂2

)(
K̂1 + K̂2

)
− 1

2

(
K̂1 + K̂2

)(
P̂1 + P̂2

)
= − (t1 − t2)2 ∂1∂2 , (2.7)

with the SL(2,R) generators D̂ = −t∂t, P̂ = ∂t, and K̂ = t2∂t. The common eigenfunctions

of the bi-local SL(2,R) Casimir (2.7) are, due to the properties of the conformal block,

given by the three-point function of the form

|t12|2∆
〈
Oh(t0)O∆(t1)O∆(t2)

〉
=

sgn(t12)

|t10|h|t20|h|t12|−h
, (2.8)

where we defined tij ≡ ti − tj . Since the SYK quadratic kernel K is a function of this

bi-local SL(2,R) Casimir, this three-point function is also the eigenfunction of the SYK

quadratic kernel. For the investigation of dual gravity theory, it is more useful to Fourier

transform from t0 to ω by〈
Õh(ω)O∆(t1)O∆(t2)

〉
≡
∫
dt0 e

iωt0
〈
Oh(t0)O∆(t1)O∆(t2)

〉
= −

√
π cot(πν) Γ

(
1

2
− ν
)
|ω|ν sgn(t12)

|t12|2∆− 1
2

eiω(
t1+t2

2
)Zν

(
|ωt12

2
|
)
,

(2.9)

where we used h = ν + 1/2 and defined

Zν(x) = Jν(x) + ξν J−ν(x) , ξν =
tan(πν/2) + 1

tan(πν/2)− 1
. (2.10)

The t0 integral in the Fourier transform can be performed by decomposing the integration

region into three pieces. The complete set of ν can be understood from the representation

theory of the conformal group, as discussed recently in [115]. We have the discrete modes

ν = 2n + 3/2 with (n = 0, 1, 2, · · · ) and the continuous modes ν = ir with (0 < r < ∞).

Adjusting the normalization, we define our eigenfunctions by

uν,ω(t, ẑ) ≡ sgn(ẑ) ẑ
1
2 eiωt Zν(|ωẑ|) , (2.11)

which have normalization condition∫ ∞
−∞

dt

2π

∫ ∞
0

dẑ

ẑ2
u∗ν,ω(t, ẑ)uν′,ω′(t, ẑ) = Nν δ(ν − ν ′)δ(ω − ω′) , (2.12)
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with

Nν =

{
(2ν)−1 for ν = 3/2 + 2n

2ν−1 sinπν for ν = ir .
(2.13)

Here we used the change of the coordinates by

t ≡ t1 + t2
2

, ẑ ≡ t1 − t2
2

. (2.14)

The bi-local SL(2,R) Casimir can be seen to take the form of a Laplacian of Lorentzian two

dimensional Anti de-Sitter or de-Sitter space (in this two dimensional case they are charac-

terized by the same isometry group SO(2,1) or SO(1,2)). Under the canonical identification

with AdS

ds2 =
−dt2 + dẑ2

ẑ2
, (2.15)

it equals

C1+2 = z2(−∂2
t + ∂2

ẑ ) . (2.16)

Consequently the SYK eigenfunctions should be compared with known AdS2 or dS2 basis

wave functions.

Note that the Bessel function Zν (2.10) are not the standard normalizable modes used

in quantization of scalar fields in AdS2: in particular they have rather different boundary

conditions at the Poincare horizon. Another important property of this basis is that when

viewed as a Schrodinger problem as in [5] it has a set of bound states, in addition to

the scattering states. This will be discussed in detail in section 3 (see the left picture of

figure 1).

