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1 Introduction

The conformal bootstrap programme [1–6] was initially designed as an analytical approach

to the non-perturbative dynamics of critical systems. It relies on the careful separation

of kinematical (or group theoretic) input from dynamical data. In spite of significant

early efforts to develop the necessary background in representation theory of the conformal

group, see [7] and references therein, concrete implementations of the bootstrap programme

suffered from the fact that much of the relevant mathematics could not be developed at

the time. It took more than a decade before the real impact of the conformal bootstrap

was first demonstrated in the context of 2-dimensional conformal field theories where the
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conformal symmetry in enhanced to the infinite dimensional Virasoro algebra [8]. Up until

a few years ago, it was commonly assumed that such a success of the bootstrap programme

was only possible in 2-dimensional systems. But since the recent numerical incarnation of

the conformal bootstrap programme has delivered data e.g. on scaling weights and operator

products in the d = 3 dimensional Ising model with unprecedented precision, see [9–15]

and [16–23] for some similar results in other theories, the conformal bootstrap has attracted

new attention.

The key kinematical data in the conformal bootstrap are the conformal blocks along

with the so-called crossing kernel. Explicit analytical results on conformal blocks in d > 2

dimensional were scarce until the work of Dolan and Osborn [24–26] on scalar conformal

blocks. In a few cases, such as for four scalar external fields in even dimensions, Dolan

and Osborn were able to construct blocks explicitly in terms of ordinary single variable

hypergeometric functions. Extensions to generic dimensions and external field with spin or

general defect blocks proved more difficult, even though some remarkable progress has been

achieved during the last few years, e.g. through the use of differential operators, the concept

and construction of seed blocks etc., see e.g. [27–40] and references therein. In most cases,

however, a construction of blocks in terms of ordinary hypergeometric functions could not

be found. In order to evaluate such more general blocks, Zamolodchikov-like recurrence

relations have become the most efficient tool. While these may suffice to provide the

required input for the numerical bootstrap, it is fair to say that a systematic and universal

theory of conformal blocks has not been developed to date. It is our main goal to fill this

important gap.

In some sense, the mathematical foundations for a modern and systematic theory of

conformal blocks, including those for external fields with spin, were actually laid at about

the same time at which the bootstrap programme was formulated, though very much

disguised at first. It gradually emerged from the systematic study of solvable Schrödinger

problems starting with the work by Calogero, Moser and Sutherland [41–43]. The quantum

mechanical models that were proposed in these papers describe a 1-dimensional multi-

particle system whose members are subject to an external potential and exhibit pairwise

interaction. It turned out that for appropriate choices of the potentials and interactions,

such models can be integrable. One distinguishes two important series of such theories

known as A and BC models. While the former describe particles that move on the entire

real line, particles are restricted to the half-line in the case of BC-type models.

The study of eigenfunctions for Calogero-Sutherland (CS) models advanced rapidly

after a very influential series of papers by Heckman and Opdam that was initiated in [44–

47] (inspired by earlier papers of Koornwinder [48–51]) and provided the basis for much

of the modern theory of multivariable hypergeometric functions. Subsequently, many dif-

ferent approaches were developed that emphasize algebraic aspects (most notably due to

Cherednik [52]), combinatorial identities [53] or relations to matrix models. The general

techniques that were developed in this context are fairly universal. On the other hand,

explicit formulas were often only worked out for A models, with BC trailing a bit behind.

These two different strands of seemingly unrelated developments were brought to-

gether by our recent observation [54] that conformal blocks of scalar 4-point functions in a
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d-dimensional conformal field theory can be mapped to eigenfunctions of a 2-particle hy-

perbolic Calogero-Sutherland Hamiltonian. Thereby, the modern theory of multivariable

hypergeometric functions and its integrable foundation enters the court of the conformal

bootstrap. This is the first of a series of papers in which we describe, and at various places

advance, the mathematical theory of Calogero-Sutherland models and develop the appli-

cations to conformal blocks. Here we shall focus mainly on the classical Heckman-Opdam

theory for scattering states of Calogero-Sutherland models. Algebraic consequences of in-

tegrability as well as advanced analytical features are subject of a subsequent paper [55],

see also concluding section 6 for a detailed outline.

The plan of this paper is as follows. In the next section we introduce the rele-

vant hyperbolic Calogero-Sutherland models for BCN root systems. After setting up

some notations, we spell out the Hamiltonian and describe its symmetries, the associ-

ated fundamental domain and different coordinate choices. The we turn to the scattering

theory. In section 3 we introduce the notion of Harish-Chandra wave functions and discuss

their analytic properties both in coordinate space and in the space of eigenvalues. The

former are controlled by a special class of representations of an affine braid group which is

discussed in detail. This will allow us to construct the true wave functions of Calogero-

Sutherland models as special linear combinations of Harish-Chandra functions. We also

describe the position of poles of Harish-Chandra functions in the space of eigenvalues and

provide explicit formulas for their residues, at least forN = 2. The latter have not appeared

in the mathematical literature before and they are obtained from a new series expansion

for Harish-Chandra functions that we derive in appendix A. The aim of section 4 is to em-

bed scalar conformal blocks into the general theory of Calogero-Sutherland wave functions.

Our discussion includes details on the choice of boundary conditions. This will enable us

to discuss a number of direct applications to scalar blocks in section 5. These include a full

classification of poles of conformal blocks for arbitrary (complex) values of the spin vari-

able l. We also calculate the corresponding residues. When the spin variable is specialized

to an integer (and the dimension d is integer), our results for poles and residues agree with

those that were obtained using representation theory of the conformal Lie algebra [32].

The extension to complex spins may be seen as the main new advance of this work in the

context of conformal field theory. Blocks with non-integer spin play an important role in

the recent conformal Froissart-Gribov formula of Caron-Huot [56] which, in particular, was

used to establish existence in any CFT of operator families analytic in spin, see also [57–71].

We will sketch how such inversion formulas arise within the theory of Calogero-Sutherland

models and employ the algebraic structure of the monodromy representation to explain a

crucial numerical ‘coincidence’ in Caron-Huot’s derivation of the Froissart-Gribov formula.

The paper concludes with a extensive outlook, in particular to the second part where we

will discuss and exploit the rich algebraic structure of Calogero-Sutherland models. While

some of the more advanced results we describe are geared to the root system BC 2 which

appears in the context of scalar 4-point functions, most of the more general discussion is

presented for general N . Larger values N > 2 turn out to be relevant [72] in the context

of defect blocks [73, 74].
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2 The BCN Calogero-Sutherland problem

In this section we shall review the setup of the Calogero-Sutherland problem for the BCN

root system. After a short discussion the simplest example, the famous Pöschl-Teller

potential, we discuss the general setup. In our description we will put some emphasis on

the symmetries of the Calogero-Sutherland potential, possible domains for the associated

Schrödinger problem and the singularities at the boundary of these domains.

2.1 The Pöschl-Teller Hamiltonian

The simplest example of what is now known as Calogero-Sutherland model goes back to

the work of Pöschl and Teller in [75]. The so-called modified Pöschl-Teller Hamiltonian

takes the form

HPT
(a,b) = −∂2

u + V PT
(a,b)(u) = −∂2

u −
ab

sinh2 u
2

+
(a+ b)2 − 1

4

sinh2 u
. (2.1)

and defines a 1-dimensional Schrödinger problem with a potential that depends on two

continuous parameters a and b. Pöschl and Teller noticed that the corresponding eigenvalue

problem can be mapped to the hypergeometric differential equation and constructed the

eigenfunctions in terms of hypergeometric functions. All this is fairly standard, but there

are a few things we would like to emphasize in this example that will become important

for extensions to the multi-particle generalizations.

For the moment we will consider u as a complex variable. In the complex u-plane, the

Pöschl-Teller potential possesses some symmetries. On the one hand it is symmetric with

respect to shifts τ : u → u+2πi of u in the imaginary direction. These give rise to an action

of Z on the complex plane. In addition, the potential is also reflection symmetric, i.e. it is

invariant under the Z2 reflection w : u → −u. Together, these two transformations generate

the symmetry group W = Z2 ⋉Z of the Pöschl-Teller potential. The fundamental domain

D = C/W

for the action of W in the complex u-plane is shown in figure 1. After the appropriate iden-

tifications of boundary points it has the form of a semi-infinite pillow, i.e. a semi-infinite

cylinder whose end is squashed to an interval. The two corners of this semi-infinite pillow

correspond to the two points u1 = 0 and u0 = iπ at which the Pöschl-Teller potential di-

verges. At the same time, these points are fixed under the action of a non-trivial subgroup

of the symmetry W on the complex u-plane.1

The group W exhausts all the symmetries of the Pöschl-Teller potential that are as-

sociated with a transformation of the variable u alone. But there exists one additional

1When b = 0, the fundamental domain is further reduced to D′ = C/ (W ⋊ Z2). In this case, the

complex torus has non-trivial (so called) center [44, 45], which is related to existence of a minuscule

weight for the reduced root system C1. The denominator W ⋊ Z2 is called an extended affine Weyl group,

and the additional Z2 accounts for a permutation of an affine and a non-affine simple root. The reduced

fundamental domain D′ has ∆ℑu = π, instead of ∆ℑu = 2π. When b 6= 0, there is a remnant of this

symmetry which we call ̺, see below.
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Figure 1. The fundamental domain D of the Pöschl-Teller problem is a semi-infinite cylinder whose

end is squashed to an interval. It is obtained from the semi-infinite strip by gluing the horizontal

lines on top and bottom. Within this domain, the potential diverges at two points u0 = iπ and

u1 = 0 (black dots). Different Schrödinger problems can be obtained, depending on the choice of

a real subset A. The figure shows three possible choices, A+, AL = Ã+ and AC . The eigenvalue

equations on A+ and AL are related by a shift ̺ that involves the reflection of the coupling constant

b and they both lead to a continuous spectrum. The 1-dimensional Schrödinger problem on the

compact interval AC possesses a discrete spectrum.

symmetry that involves a shift in u combined with a reflection of the coupling b.2 More

precisely, it acts as

̺ : u → u+ iπ , b → −b (2.2)

while leaving the couplings a invariant, i.e. ã = a. In fact, the Pöschl-Teller potential is

invariant under these replacements

̺ : V PT
(a,b)(u) → V PT

(a,−b)(u+ iπ) = − ab

cosh2 u
2

+
(a− b)2 − 1

4

sinh2 u

= − ab

sinh2 u
2

+
(a+ b)2 − 1

4

sinh2 u
= V PT

(a,b)(u) .

Note that the symmetry maps the two singular points u0 = 0 and u1 = iπ in the funda-

mental domain D onto each other.

After these comments on the symmetries of the Pöschl-Teller potential let us now

discuss the possible setups for the Schrödinger problem. These correspond to different

2This symmetry is a twist of an ordinary translation symmetry of the C1 Pöschl-Teller problem, where

is acts on coordinates only since the parameter b vanishes. It may be regarded as a translation of the

coordinate u by a 2πi times a minuscule coweight of the root system C1, see below.
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1-dimensional subsets A ⊂ D on which the Pöschl-Teller potential is real. There are essen-

tially three such choices which we shall denote by A+, Ã+ and AC . We define the set A+ as

A+ = {u ∈ R |u > 0 } . (2.3)

For this set, the Schrödinger equation reads

[

− d2

du2
− ab

sinh2 u
2

+
(a+ b)2 − 1

4

sinh2 u

]

ψ(u) = εψ(u) . (2.4)

Note that the potential creates a wall at u = 0 which shields the positive half-line u > 0

from the negative one. In this case, there is a continuum of states with energy ε > 0. We

will discuss these in the next section. A second possible choice is

Ã+ = { ũ+ iπ |ũ ∈ R>0 } . (2.5)

On this set, the corresponding Schrödinger equation is the same as on A+, except that the

parameter b is sent to −b. Our previous comments on the structure of the spectrum apply

to this case as well.

There exists a qualitatively quite different choice for a domain on which the Calogero-

Sutherland Hamiltonian is real. It is given by

AC = {u = iϕ |ϕ ∈ [0, π] } (2.6)

where the superscript C stands for compact. On AC the Schrödinger equation takes the

form
[

− d2

dϕ2
− ab

sin2 ϕ
2

+
(a+ b)2 − 1

4

sin2 ϕ

]

ψ(ϕ) = εψ(ϕ) . (2.7)

Once again, there are infinite walls at ϕ = 0, π. This setup describes a particle in a 1-

dimensional box with infinitely high walls on both sides. In this case the spectrum is

discrete. We will recall the precise form of the wave functions in the next section.

2.2 The Calogero-Sutherland potential

Before we can spell out the Calogero-Sutherland Hamiltonian, we need a bit of notation.

In general integrable Calogero-Sutherland Hamiltonians are associated with a root system

Σ. Here we shall focus on BCN root systems, see figure 2, whose positive roots are given

Σ+ = {ei, 2ei, ei ± ej |1 ≤ i, j ≤ N ; i < j} . (2.8)

We have used ei, 1 ≤ i ≤ N to denote a basis of RN that is orthonormal with respect to the

canonical scalar product 〈·, ·〉. Note that this root system is not reduced, i.e. it contains

roots that are related by a factor of two.3 From time to time we will have to remove the

shortest positive roots, i.e. the roots ei. The remaining set of positive roots is denoted by

3The integrality condition in the definition of a root system demands that a projection of a root onto

any other root is a half-integer multiple of the latter. One can easily see that this can indeed happen if

some roots possess a collinear partner differing by a factor of two, but not more.
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Figure 2. The BC 2 root system. The set Σ+ of positive roots in shown in bold black arrows. For

N > 1 there are three different types of roots that belong to three different orbits of the Weyl group

WN . These carry multiplicity kα. Our basis elements α1 and α2 are also depicted along with the

highest root α0 = 2α1+α2 = 2e1. The linear spaces that are fixed under the Weyl reflections w1 and

w2 that are associated with α1 and α2 form the boundary of the Weyl chamber (shown in grey).

Σ+
0 . Of course, Σ+

0 are simply the positive roots of the Lie algebra CN . Let us also select

a basis of Σ+
0 consisting of

αN = 2eN , αi = ei − ei+1

for i = 1, . . . , N − 1. Indeed, all elements of Σ+
0 may be obtained as linear combinations

of αi, i = 1, . . . , N with non-negative integer coefficients. The unique highest root is given

by α0 = 2e1. For any root α, we define

α∨ =
2α

〈α, α〉 .

This concludes our short description of the root system and the special roots that will play

an important role below. The potential of the associated Calogero-Sutherland model takes

the form

V CS(ui) =
∑

α∈Σ+

kα(kα + 2k2α − 1)〈α, α〉
4 sinh2 〈α,u〉

2

. (2.9)

It involves the parameters kα, often referred to as multiplicities, that are assumed to be

invariant under the action of the Weyl group W = WN of Σ, i.e. kwα = kα for w ∈ W .

Since the BCN , N > 1, root lattice decomposes into three orbits under the action of the

Weyl group, see figure 2, the potential V contains three independent parameters, which we

parametrize as

k3 = kei±ej =
ǫ

2
, k2 = k2ei = a+ b+

1

2
, k1 = kei = −2b (2.10)
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in terms of the three parameters a, b and ǫ. The reason for this choice of parameters will

become clear in the fourth section. In addition, we agree that kβ = 0 if β 6∈ Σ. Finally,

we have also introduced u =
∑

uiei. It is easy to see that the formula (2.9) reduces to the

Pöschl-Teller potential upon setting N = 1. Note that the root system for BC 1 consists of

two orbits under the action of the Weyl group W = W1 = Z2. Hence, the potential only

contains two parameters, a and b. Let us also note that the case b = 0 is somewhat special

since there are no contributions from the short roots ei in the potential. This means that

the underlying root system is CN rather than BCN .

Example. The case we are most interested in appears for N = 2. The corresponding

Calogero-Sutherland potential now contains all three parameters,

V CS
(a,b,ǫ)(u1, u2) = V PT

(a,b)(u1) + V PT
(a,b)(u2) +

ǫ(ǫ− 2)

8 sinh2 u1−u2

2

+
ǫ(ǫ− 2)

8 sinh2 u1+u2

2

. (2.11)

One may think of this potential as describing two Pöschl-Teller particles in the half-line

that are interacting with an interaction strength depending on ǫ. Alternatively, one can

think of a single particle that moves in an external potential on a 2-dimensional domain

D2, see below.

2.3 Affine Weyl group and the domain DN

The analysis of symmetries of the Calogero-Sutherland potential proceeds pretty much in

the same way as for the Pöschl-Teller problem. Once again, we will think of ui as complex

variables so that the potential is a function on C
N . Obviously, it is invariant under the N

independent discrete shifts

τi : uj −→ uj + 2πiδi,j . (2.12)

These generate the abelian group Z
N . In addition, the potential is also left invariant by the

action of the Weyl group WN of the BCN root system. This Weyl group can be generated

by the N Weyl reflections that are associated with our basis αi, i = 1, . . . , N . We shall

denote these Weyl reflections by wi = w(αi). It is not difficult to work out all relations

among these generators. They are given by

w2
i = 1, , wN−1wNwN−1wN = wNwN−1wNwN−1 , wiwi+1wi = wi+1wiwi+1 (2.13)

for i = 1, . . . , N − 2. All other pairs of generators simply commute with each other, i.e.

wiwj = wjwi for |i− j| ≥ 2 .

The Weyl group WN acts on the translations τi by permutation and inversion. More

precisely one has the following set of non-trivial relations

wNτ−1
N wN = τN , wiτi+1wi = τi (2.14)

for i = 1, . . . , N − 1. Here we used a multiplicative notation for the generators τi of the

abelian group Z
N , i.e. we denote the shift of ui by −2πi as τ−1

i rather than −τi. Together,

the elements τi and wi with i = 1, . . . , N generate the so-called affine Weyl group

WN = WN ⋉ Z
N . (2.15)

– 8 –
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The affine Weyl group WN describes all symmetries of the Calogero-Sutherland poten-

tial (2.9) that act on the coordinates ui alone. It generalizes the group W1 = W we had

introduced in our discussion of the Pöschl-Teller potential to the case with N ≥ 2.

Here we have described the affine Weyl group in terms of 2N generators τi and wi

with i = 1, . . . , N . There exists a second description in terms of N + 1 generators wi with

i = 0, . . . , N . While wi with i 6= 0 are the same Weyl reflections wi = w(αi) we used before,

the new generator w0 is given by

w−1
0 = w(α0)τ1 = w(2e1)τ1 = (w1 · · ·wN−1wN )(wN−1 · · ·w1)τ1 . (2.16)

One may check by explicit computation that this new element w0 satisfies the following

relations with wi, i = 1, . . . , N

w2
0 = 1 , w0w1w0w1 = w1w0w1w0 , w0wi = wiw0 (2.17)

for i = 2, . . . , N . Note that the relation between w0 and w1 is identical to the one between

wN−1 and wN . Obviously, one can reconstruct the generator τ1 from the element w0 and

the Weyl reflections wi, i = 1, . . . , N . The other elements τi, i > 1 are then obtained by

conjugation with w1 · · ·wi−1.

As in the case of the Pöschl-Teller potential there exists one additional shift symmetry

that requires a combined action on the coordinates and the coupling constants. It is given

by

̺ : uj → uj + iπ , b → −b (2.18)

while leaving the other two couplings a and ǫ invariant. Note that ̺ involves a simultaneous

action on all N coordinates. Following the same steps as in the section 2.1 one finds that

̺ : V CS
(a,b,ǫ)(u) → V CS

(a,−b,ǫ)(u+ iπ) = V CS
(a,b,ǫ)(u) . (2.19)

Let us stress that this symmetry is not part of the affine Weyl group which acts only on

coordinates.4

We are now well prepared to discuss the domain(s) on which we will consider the

Calogero-Sutherland system. We start with a set of N complex coordinates (ui) ∈ C
N and

implement the identification furnished by the N discrete shifts τi. This leaves us with an

N -dimensional complex manifold

TN = C
N/ZN .

The manifold TN contains an N -dimensional real submanifold AN ⊂ TN that is

parametrized by ui ∈ R, modulo identification with τi. We can shift AN with ̺ to ob-

tain ÃN = ̺(AN ). The latter is parametrized by ui = ũi + iπ with real ũi ∈ R.

The Calogero-Sutherland potential diverges along the following walls of real codimen-

sion two

ωα = {u ∈ TN | 〈α, u〉 = 0mod 2πi} ⊂ AN for α ∈ Σ+

4As in the Pöschl-Teller case, this symmetry is a twist of an ordinary translation symmetry of the CN

Pöschl-Teller problem for which it acts on the coordinates u only. The latter may be considered as a

translation of u by 2πi times a minuscule coweight of the reduced root system CN .
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that are in one-to-one correspondence with the positive roots of our BCN roots system.

Note that for the long roots 2ej , the set ω2ej possesses two disconnected components, one

of which coincides with the wall ωej for the corresponding short root. The walls associated

with the roots ei ± ej contain a single connected component. By construction, the walls

ωα are invariant under the action of the reflection w(α) ∈ WN .

The walls we have just described are subspaces along which the Calogero-Sutherland

potential diverges so that the corresponding Schrödinger problem can be restricted to

various subsets within the quotient space

DN = TN/WN = C
N/WN . (2.20)

which describes a fundamental domain5 for the action of the Weyl group WN on TN .

Representatives of the quotient space in TN intersect with only N+1 walls ωi, i = 0, . . . , N

where ωi = ωαi for i = 1, . . . , N − 1, and ω0, ωN are the two disconnected components of

ωαN with ωN = ωeN .

Once again, the fundamental domain DN for the Calogero-Sutherland problem pos-

sesses several subsets along which the potential is real. The most important is the Weyl

chamber

A+
N = WCN = {u ∈ R

N |〈α, u〉 > 0 for all α ∈ Σ+
0 } ⊂ DN . (2.21)

In this case, the eigenfunctions possess N continuous variables. As in the case of the

Pöschl-Teller problem, we can also consider the shifted Weyl chamber Ã+
N = ̺(A+

N ). It

gives rise to a similar set of wave functions except that the coupling b must be replaced by

b̃ = −b. Another extreme possibility is the case

AC
N = {ui = iϕi |ϕi ∈ [0, π] } (2.22)

for which the spectrum of the Calogero-Sutherland model is discrete. But in the multivari-

able case there are many other possibilities. We will discuss a few of them for N = 2.

Example. Let us give some additional details for N = 2. In this case, the Weyl group

W2 consists of eight elements. It can be generated from w2 = w(2e2) and w1 = w(e1 − e2)

subject to the relations

w2
1 = 1 = w2

2 , w1w2w1w2 = w2w1w2w1 . (2.23)

The fundamental domain D2 for the action of the Weyl group W2 on T2, or rather a

3-dimensional subspace thereof that satisfies ℑ(u1 + u2) = 0, is shown in figure 3.

Once again, we can consider the Schrödinger equation for the Calogero-Sutherland

potential on various real subsets A2. The most standard choice in the mathematical

literature is

A+
2 = {(u1, u2)|〈α, u〉 > 0 for α ∈ Σ+} . (2.24)

5As in the Pöschl-Teller case, when b = 0 the fundamental domain becomes D′ = C/ (WN ⋊ Z2). Again,

the root system becomes of reduced, CN type. The denominator WN ⋊Z2 is an extended affine Weyl group.

The nontrivial element in the additional Z2 accounts for a permutation of an affine and a non-affine simple

root that preserves the Weyl alcove. When b 6= 0, there is a remnant of this symmetry which we again call ̺.
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Figure 3. The three-dimensional slice of the fundamental domain D2 for the BC 2 Calogero-

Sutherland model in u-space. Front and the back side of the wedge should be identified. The fixed

points (walls) under the action of w2 and w1 are shown as bold dashed lines. Fixed points of w2

fall into two disconnected components which carry the labels 0 and 2. The fixed points of w1 on

the other hand form a connected set that intersects our 3-dimensional slice in two lines labeled

by 1. The shaded area in front is the Weyl chamber A+
2 . It is bounded by the walls ω1 and ω2.

The shifted Weyl chamber AL
2 = Ã+

2 is bounded by the walls ω0 and ω1. The subset AE
2 is the

2-dimensional semi-infinite strip of width π on top of the wedge. It is bounded by pieces of wall ω1

only, except in the corners.

This is simply a Weyl chamber for the BC 2 root system. As for N = 1 the Calogero-

Sutherland potential diverges along the walls of the chamber, see our discussion above.

There are two additional choices we want to discuss here because of their relevance for

conformal field theory, see section 4 below. The first one is given by

AL
2 = Ã+

2 = {(u1, u2) = ( ũ1 + iπ, ũ2 − iπ) | ũi > 0 ; , ũ1 > ũ2} . (2.25)

It may be obtained fromA+
2 by application of ̺ combined with a translation by−2πie2. The

associated Schrödinger problem has the same form as on A+
2 , except that the parameters

are changed, see our discussion above

V CS
(a,b,ǫ)(u1, u2) = V CS

(a,−b,ǫ)(ũ1, ũ2) (2.26)

Another relevant possible subset that leads to real potential is the one in which the two

coordinates u1 and u2 = u∗1 are complex conjugates of each other,

AE
2 = { (u1, u2) |u1 = u∗2,ℑu1 ∈ [0, π]} .

We shall decompose u1 = u + iϕ into its real and imaginary part. In this case we are

dealing with a particle that moves on a 2-dimensional semi-infinite strip given by u ≥ 0
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and ϕ ∈ [0, π]. For large u the potential becomes

V CS
(a,b,ǫ)(u, ϕ) ∼ −ǫ(ǫ− 2)

8 sin2 ϕ
for u → ∞ .

So, we see that in this asymptotic regime, wave functions are given by a product of a

Pöschl-Teller bound state and a plane wave in the u-direction.

2.4 Coordinates in the CS problem

Let us conclude this section with a short comment on coordinates. So far, we have described

the Calogero-Sutherland problem in terms of coordinates ui in which the kinetic term is sim-

ply the standard flat space Laplacian. Since the ui are coordinates on TN it is tempting to

apply the exponential map that sends TN to CN .6 Indeed, we shall often use the coordinates

xi = eui (2.27)

instead of ui. This has the advantage that the identification ui ≡ ui + 2πi is manifest.

Upon application of the exponential map (and inversion), the 3-dimensional slice of the

fundamental domain D2 that is shown in figure 3 gets mapped to a cone, see figure 4.

The map sends the Weyl chamber A+
2 and the space AL

2 = Ã+
2 to one half of a section

through the cone each, while the set AE
2 becomes half of the mantle of the cone. Figure 4

also keeps track of the location of the singularities. While the coordinates xi make the

identification with li : ui → ui + 2πi manifest so that they are proper coordinates on TN ,

the identification from the action of the Weyl group WN is not built into these coordinates.

It is often good to do a little better and to use coordinates that are invariant at least

under the action of the Weyl reflections w(ei), i = 1, . . . N . Any function of xi+x−1
i would

do the job, but we shall adopt a very specific one, namely7

zi = − 1

sinh2 ui
2

=
4

2− xi − x−1
i

. (2.28)

These coordinates send the domain DN to configurations (zi) ∈ C
N that are symmetric

under the action of the permutation group SN ⊂ WN . The latter is generated by the Weyl

reflections wi = w(ei ± ei+1) for i = 1, . . . , N − 1.

3 Wave functions of the Calogero-Sutherland model

Having set up the eigenvalue equation we want to study we now turn to a discussion of

the solutions. As a warmup, we briefly look at the example of the Pöschl-Teller problem

for which the study of wave functions involves some fairly basic facts from the theory of

6To be more precise, this map is injective, with the image
(

C
×
)N

, and thus defines a partial compactifi-

cation of the complex torus. By the action of the Weyl group, it extends to a toroidal compactification of the

torus corresponding to its decomposition into Weyl chambers. This gives the toric variety of x-coordinates,

see [76] (page 55), [77, 78] for details.
7A bit more precisely, for BC2 we will use the branches z1 = e+iπ

sinh2 u1
2

z2 = e−iπ

sinh2 u2
2

in order to be

consistent with definition (2.25).
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Figure 4. The fundamental domain for the BC 2 Calogero-Sutherland model in x−1-space. The

shaded areas in the radial direction are the Weyl chamber A+
2 and the shifted domain AL

2 . On the

boundary of the cone, A+
2 is bounded by the walls ω1 and ω2 while AL

2 is bounded by ω1 and ω0.

The subset AE
2 is mapped to half of the mantle.

Gauss’ hypergeometric functions. Then we turn to general N and discuss a basis of scat-

tering states that are known as Harish-Chandra functions. We will discuss their definition

and a new series expansion formula for N = 2 along with a few direct consequences. As

a main application, in the third subsection we provide a complete analysis of poles and

residues of Harish Chandra functions for N = 2. The fourth subsection finally, is de-

voted to the construction of physical wave functions. Through a general discussion of the

monodromy representation for the Calogero-Sutherland eigenvalue problem we are led to

consider special linear combinations of Harish-Chandra functions that possess good ana-

lytic properties along the walls of the scattering problem. The optimal choice corresponds

to the so-called Heckman-Opdam multivariable hypergeometric functions and, for N = 2,

a Euclidean analogue thereof.

3.1 Wave functions of the Pöschl-Teller problem

Here we will mostly study the Pöschl-Teller Hamiltonian on the domain A+ that was

introduced in the previous section. The corresponding eigenvalue equation was stated in

eq. (2.4). We shall make the following Ansatz for the wave function

Ψ(k;u) = Θ(k;u)Φ(λ, k;u) = 4a+
1

2 sinha−b+ 1

2
u

2
cosha+b+ 1

2
u

2
Φ(λ, k;u). (3.1)

As before, k = (k1, k2) = (−2b, a + b + 1/2) denotes the parameters of the Pöschl-Teller

potential and λ is the momentum. In our conventions it is related to the energy eigenvalue

ǫ in eq. (3.1) through λ2 = −ǫ so that λ is purely imaginary for positive energy solutions.

Since the Pöschl-Teller potential tends to zero at u = ∞, the eigenfunctions of the

Pöschl-Teller Hamiltonian are superpositions of an outgoing and an incoming plane wave
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in this asymptotic regime. We can choose a basis for which one of the two wave functions

of energy ǫ is purely outgoing while the other is purely incoming, i.e.

Ψ(±λ, k;u) ∼ e±λu + . . . for u → ∞ . (3.2)

Wave functions with these asymptotic properties are also referred to as Harish-Chandra

functions. These two wave functions with eigenvalue ε = −λ2 can easily be constructed in

terms of Gauss’ hypergeometric functions as8

Φ(±λ, k; z) =

(

1

4

z

z − 1

)a+1/2∓λ

2F1

(

1/2 + a∓ λ, 1/2− b∓ λ

1∓ 2λ
;

z

z − 1

)

, (3.3)

where z and u are related through equation (2.28). For large values of u, the argument of

the hypergeometric functions approaches zero and the asymptotics of the prefactor combine

with that of the gauge transformation Θ to give the desired asymptotics (3.2). Since the

standard series expansion for 2F1(α, β; γ|y) converges on the real y-line for −1 < y < 1

and our parameter z takes values z ∈ (−∞, 0) on A+, the usual series expansion of the

function (3.3) converges in the entire Weyl chamber.

In the context of Calogero-Sutherland models, one usually requires the series expan-

sions in the variable x−1 = exp(−u) to be convergent throughout the Weyl chamber, see be-

low. We shall refer to such expansions as u-expansions, even though they are really expan-

sions in exp(−u). To obtain such a u-expansion for the case at hand, one simply expresses z

through u in the series expansion of (3.3)9 and then expands (1−e−u)−2(a+1/2∓λ+k) in pow-

ers of exp(−u). This second expansion is absolutely convergent for u > 0. We arrive at10

Φ(±λ; k;u) =
∞
∑

p=0

e(±λ−1/2−a−p)u

p!
(2a+ 1∓ 2λ)p 3F2

(−p, 1/2 + b∓ λ, 1 + 2a∓ 2λ+ p

1∓ 2λ, 1 + a∓ λ
; 1

)

.

(3.4)

In accord with the general analysis (see next subsection), this expansion is convergent on

the entire domain A+. It can be analytically continued to the strip {u|ℜu > 0, |ℑu| < π},
which is a tube-like neighborhood of A+. If b = 0 in (3.4), one can use Watson’s

summation for 3F2 [79] to sum the u-expansion formula (3.4) into

Φ(±λ; a, b = 0;u) = e(±λ− 1

2
−a)u

2F1

(

1/2 + a, 1/2 + a∓ λ

1∓ λ
; e−2u

)

.

8Here and in the following, we choose the principal branch for (−z)A and insist on |ℑu| < π in the

u-plane for (non-twisted) Harish-Chandra functions.
9To avoid additional subtleties, we keep the momenta generic here, namely we assume that ±a+ 1/2∓

λ,±b+ 1/2∓ λ 6= 0,−1,−2, . . . . Special cases can be obtained by carefully taking limits, see comments in

section 3 and appendix B.
10Notice that writing this and the next formula in this manner, we explicitly break the u ↔ −u symmetry

which seemingly contradicts the definition of Harish-Chandra functions as W -symmetric solutions, see the

next subsection. This is related to restricted range of validity of the corresponding quadratic transformation

from z- to u-variables. So, to be precise, in such expansions (see also BC2 u-expansions of appendix A) we

shall always assume e±u as a shorthand for coshu± (coshu+ 1)
√

tanh2 u/2 where the principal branch of

a square root is taken, which reduces to e±u 7→ (eu + e−u ± |eu − e−u|)/2 on real slices A+ and AL.
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The resulting expression is well known from the theory of Calogero-Sutherland wave

functions for the reduced root system C1 ≃ B1 ≃ A1.

After this short detour on series expansions for the in- and outgoing wave functions

we come back to the problem of constructing physical wave functions for the Pöschl-Teller

problem. Clearly, the two wave functions we considered so far are badly behaved when we

approach the wall at u = 0. In fact, u = 0 is a branch point. But there exists a unique

linear combination of these two wave functions that is analytic at u = 0. It is given by

ΦW (λ, k; z) = c(λ, k)Φ(λ, k; z) + c(−λ, k)Φ(−λ, k; z)

= 2F1

(

a+ 1/2 + λ, a+ 1/2− λ

1 + a− b
;
1

z

)

. (3.5)

with coefficients given by

c(λ, k) = 4−λ+a+1/2 Γ(a− b+ 1)Γ(2λ)

Γ(1/2 + λ+ a)Γ(1/2 + λ− b)
.

These values then allow to apply Kummer’s identity in order to pass from the first to

the second line in eq. (3.5). Obviously, the branch point at u = 0, or equivalently at

z = −∞, has been removed now. After multiplication with the factor Θ, ΦW gives what

we would usually consider the physical solution of the hyperbolic Pöschl-Teller system.

The eigenfunctions ΨW (λ, k; z) with λ = ip, p ≥ 0, form a complete orthonormal basis of

eigenfunctions for the hyperbolic Pöschl-Teller problem on A+ [80], with (appropriately

normalized) measure dµ ∼ |Θ(k;u)|2du.
The branch points of Φ(±λ, k; z) at u = 0 prevent us from continuing the purely in-

and outgoing wave functions beyond A+ into the compact domain AC that was defined in

eq. (2.6). On the other hand, the function ΦW can be continued into AC . For generic choices

of λ the resulting wave function of the trigonometric Pöschl-Teller problem (2.7) possesses

a branch point at u = iπ. This branch point can only be avoided for a discrete set of λ. In

this way one obtains the usual eigenfunctions ψn of the trigonometric Pöschl-Teller problem

ψn(a, b;ϕ) ∼ sina−b+ 1

2
ϕ

2
cosa+b+ 1

2
ϕ

2
2F1

(−n, 2a+ 1 + n

1 + a− b
; sin2

ϕ

2

)

(3.6)

for ±λ = n + a + 1/2 where the variable ϕ is restricted to the interval ϕ ∈ [0, π] so that

it parametrizes AC . Note that for n = 0, i.e. for the ground state, the hypergeometric

function contributes a trivial factor. Hence, the wave function of the ground state in the

compact domain coincides with the function Θ we introduced in eq. (3.1).

Let us finally also discuss the wave functions of the Pöschl-Teller problem on the

shifted domain Ã+ = AL that we defined in eq. (2.5). In this case, we select the Harish-

Chandra functions such that the eigenfunctions Ψ possess the standard asymptotics in the

real coordinate ũ on Ã+ = AL, i.e.

Ψ̃(±λ, k;u) ∼ e±λũ + · · · = e∓iπλe±λu + . . . for ũ = u− iπ → ∞ . (3.7)

Of course this implies that the Harish-Chandra functions Φ̃ are related to Φ by a λ-

dependent gauge transformation

Φ̃(±λ, k; z) = eiπ(∓λ+a+1/2)Φ(λ, k; z) . (3.8)
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Solutions of our Calogero-Sutherland problem with these asymptotics take the form

Φ̃(±λ, k; z) =
(z

4

)a+1/2∓λ

2F1

(

a∓ λ+ 1/2, b∓ λ+ 1/2

1∓ 2λ
; z

)

. (3.9)

The relation (3.8) with the standard Harish-Chandra functions Φ is then a consequence of

the Pfaff transformation for Gauss hypergeometric function [79]. In writing our formula for

Φ̃ we agree to use the principal branch for zA so that in z-plane the twisted Harish-Chandra

function has cuts along (−∞, 0) ∪ (1,+∞) for generic values of parameters. Note that on

Ã+ = AL the variable z takes values in z = [0, 1[, so that this usual series expansion of the

functions Φ̃ is convergent on the entire shifted Weyl chamber. As above, this function can

be analytically continued to a semistrip {u|ℜu > 0, 0 < ℑu < 2π}. Once again we need to

form a special linear combination of these twisted Harish-Chandra functions Φ̃ to obtain

the physical wave function which is regular at u = iπ or equivalently z = 1. It is given by

Φ̃W (λ, k; z) = c̃(λ, k)Φ̃(λ, k; z) + c̃(−λ, k)Φ̃(−λ, k; z)

= za+
1

2
−λ

2F1

(

a+ 1/2− λ, b+ 1/2− λ

1 + a+ b
; 1− z

)

. (3.10)

with coefficients

c̃(λ, k) = 4−λ+a+1/2 Γ(a+ b+ 1)Γ(2λ)

Γ(1/2 + λ+ a)Γ(1/2 + λ+ b)
=: c0(λ, k) .

We observe that c̃ can be obtained from c through the inversion b → −b of the parameter

b. This replacement agrees with the action of the shift ̺ on the coupling constants in the

Pöschl-Teller problem, see eq. (2.2). The functions Ψ̃W (λ, k; z) for λ = ip, p ≥ 0, provide us

with a complete orthonormal basis of eigenfunctions for the Pöschl-Teller problem on Ã+.