This leads one to try an identification with de-Sitter basis functions.2 As we will see,

the bi-local SYK wave functions can be realized as a particular α-vacuum of Lorentzian

dS2 with a choice of α = iπh = iπ(ν + 1/2). This is seen as follows. We consider the dS2

background with a metric given by

ds2 =
−dη2 + dt2

η2
. (2.17)

This can be obtained by the coordinate change (2.14) by replacing z → η. The Euclidean

(Bunch-Davies [116]) wave function of a massive scalar field is given by

φEω (η) eiωt , (2.18)

with

φEω (η) = η
1
2 H(2)

ν (|ω|η) , ν =

√
1

4
−m2 , (2.19)

where H
(2)
ν is the Hankel function of the second kind. Since the t-dependence is always like

eiωt, in the following we will focus only on the η dependence. The α-vacuum wave function

2This possibility has been emphasized to us by J. Maldacena [100].
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is defined by Bogoliubov transformation from this Euclidean wave function [117, 118] as

φαω(η) ≡ Nα

[
φEω (η) + eαφE∗ω (η)

]
= Nα η

1
2

[
H(2)
ν (|ω|η) + eαH(1)

ν (|ω|η)
]
, (2.20)

where

Nα =
1√

1− eα+α∗
, (2.21)

and α is a complex parameter. Now let us consider a possibility of α-vacuum with

α = iπ

(
ν +

1

2

)
= iπh . (2.22)

With this choice of α, using the definition of the Hankel functions

H(1)
ν (x) =

J−ν(x)− e−iπνJν(x)

i sin(πν)
, H(2)

ν (x) =
J−ν(x)− eiπνJν(x)

−i sin(πν)
, (2.23)

one can rewrite the α-vacuum wave function as

φαω(η) =

(
2 η

1
2

1 + ξν e−iπν

)
Zν(|ω|η) , (2.24)

where Zν is defined in eq. (2.10). After excluding the η-independent part of the wave

function, we can write the η-dependent part as

φαω(η) = η
1
2 Zν(|ω|η) . (2.25)

This wave function agrees with the eigenfunction of the SYK quadratic kernel (2.11) after

the identifications of η = (t1 − t2)/2 and t = (t1 + t2)/2.

Due to this observation, one might attempt to claim that the dual gravity theory of

the SYK model is given by Lorentzian dS2 space. However, there is a critical issue in this

claim. Apart from the Lorentzian signature in this metric (2.17), we still have a discrepancy

in the exponent of the partition function (2.3) with a factor of “i”. Namely, if the dual

gravity theory (higher spin gravity or string theory) is Lorentzian dS2, it must have

Z =

∫
DhnDΦm exp

[
i
(
Sgrav[h,Φ] + Smatter[h,Φ]

)]
, (2.26)

where we collectively denote the graviton and other “higher spin” gauge fields by hn and

the dilaton and other matter fields by Φm. Hence the agreement of the SYK bi-local

propagator

DSYK(t1, t2; t′1, t
′
2) =

〈
Ψ(t1, t2)Ψ(t′1, t

′
2)
〉

=
∞∑
m=0

Gpm(t1, t2; t′1, t
′
2) , (2.27)

with a dS2 propagator

DdS(η, t; η′, t′) =
1

i

∞∑
m=0

〈
Φm(η, t)Φm(η′, t)

〉
=

1

i

∞∑
m=0

Gm(η, t; η′, t′) , (2.28)
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is only up to the factor i. Namely, even if we have a complete agreement of Gpm with Gm
by identifying the coordinates by (2.14) (with a replacement of z → η), there is a problem

with the signature (i.e. the discrepancy of the factor i). For higher point functions, the

same i-problem proceeds due to the i factors coming from the propagator and each vertex.

To conclude, for the Euclidean SYK model under consideration, one needs a dual

gravity theory to be in the hyperbolic plane H2 (i.e. Euclidean AdS2) for the matching of

n-point functions. We will set the basis for the EAdS2 realization in the next section.

3 Transformations and leg factors

As we have commented in the Introduction in order to identify an Euclidean bulk dual

description (rather than a Lorentzian), we will need a transformation which brings the SYK

eigenfunctions (as given on bi-local space-time) to the standard eigenfunctions of the EAdS2

Laplacian. We will arrive at this transformation by considering the bi-local map described

in [78, 80] for higher dimensional case. In our current d = 1 case, the map is even simpler.