There is a different, more algebraic way to express these results on the construction of

physical wave functions for the Calogero-Sutherland problems through representations of

the fundamental group π1(D). Recall from the previous section, that the domain D is a

semi-infinite pillow. Hence, its fundamental group is freely generated by two elements g0
and g1. These are described by loops around the singular points u0 = iπ and u1 = 0. The

Harish-Chandra functions Φ(±λ, k; z) carry a 2-dimensional monodromy representation M

of this fundamental group. We can easily infer the representation matrices from standard

properties of hypergeometric functions, along the lines of our discussion above. For g1 one

finds that

M(g1) = M1 = C−1

(

1 0

0 e2πi(a−b)

)

C, (3.11)

where the matrix C is given by

C(λ, k) =

(

c(λ, k) c(−λ, k)

c(λ, k′) c(−λ, k′)

)

and k′ = (k′1, k
′
2) = (2b,−a − b + 1/2) is obtained by reversing the sign of both a and b.

Our discussion of the regular solution at u0 shows that M(g0) = M0 can be computed in
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the same way after we perform a gauge transformation from Φ to Φ̃, i.e.

M(g0) = M0 = Ω−1M̃1Ω (3.12)

where M̃1 is obtained from M1 by the substitution b → −b and the matrix Ω encodes the

gauge transformation (3.8). It reads

Ω(λ, k) =

(

eiπ(λ−a−1/2) 0

0 eiπ(−λ−a−1/2)

)

.

We observe that both monodromy matrices possess one eigenvector with unit eigenvalue.

This signals the existence of a special linear combination of Harish-Chandra functions

which has trivial monodromy around u0 and u1, respectively. Explicitly, these eigenvectors

were given by the functions ΦW and Φ̃W . Finally, we also want to stress that the product

M0M1 of the two monodromies describes the monodromy of the Harish-Chandra functions

at u = ∞. The latter is fully determined by asymptotic behavior of Harish-Chandra

functions, i.e.

M∞ = M0M1 = e2πi(a+
1

2
)

(

e−2πiλ 0

0 e2πiλ

)

. (3.13)

We will now explain that all this carries over to N ≥ 2. In particular, the monodromy group

and its representation on Harish-Chandra functions is explicitly known, see the section 3.4

below.

3.2 Harish-Chandra series expansions

Let us now discuss eigenstates of the hyperbolic Calogero-Sutherland Hamiltonian for N >

1. Our discussion will start with the Weyl chamber A+
N in which all the ui are real and

positive. To construct the solutions we are interested in, we note that in the region of

large u where we are far away from all walls of the Weyl chamber, the Calogero-Sutherland

potential goes to zero and hence, in this regime, any wave function is a superposition of

plane waves. Before we give precise definitions let us split off a simple factor from the

eigenfunctions Ψ and introduce a new function Φ through

Ψ(k;u) = Θ(k;u)Φ(λ, k;u) =
∏

α∈Σ+

(

2 sinh
〈α, u〉
2

)kα

Φ(λ, k;u). (3.14)

The factor Θ(k;u) is split off for convenience, see below. In the case of N = 1 it reduces

to the one we worked with in the previous subsection in order to map the eigenvalue

equation for the Pöschl-Teller Hamiltonian to the hypergeometric differential equation in

the variable 1/z. We will often refer to the factor Θ as a gauge transformation and to Φ

as a Calogero-Sutherland wave functions in hypergeometric gauge. Let us note in passing

that the function Θ(k, u) possesses the following asymptotics for large u,

Θ(k;u) ∼ e〈ρ(k),u〉 + . . . with ρ(k) =
1

2

∑

α∈Σ+

αkα . (3.15)
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So-called Harish-Chandra wave functions Φ(λ, k; z) are WN symmetric solutions of the

Calogero-Sutherland Hamiltonian for which Φ possesses the following simple asymptotic

behavior

Φ(λ, k;u) ∼ e〈λ−ρ(k),u〉 + . . . for u → ∞ in A+
N = WCN (3.16)

where λ =
∑

λiei is the vector of momenta and u → ∞ in A+
N means that all components

become large while preserving the order uN < uN−1 < · · · < u1. Recall that WN symmetry

means that Φ depends on the ui through zi and that it is symmetric under all permutations

of the zi. The condition (3.16) selects a unique solution of the scattering problem describing

a single plane wave. It is analytic in the Weyl chamber A+
N . The corresponding eigenvalue

of the Calogero-Sutherland Hamiltonian is given by

ε = ε(λ) = −
∑

λ2
i .

When we required the Harish-Chandra functions to be symmetric, we used the action of

the Weyl group WN on the coordinate space TN . On the other hand, the Weyl group

also acts in a natural way on the asymptotic data λ of the Harish-Chandra functions by

sending any choice of λ through a sequence of Weyl reflections to wλ,w ∈ WN . Since the

eigenvalue ε is invariant under all the reflections, our Harish-Chandra functions come in

families. For generic choices of λ, one obtains |WN | = N !2N solutions Φ(wλ, k; z) which

all possess the same eigenvalue of the Hamiltonian.

At least for sufficiently generic values of the momenta,11 Harish-Chandra functions can

be constructed as a series expansion in the variables xi = expui

Φ(λ, k;u) =
∑

µ∈Q+

Γµ(λ, k)e
〈λ−ρ(k)−µ,u〉, Γ0(λ, k) = 1, (3.17)

where we adopt |ℑui| < π for i = 1, . . . , N on the principal branch of BCN Harish-Chandra

functions and we sum over elements µ of the Z≥0-cone Q+ over the positive roots, i.e. the set

Q+ =

{

µ =
N−1
∑

i=1

niαi +
nNαN

2
|ni ∈ Z≥0 for i = 1, . . . , N

}

.

For later discussions we note that Q+ comes equipped with a partial order � where µ � ν

iff ν − µ ∈ Q+.

It is not difficult to derive recursion relations of the expansion coefficients Γµ(λ, k)

directly from the Calogero-Sutherland eigenvalue problem, see e.g. [76]12

〈2λ− µ, µ〉Γµ(λ, k) = 2
∑

α∈Σ+

kα
∑

j≥1

〈λ− ρ(k)− µ+ jα, α〉Γµ−jα(λ, k). (3.18)

This can be solved uniquely, if

2〈λ, µ〉 − 〈µ, µ〉 6= 0 for all µ ∈ Q+ . (3.19)

11A precise formulation of the condition is given below through the inequalities (3.19) and the subsequent

discussion.
12The recursion derived in [81] is closely related to this one, specialized for BC2. However, our expansion

here is in monomials, not in Gegenbauer polynomials, although it is not difficult to go between the two.
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The resulting series are known to converge13 within the Weyl chamber [76], as is fairly

obvious from the physics they describe. Even when one of the conditions (3.19) is violated

it is possible to obtain a complete basis of series solutions Φ(wλ, k;u), w ∈ WN . There is a

subset of such cases where things are a bit subtle, namely when λ is chosen such that 〈λ, α∨〉
is integer which implies that one of the conditions in eq. (3.19) is violated. For such values

of non-generic momenta λ some of the series solutions are logarithmic. This is analogous

to usual properties of the Gauss hypergeometric function when the difference of exponents

becomes integer [79]. To obtain their expansions, one needs to see which fundamental

solutions coincide on the corresponding locus and take the limit of their rescaled difference

as a new fundamental solution.

Example. Let us look at the Harish-Chandra functions for N = 2 in some detail. Al-

though, we could literally repeat the entire N = 1 discussion here, we leave much of it for

appendix A.14 In particular, this appendix contains explicit expressions for the expansion

coefficients Γµ in the u-expansion (3.17), see eq. (A.11). We do not want to repeat these

here and will rather discuss a somewhat intermediate form of a zi-expansion from which

we shall derive many interesting properties of Harish-Chandra functions in the remainder

of this and in the next subsection. It is given by

Φ(λ1,λ2;ki;z1,z2)=
1

42a+1+ǫ/2−λ1−λ2

∞
∑

n,m=0

(

1/2+a−λ1,1/2−b−λ1,
ǫ
2−λ1+λ2

)

n

(1−2λ1,1−λ1+λ2)n

× (1/2+a−λ2,1/2−b−λ2,ǫ/2+λ1−λ2)m
(1−2λ2,1+λ1−λ2)m

(1−ǫ/2−λ1+λ2)n−m

(−λ1+λ2)n−m

×4F3

( −n,−m,1−ǫ/2,1−ǫ/2−λ1−λ2

1−ǫ/2+λ1−λ2−n,1−ǫ/2−λ1+λ2−m,1−λ1−λ2
;1

)

(3.20)

× 1

n!m!

(

z1
z1−1

)
1+ǫ
2

+a−λ1+n( z2
z2−1

)
1

2
+a−λ2+m

2F1

(

ǫ/2−λ1+λ2−m+n,ǫ/2

1−λ1+λ2−m+n
;
z1
z2

z2−1

z1−1

)

.

As in the discussion for N = 1 we choose the principal branch for (−zi)
A, so that zi/(zi −

1) = cosh−2(ui/2). It is obvious that this function has the correct asymptotic behaviour.

Let us stress that, unlike a somewhat similar expansion for conformal blocks that appears

in [25], our expansion for Harish-Chandra functions is also valid for non-integer spins l. We

can use it to derive a corresponding expansion for conformal blocks once we have explained

how to construct blocks from Harish-Chandra functions in the next section. The derivation

of eq. (3.20), its features and equivalent expansions are described in appendix A. We note

that the z-expansion (3.20) is convergent for arguments in the region

ℜzi <
1

2
, i = 1, 2,

∣

∣

∣

∣

z1
z1 − 1

∣

∣

∣

∣

<

∣

∣

∣

∣

z2
z1 − 1

∣

∣

∣

∣

, (3.21)

which includes the entire Weyl chamber, similarly to the BC1 case. Here we assume that

the parameters are generic.

13The series converges absolutely and uniformly on compacta in the set of complexified momenta and

multiplicities times A+, as long as they are chosen to avoid the hyperplanes (3.19).
14In appendix A, we derive a z-expansion for twisted BC2 Harish-Chandra function which is related to

the present one by formula (3.48).
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As an immediate application of the series expansion (3.20) we can evaluate Harish-

Chandra functions for some special values of the multiplicities ki. For d = ǫ + 2 = 2,

for example, the multiplicity k3 = 0 vanishes so that one of the upper parameters in the

balanced 4F3(1) inside the sum coincides with one of the lower ones. The sum involving

the resulting balanced 3F2(1) is summable via Saalschütz identity [82] and we obtain

Φ(λi;k1,k2,k3=0;zi)=
∏

i=1,2

(

1

4

zi
zi−1

)1/2+a−λi

2F1

(

1/2+a−λi,1/2−b−λi

1−2λi
;

zi
zi−1

)

.

The result is a product of Harish-Chandra functions for the Pöschl-Teller problem N = 1,

see eq. (3.3). The case of d = 4 is even simpler to evaluate. Indeed, for this value of d,

the parameter k3 = (d− 2)/2 = 1 and hence one of the upper parameters in the balanced

4F3(1) tends to zero, so that we obtain

Φ(λ1, λ2; k1, k2, k3 = 1; z1, z2) =

=
1

4

z1z2
z1 − z2

∏

i=1,2

(

1

4

zi
zi − 1

)a+1/2−λi

2F1

(

1/2 + a− λi, 1/2− b− λi

1− 2λi
;

zi
zi − 1

)

.

Before we derive further properties of Harish-Chandra functions for N = 2 from the series

expansion (3.20), we want to review a few more general properties that hold for any N .

The last two formulas for N = 2 that we derived from the z-expansion (3.20) possess

a nice generalization to arbitrary values of N . For k3 = 0, 1 and generic (non-resonant)

values of the eigenvalues λ is known that [83]

Φ(λi; ki; zi) = ∆−k3
m

N
∏

i=1

(

1

4

zi
zi − 1

)a+1/2−λi

2F1

(

1/2 + a− λi, 1/2− b− λi

1− 2λi
;

zi
zi − 1

)

,

where

∆m =
∏

α∈Σ+, middle

(

e
〈α,u〉

2 − e−
〈α,u〉

2

)

is a Weyl denominator for middle roots. More generally, it is known [83, 84] that Harish-

Chandra functions for any positive integer value of the multiplicity k3 are multilinear com-

binations of Pöschl-Teller wave functions. The most elegant derivation of such expressions,

one that is also completely universal in N , involves N(N − 1)/2 differential or difference

operators which shift k3 by one unit. For scalar 4-point blocks similar constructions are

known from the work of Dolan-Osborn [25, 26]. We will show how explicit closed formulas

for these operators follow from the integrable structure of Calogero-Sutherland models in

a forthcoming publication [55].

3.3 Poles and residues of Harish-Chandra functions

Our short excursion to explicit expressions for Harish-Chandra functions which exist for

special values of the multiplicities only should not mislead the reader to think that Harish-

Chandra functions can only be understood for very special cases. In fact, it is one of

the central virtues of Heckman-Opdam theory that one is able to say so much about
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Harish-Chandra functions often without knowing their explicit series expansions or integral

formulas. As an example for one of the many further properties that is well understood

beyond the simple case of N = 1 let us mention that exp(〈−λ + ρ(k), u〉)Φ(λ; k;u) are

entire functions of the multiplicities ki and meromorphic function of asymptotic data λi,

for any choice of u in the fundamental domain. They are known to possess simple poles

whenever the set of λi satisfies one of the following conditions

〈λ∗, α
∨〉 = s for s = 1, 2, . . . , α ∈ Σ+ . (3.22)

Let us note that given λ∗ satisfying this condition, this λ∗ violates the condition (3.19).

In fact, the quadratic expression in eq. (3.19) vanishes at least for µ = sα∨. The converse

is not true, i.e. there exist many values of λ that violate the inequalities (3.19) but do

satisfy the condition (3.22). At such values of λ Heckman and Opdam showed that the

singularities are only apparent. For the true poles at λ∗ = λα,n, the residues are given by

(see e.g. [84])

Res(α,s)Φ(λ, k; z) ∼ Φ(w(α)λα,s, k; z) . (3.23)

where ∼ indicates that the relation with the Harish-Chandra function Φ(w(α)) holds only

up to an constant factor. The latter is not known in general, but we shall explain later

how it can be determined and provide explicit expressions for N = 2 with the help of the

series expansion (3.20).

Relation (3.23) is actually a little more subtle than it may appear at first. According

to a theorem by Heckman ([76], Cor. 4.2.4), eq. (3.23) holds true as it stands whenever

the quadratic equation 〈2λ0−µ, µ〉 = 0 has exactly one non-zero solution µ0 ∈ Q+. In this

case, one has

{〈2λ− µ0, µ0〉Φ(λ; k;u)}
∣

∣

∣

∣

λ0

= {(2λ− µ0, µ0)Γµ0
(λ, k)}

∣

∣

∣

∣

λ0

Φ(λ0 − µ0; k;u) . (3.24)

Here, the Harish-Chandra function on the right hand side appears from summing over

all terms in the original series with µ � µ0 with respect to the partial ordering of Q+

we introduced above. If the quadratic equation has several solutions in Q+, on the other

hand, relation (3.23) holds only for a properly defined Harish-Chandra series on the right

hand side. One can do this by approaching the desired limit point λ∗ along a sequence of

irrational values λ for which 〈2λ − µ, µ〉 = 0 has a unique solution. Then, provided one

knows the series expansion of Harish-Chandra function for such λ, it is possible to calculate

its residues by Heckman’s theorem.

Example. Let us continue our tradition to describe a few more details in the case of

N = 2. As we discussed before, the corresponding Weyl group W2 is eight dimensional. It

is generated by the two reflections w1 and w2. All eight elements are listed in table 1 along

with their action λ → wλ on the asymptotic data λ of the Harish-Chandra functions. In

the case at hand, the shift by ρ(k) reads

ρ(k) = 1/2(k1 + 2k2 + 2k3, k1 + 2k2) = (a+ 1/2 + ǫ/2, a+ 1/2) .
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w ∈ W2 w(λ1, λ2) w(∆, l)

e (λ1, λ2) (∆, l)

w1 (λ2, λ1) (∆, 2− l − d)

w2 (λ1, −λ2) (1− l, 1−∆)

w1w2 (−λ2, λ1) (1− l,∆− d+ 1)

w2w1 (λ2, −λ1) (l + d− 1, 1−∆)

w1w2w1 (−λ1, λ2) (l + d− 1,∆+ 1− d)

w2w1w2 (−λ2, −λ1) (d−∆, l)

w1w2w1w2 (−λ1, −λ2) (d−∆, 2− l − d)

Table 1. Elements of the Weyl group W2 for the BC 2 root system (first column) along with their

action on the asymptotic data λ = (λ1, λ2) (second column). The third column is identical to the

second, but uses a different parametrization of the asymptotic data that we will discuss in section 4.

The final column of table 1 will be explained in section 4. It describes the asymptotic data

in a different parametrization.

If we denote an element of µ ∈ Q+ as µ = nα1 +mα2 = ne1 + (m− n)e2 = (n,m− n)

for n,m ∈ Z≥0, the locally finite set of hyperplanes on which the definition of the Harish-

Chandra series requires an appropriate limiting procedure reads

2nλ1 + 2(m− n)λ2 = n2 + (m− n)2. (3.25)

As we stated before, only a small subset of these hyperplanes give actual poles. Namely,

according to equation (3.22) the Harish-Chandra functions possess four series of poles in

the asymptotic data λ. In fact, while the set Σ+ of positive roots contains six elements,

the solutions of eq. (3.22) for the longest roots 2ei form a subspace of the solutions for

the short roots ei. The relevant four roots are listed table 2 along with the corresponding

Weyl reflection written in terms of our fundamental generators w1 and w2. For each of

these four cases, the solutions of eq. (3.22) are listed in the third column. They depend

on a non-negative integer and one free parameter λ. The residues of our Harish-Chandra

functions for these values of λ∗ are again given by Harish-Chandra functions with different

asymptotic data. The latter is listed in the forth column of table 2. The information of the

third and forth column is repeated in the last two columns in a different parametrization

of the asymptotic data that we explain in section 4.

In order to obtain exact formulas for the residues, including the numerical coefficients,

we shall employ the series expansion (3.20). The general idea is simple to state. As we

know, the residue should be proportional to a Weyl-reflected Harish-Chandra function,

so one just needs to locate the terms of the series expansion that diverge as we send
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α w(α) (λ1λ2)∗ w(α)(λ1, λ2)∗ (∆, l)∗ w(α)(∆, l)∗

e1 w1w2w1 (s/2, λ) (−s/2, λ) (l + d− s− 1, l) (l + d− 1, l − s)

e2 w2 (λ, s/2) (λ,−s/2) (1− s− l, l) (1− l, l + s)

e1 + e2 w2w1w2 (−λ+ s, λ) (−λ, λ− s) (d/2− s, l) (d/2 + s, l)

e1 − e2 w1 (λ+ s, λ) (λ, λ+ s) (∆, 1− d/2 + s) (∆, 1− s− d/2)

Table 2. Pole positions (first column) and asymptotic data of their residues (second column) of

the Harish-Chandra functions Φ(λ1, λ2, k; z) for N = 2. The third and forth column contain the

same information in a different parametrization of asymptotic data, see section 4.

λ close to a corresponding pole position. Within the set of these divergent terms one

needs to identify the one that gives the leading power of Φ(w(α)λα,s, k; z) and read off

the coefficient. Heckman’s theorem quoted above guarantees that we can interchange the

summation and the limit. In principle, the described steps can be carried out both for the

usual u-expansion (see appendix A) and the z-expansion we spelled out in equation (3.20).