It will be seen to take the form of a H2 Radon transform (a related suggestion was made

in [6]). The need for a non-local transform on external legs appears to be characteristic of

collective theory (which as a rule contains a minimal set of physical degrees of freedom).

The first appearance of Radon type transforms in identifying holographic space-time was

seen in the c = 1 / D = 2 string correspondence.3 This is seen precisely in the form of

what is known as the regular Radon transform.

Let us describe procedure formulated in [78, 80] for constructing the bi-local to space-

time map. The method is based on construction of canonical transformations in phase

space: bi-local (t1, p1), (t2, p2) and EAdS2 (τ, pτ ), (z, pz). We consider the Poincare coor-

dinates for the Euclidean AdS2 space-time

ds2 =
dτ2 + dz2

z2
. (3.2)

One way to obtain the bi-local map is to equate the SL(2,R) generators.

Ĵ1+2 = ĴEAdS . (3.3)

The one-dimensional bi-local conformal generators are

D̂1+2 = t1 p1 + t2 p2 , P̂1+2 = −p1 − p2 , K̂1+2 = − t21 p1 − t22 p2 , (3.4)

and the EAdS2 generators are given by

D̂EAdS = τ pτ + z pz , P̂EAdS = −pτ , K̂EAdS = (z2 − τ2) pτ − 2τz pz , (3.5)

3The transformation introduced in [119] from the collective to a 2D (black hole) space-time took the

form

T (u, v) =

∫ ∞
−∞

dt

∫ ∞
0

dx δ

(
ue−t + vet

2
− x2

)
γ(i∂t)φ(t, x) , (3.1)

where T (u, v) is the tachyon field in the Kruskal coordinates representing the target space-time and φ(t, x)

is related to the eigenvalue density field. Related maps from the collective field or fermions to fields in a

black hole background have been proposed in [120–122] which are also possibly related to Radon transforms.
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where we defined p1 ≡ −∂t1 , p2 ≡ −∂t2 , pτ ≡ −∂τ , pz ≡ −∂z. Equating the generators, we

can determine the map. From the P̂ generators, we have pτ = p1 + p2. Using this result

for the other generators, we get two equations to solve:

z pz = (t1 − τ)p1 + (t2 − τ)p2

− z2 pτ = (t1 − τ)2p1 + (t2 − τ)2p2 . (3.6)

These are solved by

τ =
t1 p1 − t2 p2

p1 − p2
, pτ = p1 + p2 , z2 = −

(
t1 − t2
p1 − p2

)2

p1p2 , p2
z = −4p1p2 . (3.7)

One can see that the canonical commutators are preserved under the transform (at least

classically, i.e. in terms of the Poisson bracket). Namely, [τ, pτ ] = [z, pz] = 1 and others

vanish provided that [ti, pj ] = δij , with (i, j = 1, 2). Hence, we conclude the map is

canonical transformation, which is also a point transformation in momentum space. For

the kernel which implements this momentum space correspondence we can take

R(p1, p2; pτ , pz) =
δ(pτ − (p1 + p2))√

p2
z + 4p1p2

. (3.8)

Through Fourier transforming all momenta to corresponding coordinates, the associated

coordinate space kernel becomes4

R(t1, t2; τ, z) = δ(η2 − (τ − t)2 − z2) . (3.9)

With an additional multiplicative factor of η this is known as the Circular Radon trans-

form (3.12) which has a simple relationship to Radon transform on H2.

There is another construction of the Radon transform which is used in [101–103, 105]

and is based on integration over geodesics. For the Euclidean AdS2 space-time (3.2), a

geodesic is given by a semicircle

(τ − τ0)2 + z2 =
1

E2
, (3.10)

where τ = τ0 is the center of the semicircle and 1/E is the radius. The Radon transform

of a function of the bulk coordinates f(τ, z) is a function of the parameters of a geodesic

(E, τ0) defined by [
Rf
]
(E, τ0) ≡

∫
γ
ds f(τ, z(τ)) , (3.11)

where the integral is over the geodesic. From the geodesic equation (3.10), this transform

is explicitly written as

[
Rf
]
(η, t) = 2η

∫ t+η

t−η
dτ

∫ ∞
0

dz

z
δ
(
η2 − (τ − t)2 − z2

)
f (τ, z) , (3.12)

4Here, we have ignored possible issues related to the range of variables.
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where we have used the identifications 1/E = η and τ0 = t; the resulting function [Rf ](η, t)

is understood as a function on the Lorentzian dS2 (2.17).

We will now explicitly evaluate the Radon transformation of (unit-normalized) EAdS2

wave functions (see appendix A)

φEAdS2
(τ, z) = αν z

1
2 e−iωτ Kν(|ω|z) (3.13)

From the above formula of the Radon transform (3.12), we get[
RφEAdS2

]
(η, t) = αν η

∫ t+η

t−η

dτ

η2 − (τ − t)2
(η2 − (τ − t)2)

1
4 e−iωτ Kν(|ω|

√
η2 − (τ − t)2) .

(3.14)

Now shifting the integral variable τ → τ + t and using the symmetry of the integrand, one

can rewrite this integral as[
RφEAdS2

]
(η, t) = 2αν η e

−iωt
∫ η

0
dτ

(
1

η2 − τ2

) 3
4

cos(ωτ)Kν(|ω|
√
η2 − τ2) . (3.15)

Further rewriting the cos(ωτ) in terms of J−1/2(ωτ) and changing the integration variable

to τ = η sin θ, we find[
RφEAdS2

]
(η, t) =

√
π3

2

αν |ω|
1
2 η

sin(πν)
e−iωt

×
∫ π

2

0
dθ (tan θ)

1
2 J− 1

2
(|ω|η sin θ)

[
I−ν(|ω|η cos θ) − Iν(|ω|η cos θ)

]
,

(3.16)

where we decomposed the modified Bessel function of the second kind into two first kinds.

This θ integral is indeed given in eq. (4) of 12 · 11 of [123], which leads to[
RφEAdS2

]
(η, t) = −2i

√
π

Γ(1
4 + ν

2 )

Γ(3
4 + ν

2 )
βν η

1
2 e−iωt

[
Jν(|ω|η) +

tan πν
2 + 1

tan πν
2 − 1

J−ν(|ω|η)

]
,

(3.17)

where we also used eq. (A.9). The inside of the square bracket precisely agrees with the

particular combination of Bessel functions, Zν(|ω|η) function defined in eq. (2.10).

When νn = 3/2 + 2n the second term in this square bracket vanishes. As will be clear

soon, we need the radon transform of the modified Bessel function Iνn with. This can be

likewise evaluated to yield

R[α′νnz
1/2e−ikτIνn(|k|z)] = (2νnη)1/2e−ikxJνn(|k|η) (3.18)

where

α′νn =

(
2νn
π

) 1
2 Γ(3

4 + νn
2 )

Γ(1
4 + νn

2 )
(3.19)

The extra ν-dependent factor in (3.17) which appears in front of the unit-normalized dS2

wave function described in appendix A should be understood as a leg factor (3.21). As we

will see later, this is analogous to what happens in the c = 1 matrix model [107–113].

– 9 –
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y

VdS2

y

VEAdS2

Figure 1. The de Sitter potential VdS2 has bound states and scattering states. On the other hand,

the Euclidean AdS potential VAdS2 has only scattering modes.