Here we shall sketch the derivation from the latter and spell out the explicit residues for

all four families of poles.

According to our table, the residue for the series λ1 = s/2 + ξ is proportional

to Φ(− s
2 , λ2; k; z(u)). It is easy to see that the leading divergent term in the zi-

expansion (3.20) arises from the summands with n = s, m = 0, p = 0. Here and in

the following, the summation index p refers to the series expansion of the hypergeometric

function 2F1 in the last line of equation (3.20). Hence, the two hypergeometric functions

in the summands of eq. (3.20) can be replaced by F ∼ 1 in all divergent terms. Keeping

in mind that 1/ (1− s− 2ξ)s ∼ (−1)s/2ξ(s− 1)!, we obtain

Φ(λ,k;z(u))

∣

∣

∣

∣

λ1∼ s
2
+ξ

=

=
1

ξ

(

1

2

4s

s!(s−1)!

(

a+ 1−s
2 ,b+ 1−s

2 , ǫ2+λ2− s
2 ,1− ǫ

2+λ2− s
2

)

s
(

λ2− s
2 ,1+λ2− s

2

)

s

x
−a− 1+ǫ

2
− s

2

1 x
−a− 1

2
+λ2

2 +...

)

,

so that the residues are given by

Res
λ1=s/2

Φ (λ, k; z(u)) =
1

2

4s

s!(s− 1)!

(

a+ 1−s
2 , b+ 1−s

2 , ǫ
2 + λ2 − s

2 , 1− ǫ
2 + λ2 − s

2

)

s
(

λ2 − s
2 , 1 + λ2 − s

2

)

s

(3.26)

× Φ
(

−s

2
, λ2; k; z(u)

)

.

The evaluation of the residue for the family λ2 = s/2 + ξ is even simpler. Since it is

proportional to Φ(λ1,− s
2 ; k; z(u)), it must arise from the terms n = 0, m = s, p = 0 in

eq. (3.20). Once again it is easily seen that the two inner hypergeometric functions that

appear in the summands do not contribute so that the residue reads

Res
λ2=s/2

Φ (λ, k; z(u)) =
1

2

4s

s!(s− 1)!

(

a+
1− s

2
, b+

1− s

2

)

s

Φ
(

λ1,−
s

2
; k; z(u)

)

. (3.27)
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For the third family of poles at (λ1, λ2)∗ = (−λ + s, λ) the residue is proportional to

Φ(−λ, λ − s; k; z(u)). The relevant terms in the sum arise from n = m = s, p = 0. For

these values of indices, the inner 2F1 still does not contribute, but the 4F3 does, as none of

the upper parameters is zero anymore. Furthermore, in the present case the Pochhammer

symbol that produces the desired pole is among the lower ones in the series expansion

of the inner 4F3 function. To take it out, we use a Whipple transformation for balanced

4F3 [82]

4F3

( −n,−m, 1− ǫ/2, 1− ǫ/2− λ1 − λ2

1− ǫ/2 + λ1 − λ2 − n, 1− ǫ/2− λ1 + λ2 −m, 1− λ1 − λ2
; 1

)

=
(1− ǫ/2− λ1 + λ2, 1− λ1 − λ2 +m)n
(1− λ1 − λ2, 1− ǫ/2− λ1 + λ2 −m)n

×

× 4F3

( −n,−m,λ1 − λ2 − n, 2λ1 − n

ǫ/2 + λ1 − λ2 − n, 1− ǫ/2 + λ1 − λ2 − n, λ1 + λ2 −m− n
; 1

)

.

Substituting (λ1, λ2)∗, taking n = m = s and expanding the balanced 4F3 on the right hand

side of the last formula in ξ, we see that its leading term is not singular now. Moreover,

one upper and one lower parameter in it cancel against each other and we are left with a

balanced 3F2 function that can be summed by a usual Saalschütz formula [82]:

4F3

( −s,−s,−2λ+ ξ,−2λ+ s+ 2ξ

ǫ/2− 2λ+ ξ, 1− ǫ/2− 2λ+ ξ,−s+ ξ
; 1

)

∼
(

ǫ
2 , 1− ǫ

2

)

s
(

ǫ
2 − 2λ, 1− ǫ

2 − 2λ
)

s

+ . . .

where the dots denote subleading orders in ξ. All in all, the residue is thus again given

just by a product of Pochhammer symbols

Res
λ1=−λ+s,λ2=λ

Φ (λ, k; z(u)) =
42s

s!(s− 1)!
(3.28)

×
(

1
2 + a+ λ− s, 12 + b+ λ− s, 12 + a− λ, 12 + b− λ, ǫ

2 , 1− ǫ
2

)

s

(−2λ, 1− 2λ)2s
× Φ(−λ, λ− s; k; z(u)).

The last sequence of poles at (λ1, λ2)∗ = (λ+ s, λ) with residues proportional to Φ(λ, λ+

s; k; z(u)), is again simple. In this case the leading terms arise from to n = m = 0, p = s,

so the inner 4F3 does not contribute, whereas the 2F1 does. Therefore, we readily obtain

Res
λ1=λ+s,λ2=λ

Φ (λ, k; z(u)) =
1

s!(s− 1)!

( ǫ

2
, 1− ǫ

2

)

s
× Φ(λ, λ+ s; k; z(u)). (3.29)

Notice that all the residues are symmetric under a, b,↔ −a,−b, ǫ ↔ 2−ǫ, as they should be

in consistency with the symmetries of BC2 Harish-Chandra function described above. Let

us also note that, for generic multiplicities k and eigenvalues λ, all four families contribute

an infinite sequences of poles.

3.4 Monodromy group and representation

As in the case of the Pöschl-Teller problem, imposing good features of the wave functions

at the walls of A+
N requires to consider certain linear combinations of Harish-Chandra
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functions. For the BCN Calogero-Sutherland model, the Weyl chamber A+
N possesses N

walls ωi, i = 1, . . . , N, which are in one-to-one correspondence to the generators wi of the

Weyl group. As we have discussed above, there is one more wall ω0, but it does not bound

the domain A+
N and so is not of concern for us, at least for most of this section. Since

there are |WN | Harish-Chandra functions and hence |WN | coefficients to fix in their linear

combinations, one might naively expect that analyticity at the N walls ωi, i = 1, . . . , N

would leave some coefficients undetermined. It turns out, however, that there exists a

unique linear combination (up to a constant factor) that is analytic at all N walls on the

boundary of the Weyl chamber.

The prescription to build such analytic wave functions is not difficult to state. Suppose

we want the wave function Φ to be analytic at some subset ωi1 , . . . , ωir consisting of r ≤ N

of the N walls that bound A+
N , i.e iν 6= 0. To each of these walls there is a generator

wiν of the Weyl group and so our set of r walls is associated with a subgroup V ⊂ WN of

the Weyl group that is generated by wi1 , . . . , wir . Given this subgroup we now define the

following superposition of Harish-Chandra functions

ΦV (λ, k; z) =
∑

w∈V
c(wλ, k)Φ(wλ, k; z) (3.30)

where the so-called Harish-Chandra c-function15 reads

c(λ, k) =
γ(λ, k)

γ(ρ(k), k)
, γ(λ, k) =

∏

α∈Σ+

γα(λ, k) , (3.31)

γα(λ, k) =
Γ
(

1
2kα/2 + 〈λ, α∨〉

)

Γ
(

1
2kα/2 + kα + 〈λ, α∨〉

) . (3.32)

Any wave function of this form turns out to be regular at the walls ωi1 , . . . , ωir . There are

two extreme cases of this construction. If we just demand regularity at a single wall ωi, then

the subgroup V consists of two elements, the identity and the reflection wi. Hence, from

the WN orbit of |WN | = N !2N Harish-Chandra functions Φ(wλ, k; z) we obtain N !2N−1

linear combinations that are regular at ωi. If, on the other hand, we want a wave function

that is regular at all the walls ωi, i = 1, . . . , N that bound A+
N , then the subgroup V =

WN coincides with the Weyl group and we end up with a unique linear combination.

Let us note that while this function ΦW is analytic in a neighborhood of A+
N , it fails

to be analytic at the wall ω0. The function F+ = ΦW is also known as Heckman-Opdam

hypergeometric function. More generally, linear combinations of the form (3.30) are referred

to Θ-hypergeometric functions, see e.g. [86] and references therein.

One can also build a function Φ̃W that is analytic at ω0, . . . , ωN−1, but has monodromy

around ωN . We will give an exact formula in the case of N = 2 below. The corresponding

wave functions ΨW (λ, k; z) and Ψ̃W (λ, k; z) with λj = ipj , pj ≥ 0, are the physical wave

functions of the Calogero-Sutherland problem on A+
N and Ã+

N = AL, respectively. Hence,

they provide an orthogonal basis within the space of functions on the A+
N and AL [76, 84,

15This function is an analytic continuation of the so-called Gindikin-Karpelevic c-functions [85] in har-

monic analysis.
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87]. In hypergeometric gauge the Hermitian scalar product on A+
N reads16

(φ1, φ2) =

∫

A+
N

φ1(u)φ2(u) |Θ(k;u)|2 du. (3.33)

where du is a suitably normalized measure on A+
N [87]. The gauge transformed Calogero-

Sutherland Hamiltonian Θ(k;u)−1HCSΘ(k;u) is self-adjoint with respect to this inner

product.

As in the case of N = 1 there exists a nice reformulation in terms of the representation

theory of the fundamental group MN = π1(DN ). The latter is generated by N+1 elements

gi, i = 0, . . . , N which are associated with closed loops around the N + 1 walls ωi, i =

0, . . . , N of the Calogero-Sutherland potential [76, 88] (see also [89]). Note that the real

codimension of these walls in complex space is two. Since the walls are associated with

generators wi of the affine Weyl group WN , so are the generators gi ∈ MN . One may

show [88] that the generators gi, i = 0, . . . , N of the fundamental group MN = π(DN )

satisfy the following set of relations

gigj = gjgi for |i− j| ≥ 2 , (3.34)

gigi+1gi = gi+1gigi+1 for i = 1, . . . N − 2 , (3.35)

g0g1g0g1 = g1g0g1g0 , gN−1gNgN−1gN = gNgN−1gNgN−1 . (3.36)

These are very similar to the defining relations of the affine Weyl group, except that in

the fundamental group g2i 6= 1. So, the relation between the monodromy group of DN and

the affine Weyl group mimics the relation between the braid group and the permutation

group. Therefore, the fundamental group MN is also referred to as (Artin) affine braid

group. Note that the relation in the second row is the usual braid or Yang-Baxter equation.

The relations in the third line, which involve the elements g0 and gN , on the other hand,

resemble forth order reflection equations in which two factors on each side arise from the

reflection at a boundary while the other two are associated with scattering in the bulk.

For the affineWeyl group we actually discussed two different presentations, one in terms

of N + 1 generators wi, i = 0, . . . , N and a second one that involves 2N generators τi and

wi with i = 1, . . . , N . In complete analogy to the construction of the generators τi ∈ WN ,

we can build [76, 90, 91] (see also [92]) a set of commuting generators li ∈ MN through

ℓi = g−1
i · · · g−1

N−1(g
−1
N · · · g−1

0 )g1 · · · gi−1. (3.37)

The reader is invited to verify that ℓiℓj = ℓjℓi. Hence the group elements ℓi generate an

N -dimensional lattice ZN ∼= Γ ⊂ MN . The generators gi, i = 1, . . . , N act on this lattice as

giℓigi = ℓi+1 , 1 ≤ i < N (3.38)

[gi, ℓj ] = 0 , |i− j| ≥ 2 or (i, j) = (N,N − 1) . (3.39)

Our conventions on directions of the basic loops match [76] (section 4.3) if we identify our

generators ℓi with the generators li used by Heckman as ℓi =
∏N

k=i l
−1
k .

16This formula defines an inner product only if certain conditions on the multiplicities kα are satisfied,

e.g. if ℜ(kα) > 0 for all α ∈ Σ+.
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For generic values of λ, the space of Harish-Chandra wave functions Φ(wλ, k; z) forms

a |WN |-dimensional representation of the monodromy group MN . This representation is

explicitly known due to the work of Heckman and Opdam. With respect to the action of

Mi, i = 1, . . . , N the space of Harish-Chandra functions splits into |WN |/2 2-dimensional

subspaces each of which is spanned by a pair of Harish-Chandra functions Φ(λ, k; z) and

Φ(wiλ, k; z). On these subspaces, the action is given by

M(gi) = Mi = C−1
i

(

1 0

0 eπi(1+ǫ)

)

Ci for i = 1, . . . , N − 1, (3.40)

M(gN ) = MN = C−1
N

(

1 0

0 e2πi(a−b)

)

CN . (3.41)

The matrices Ci, i = 1, . . . , N, are defined as

Ci(λ, k) =

(

ci(λ, k) ci(wiλ, k)

ci(λ, k
′′) ci(wiλ, k

′′)

)

,

where k′′ = (k′′1 , k
′′
2 , k

′′
3) = (−k1, 1 − k2, 1 − k3) denotes an involution of the multiplicities

(see also below) and

ci(λ, k) = 4−λi+λi+1+ǫ/2 Γ(12 + ǫ
2)Γ(2λi − 2λi+1)

Γ( ǫ2 + λi − λi+1)Γ(
1
2 + λi − λi+1)

and (3.42)

cN (λ, k) = 4−λN+a+1/2 Γ(a− b+ 1)Γ(2λN )

Γ(1/2 + λN − b)Γ(1/2 + λN + a)
(3.43)

is the same function that appeared in our discussion of the Pöschl-Teller problem. The

monodromy representation M0 = M(g0) of the element g0 is once again obtained from MN

by the simple replacement b → −b along with a gauge transformation of the form

Ω(λ, k) = diagw∈WN

(

eiπ〈wλ−ρ,θ〉
)

where θ =
∑

i ei is the sum of short roots.17 So, in formulas one has

M(g0) = M0 = Ω−1M̃NΩ . (3.44)

Here M̃N denotes the matrix in eq. (3.41) with b replaced by −b. Note that the monodromy

matrices Mi, i = 1, . . . , N − 1, for the curves around the walls ω1, . . . , ωN−1 do not depend

on b and are left invariant by the gauge transformation, i.e. Ω−1M̃iΩ = Mi. One may

check that the monodromy matrices Mr, r = 0, . . . , N satisfy all the defining relations of

the fundamental group MN . In addition they possess the following Hecke property

(Mr − 1)(Mr − γr) = 0 , where (3.45)

γ0 = e2πi(a+b) , γi = eπi(1+ǫ) , γN = e2πi(a−b)

17The mathematical origin of this θ is that it is twice the minuscule co-weight of root system CN . In this

way, it is related to a symmetry that interchanges the 0-th and N -th affine root, see previous discussion.
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for r = 0, . . . , N and i = 1, . . . , N − 1. The Hecke property of the monodromy matrix is

obvious from the eqs. (3.40), (3.41) and (3.44). The formulas for the monodromy represen-

tation we have displayed here imply that the functions ΦV we defined above indeed have

trivial monodromy with respect to gi1 , . . . , gir .

One might wonder why these formulas are so similar to the ones in the Pöschl-Teller

problem. The reason is however not so difficult to grasp. If we start our curve near asymp-

totic infinity we can reach each of the walls separately, i.e. we can move near any of the wall

ωi while staying far away from the others ωj , j 6= i. In this way, the monodromy problem

for a given wall can really be solved within the theory of single variable hypergeometric

functions. The walls ω0 and ωN are in fact entirely equivalent to the walls in the Pöschl-

Teller problem while the intermediate ones possess a different dependence on the coupling

constants. The latter may be understood through a replacement b → 0 and a → (ǫ− 1)/2

in the expression for MN .

We have also promised some more comments on the origin of the multiplicities that

occur in the second row of the C matrices. These may be traced back to symmetries of the

Harish-Chandra functions. Indeed, it is well known that [93]

Φ(λ, k′′;u) = Θ0(−(2k)′′;u) Φ(λ, k;u) where Θ0(k;u) =
∏

Σ+
0

(

2 sinh
〈α, u〉
2

)kα

(3.46)

and Σ+
0 denotes the set of middle and long positive roots, i.e. in the product that defines

Θ0 we do not include factors for the short roots. In terms of our parameters (a, b, ǫ) the

involution reads (a′′, b′′, ǫ′′) = (−a,−b, 2− ǫ).

Before we return to our discussion of the special case of N = 2, we want to conclude the

general discussion on the monodromy representation of the affine braid group by stating a

general result from [76] (proposition 4.3.10) that provides a criterion for the irreducibility

of the |WN |-dimensional representation in the space of Harish-Chandra functions. Accord-

ing to this theory, the representation we have described is irreducible, provided that the

momenta λ and the multiplicities k are sufficiently generic, i.e. that

〈λ, α∨〉 6∈ Z and 〈λ, α∨〉+
kα/2

2
+ kα 6∈ Z (3.47)

for all roots α of the BCN root system. When one of these conditions is violated, the

monodromy representation may contain non-trivial subrepresentations. We will see one

such example below.

Example. Let us discuss some more details for the case of N = 2 that is most relevant in

the context of conformal field theory. We have noted already that the corresponding Weyl

group possesses |W2| = 8 elements. The eight Harish-Chandra functions Φ(wλ, k; z), w ∈
W2 give rise to an eight-dimensional monodromy representation of the fundamental group

M2. The latter is generated by three elements g0, g1, g2 subject to the following relations

g0g2 = g2g0 , g0g1g0g1 = g1g0g1g0 g1g2g1g2 = g2g1g2g1 .
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These are associated with the three walls in figure 3. Among the linear combinations of

Harish-Chandra functions, there are a few that we would like to highlight. The first one is

associated with the subgroup V ⊂ W2 that is generated by w1. According to the general

theorem we quoted above, the following w1 symmetric combination of Harish-Chandra

functions

Φs(λ, k; z) = c1(λ1, λ2, k)Φ(λ1, λ2, k; z) + c1(λ2, λ1, k)Φ(λ2, λ1, k; z) .

is regular at the wall ω1, see figure 3. Note that w1 acts on momenta of Harish-Chandra

functions by exchanging λ1 and λ2. The functions Φs coincide with the functions ΦV with

V = {e, w1} ⊂ W2 we introduced above up to a constant (z-independent) factor. Since Φs

is analytic at the wall ω1, it can be continued from A+
2 to AE

2 and further into AL
2 = Ã+

2 .

On the other hand it fails to be analytic at the walls ω0 and ω2. In order to obtain a

regular wave function at the wall ω2 and hence in a neighborhood of the domain A+
2 , we

must add a whole 8-dimensional orbit of Harish-Chandra functions under the action of the

Weyl group on the asymptotic data λ. The coefficients are given by the Harish-Chandra

c-function that we defined in eq. (3.31).

If instead we want a wave function that is regular at the walls ω1 and ω0 and hence in

a neighborhood of Ã+
2 we must sum the twisted Harish-Chandra functions18

Φ̃(λ1, λ2; a, b, ǫ;u1(z), u2(z)) = eiπ(ǫ/2−λ1+λ2)Φ(λ1, λ2; a, b, ǫ;u1(z), u2(z)) (3.48)

= Φ(λ1, λ2; a,−b, ǫ; ũ1(z), ũ2(z))

over an entire orbit of the Weyl groupW2 with coefficients given by a twisted version c̃ of the

Harish-Chandra c-functions (3.31) ( i.e. in which b is replaced by −b ). Since the element w2

of the Weyl group does not commute with the gauge transformation Ω, the resulting func-

tion Φ̃W is not a constant multiple of ΦW . By construction, the Heckman-Opdam hyper-

geometric functions F+ = ΦW and F̃+ = FL = Φ̃W trivialize two monodromies each, e.g.