In summary, we have the Radon transform

Rφ(EAdS2)
ω,ν (τ, z) = L(ν)ψ

(dS2)
ω,ν (η, t) , (3.20)

where φEAdS2
and ψdS2

are the unit-normlized wave functions defined in eq. (A.1) and

eq. (A.6), respectively, while the leg factor is defined by

L(ν) ≡ (Leg Factor) = −2i
√
π

Γ(1
4 + ν

2 )

Γ(3
4 + ν

2 )
. (3.21)

The inverse transformations are

R−1 ψ
(dS2)
ω,ν (η, t) = L−1(ν)φ

(EAdS2)
ω,ν (τ, z) . (3.22)

for ν 6= 3/2 + 2n, while for ν = 3/2 + 2n we have instead

R−1 ψ
(dS2)
ω,νn (η, t) = α′νnz

1/2e−ikτIνn(|k|z) (3.23)

Under the Radon transform R, the Laplacian of Lorentzian dS2 is transformed into

that of Euclidean AdS2:

�ds2 ψdS2(η, t) = −R�EAdS2 φEAdS2(τ, z) , (3.24)

with

�ds2 = η2(−∂2
η + ∂2

t ) , �EAdS2 = z2(∂2
τ + ∂2

z ) . (3.25)

Here, ψdS2 = RφEAdS2 . This role of the Radon transform was first suggested in [104].

In the rest of this section, we will show that the Radon transformation flips the sign

of the potential appearing in the equivalent Schrodinger problem as formulated in [5]. We

start from the Radon transformation (3.24). Expanding the wave functions by

ψdS2(η, t) = η
1
2

∑
ω

e−iωt ψ̃dS2(η; k) ,

φEAdS2(τ, z) = z
1
2

∑
ω

e−iωτ φ̃EAdS2(ω; z) , (3.26)
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we have corresponding Bessel equations for ψ̃dS2 and φ̃EAdS2 . By changing the coordinates

by y ≡ log(ωη) or y ≡ log(ωz), these Bessel equations are reduced to the Schrodinger

equations as (
− ∂2

y − ey
)
ψ̃dS2 = −ν2 ψ̃dS2 ,(

− ∂2
y + ey

)
φ̃EAdS2 = −ν2 φ̃EAdS2 . (3.27)

Therefore, the Radon transform flips the sign of the corresponding Schrodinger potential

(see figure 1). The de Sitter potential VdS2 = −ey has bound states as well as scattering

states. On the other hand, the Euclidean AdS potential VAdS2 = ey has only scattering

modes. The difference is accounted by the leg pole factors.

4 Green’s functions and leg factors

In this section, we start from the SYK bi-local propagator [7, 98]. Applying the inverse

Radon transformation (3.22), we will show that the resulting propagator can be written in

terms of EAdS2 wave-functions additional momentum space leg-factors.

The SYK bi-local propagator is given by

G(t1, t2; t′1, t
′
2) ∝ J−1

∫ ∞
−∞

dω
∑
ν

u∗ν,ω(t1, t2)uν,ω(t′1, t
′
2)

Nν [g̃(ν)− 1]
, (4.1)

where uν,ω are the eigenfunctions defined in eq. (2.11). Here the summation over ν is a

short-hand notation denotes the discrete mode sum and the continuous mode sum. with

the identification η = (t1 − t2)/2 and t = (t1 + t2)/2 the propagator is written in terms of

the dS2 wave functions as

G(η, t; η′, t′) = 2πJ−1

∫ ∞
−∞

dω

{ ∞∑
n=0

4 sinπνn
g̃(νn)− 1

ψ
∗
ω,νn(η, t)ψω,νn(η′, t′)

+

∫ ∞
0

dr
ψ
∗
ω,ν(η, t)ψω,ν(η′, t′)

g̃(ν)− 1

∣∣∣∣
ν=ir

}
, (4.2)

where νn = 2n + 3/2. Next, we use the inverse Radon transform (3.22) to bring the dS

wave functions into the EAdS wave functions.

G(τ, z; τ ′, z′) = 2πJ−1

∫ ∞
−∞

dω

{ ∞∑
n=0

4 sinπνn
g̃(νn)− 1

|L−1(νn)|2 φ ∗ω,νn(τ, z)φω,νn(τ ′, z′)

+

∫ ∞
0

dr |L−1(ν)|2
φ
∗
ω,ν(τ, z)φω,ν(τ ′, z′)

g̃(ν)− 1

∣∣∣∣
ν=ir

}
. (4.3)

Here we have denoted φω,νn(τ, z) as

φω,νn(τ, z) = α′νnz
1/2e−ikτIνn(|k|z) (4.4)
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We will directly evaluate the continuous mode summation for the full Green’s function

with the leg factor contribution in the integrand. For clarity let us first formally feature

the leg factors as Bessel differential operators,as

G(τ, z; τ ′, z′) = 2πJ−1
∣∣L−1(p̂EAdS2)

∣∣2 ∫ ∞
−∞

dω

{ ∞∑
n=0

4 sinπνn
g̃(νn)− 1

φ
∗
ω,νn(τ, z)φω,νn(τ ′, z′)

+

∫ ∞
0

dr
φ
∗
ω,ν(τ, z)φω,ν(τ ′, z′)

g̃(ν)− 1

∣∣∣∣
ν=ir

}
.

(4.5)

with

p̂EAdS2 ≡
√
�EAdS2 +

1

4
, (4.6)

where the Laplacian of EAdS2 is defined in eq. (3.25) and the factors are now acting on

standard propagators EAdS2 . The above expression for the leg factor differential operators

is slightly ambiguous. What we mean is that one of the leg factor differential operator is

acting on (τ, z) and the other leg factor operator is acting on (τ ′, z′).

We now proceed with our off-shell expression of the propagator (4.3) and evaluation of

the continuous mode summation for the Green’s function with leg factors in the integrand:

Icont ≡
∫ ∞

0
dr |L−1(ν)|2

φ
∗
ω,ν(τ, z)φω,ν(τ ′, z′)

g̃(ν)− 1

∣∣∣∣
ν=ir

. (4.7)

We evaluate this integral as a contour integral as before. We note that since the modified

Bessel function Kν is regular on the entire ν-complex plane, we have two sets of poles: (i).

ν = pm, with (m = 0, 1, 2, · · · ). (ii). ν = νn = 2n + 3/2, with (n = 0, 1, 2, · · · ) where

Γ(3
4 −

ν
2 ) =∞. After evaluating the residues at these poles, we find the integral as

Icont =
|zz′|

1
2

4π2
e−iω(τ−τ ′)

{ ∞∑
m=0

Γ(3
4 + pm

2 )Γ(3
4 −

pm
2 )

Γ(1
4 + pm

2 )Γ(1
4 −

pm
2 )

pm
g̃′(pm)

Kpm(|ω|z>)Ipm(|ω|z<)

+
2

π

∞∑
n=0

Γ2(3
4 + νn

2 )

Γ2(1
4 + νn

2 )

(
νn

g̃(νn)− 1

)
Kνn(|ω|z>)Iνn(|ω|z<)

}
.

(4.8)

The second line in the r.h.s. looks similar to the discrete mode contribution to the prop-

agator (4.3). However, these two contributions do not cancel each other. Hence there are

two types of the contributions to the final result as

G(τ, z; τ ′, z′)

=
|zz′|

1
2

2πJ

∫ ∞
−∞

dω e−iω(τ−τ ′)

{ ∞∑
m=0

Γ(3
4 + pm

2 )Γ(3
4 −

pm
2 )

Γ(1
4 + pm

2 )Γ(1
4 −

pm
2 )

pm
g̃′(pm)

Kpm(|ω|z>)Ipm(|ω|z<)

+

∞∑
n=0

Γ2(3
4 + νn

2 )

Γ2(1
4 + νn

2 )

(
νn

g̃(νn)− 1

)
Iνn(|ω|z<)

[
2Iνn(|ω|z>)− I−νn(|ω|z>)

]}
. (4.9)
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Of course, here we still have the zero mode (p0 = 3/2) problem coming from Γ( 3
4−

p0
2 ) =∞.

In this expression, the Bessel function part of the first contribution in the r.h.s. is the

standard form for EAdS propagator, while the extra factor coming from the leg-factors can

be possibly understood as a contribution from the naively pure gauge degrees of freedom as

in the c = 1 model (cf. [108–113]), in which case the second contribution in r.h.s. represents

the contribution from these modes as in [107].