M1F
+ = F+ , M2F

+ = F+

and similarly for F̃+ = FL but with M0 instead of M2. This concludes our discussion of

wave functions on A+
2 and the Lorentzian domain AL.

The hypergeometric functions we constructed in the previous example provide physical

wave functions for the domain A+
2 and the Lorentzian domain Ã+

2 = AL, respectively.

Their construction is well known in the mathematical literature. For our purposes below

we are also interested in the physical wave functions for the Euclidean domain AE . As

far as we know, there exists no general theory for these functions, but for the specific

example of N = 2 such wave functions have been discussed in the context of conformal

field theory [56, 94]. The former paper also contains a partial characterization in terms of

monodromies. Recall that the Euclidean domain AE is bounded by the wall ω1. To be

slightly more precise, the strip is bounded by two semi-infinite lines satisfying u1 = u2 (up to

shifts by 2πi) which arise from the wall ω1 and a compact interval along u1 = iϕ = −u2 that

18We assume 0 < ℑu1 < 2π, −2π < ℑu2 < 0 here.
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is associated with the image of the wall ω1 under the Weyl reflection with w2. Consequently,

one can characterize the physical wave functions FE for the Euclidean strip AE through

the following three monodromy conditions

M1F
E(λ1, λ2, k; z1, z2) = FE(λ1, λ2, k; z1, z2)

M−1
2 M1M2F

E(λ1, λ2, k; z1, z2) = FE(λ1, λ2, k; z1, z2) , (3.49)

M̃−1
2 M1M̃2F

E(λ1, λ2, k; z1, z2) = FE(λ1, λ2, k; z1, z2) .

It is easy to see that these three conditions cannot be solved simultaneously unless the

λ1 − λ2 − k3 is a non-negative integer. From now on until the end of this section we will

assume that the parameter ǫ is generic, i.e. ǫ/2 is not an integer. In this case, the unique

(up to normalization) solution is given by

FE
λ1,λ2

(z1, z2) ∼ Φ̃(λ1, λ2, k; z1, z2) +N(λ1, λ2, k)Φ̃(−λ2,−λ1, k; z1, z2) (3.50)

with

N(λ1, λ2, k) =
c1(−λ2, λ1; k)M2(λ1, λ2; k)12

c1(λ1,−λ2; k)M2(−λ2,−λ1; k)12
(3.51)

= 42λ1+2λ2
Γ(−λ1 − λ2)Γ(

ǫ
2 + λ1 + λ2)

Γ( ǫ2 − λ1 − λ2)Γ(λ1 + λ2)

Γ(−2λ2)Γ(1− 2λ2)Γ(
1
2 + λ1 ± a)Γ(12 + λ1 ± b)

Γ(2λ1)Γ(1 + 2λ1)Γ(
1
2 − λ2 ± a)Γ(12 − λ2 ± b)

where Γ(x±y) is the conventional shorthand for Γ(x±y) = Γ(x+y)Γ(x−y) andM2(λ1, λ2)12
denotes a matrix element of the monodromy matrix (3.41) for N = 2. While the first two

monodromy conditions in the list (3.49) possess four linearly independent solutions, the

third condition puts the wave function on the semi-infinite strip and hence imposes strong

additional constraints. As in our discussion of the BC1 theory, regular wave functions can

only exist for a discrete set of values n = λ1 − λ2 − ǫ/2 = 0, 1, 2, . . . . Since the strip is

infinitely extended in one direction, the sum λ1+λ2 can assume any imaginary value. When

u1 + u2 becomes infinite, the wave functions FE factorize into a product of Poeschl-Teller

wave function of the form (3.6)19 and a plane wave in the coordinate u1 + u2. The latter

possesses an incoming and an outgoing component.

Let us conclude this discussion of the Euclidean domain with a few general observations

concerning the structure of the monodromy representations that occur when we specialize

the spin λ1 − λ2 − ǫ/2 to be integer. As we will argue now, the corresponding eight-

dimensional representations of the affine braid group are indecomposable but no longer

irreducible, i.e. they contain a non-trivial invariant subspace which turns out to be four-

dimensional. This is consistent with the criterion (3.47). In fact, for α = −e1+ e2 it states

−λ1 + λ2 + ǫ/2 6∈ Z

which is violated for the representations we are considering. It is indeed easy to see that

the four Harish-Chandra functions

Φ̃(λ1, λ2, k; z1, z2) , Φ̃(−λ2, λ1, k; z1, z2) , Φ̃(λ1,−λ2, k; z1, z2) , Φ̃(−λ2,−λ1, k; z1, z2)

19With parameters a, b replaced by a → (ǫ− 1)/2 and b → 0 to account for the strength of the potential

at the wall ω1.
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span a four-dimensional subrepresentation. In fact, while the first two functions are

invariant under the action of M1, the remaining ones are just mapped onto each other.

The monodromy matrix M2, on the other hand, mixes the first and the third function and

similarly the second and the fourth. All four functions are eigenfunctions of the generators

ℓi and hence no element within the affine braid group can ever get us out of the space

spanned by these four functions. On the other hand, the remaining four Harish-Chandra

functions from the eight-dimensional monodromy representation do not span an invariant

subspace, i.e. the monodromy representations are indecomposable when λ1 − λ2 − ǫ/2 is

integer. Let us also note that the wave function FE we constructed above, is contained in

the four-dimensional invariant subspace.

4 Wave functions and conformal blocks

After this lightning review of Heckman and Opdam’s work on the Calogero-Sutherland

problem we want to explain how all this is related to the theory of conformal blocks for

four external scalar fields. We shall begin with a brief reminder on the Casimir equation

for conformal blocks before we explain the relation in the case of the N = 1 theory that

applies to 4-point blocks of bulk fields in 2-dimensional theories as well as to blocks of

two scalar bulk fields in the presence of a boundary in any dimension [95]. Then we

turn to conformal 4-point blocks in any dimension and their relation to the BC 2 Calogero-

Sutherland model, following [54]. In particular we will construct higher dimensional con-

formal blocks and their shadows in terms of the BC 2 Harish-Chandra functions.

4.1 Conformal blocks and the Casimir equation

It is time now to embed the theory of scalar conformal blocks into the framework of the

Calogero-Sutherland model that we have sketched in the previous two sections. To begin

with, let us recall the precise definition of scalar conformal 4-point blocks as solutions

of the so-called Casimir equation [25]. We consider the correlation function of four scalar

conformal primary fields of weight ∆i, i = 1, . . . , 4 in a d-dimensional conformal field theory.

Using conformal symmetry, this 4-point correlator can be written as

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉

=
1

x
1

2
(∆1+∆2)

12 x
1

2
(∆3+∆4)

34

(

x14
x24

)a(x14
x13

)b

G(z, z̄) (4.1)

with xij = xi − xj and 2a = ∆2 − ∆1, 2b = ∆3 − ∆4. The conformal invariants z, z̄ are

introduced to parameterize the more familiar cross ratios as

u =
x212x

2
34

x213x
2
24

= zz̄ , v =
x214x

2
23

x213x
2
24

= (1− z)(1− z̄) . (4.2)

For a Euclidean theory, z, z̄ are complex conjugates. When we work with Lorentzian

signature, on the other hand, the variables z and z̄ are real and taken from the interval
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z, z̄ ∈ [0, 1[. The function G receives contributions from all the primary fields that can

appear in the operator product expansion of the fields φ1 and φ2

G(z, z̄) =
∑

∆,l

λ12
l (∆)λ34

l (∆)G∆,l(z, z̄) . (4.3)

This expansion separates the dynamically determined coefficients λ of the operator product

from the kinematic conformal blocks G∆,l. The latter are eigenfunctions of the quadratic

conformal Laplacian D2
ǫ ,

D2
ǫG(z, z̄) =

1

2
C∆,lG(z, z̄) (4.4)

with eigenvalues

C∆,l = ∆(∆− d) + l(l + d− 2) . (4.5)

The form of the conformal Laplacian has been worked out in [25],

D2
ǫ := D2 +D

2
+ ǫ

[

zz

z − z

(

∂ − ∂
)

+ (z2∂ − z2∂)

]

(4.6)

where ǫ = d− 2 and

D2 = z2(1− z)∂2 − (a+ b+ 1)z2∂ − abz. (4.7)

D
2
is defined similarly in terms of z̄. In order to fully determine the conformal blocks, we

impose the following boundary condition

G∆,l(z, z̄) ∼ cl(zz̄)
1

2
(∆−l)(z + z̄)l + . . . (4.8)

when z, z̄ are close to z, z̄ = 0 and we choose the normalization factor cl to be

cl =
(ǫ/2)l
(ǫ)l

.

The condition (4.8) selects a unique solution of the conformal Casimir equation and there-

fore completes our definition of scalar 4-point blocks.20

4.2 Blocks and the Pöschl-Teller problem

We can gain some first insight into the relation between conformal blocks and Harish-

Chandra functions by setting d = 2. The conformal Casimir equation then decomposes

into two independent equations that determine the dependence of blocks on z and z̄,

respectively. Focusing on the z-dependence leads to the following second order differential

equation

D2Gh(z) = h(h− 1)Gh(z) .

Note that D2 and hence the eigenfunctions Gh depend on a, b but we do not display this

dependence explicitly. The same equation also appears for the blocks of two scalar fields in

20Our normalization conventions match those of [26] (up to a change z ↔ z̄ which is a symmetry of

blocks). To match with [56], one should strip off the prefactor cl.
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the presence of a boundary in d-dimensional conformal field theory, see [95]. Following [54]

we perform the gauge transformation

Ψ(u) := 21−2h (1− z)
a+b
2

+ 1

4

√
z

G(z) (4.9)

where the coordinates z and u are related through eq. (2.28) as before. Note that we

consider the region in which z ∈ [0, 1] which means that u = ũ+ iπ with

z = − sinh−2 u

2
= cosh−2 ũ

2
.

Inserting these relations it is easy to see that the function Ψ is an eigenfunction of the

Pöschl-Teller Hamiltonian with potential V PT
(a,b)(u) where the coupling constants a, b are

the same as the parameters a, b in the conformal Casimir equation, i.e. they are related to

the holomorphic weights hi of the external fields through a = h2−h1 and b = h3−h4. The

eigenvalue ε = −λ2, on the other hand, is determined by the holomorphic weight h of the

intermediate field ε = −(2h− 1)2. Hence we read off that h = 1/2− λ.

If we compare the relation (4.9) between conformal blocks G and wave functions Ψ

with the gauge transformation Θ between wave functions and (twisted) Harish-Chandra

functions we find that

G(z) = ϑ(z)Φ(λ, k; z) := 22a+1−2λz−aΦ̃(λ, k; z) .

Note that the gauge transformation ϑ(z) that relates the twisted Harish-Chandra functions

to conformal blocks takes a very simple form. Similarly, the second twisted Harish-Chandra

function Φ̃(−λ, k; z) is related to the so-called shadow block. Finally, there exists a special

linear combination of blocks and their shadows that is analytic along the wall that bounds

the Lorentzian domain AL
1 , as discussed in section 3.1. These form a complete basis in the

space of functions on the half-line.

4.3 Blocks from Harish-Chandra wave functions

As was observed in [54], the Casimir equation for conformal blocks is equivalent to the

Calogero-Sutherland model for reflection group BC 2. The parameters a, b and ǫ that are

determined by the conformal weights of the external scalar and the dimension d coincide

with the parameters a, b and ǫ in the potential (2.11). To relate the associated Schrödinger

problem on the BC 2 Weyl chamber with the eigenvalue equation (4.4) for the conformal

Laplacian we employ

Ψ(u1, u2) := 2d−2∆
∏

i

(1− zi)
a+b
2

+ 1

4

z
1

2
+ ǫ

2

i

|z1 − z2|
ǫ
2G(z1, z2), (4.10)

where z1 = z and z2 = z̄. It is not difficult to verify that this gauge transformation, along

with the usual relation (2.28) between zi and ui, turns the conformal Laplacian into the

Calogero-Sutherland Hamiltonian for the potential (2.11), with the eigenvalue

ε = −d(d− 2)/4− (C∆,l + 1)/2 .
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In order to identify the conformal block with the precise eigenfunction of the Calogero-

Sutherland model, we must also compare the asymptotic behavior (4.8) with the asymp-

totics (3.16) of twisted Harish-Chandra functions. Note that the limit u1, u2 → ∞ maps to

the limit z1, z2 → 0. In Harish-Chandra theory we perform this limit in the Weyl chamber

AL
2 = Ã+

2 where ũ1 > ũ2. This maps to real cross ratios z1, z2 with 0 < z1 < z2 < 1.

Taking into account the asymptotics of the gauge transformation (4.10) and of the factor

Θ, comparison gives

λ1 =
1

2
+

ǫ

2
− 1

2
(∆− l) , λ2 =

1

2
− 1

2
(∆ + l) . (4.11)

If we solve these for the conformal weight ∆ and the spin l of the exchanged field, we obtain

∆ =
d

2
− λ1 − λ2 , l = λ1 − λ2 −

ǫ

2
. (4.12)

In order for the twisted Harish-Chandra wave function to possess oscillatory behavior at

infinity, the parameters λi must be imaginary. The corresponding values of ∆ = d/2 + ic

are then associated with the principal continuous series representation of the conformal

group [7].

Note that the asymptotic condition (4.8) is symmetric with respect to the exchange

of z = z1 and z̄ = z2. Hence the block should not be identified with a single twisted

Harish-Chandra function Φ̃(λ, k;u) but rather with the superposition of Φ̃(λ, k;u) and

Φ̃(w1λ, k;u). This is the symmetric superposition Φs = ΦV with V = {e, w1} we have

briefly discussed at the end of the previous section,

G∆,l(z, z̄) =
24a+d−2λ1−2λ2

(zz̄)a

[

cα1
(λ1, λ2)Φ̃(λ1, λ2, k; z1, z2) + cα1

(λ2, λ1)Φ̃(λ2, λ1, k; z1, z2)
]

where cα1
(λ; k) =

γα1
(λ, k)

γα1
(ρ(k), k)

=
Γ(λ1 − λ2)Γ(ǫ)

Γ(λ1 − λ2 + ǫ/2)Γ(ǫ/2)
. (4.13)

Here the parameters λ on the right hand side are determined from the conformal weight ∆

and spin l of the exchanged field through eqs. (4.11), the weights kα should be fixed from

the conformal weights ∆i of the external scalars and the spacetime dimension d through

k1 = ∆4 −∆3 , k2 =
1

2
(∆2 +∆3 −∆1 −∆4 + 1) , k3 =

d

2
− 1

and the variables ui are related to the cross ratios by eq. (4.2). By construction, the

conformal block trivializes the monodromy M1, i.e.

M1G∆,l(z, z̄) = G∆,l(z, z̄) .

This means that it is regular along the wall ω1 only. On the other hand, the block fails to

be regular along the walls ω0 and ω2. We will come back to this issue in the next section.

Let us also note that in the case of integer spin, both twisted Harish-Chandra functions

contribute to the block if and only if the dimension d is even. Otherwise, the coefficient

cα1
(λ2, λ1) in front of the second Harish-Chandra function vanishes due to a divergent
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gamma factor in the denominator that does not cancel against a divergence in the

numerator. Hence, for integer l and generic dimension d, the conformal block is given by

a single Harish-Chandra function.

As discussed in [54], for integer l21 our z−expansion (3.20) for Harish-Chandra func-

tions implies an expansion for conformal block that was first derived by Dolan and Osborn

in [25]. Indeed, when −ǫ/2 + λ1 − λ2 = l is a non-negative integer, we can use Whipple’s

identity to rewrite the summands in eq. (3.20) through

(

ǫ
2−λ12

)

n−m

(1−λ12)n−m
4F3

(

ǫ/2−λ12−m+n,2λ2−m,ǫ/2,−m

ǫ/2−λ12−m,ǫ/2+Λ12−m,1−λ12−m+n
;1

)

=

=
Γ(ǫ/2,−ǫ/2+2λ1,ǫ/2+λ1±λ2)

Γ(ǫ,2λ1,λ1±λ2)

(ǫ/2−λ12)n−m

(1−ǫ/2−λ12)n−m

(1−2λ1)n
(1+ǫ/2−2λ1)n

(1−Λ12)m
(1−ǫ/2−Λ12)m

×4F3

(

ǫ/2−λ12−m+n,ǫ/2−λ1±λ2,ǫ/2

ǫ/2−λ12−m,1+ǫ/2−2λ1+n,ǫ
;1

)

where λ12 = λ1 − λ2 and Λ12 = λ1 + λ2. Once this is inserted into eq. (3.20), using

the relation (3.48) we recover the expansion from [25]. On the other hand, the expansion

formula in [25] fails to work for non-integer spin while our generalized binomial formula

for BC 2 provides a valid solution with prescribed asymptotics. In order to correct the

expansion of Dolan and Osborn in case of non-integer spin l one should add a second term

containing 4F3 on the right hand side of the last identity, which then becomes a particular

instance of three-term relation for a balanced 4F3. Moreover, the two symbols 4F3 that

appear on the right hand side of this relation are non-terminating, yet still convergent due to

balancedness. The analytical continuation of the left hand side, on the other hand, is trivial,

since this function stays terminating, due to a negative integer among the upper parameters.

Of course, instead of correcting the expansion formula of Dolan and Osborn one can work

with our expansion (3.20) which is valid for integer as well as non-integer spin l.

5 Some applications of scattering theory to conformal blocks

Now that we have explained how the conformal blocks are embedded into the Calogero-

Sutherland scattering theory, we can begin to apply some of the general results from

Heckman-Opdam theory to conformal field theory. The first subsection aims at under-

standing poles and residues of conformal blocks and hence their construction through

Zamolodchikov-like recurrence relations. We will recover and extend existing results on

scalar blocks in the conformal field theory literature, most notably those in [12, 16, 32],

from our results on poles and residues of Harish-Chandra functions, see section 3.3. As

an application of our discussion of the monodromy representation in section 3.4, we will

approach a recent technical observation by Caron-Huot that was instrumental for deriving

a Gribov-Froissart-like formula for conformal correlators in [56].

21See appendix B for some details of this limit.
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5.1 Poles and residues of blocks

The first application concerns the analysis of poles of conformal blocks and their

residues. Such relations play an important role for the explicit evaluation of blocks via

Zamolodchikov-type recursions in the numerical bootstrap. In this context they were first

discussed in [32],22 see also [35, 38] for subsequent development. The existing results on

poles and their residues were derived23 from representation theory of the conformal algebra.

Here we will re-derive the main results for scalar blocks directly from our understanding of

the pole structure of Harish-Chandra functions, see eqs. (3.22) and (3.23), but with an im-

portant improvement: as we stressed before, our series expansion and all its consequences

in sections 3.2, 3.3 are valid for arbitrary complex spin l. Hence we are able to classify

poles of scalar conformal blocks and compute their residues for any complex spin l.

Even though the equations (3.26), (3.27), (3.28), (3.29) were obtained for ordinary

Harish-Chandra functions, they also hold for twisted Harish-Chandra functions if we re-

place Φ by Φ̃, the parameter b by −b and the domain A+ by AL, because of the simple

relation (3.48) between the two sets of functions. Consequently, according to our general

analysis in subsection 3.3, for u in the fundamental domain that contains AL, complex

values of the multiplicities k and complex momenta λ ∈ C
2, the (normalized) twisted

Harish-Chandra function exp(〈−λ + ρ(k), u〉)Φ̃(λ; k;u) is analytic within the (complex)

fundamental domain of u variables, entire in k and meromorphic along the hyperplanes

defined by 〈λ, α∨〉 = s with s = 1, 2, . . . . Typically, the twisted Harish-Chandra functions

possess simple poles along these hyperplanes, except where two or more of them meet.

At such intersection points the pole orders add up.24 We will see some examples in our

discussion later on and also explain how to extract the residues in such cases.

Let us recall that for type BC2 we distinguished four families of poles corresponding

to the roots e1, e2, e1 + e2, e1 − e2 (see table 3). For compactness we denote the residues of

twisted Harish-Chandra function at these simple poles as

r1

(

a, b, ǫ;
s

2
, λ
)

=
1

2

4s

s!(s− 1)!

(

a+ 1−s
2 ,−b+ 1−s

2 , ǫ
2 + λ− s

2 , 1− ǫ
2 + λ− s

2

)

s
(

λ− s
2 , 1 + λ− s

2

)

s

,

r2

(

a, b, ǫ;λ,
s

2

)

=
1

2

4s

s!(s− 1)!

(

a+
1− s

2
,−b+

1− s

2

)

s

,

r+12 (a, b, ǫ;−λ+ s, λ) =
42s

s!(s− 1)!
(5.1)

×
(

1
2 + a+ λ− s, 12 − b+ λ− s, 12 + a− λ, 12 − b− λ, ǫ

2 , 1− ǫ
2

)

s

(−2λ, 1− 2λ)2s
,

r−12 (a, b, ǫ;λ+ s, λ) =
1

s!(s− 1)!

( ǫ

2
, 1− ǫ

2

)

s
.

22For scalar blocks, the residue formulas were first presented in [12, 16].
23The derivation of residues for scalar blocks presented in [32] (appendix B.1) is somewhat incomplete

for Type III poles, but the results are correct.
24Namely, for a subvariety where n such hyperplanes meet, multiplying our function by n linear forms

cancelling those poles, we get an isolated singularity which is removable by Hartogs’ theorem [96, 97].
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We will often refer to these four series of poles as e1, e2, e1 + e2 and e1 − e2 series,

corresponding to the simple roots in the BC2 root system they are associated with. In

our subsequent analysis of poles and residues of conformal blocks we will assume that the

dimension d ≥ 2 is integer in order to reduce the number of cases we have to investigate

separately. Let us stress, however, that this restriction is merely of pedagogical origin.

On the other hand, we will keep the spin l = λ1 − λ2 − ǫ/2 arbitrary to exploit at least

some of the potential our approach has compared to the existing representation theoretic

derivations of residue formulas. Of course, our analysis with fixed dimension d will also

give us access to integer values of l.25

In order to simplify notations, let us introduce a new symbol G for the following

function

G∆,l(λi; zi) = G∆,l(λi, zi)
(z1z2)

a

42a+ǫ/2+1−λ1−λ2
, (5.2)

that is obtained by stripping off a simple factor from the block G. According to our

formula (4.13) the new functions G are linear combinations of twisted Harish-Chandra

functions of the form

G∆,l(λi; zi) = cα1
(λ1, λ2)Φ̃ (λ1, λ2; k; z1, z2) + cα1

(λ2, λ1)Φ̃ (λ2, λ1; k; z1, z2) .

In going from twisted Harish-Chandra functions to these blocks, the pole patterns can

change since some singularities of the two summands may cancel each other. Indeed, we

now show that all residues related to the root α1 = e1 − e2 cancel in the block. Although

this follows from general theorems of [86], it is also easy to see using our expressions for

residues of Harish-Chandra functions. Let us first check this statement in case ǫ is not a

positive even integer. Using eq. (5.1) we then find

Res
λ12=s

G∆,l =
Γ (s, ǫ)

Γ (s+ ǫ/2, ǫ/2)
Res
λ12=s

Φ̃(λ1, λ2) + Res
λ12=s

Γ (λ12, ǫ)

Γ (−λ12 + ǫ/2, ǫ/2)
Φ̃(λ2, λ1)

=
Γ (ǫ)

Γ (ǫ/2)2
(1− ǫ/2)s

s!
(1 + (−1)) Φ̃(λ2, λ1) = 0. (5.3)

In the first line we set λ12 = λ1 − λ2 and we used the standard notation Γ(A,B) =

Γ(A)Γ(B). Indeed, the residues from the first and second term cancel each other. Now let

us see what happens for ǫ ∈ 2Z≥0.
26 If s < ǫ/2, our above calculation is still valid. As soon

as s becomes equal to ǫ/2 or exceeds this value, the residue of the first summand vanishes

due to eq. (5.1) while the residue of the second term vanishes because the ratio as one of

the two gamma functions in the second term becomes finite in the limit. The absence of

poles in our e1 − e2 series is of course consistent with [32] where three series of poles were

found to occur for a scalar block. More precisely, our first series of poles that is associated

with the root e1 corresponds to Type II in [32] while the series that come with the roots

e2 and e1 + e2 are Type I and III, respectively.

25As we comment in appendix B, a consistent (usual) rule for obtaining special cases as limits of generic ex-

pressions is to first take limits for multiplicity parameters such as the dimension or ǫ = d−2 and then for com-

binations of the momenta λi such as the spin l. Performing the limits in opposite order gives different results.
26For ǫ = 0 there is a singularity in the gamma factors which is obviously removable and just gives the

factor of 1/2.
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In all three series, the poles are located along a discrete family of 1-dimensional lines

of real momenta λi ∈ R. In the first family, λ1 = s/2 is constant and λ2 = λ is free while

in the second family we have λ2 = s/2 and λ1 = λ is free. The third family that comes

with the root e1 + e2 is described by the equations λ1 + λ2 = s. So, obviously, we can

have double and even triple intersections of these lines. This motivates to distinguish the

following five different cases, see also the discussion below,

A) ǫ ∈ 2Z≥0 and l ∈ Z≥0

B) ǫ ∈ 2Z≥0 + 1 and l ∈ Z≥0 + 1/2

C) ǫ ∈ 2Z≥0 and l ∈ Z≥0 + 1/2

D) ǫ ∈ 2Z≥0 + 1 and l ∈ Z≥0

E) ǫ ∈ Z≥0 and l /∈ Z≥0/2.

Only two of these cases, namely A and D, involve integer spins and so for these two families

our results match the outcome of the analysis in [32]. Case E we will refer to as the case

of ‘generic momenta’. It will turn out that cases A and C give rise to double poles while

even triple poles appear in case B. Cases D and E, on the other hand possess simple poles

only and hence they are the easiest to analyse.

Before we now discuss the poles coming from the Harish-Chandra functions, we want

to make one important observation concerning the first e1 series of poles. From the explicit

formula for the residue we listed above one can infer that, when the spin l is integer, i.e. in

cases A and D, the residue vanishes for all but the first l values of s = 1, . . . , l. Hence in

this case we only have a finite number of singular lines of type e1. For the values l assumes

in case B and C on the other hand, there is an infinite family of e1 poles with non-vanishing

residues. We have depicted the singular lines (light blue) for the cases A-D in figure 5 in

order to illustrate the following discussion of these cases.

A) As we have just discussed, case A involves a finite number of e1 singularities. After we

fix l to be a positive integer (see red line in figure 5), we obtain a finite set of simple

poles at ∆ = l + ǫ, l + ǫ − 1, . . . , ǫ + 1 from the e1 series, a finite set of simple poles

at ∆ = ǫ/2, ǫ/2− 1, . . . 1− l from the e1 + e2 series and finally, an infinite number of

double poles with ∆ = −l,−l−1, . . . from the collision of the e2 and the e1+e2 series.

B) This case is similar to the previous, except that now we have infinitely many e1
singularities. This implies that even triple pole collisions can occur. After we fix l we

obtain (see upper right image in figure 5) single poles for ∆ = l+ǫ, l+ǫ−1, . . . , ǫ/2+1,

(from e1 series) double poles for ∆ = ǫ/2, ǫ/2− 1, . . . , 1− l (from the intersection of

e1 and e1 + e2 series) and an infinite number of triple poles for ∆ = −l,−l − 1, . . .

from the triple intersections of all three singularities.

C) As in the previous case there are infinitely many e1 singularities, but now the choice

of d and l implies that we do not encounter triple poles. In fact, the red line in the

lower left image of figure 5 only cuts through intersections of the e1 and the e2 series.
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Figure 5. Illustration of the poles positions in case A-D. The three sets of blue lines depict the

position of singularities for the three different series with e1 singularities along the vertical lines,

e2 along horizontal and e1 + e2 along diagonal lines. Note that in cases A and D there is a finite

number of e1 singularities. The dotted red lines depict the choice of spin l, i.e. they run along the

curves λ2 = λ1 − l − ǫ/2. For a fixed choice of l we see those as the singularities that lie on the

red lines. In several cases these involve collisions of two or even three poles. The corresponding

conformal weight at which the singularity occurs is determined as ∆ = d/2− λ1 − λ2.

Consequently, after fixing l we see single poles for ∆ = l + ǫ, l + ǫ− 1, . . . , 1− l and

∆ = ǫ/2, ǫ/2− 1, . . . as well as double poles for ∆ = −l,−l − 1, . . . .

D, E) All three families of poles are simple.

This completes our analysis of poles of conformal blocks in complex momentum space. Let

us note that they all appear for real values of λ1, λ2 and outside the cone that is allowed

by unitarity bounds.

In our analysis of residues we will first state the complete results for the generic mo-

menta, i.e. case E. For the three different families of poles, the residues are given by

Res
λ1=s/2

G∆,l(z,z̄)=r1

(

a,b,ǫ;
s

2
,λ2

)

(

− s
2−λ2

)

s
(

ǫ−s
2 −λ2

)

s

[

cα1

(

−s

2
,λ2

)

Φ̃
(

−s

2
,λ2

)

(5.4)

+cα1

(

λ2,−
s

2

)

Φ̃
(

λ2,−
s

2

) sin
(

π
(

s
2−λ2

))

sin
(

π
(

s−ǫ
2 +λ2

))

sin
(

π
(

s
2+λ2

))

sin
(

π
(

s+ǫ
2 −λ2

))

]

,
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Res
λ2=s/2

G∆,l(z,z̄)=r2

(

a,b,ǫ;λ1,
s

2

)

(

ǫ−s
2 +λ1

)

s
(

− s
2+λ1

)

s

[

cα1

(

λ1,−
s

2

)

Φ̃
(

λ1,−
s

2

)

(5.5)

+cα1

(

−s

2
,λ1

)

Φ̃
(

−s

2
,λ1

) sin
(

π
(

s
2+λ1

))

sin
(

π
(

s+ǫ
2 −λ1

))

sin
(

π
(

s
2−λ1

))

sin
(

π
(

s−ǫ
2 +λ1

))

]

,

Res
λ1=−λ+s,λ2=λ

G∆,l(z,z̄)=r+12(a,b,ǫ;−λ+s,λ)

[

cα1
(−λ,λ−s)Φ̃(−λ,λ−s) (5.6)

+cα1
(λ−s,−λ)Φ̃(λ−s,−λ)

]

=r+12Gd/2+s,l(z,z̄).

In the last family, the residue of the block at (∆, l)∗ = (d/2 − s, l) turns out to

be proportional to the block with permuted and reflected momenta, i.e. with (∆, l) =

(d/2+ s, l). For the first two families, however, the residues of blocks are not proportional

to a block anymore, unless the spin l becomes integer in which case

Res
λ1=s/2

G∆,l(z, z̄) ∼ Gd−1+l,l−s(z, z̄) , Res
λ2=s/2

G∆,l(z, z̄) ∼ G1−l,l+s(z, z̄) .

These relations for conformal blocks with integer l mimic those of the Harish-Chandra

functions, see table 2. Within our list of poles (cases A-D), there are two cases in which

the residues of the first two families of poles are proportional to a single block. Actually,

this happens in case D since the coefficient in front of the second Harish-Chandra function

vanishes, see our discussion in the previous section, so that the block is actually given by a

single Harish-Chandra function. In addition, it can also happen in case A for poles of the e1
series and for those poles of e1+e2 series which do not collide to the ones from e2 series. On

the other hand, double poles arising from the colliding series of e2 and e1+ e2 singularities

need a special treatment. Thus, once again, we are in agreement to the conformal group

analysis of [32].

When double or triple pole collision appear in the cases A-C, the residues, of course,

will look differently from the expressions we gave above for the generic case. In order to

evaluate these such residues for an n-th order pole at some point ∆ = ∆∗ we use the

standard prescription

Res
∆=∆∗

G∆,l = lim
∆→∆∗

∂n

∂∆n

[

(∆−∆∗)n G∆,l

]

.

in our explicit expansion (A.1) (or its u-counterpart). Computing the corresponding

residues for case A-C is in principle straightforward now, but we refrain from giving explicit

expressions here. Our analysis provides a new view on the ‘irregularities’ that were noticed

in [32, 35], when poles of higher orders appear or residues are not proportional to blocks.

From our ‘analytically continued’ point of view, such problems are resolved into two sepa-

rate issues. First, the blocks are linear combinations of twisted Harish-Chandra functions

which for generic parameters leads to a linear combination of twisted Harish-Chandra func-

tions rather than a simgle block. Furthermore, there is an issue of non-generic momenta

λ for which care should be taken in defining Harish-Chandra functions as described in

sections 3.2, 3.3 and appendix B.
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Before we conclude this subsection, we want to discuss in a bit more detail in which re-

spect our analysis advances the one in [32], where the authors analysed conformal blocks as

sums over states in certain parabolic Verma modules of the conformal group. While Pene-

dones et al. presented a nice general pattern of pole counting and calculating of residues of

conformal blocks labeled by representations of the conformal group, we instead focused on

the case of scalar blocks while applying the finer optics of Calogero-Sutherland scattering

theory. Our analysis treats blocks as meromorphic functions in the labels of the interme-

diate field, i.e. the momenta (λ1, λ2) for scalar blocks, so that we can really explore a full

(complexified) parameter space in momenta λ.27 This also gives some new singularities,

in particular the triple poles for odd dimension d and half-integer l. Blocks with non-

integer spin l have recently started to play an important role e.g. in the Froissart-Gribov

type formula of [56], see also the next subsection. What we have seen here is just a first

illustration of a recurrent theme in Calogero-Sutherland theory. In fact, the integrable

DAHA [52] setting whose relation to conformal blocks we are developing is tailored to ex-

plorations of full complex parameter spaces. We will dwell on algebraic structures and their

implications in a forthcoming paper [55]. At the same time, it seems to us that analytical

continuation in dimension d and representation labels would be difficult to achieve with

the representation theoretic methods of [32], or at least requires to implement significant

new technology such as the interpolating Karoubian categories for representation theories

of conformal groups [98] to put it on a firm ground.

5.2 On the derivation of a Gribov-Froissart formula for CFT

In a recent paper [56], Caron-Huot derived a Lorentzian inversion formula that allows to

obtain the operator product expansion coefficients from the discontinuity of the four-point

correlation function G(z, z̄), see also [67] for an alternative derivation and [71] for recent

progress in a setup of conformal defects. The formula actually extracts a function that is

analytic in the spin l. The mathematical counterpart/origin of formulas of Gribov-Froissart

type goes under the name of Ramanujan’s master theorem, see [99] (p.297) and [100] for a

more recent review. Related inversion formulas for BCN Calogero-Sutherland Hamiltonians

have been studied in the mathematical literature [101]. To explain the basic setup let us

stress that the (twisted) Heckman-Opdam hypergeometric functions on the usual domain

A+ or the Lorentzian domain AL provide an orthonormal basis of wave functions that in

many respects is similar to the basis of exponentials exp(iku) for functions on the real

line. Just as the latter give rise to the usual Fourier transform, Heckman-Opdam functions

define an interesting integral transform that has been investigated e.g. in [76, 84, 87, 102].

For the special case of BC1, this transform, conventionally known as Jacobi (function)

transform [80], has also been considered in the conformal bootstrap literature where it was

dubbed “α space transform”, see [64, 65].

Questions that are natural to study for Fourier transforms are also natural to study

for the integral transform that is obtained from (twisted) Heckman-Opdam functions. In

27The restrictions we imposed, namely that the dimension d is integer and that ℜl is positive, are both

easy to lift.
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particular, one may look at how the behaviour of a function is related to the asymptotic

behavior of its transform in the parameters l and ∆ for various choices of function

spaces [103] on the Weyl chamber or the Lorentzian domain. A large body of such results

in mathematics go under the name Tauberian theorems [104]. In the physics literature,

similar issues were studied in [70, 105] by application of classical (Hardy-Littlewood and

Wiener) Tauberian theorems for the Fourier transform, see also [57, 58, 106] for related

physical arguments. In conformal field theory, these provide bounds on the asymptotic

behaviour of the spectral density that arise from the short distance behaviour of the

correlator. Wiener’s Tauberian theorem tailored28 to the BC1 case can be found in [107],

while Tauberian theorems for special cases of BCN Heckman-Opdam functions coming

from representation theory appear in [108].29

A related line of research concerns Bochner-type positivity statements. In the case

of ordinary Fourier(-Stiltjes) transform, the latter states that a function on a real line is

a transform of a positive measure iff it is continuous and positive-definite [109]. Gener-

alizations to the context of Heckman-Opdam theory are formulated in terms of positive

convolution structures [110]. They were addressed in [111, 112] for BC1, in [113] for BC2

and in [114] for BCN , but with very specific choices of the multiplicities k. This mathemat-

ical framework provides the natural context for Caron-Huot’s Froissart-Gribov formula. In

fact, the Lorentzian inversion formula of [56] extracts positive operator product coefficients

c(∆, l) analytic in spin through an integral transform of the discontinuity of the correla-

tion function G(z, z̄). Instead of the usual Heckman-Opdam hypergeometric function F ,

Caron-Huot obtains an integral transform defined by the block

E(z) = Gl+d−1,∆+1−d , (5.7)

i.e. E(z) is built as in eq. (4.13), but with (λ1, λ2) replaced by (−λ1, λ2). Similar inte-

gral transforms that are obtained from Θ-hypergeometric functions in the terminology of

section 3.4 have also been studied in the mathematical literature [115].

In order to derive the conformal Froissart-Gribov formula, Caron-Huot departs from

the Euclidean inversion formula that goes back to the early harmonic analysis on the con-

formal group [7], see also [94], and performs an analytic continuation to Lorentzian signa-

ture. The Euclidean inversion formula involves a transform with the wave functions FE =

FE
∆,l, l ∈ Z which we discussed at the end of section 3.4. Following [94], Caron-Huot denotes

this function by the letter F , a nice coincidence with our interpretation of it as a Euclidean

hypergeometric function. In order to pass to Lorentzian signature, one needs a good under-

standing of the continuation of the functions F = FE . In in context of Heckman-Opdam

28A usual Wiener type Tauberian theorem states that the translations of an integrable function span

a dense subspace iff its Fourier transform is everywhere non-zero. For Heckman-Opdam transforms the

translation is replaced by a generalized translation that is determined by the positive convolution structure.
29In particular, for the BC1 case, it would be interesting to see whether the Jacobi transform Tauberian

theorem of [107] can improve the conformal field theory analysis of [70] in order to constrain the sublead-

ing behaviour of spectral density and, perhaps, to show that the spectrum of the exchanged operators

approaches the one of generalized free theory. It would also be nice to see if the BC2 case can provide a

rigorous justification for results in [57, 58] on the lightcone limit, as approached in [70] through the usual

Wiener Tauberian theorem.
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theory this is provided my the monodromy matrices Mi. Let us note that M1 and M̃2

coincide with the inverse of the monodromies which are encoded in eqs. (A.23) and (A.22)

of [56]. From our discussion in section 3.4 we know that they provide an eight-dimensional

representation of an affine braid group that satisfies Hecke relations (3.45). This insight

provides significant algebraic control of the monodromy properties of Harish-Chandra (or

pure, in the terminology of [56]) functions that can be exploited without ever using the

explicit representation matrices. In order to demonstrate how constraining these algebraic

properties are, we want to rephrase the main derivation of [56] (section 3.3) in our context.