In [98, 99], we presented at 3D picture of the SYK theory, based on the fact that the

non-trivial spectrum predicted by the model, which are solutions of g̃(pm) = 1 with (m =

0, 1, 2, · · · ) can be reproduced through Kaluza-Klein mechanism in one higher dimension.

This picture is more natural in the AdS2 interpretation of the bilocal space Now, we will

point out a similarity between the 3D picture of the SYK model [98, 99] and the c = 1

Liouville theory (2D string theory) [106–113].

In the 3D description we have a scalar field Φ

S3D =
1

2

∫
dx3√−g

[
− gµν∂µΦ∂νΦ−m2

0Φ2 − V (y)Φ2
]
, (4.10)

with a background metric

ds2 =
−dt2 + dẑ2

ẑ2
+
(

1 +
a

ẑ

)2
dy2 , (4.11)

where a ∼ J−1, but here we only consider the leading in 1/J contribution and suppress the

subleading contributions coming from the yy-component of the metric. The detail of the

potential V (y) depends on q and for that readers should refer to [98, 99]. The propagator

for the scalar field in this background in the leading order of 1/J is given by

G(0)(ẑ, t, y; ẑ′, t′, y′) = |ẑẑ′|
1
2

∑
k

fk(y)fk(y
′)

∫
dω

2π
e−iω(t−t′)

∫
dν

Nν

Z∗ν (|ωẑ|)Zν(|ωẑ′|)
ν2 − k2

,

(4.12)

where fk(y) is the wave function along the third direction y with momentum k. This is

simply a rewriting the propagator (4.2) by treating the non-local kernel (eigenvalue) by

an extra dimension. The identical procedure leads to the leg-factors. After the (inverse)

Radon transform and the contour integral for the continuous mode sum, the propagator is

reduced to

G
(0)
ω;−ω(z, y; z′, y′)

=
|zz′|

1
2

4π

∑
k

fk(y)fk(y
′)

{
Γ(3

4 + k
2 )Γ(3

4 −
k
2 )

Γ(1
4 + k

2 )Γ(1
4 −

k
2 )
Kk(|ω|z>)Ik(|ω|z<)

+ 2

∞∑
n=0

Γ2(3
4 + νn

2 )

Γ2(1
4 + νn

2 )

(
νn

ν2
n − k2

)
Iνn(|ω|z<)

[
2Iνn(|ω|z>)− I−νn(|ω|z>)

]}
.

(4.13)

On the other hand, for the c = 1 matrix model / 2D string duality, the Wilson loop

operator is related to the matrix eigenvalue density field φ by

W (t, `) ≡ Tr
(
e−`M(t)

)
=

∫ ∞
0

dx e−`x φ(t, x) . (4.14)
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The corresponding propagator was found by Moore and Seiberg [107] as

〈
w(t, ϕ)w(t′, ϕ′)

〉
=

∫ ∞
−∞

dE

∫ ∞
0

dp
p

sinhπp

φ∗E,p(t, ϕ)φE,p(t
′, ϕ′)

E2 − p2
, (4.15)

with ` = e−ϕ and the normalized wave function

φE,p(t, ϕ) =
√
p sinhπp e−iEtKip(

√
µe−ϕ) . (4.16)

After evaluating the p-integral as a contour integral, we obtain the propagator as

〈
w(t, ϕ)w(t′, ϕ′)

〉
= −π

∫ ∞
−∞

dE e−iE(t−t′)

{
πE

2 sinhπE
KiE(

√
µe−ϕ

<
) IiE(

√
µe−ϕ

>
)

+

∞∑
n=1

(−1)nn2

E2 + n2
Kn(
√
µe−ϕ

<
) In(
√
µe−ϕ

>
)

}
.