Let us first review the general setup. It will be convenient to introduce the following

functions

F(d/2−λ1−λ2,λ1−λ2−ǫ/2)(z, z̄) = 24a+d−2λ1−2λ2(zz̄)−aFE
λ1,λ2

(z, z̄) , (5.8)

g(d/2−λ1−λ2,λ1−λ2−ǫ/2)(z, z̄) = 24a+d−2λ1−2λ2(zz̄)−aΦ̃(λ1, λ2, k; z, z̄) . (5.9)

that agree with the corresponding functions in [56] apart from the normalization. Caron-

Huot studies the function F in the complex w-plane. In our u−space, the latter is given by

an infinite strip that is perpendicular to the space AE
2 in figure 3 and intersects it along the

line u1 = lnσ+ iθ where θ ∈ [0, 2π[, see the grey strip in figure 6. We can parametrize this

strip by a complex coordinate v ≡ v + 2πi such that v 7→ (u1 = v + lnσ, u2 = −v + lnσ).

The parameter v is related to the variable w used by Caron-Huot through the exponential

map, i.e. w = exp(v). The region in which ℜv → −∞ is mapped to w ∼ 0 while we can

reach w → ∞ by sending ℜv to positive infinity.

The strip we have just described intersects the walls in six different places. In fact, as

illustrated in figure 6, thee are two intersections with the wall ω1 in v = 0, iπ. Intersections

with the walls ω2 and ω0, on the other hand, are located at v = ± lnσ and v = ± lnσ+ iπ,

respectively. After passing to the w-plane, the intersections with the wall ω0 become the

end-points w = −σ,−1/σ of the t-channel cuts described by Caron-Huot. The intersections

with ω2 map to the end-points of the u-channel cuts in the w-plane. Caron-Huot now wants

to continue the function F to w = 0, i.e. v = −∞. Along the way, one has to pass by the

intersection with the walls ω1 and ω2. While F is regular at the wall ω1, i.e. M1F = M1,

it picks up some monodromy M2 as it passes by ω2. So, we can take the limit v = −∞ by

looking at the function M2F . According to our general characterization of F , the function

M2F trivializes the monodromy M1, i.e.

M1M2F = M2F . (5.10)

Let us restrict our discussion to generic dimension d, i.e. we assume that ǫ/2 is not integer.

As we explained at the end of the previous section, for such generic d the function F is a

linear combination of two Harish-Chandra functions,

F (z, z̄) = 24a+d−2λ1−2λ2(zz̄)−a
(

Φ̃(λ1, λ2, k; z1, z2) + kΦ̃(−λ2,−λ1, k; z1, z2)
)

.

When we act with M2, two more Harish-Chandra functions appear, namely Φ̃(λ1,−λ2) and

Φ̃(−λ2, λ1). Because of the property (5.10) the corresponding functions g combine into a
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Figure 6. Illustration of the upper w-half plane used by Caron-Huot inside the domain of Calogero-

Sutherland models.

single block G1−l,1−∆. This new block that appeared while we continued F through the

wall ω2 to the region of small w does not vanish in the limit w ∼ 0 and thereby it prevents

further evaluation of the integral in [56].

The idea of Caron-Huot is to look for an appropriate combination of Harish-Chandra

functions that vanish at w = ∞ and can cancel the unwanted divergent terms at w = 0. It is

easy to see that there are two Harish-Chandra functions that vanish at w = ∞, namely the

functions Φ̃(λ2,−λ1) and Φ̃(−λ1, λ2). From the corresponding functions g(l+d−1,1−∆) and

g(l+d−1,∆+1−d), see table 1, we can construct the block E(z) = Gl+d−1,∆+1−d we introduced

before in eq. (5.7). By construction, the function E trivializes the monodromy M1, i.e.

M1E(z) = E(z) .

In order to evaluate its behavior for small w, one has to continue E from large absolute

values of w to very small ones. Along the way, we pass the walls ω2, ω1 and ω2 again.

Cancellation of the singular terms then means that there exist constants α and βi such that

M2F + α(M−1
1 M2M1)M1M2E = β1g(∆,2−l−d) + β2g(d−∆,2−l−d) .

This is a precise formulation of Caron Huot’s condition (3.13) in [56] in the language we

have set up. In order to illustrate how to derive such statements using algebra rather

than the precise matrix elements the monodromy matrices, we want to prove, restricting

to generic ǫ/2 6∈ Z, a closely related statement, namely that there exist constants α and

β such that, the following equation holds

M2F + αM2M1M2E = βE . (5.11)
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In order to derive this claim we shall consider eq. (5.11) as a formula that allows us to

construct the functions F from E as

F = βM−1
2 E − αM1M2E . (5.12)

Through a short computation using braid and Hecke relations of the monodromy matrices,

see section 3.4, one may show that the function

F ′ := M1M2E + γ1γ2E

which is proportional to the right hand side of the previous equation if −β/α = γ1γ2,

possesses the following properties

M1F
′ = F ′ and M−1

2 M1M2F
′ = F ′ .

On the other hand it is easy to see that F ′ contains only six of the eight Harish-Chandra

functions since we apply at most two monodromy matrices to E. Because F ′ is an

eigenfunction of M1 with unit eigenvalue we conclude that

F ′ = α1g(∆,l) + α2g(d−∆,l) + β′E .

In addition F ′ was shown to be an eigenfunction of M−1
2 M1M2 with unit eigenvalue. This

fact imposes strong constraints on the coefficients αi and β′. In fact, as in our discussion

of FE at the end of section 3.4 we can conclude that α2/α1 is given by the expression after

eq. (3.50) and β′ = 0. Hence, we have established our formula eq. (5.12) and thereby the

equation (5.11) we set out to prove. In the argument we have only used braid and Hecke

relations of the monodromy matrices along with the fact that the Harish-Chandra func-

tions g(∆,l) and g(∆,2−l−d) are eigenfunctions of the monodromy M1 with unit eigenvalue,

a very particular feature of representations with integer spin l and generic ǫ/2 6∈ Z.

6 Conclusions

In this work we began to elaborate on the very fruitful relation between conformal blocks

and wave functions of Calogero-Sutherland models that was uncovered in [54]. In our

review of Heckman-Opdam theory we focused on features that may be understood from the

quantum mechanical treatment of Calogero-Sutherland scattering states. More advanced

properties of the Calogero-Sutherland model that relate to its (super-)integrability were

not discussed. These will be briefly outlined below and then presented thoroughly in a

forthcoming paper [55].

Even without tools from integrability we were able to recover essentially all important

results about scalar 4-point blocks. The basic objects in Heckman-Opdam theory are the

Harish-Chandra functions. Special cases of these functions also appeared in the recent

work [56] where they were called pure functions. Here we obtained a new series expansion

for these functions that is valid for non-integer spin l and we derived a number of important

properties from it. In particular, we located all poles in λ-space, which is the space of
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conformal weights and spins, and we computed their residues. In addition, we reviewed

the classical results of Heckman and Opdam on monodromy properties of Harish-Chandra

functions. Some of the monodromy matrices were also computed independently for N = 2

in [56]. Here, we learned in addition that they give rise to finite dimensional representation

of an affine braid group of reflection type that factors through the corresponding Hecke

algebra. This algebraic characterization of the monodromy properties of Harish-Chandra

(or pure) functions led to a simple derivation of some central observations in [56]. Once

we understood how conformal blocks are built out of Harish-Chandra functions, we were

also able to rederive many important results on conformal blocks, see e.g. [25, 26, 32], from

our new series expansion and the residue formulas for Harish-Chandra functions. In our

discussion we focused on some of the most useful properties of blocks. There exist many

other consequences of Heckman-Opdam theory that lead to additional insights, a few of

which do not seem to be known in the conformal field theory literature.

We expect that the analytical toolkit we outlined in this paper will prove useful for

various approaches to the analytical bootstrap, see in particular [56–71, 116–122] and

references therein for some recent work. In particular, our explicit understanding of the

properties of conformal blocks should provide better control over large spin expansions,

sum rules for operator product coefficients and multi-twist operators.

What makes the connection with Calogero-Sutherland models even more useful is that

the techniques we have described actually apply much beyond the theory of scalar 4-point

blocks. The most immediate extension concerns the study of defect blocks. In fact, scalar

4-point blocks are a very special case of a larger set of conformal blocks that can be used

to expand the correlation function of two conformal defects of dimension p, q < d. Scalar

4-point blocks correspond to p = q = 0, i.e. a 0-dimensional defect should be considered as

a pair of points. Correlations functions of two local fields in the presence of a p-dimensional

defect have received some attention for p = d−1 in [95] and more generally in [123]. These

involve one and two cross ratios, respectively, and the corresponding blocks turn out to

be identical to the ones we have studied here for N = 1 and N = 2. More recently,

Gadde also considered setups with p 6= 0 6= q which can involve a larger number N > 2 of

cross ratios [73]. As we will show in a forthcoming paper, the conformal blocks for such

configurations of two defects can all be built from the Harish-Chandra functions of BCN

Calogero-Sutherland models. Hence, many of the results and techniques we have described

in section 3 and the appendices directly apply to such defect blocks.

Another direction concerns applications to spinning blocks. In [124] we have shown

that the Casimir equations for spinning blocks in dimension d ≤ 3 also take the form of

a Calogero-Sutherland eigenvalue problem, though with a matrix valued potential. This

observation can be extended to arbitrary dimensions, see [125]. The theory of scattering

states for such matrix valued potentials is not really developed, at least for the case of BCN

root systems, but the general strategy we reviewed before should still apply. In the case

of AN root system, a restricted set of matrix valued potentials is well understood [52] and

some first steps were taken for the most generic ones in [126]. It would be very interesting

to extend the results we have described above to matrix Calogero-Sutherland models for

BC 2 roots systems, i.e. to study their symmetries, the fundamental domain, monodromy

representations, series expansions etc.
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Further extensions to superblocks are also feasible. As long as sufficiently many of the

external fields are in short (BPS) multiplets, the associated blocks are the same as for the

bosonic conformal symmetry. In general, however, the theory of superblocks with external

fields in long multiplets is much more involved. On the other hand, as was demonstrated

in [127], crossing symmetry involving long multiplets is significantly more constraining

when analysed in terms of superblocks rather than their bosonic decomposition. Hence,

it seems worthwhile to develop a systematic theory of superblocks. We believe that the

corresponding Casimir equations can still be rewritten as eigenvalue equations for a su-

persymmetric version of Calogero-Sutherland models so that much of the above could be

extended to superblocks. This remains an interesting direction for future research.

Let us stress however, that even in the case of scalar 4-point functions we did not even

come close to exploring all the existing features of the model. In fact, the most remarkable

property of the Calogero-Sutherland model is its (super-)integrability. It furnishes a wealth

of additional and very powerful algebraic structure. So far, the only algebra we have seen

above was the Hecke algebra that appeared in the context of the monodromy representation.

It acts in the 2NN !-dimensional spaces of Harish-Chandra functions Φ(wλ; z), w ∈ WN ,

i.e. in finite dimensional subspaces of functions which all possess the same eigenvalue of

the Hamiltonian. This is just the tip of a true iceberg of algebraic structure.

In order to describe the contours of the remaining parts and thereby outline the con-

tent of our forthcoming paper [55], it is useful to consider the example of the very sim-

plest quantum mechanical system, i.e. of a system of N freely moving particles on the

real line. The standard Hamiltonian Hx
free = −∑i ∂

2
i of such a system is certainly in-

tegrable. Actually, Hx
free can be built from a set of N commuting first order operators

Y free
i = ∂xi = ∂i, i = 1, . . . , N, as Hx

free = −∑i Y2
i . Although Calogero-Sutherland par-

ticles are not free, they enjoy very similar properties. In fact, it is well known that the

Calogero-Sutherland Hamiltonian for BCN roots systems can be constructed out of a set of

N commuting first order operators YCS
i that are known as Dunkl operators. Of course, these

Dunkl operators have to account for the non-trivial potentials in the Calogero-Sutherland

model and hence possess a non-trivial dependence of the coordinates. Eigenfunctions of the

Dunkl operators belong to a slighly larger class of non-symmetric Harish-Chandra func-

tions. These are similar to the Harish-Chandra functions we discussed above except that

they are no longer invariant under the action of the Weyl group WN on coordinates xi.

Within the space of such non-symmetric Harish-Chandra functions, the Dunkl operators

give rise to a systems of Knizhnik-Zamolodchikov-like first order differential equations [128].

Once these are solved, symmetric Harish-Chandra functions and in particular the conformal

blocks can be obtained through an appropriate projection. The space of non-symmetric

Harish-Chandra functions is acted upon by an infinite dimensional algebraic structure that

is generated by elements of the Weyl group, Dunkl operators and multiplication with coor-

dinates: the degenerate double affine Hecke algebra (DAHA) or trigonometric Cherednik al-

gebra [52]. In addition to the monodromy algebra we have seen above, it contains generators

that do not commute with the Hamiltonian and hence can relate eigenfunctions with differ-

ent eigenvalues. In this sense, the degenerate DAHA is a spectrum generating symmetry.
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This is not the end of the story. In order to prepare for its next chapter, we return to

example of N freely moving particles. The eigenfunctions ψλ(x) in such a system possess a

remarkable property: namely, their dependence on the eigenvalues λi is the same as for the

variables xi. This implies that ψλ(x) are also eigenfunctions of a dual second order operator

Hy
free = −∑i ∂

2
λi
. We have put a superscript y in this Hamiltonian since it controls depen-

dence of the eigenfunctions ψ on the eigenvalues λ of the first order operators Yi. The dual

Hamiltonian Hy
free has precisely the same form as the original one. In this sense, the theory

of a freely moving particles may be considered as self-dual. Some of these facts remain

true for our Calogero-Sutherland model. As for free particles, the dependence of Calogero-

Sutherland wave functions on the eigenvalued λ is controlled by a dual Hamiltonian Hy.

For the hyperbolic Calogero-Sutherland model, the latter is a second order difference

operator that describes the so-called rational Ruijsenaars-Schneider model [129–131]. This

dual Hamiltonian Hy
rRS is also integrable, i.e. there is a set of first order difference equations

that determines the dependence of eigenfunctions on the eigenvalues λi. In the case of the

free particle we saw that the dual Hamiltonian Hy had the same form as Hx. This is in

sharp contrast to the case of the hyperbolic Calogero-Sutherland system where the dual

theory is controlled by difference rather than differential equations. It turns out, however,

that the setup can be q-deformed such that the self-duality is restored. In order to do so,

the rational Ruijsenaars-Schneider model is deformed into the trigonometric one. After

this deformation, the dependence of eigenfunctions on both sets of variables is controlled by

the same type of difference equations. Upon deformation the degenerate DAHA we briefly

mentioned at the end of the previous paragraph becomes a full fledged DAHA. All this will

be explained in detail in our forthcoming paper [55] along with a number of applications.
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A z- and x-expansions for BC2 Harish-Chandra function

As far as we know, the formulas for Harish-Chandra functions in this section are new. Let

us recall here that conformal blocks are obtained via formulas (4.13) from twisted Harish-

Chandra functions, which are related to the Harish-Chandra function by a simple phase

shift as given in our eq. (3.48). According to [86], the resulting expansion is convergent for

generic λ on the entire shifted fundamental domain.

We start from the formula (3.20) in the main text. For the twisted Harish-Chandra

function Φ̃ it takes the form

Φ̃(λ1, λ2; ki; z1, z2) =
1

42a+1+ǫ/2−Λ12

∞
∑

n,m=0

(

1/2 + a− λ1, 1/2 + b− λ1,
ǫ
2 − λ12

)

n

(1− 2λ1, 1− λ12)n

× (1/2 + a− λ2, 1/2 + b− λ2, ǫ/2 + λ12)m
(1− 2λ2, 1 + λ12)m

(1− ǫ/2− λ12)n−m

(−λ12)n−m

× 4F3

( −n,−m, 1− ǫ/2, 1− ǫ/2− Λ12

1− ǫ/2 + λ12 − n, 1− ǫ/2− λ12 −m, 1− Λ12
; 1

)

(A.1)

× 1

n!m!
z

1+ǫ
2

+a−λ1+n

1 z
1

2
+a−λ2+m

2 2F1

(

ǫ/2− λ12 −m+ n, ǫ/2

1− λ12 −m+ n
;
z1
z2

)

.

Here an in the following we use the shorthand λ12 = λ1 − λ2 and Λ12 = λ1 + λ2. Before

we plunge into details, let us first outline its derivation.

The key is an observation from [54] where we directly related scalar conformal blocks

to q → 1− degeneration of virtual Koornwinder polynomials [132]. Due to the fast (and

still on-going) progress in the end of 1990’s, combinatorial aspects of Koornwinder polyno-

mials are quite well-studied, in particular the so-called binomial expansion of Koornwinder

polynomials that were obtained in [133]. Now we will factor this connection through the

connection to Harish-Chandra functions of specialized parameters (for BC2, it means look-

ing at Harish-Chandra functions with l = λ1 − λ2 − ǫ/2 integer) and then will analytically

continue in these parameters. To start with, the (non-symmetric q−) Harish-Chandra func-

tions are related to Macdonald-Koornwinder polynomials in [134]. One may write down

a binomial formula for virtual Koornwinder polynomials [132] and then use combinatorial

expansions for the interpolating polynomials it contains (combinatorial expansions of BCN

interpolation Macdonald polynomials can be found in [133] and the degeneration to BCN

interpolation Jack polynomials in [135]), see [136] for a nice review. Next one has to per-

form an analytical continuation of the resulting formula to non-integer differences between

the row lengths of Young diagrams. By analysing the asymptotics, one may note that

the resulting series expansion is a linear combination of N ! asymptotically free solutions

(q-Harish-Chandra functions), corresponding to a SN ⊂ WN subgroup of the Weyl group.

It is then possible to single out a solution with the correct asymptotics.

This way of obtaining explicit series expansions in z, which solves a rather compli-

cated recurrence relation (3.18) for expansion coefficients (after one passes to x-variable),

seems to work, provided one has sufficient control of the analytical continuation of
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the constituents of the binomial expansion, for any BCN Harish-Chandra function. A

degeneration q → 1− is possible at any step, depending rather on convenience (purely

formally, one can take the limit at any point of the derivation, but sometimes this should

be justified with more care). Regardless of that, the complexity of explicit computation

increases very fast with N , and we are not aware of any closed form expansion of a generic

BCN Harish-Chandra function valid for any N .

Let us look at N = 2 case in more detail. The summand of a generalized bino-

mial formula for virtual Koornwinder polynomials (see [132], formula (7.32)) contains a

generalized binomial coefficient (which is proportional to a BC2 interpolation Macdonald

polynomial), a (virtual) BC2-interpolation Macdonald polynomial and some remaining ra-

tios of q-Pochhammer symbols. To avoid heavy expressions, we will send q → 1− now. This

degeneration has different consequences for the two interpolation polynomials: the one en-

tering the generalized binomial coefficient will go to a BC2 interpolation Jack polynomial,

whereas the virtual BC2-interpolation polynomial will go to a virtual Jack polynomial (’vir-

tual’ — here just means having a monomial of non-integer powers in front of Gegenbauer

polynomial) [135].