(4.17)

The point we want to make here is that this 3D picture is completely parallel to the

c = 1 Liouville theory (2D string theory) [106–113]. Namely, if we make a change of

coordinate by z = e−ϕ, then the ϕ-direction becomes the Liouville direction, while the

y-direction (at least in the leading order of 1/J) can be understood as the c = 1 matter

direction. In this comparison, the τ -direction serves as an extra direction. Finally, the

ν appearing in the SYK model is realized as a momentum k along the y-direction in the

3D picture (4.11). Therefore, we have the following correspondence between the c = 1

Liouville theory and the 3D picture of the SYK model.

c = 1 3D SYK

ie−ϕ z

−it y

ip ν

iE k
√
µ |ω|

5 Conclusion

We have in the present work addressed the question of what represents the bulk dual

space-time in the Sachdev-Ye-Kitaev model. At the outset the question seems simple since

the small fluctuations of the (Euclidean) SYK model are completely given by a set of

Lorentzian wave functions associated with the SL(2,R) isometry group. With a simple

identification of space-time these are seen to associated with eigenfunctions in de-Sitter

(or Anti de-Sitter) space-time (as was discussed in [2, 5–7]). And as we have noted these

wave functions are in correspondence with a particular α-vacuum wavefunctions of dS2

space-time. Likewise the propagator and higher point n-functions continue to feature this

Lorentzian space-time structure.
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Even though the Lorentzian bulk dual interpretation seems to be straightforwardly

associated with the SYK bi-local data, we have stressed that there is a problem with this

interpretation. In most naive sense one would essentially expect that an Euclidean CFT

should lead to an Euclidean bulk dual. In the case of the SYK model there is a caveat

since a role is played by random tensor couplings, whose bulk interpretation is even more

unclear. However, concentrating on the effective bi-local Large N version of the theory we

have in this paper provided a resolution, which follows from a further nonlocal redefinition

of space-time. This comes in terms of Leg transformations of Green’s functions which place

the theory in Euclidean AdS dual setting. Such transformations are actually characteristic

of collective field representations of Large N theories. The leg transformations that we

explicitly implement (apart from providing the EAdS2 space-time setting) also bring out

the couplings of additional “discrete” states. Since this is implemented on all n-point

functions it represents a highly nonlinear effect ( as was first understood by Natsuume

and Polchinski). We expect that these additional features will play a central role in full

identification of the bulk dual for the present theory.
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A Unit normalized EAdS/dS wave functions

The unit-normalized Euclidean AdS2 wave function is given by

φEAdS2
(τ, z) = αν z

1
2 e−iωτ Kν(|ω|z) , (A.1)

where the normalization factor can be chosen as

αν = i

√
ν sin(πν)

π3
. (A.2)

Then from the Bessel Kν orthogonality condition∫ ∞
0

dx

x
Kiν(x)Kiν′(x) =

π2

2

δ(ν − ν ′)
ν sinh(πν)

, (A.3)

where x, y > 0, the wave function is unit normalized:∫ ∞
−∞

dτ

∫ ∞
0

dz

z2
φ
∗
ω,ν(τ, z)φω′,ν′(τ, z) = δ(ω − ω′)δ(ν − ν ′) . (A.4)
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The completeness of modified Bessel function of the second kind:∫ ∞
0

dν ν sinh(πν)Kiν(x)Kiν(y) =
π2

2
x δ(x− y) , (A.5)

is also used in section 4.

The Lorentzian dS2 wave function is given by

ψdS2
(η, t) = βν η

1
2 e−iωt Zν(|ω|η) . (A.6)

Here, let us only consider the continuous modes (ν = ir). Now choosing the normalization

factor as

βν =

√
ν

4π sin(πν)
, (A.7)

then the wave function is unit normalized for the continuous modes as∫ ∞
−∞

dt

∫ ∞
0

dη

η2
ψ
∗
ω,ν(η, t)ψω′,ν′(η, t) = δ(ω − ω′)δ(ν − ν ′) , for (ν = ir) (A.8)

We note that

αν = 2i
sinπν

π
βν . (A.9)
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