Using explicit expressions from [132] and a combinatorial expansion for the BC2-

interpolation Jack polynomial from [133] combined with [135], one can see that the gener-

alized binomial coefficient (undeformed) is proportional to

(

ǫ
2 − λ12

)

n−m

(1− λ12)n−m
4F3

(

ǫ/2− λ12 −m+ n, 2λ2 −m, ǫ/2,−m

ǫ/2− λ12 −m, ǫ/2 + Λ12 −m, 1− λ12 −m+ n
; 1

)

=

(

ǫ
2 − λ12

)

n

(1− λ12)n

(

ǫ
2 + λ12, 1− Λ12

)

m
(

1− ǫ
2 ± λ1 − λ2

)

m

× 4F3

( −n,−m, 1− ǫ/2, 1− ǫ/2− Λ12

1− ǫ/2 + λ12 − n, 1− ǫ/2− λ12 −m, 1− Λ12
; 1

)

which we just related to a balanced 4F3 appearing in eq. (3.20) via a Whipple transforma-

tion [79], combined with inverting of summation index. Clearly, the analytical continuation

in l = λ1−λ2−ǫ/2 of the 4F3 function on the right-hand side will not change anything (the

series will stay terminating), unlike the continuation of the one on the left (there the series is

terminating for integer l and becomes non-terminating for non-integer, so another 4F3 term

should appear, see [82] for a full account on the symmetries of 4F3 hypergeometric function).

The ‘virtual’ Jack polynomial, which as we said for N = 2, is just a product of a

monomial and a Gegenbauer polynomial, upon analytical continuation in l also becomes a

non-terminating series

J(λ1, λ2; ǫ; z1, z2) = (z1z2)
ǫ/2+1−Λ12+n+m

2 (A.2)

× 2F1

( ǫ
2 − λ12 −m+ n, ǫ

2 + λ12 − n+m
ǫ+1
2

;
1− z1+z2

2
√
z1z2

2

)

.
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By using a particular quadratic transformation [79] (chapter 3.1) for 2F1, this can also be

written as

cα1
(λ1, λ2; k)

(λ12)m−n
(

λ12 +
ǫ
2

)

m−n

(z1z2)
n+ 1+ǫ

2
−λ1

(z1 + z2)
n−m+ ǫ

2
−λ12

× 2F1

( ǫ/2−λ12+n−m
2 , 1+ǫ/2−λ12+n−m

2

1− λ12 + n−m
;

4z1z2

(z1 + z2)
2

)

+ cα1
(λ2, λ1; k)

(−λ12)n−m
(

ǫ
2 − λ12

)

n−m

(z1z2)
m+ 1+ǫ

2
−λ2

(z1 + z2)
m−n+ ǫ

2
+λ12

(A.3)

× 2F1

( ǫ/2+λ12+m−n
2 , 1+ǫ/2+λ12+m−n

2

1 + λ12 +m− n
;

4z1z2

(z1 + z2)
2

)

.

Let us dress this back with the above binomial coefficient (and other Pochhammers from

the generalized binomial formula that we didn’t display), take the first summand and

strip off the cα1
prefactor. This then gives us the (twisted)30 Harish-Chandra series

decomposition as

Φ̃(λ1,λ2;ki;z1,z2)=
1

42a+1+ǫ/2−Λ12

∞
∑

n,m=0

(

1/2+a−λ1,1/2+b−λ1,
ǫ
2−λ12

)

n

(1−2λ1,1−λ12)n

× (1/2+a−λ2,1/2+b−λ2,ǫ/2+λ12)m
(1−2λ2,1+λ12)m

(1−ǫ/2−λ12)n−m

(−λ12)n−m

×4F3

( −n,−m,1−ǫ/2,1−ǫ/2−Λ12

1−ǫ/2+λ12−n,1−ǫ/2−λ12−m,1−Λ12
;1

)

× 1

n!m!

(z1z2)
1+ǫ
2

+a−λ1+n

(z1+z2)
ǫ
2
−λ12+n−m 2F1

( ǫ/2−λ12+n−m
2 , 1+ǫ/2−λ12+n−m

2

1−λ12+n−m
;

4z1z2

(z1+z2)
2

)

.

Notice that, in accord with the general definition of Harish-Chandra functions, this

series development is explicitly W2-invariant, the non-trivial symmetry here being exactly

z1 ↔ z2 since the symmetry with respect to the subgroup S2 ⊂ W2 was already taken into

account by our definition of z-variables in eq. (2.28). Of course, taking asymptotics at

infinity breaks this symmetry explicitly.

To bring the last expansion to the form in eq. (A.1), one should apply another quadratic

transformation of the form

2F1

( A
2 ,

A+1
2

A−B + 1
;

4y

(y + 1)2

)

= (1 + y)A2F1

(

A,B

A−B + 1
; y

)

. (A.4)

Here we run into a subtlety (first noticed by Gauss himself) which is sometimes encountered

in working with quadratic transformations: the absolute value of y in the above formula

should be less than one for it to be valid. Although one might imagine a wider applicability

range by analytical continuation, in fact it does not happen. Actually, a second term should

appear in the quadratic transformation to correct it in the latter case: compare formula

30As the domain we work on is Ã+.
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(3.1.3) in [79] and ex. 6 for chapter 3 ibid.31 So, we are forced to explicitly choose between

two expansion domains related via z1 ↔ z2 and to break the symmetry by setting y = z1/z2
(|z1| < |z2| for Ã+) along with A = ǫ/2 − λ1 + λ2 + n − m,B = ǫ/2, finally arriving at

eq. (A.1).

The expansion (A.1) is absolutely convergent when

|z1| < 1, |z2| < 1, |z1| < |z2|, (A.5)

as can be checked by using classical Horn’s theorem [137]. For the convergence analysis,

it is actually more convenient to pass to a different, resummed form, which makes the

convergence region obvious

Φ̃(λ1, λ2; ki; z1, z2) =
z

1+ǫ
2

+a−λ1

1 z
1

2
+a−λ2

2

42a+1+ǫ/2−Λ12

∞
∑

n,m,p,r=0

zn1 z
m
2 (z1z2)

p
(

z1
z2

)r

n!m!p!r!

(

ǫ
2 − λ12

)

r+n−m

(1− λ12)r+n−m

×
(

1− λ12, 1− ǫ
2 − λ12

)

n−m
(

−λ12,
ǫ
2 − λ12

)

n−m

(

1
2 + a− λ1,

1
2 + b− λ1

)

n+p

(1− 2λ1, 1− λ12)n+p

(

1
2 + a− λ2,

1
2 + b− λ2

)

m+p

(1− 2λ2, 1 + λ12)m+p

×
( ǫ

2
− λ12

)

n

( ǫ

2
+ λ12

)

m

(

1− ǫ
2 , 1− ǫ

2 − Λ12

)

p

(1− Λ12)p

( ǫ

2

)

r
. (A.6)

To obtain this formula from eq. (A.1), one can use an identity

∞
∑

n,m,p=0

F (n,m, p)
yn+p
1 ym−p

2

n!m!p!
=

∞
∑

n,m,p=0

F (p,m− p, n− p) (−n,−m)p
yn1 y

m−n
2

n!m!p!
(A.7)

which follows from Bailey lemma [79]. It is also instrumental to keep in mind another

particular presentation of the z-expansion which can be obtained by combining Whipple’s

identity and S6 symmetry of a terminating well-poised 7F6 function [82]

Φ̃(λ1, λ2; ki; z1, z2) =
1

42a+1+ǫ/2−Λ12

×
∞
∑

n,m=0

(1/2 + a− λ1, 1/2 + b− λ1)n
(1− 2λ1)n

(1/2 + a− λ2, 1/2 + b− λ2)m
(1− 2λ2)m

×
(ǫ/2− λ12, 1− ǫ/2− λ12, 1 + ǫ/2)n−m

(−λ12, 1− λ12)n−m (1 + ǫ/2)n

(1− ǫ/2− Λ12)m
(1− Λ12)m

(A.8)

× 7F6

( ǫ
2 + n−m, 1 + ǫ

4 + n−m
2 , 1− Λ12 + n, ǫ

2 + λ12,
ǫ
2 − λ12 −m+ n, ǫ

2 ,−m
ǫ
4 + n−m

2 , ǫ
2 + Λ12 −m, 1− λ12 −m+ n, 1 + λ12, 1 + n−m, 1 + ǫ/2 + n

; 1

)

× (−1)m(−n)m
n!m!

z
1+ǫ
2

+a−λ1+n

1 z
1

2
+a−λ2+m

2 2F1

(

ǫ/2− λ12 −m+ n, ǫ/2

1− λ12 −m+ n
;
z1
z2

)

.

To complete our discussion of the z-expansions, let us finally spell out the one summing

over the cone of positive BC2 roots, which makes the partial ordering of terms in the series

31When substituted into the Harish-Chandra expansion, the emergence of a second term can be seen as

appropriate to give a continuation of the Harish-Chandra function past the wall ω1. In other words, it gives

the action of monodromy matrix M1, see subsection 3.4.
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manifest. To achieve this goal, we again use eq. (A.7) and obtain

Φ̃(λ1, λ2; ki; z1, z2) =
1

42a+1+ǫ/2−Λ12

∞
∑

n,m=0

1

n!m!
z

1+ǫ
2

+a−λ1+n

1 z
1

2
+a−λ2+m−n

2

( ǫ

2

)

n

× (1/2 + a− λ2, 1/2 + b− λ2, 1− ǫ/2 + λ12)m
(1− 2λ2, λ12)m

(ǫ/2− λ12)n−m

(1− λ12)n−m

×
∞
∑

p=0

(−1)p

p!

(

−λ12 −m, 1 + −λ12−m
2 ,

1− ǫ
2
−λ12−m

2 ,
2− ǫ

2
−λ12−m

2

)

p
(

−λ12−m
2 ,

1+ ǫ
2
−λ12−m

2 ,
ǫ
2
−λ12−m

2

)

p

(A.9)

×
(

ǫ
2 − λ12 + n−m, 1/2 + a− λ1, 1/2 + b− λ1,−n,−m

)

p
(

1− ǫ
2 − n, 1/2− a+ λ2 −m, 1/2− b+ λ2 −m, 1− λ12 + n−m, 1− λ12

)

p

×
(

ǫ
2 − λ12, 2λ2 −m

)

p
(

1− 2λ1, 1− ǫ
2 − λ12 −m

)

p

4F3

( −p, p−m, 1− ǫ
2 , 1− ǫ

2 − Λ12

1− ǫ
2 + λ12 − p, 1− ǫ

2 − λ12 −m+ p, 1− Λ12
; 1

)

.

Notice that the Pochhammers of index p in the first two lines of the inner double sum

are “almost well-poised”, i.e. the upper ua and the lower la parameters are related by

la = 1 + A − ua with A = −λ1 + λ2 −m. This implies that such a double sum should be

a close two-variable analogue of a well-poised 7F6 function. To see this somewhat more

clearly, the last line can be additionally rewritten through Whipple identity as

(

ǫ/2−λ12−m
2 , 1+ǫ/2−λ12−m

2 ,1−2λ1−m,2λ2−m
)

p
(

1−2λ1−m
2 ,1− 2λ1+m

2 ,ǫ/2−λ12−m,1−ǫ/2−λ12−m
)

p

×

×7F6

( −2λ1+p−m,1+−2λ1+p−m
2 , ǫ2−Λ12,1− ǫ

2−Λ12,−λ12+p−m,p−m,−p
p−m−2λ1

2 ,1− ǫ
2−λ12+p−m, ǫ2−λ12+p−m,1−Λ12,1−2λ1,1−2λ1+2p−m

;1

)

.

In order to obtain expansions in the ‘radial’ coordinates (xi or ui), we again start with

eq. (A.1). For generic values of parameters, the u-expansion then can be derived in the

same way as in the N = 1 example from the main text, i.e. through the use of a binomial

theorem folowed by a change of summation indices

Φ(λ1,λ2;ki;u1,u2)=
∞
∑

i,j,n,m=0

1

i!j!n!m!
x
λ1−

1+ǫ

2
−a−n−i

1 x
λ2−

1
2
−a−m−j

2

×
(1+ǫ+2a−2λ1)i+2n(1+2a−2λ2)j+2m

(

1

2
+a−λ1,

1

2
+b−λ1,

ǫ
2
−λ12

)

n

(−λ12)n−m

(

ǫ
2
+λ12

)

m−n

(

1−2λ1,1−λ12,
1+ǫ
2

+a−λ1,1+
ǫ
2
+a−λ1

)

n

×
(

1

2
+a−λ2,

1

2
+b−λ2,

ǫ
2
+λ12

)

m
(

1−2λ2,1+λ12,
1

2
+a−λ2,1+a−λ2

)

m

(A.10)

×4F3

( −n,−m,1− ǫ
2
,1− ǫ

2
−Λ12

1− ǫ
2
+λ12−n,1− ǫ

2
−λ12−m,1−Λ12

;1

)

×6F5

( ǫ
2
−λ12−m+n, ǫ

2
,−a+λ2−m, 1

2
−a+λ2−m, 1+ǫ

2
+a−λ1+n+ i

2
,1+ ǫ

2
+a−λ1+n+ i

2

1−λ12−m+n, 1+ǫ
2

+a−λ1+n,1+ ǫ
2
+a−λ1+n,−a+λ2−m− j

2
, 1
2
−a+λ2−m− j

2

;
x2

x1

)

.
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This form32 seems to be most useful for getting an expansion of the blocks in Jack (Gegen-

bauer) polynomials of radial variables, which explicitly solves the recursion relations given

in [81]. We will not present the result here, as we do not use it. Instead, by changing sum-

mation indices and employing again the resummation identity (A.7), we obtain an explicit,

manifestly partially ordered (i.e., over the Z≥0-cone of positive roots) expansion of BC2

Harish-Chandra functions in the coordinates u1, u2 as33

Φ(λ1,λ2;ki;u1,u2)=
∞
∑

i,j=0

eu1(λ1− 1+ǫ
2

−a−i)+u2(λ2− 1

2
−a+i−j) 1

i!j!

×
(1+2a−2λ2−2i)j

(

ǫ
2 ,

ǫ
2−λ12

)

i

(1−λ12)i

×
∞
∑

n,m,p=0

(−1)n

n!m!p!
4F3

( −n,−m,1− ǫ
2 ,1− ǫ

2−Λ12

1− ǫ
2+λ12−n,1− ǫ

2−λ12−m,1−Λ12
;1

)

×
(λ12−i)m+p−n

(

1− ǫ
2+λ12−i

)

m+p−n

(−j,1+2a−2λ2−2i+j)m+p
(

1
2+a−λ2−i,1+a−λ2−i

)

m+p

(A.11)

×
(

− ǫ
2−a+λ1−i, 1−ǫ

2 −a+λ1−i
)

p−n

(−ǫ−2a+2λ1−2i)p−n

(

1−λ12,1− ǫ
2−λ12

)

n−m
(

−λ12,
ǫ
2−λ12

)

n−m

×
(

−p, 12+a−λ1,
1
2+b−λ1,

ǫ
2−λ12

)

n

(1−2λ1,1−λ12)n

(

1
2+a−λ2,

1
2+b−λ2,

ǫ
2+λ12

)

m

(1−2λ2,1+λ12)m

(−i)p
(

1− ǫ
2−i

)

p

.

This is the main result of this section. As the coefficient of the expansion term solves

the recursion relation (3.18), according to general theorems of Heckman and Opdam [76]

for generic values of λ the expansion is convergent on the whole domain A+ and can be

analytically continued to the entire (complex) fundamental domain. The expansion (A.11)

combined with Heckman-Opdam results gives a full control over the analytical properties

of the BC2 Harish-Chandra functions.

The two expansions in x coordinates above can be recast in many equivalent forms.

All of them can in principle be regarded as instances of sextuple Srivastava-Daoust hyper-

geometric functions [138], a rather general class of analogues of hypergeometric functions.

Since information on the analytical behaviour of a generic member of this family seems to

be quite scarce, it is fortunate that we have the well-developed Heckman-Opdam theory

at our disposal (and a root symmetry at the root of it). We are not aware of any signifi-

cant simplification of the above formula for generic values of the parameters, it would be

interesting to prove this rigorously.

To conclude this appendix, let us comment on the case of general N . We claim that

in fact all the building blocks required for writing down the expansions are already present

here, although writing up a general BCN formula requires extra work along the lines

described in the beginning of the appendix. It appears that such general expansions of BCN

32See a footnote before the formula (3.4), regarding this and the next expansion.
33The coefficient of the powers in this expansion, i.e. the inner triple sum of Pochhammer symbols times

the balanced 4F3(1) function, is, of course, a finite sum. It can be easily written as a product of Pochhammer

quotients and a quadruple hypergeometric polynomial.
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Harish-Chandra functions will involve N(N+1) (x−) and N2 (z−) summations, which are

numbers of roots of the BCN root system and of its corresponding reduced root subsystem

(BN or CN ), especially when looking at such beautifully symmetric expansions as eq. (A.6).

Clearly, for N = 2 we get back 6 x-summations and 4 z-summations of the above.

We conjecture that these numbers of summations are minimal possible for the generic

values of parameters and, moreover, that the same is true also for Harish-Chandra functions

of other root systems, of which the ones associated to exceptional root systems are probably

mathematically most interesting, since they cannot be obtained as special cases or limits

of the BC case. E.g. for E8 Harish-Chandra function this would imply a minimum of

120 x−/z− summations. As such explicit general expansions are not yet available, it is

an interesting mathematical problem to solve. As explained in [72], the BCN Harish-

Chandra functions describe conformal blocks of a two-point function of defects, N being

determined by their dimensions. So, such expansions are of potential interest for the

conformal bootstrap programme, provided there is a corresponding analogue of crossing

symmetry for such defects.

B Alternative expansions for integer spin

The aim of this appendix is to specialize our general expansion (A.1) to integer spin l =

λ1 − λ2 − ǫ/2 and to rewrite it as an expansion in the usual cross ratios z and z̄, or rather

variables u = zz̄ and v = (1 − z)(1 − z̄). The latter can then be compared with existing

expressions from other approaches, such as the shadow or the embedding formalism.

Before we study Harish-Chandra series for such special values of the parameters, we

want to make some general comments. Actually, one has to be a bit careful when evaluat-

ing formulas that are valid for generic values of the parameters, like the ones for Harish-

Chandra functions in the previous appendix, at special values of the parameters such as

the momenta λi. In order to do so, one should first take a limit for the multiplicities,

and only then for the momenta (i.e. the continued spin or conformal dimension). In other

words, if we want to study blocks/Harish-Chandra functions for particular spins (or twists)

through the general series expansions, our prescription is to fix the dimension d and con-

formal weights ∆i of external fields first and only then, after carefully taking into account

all implications on the summation range, to send the spin (or twist) to some particular

value. This recipe is directly related to the fact that an (appropriately normalized) Harish-

Chandra function is an entire function of its multiplicities, but can have simple poles in

λ (and further subtleties related to its series expansion for λ along specific affine hyper-

planes, see subsections 3.2, 3.3, 5.1). The opposite order of limits, provided it exists at

all, also gives some solution of the Calogero-Sutherland problem, but one that may be a

non-trivial linear combination of all the |WN | Harish-Chandra functions. The prescription

we propose here is the same as (one of the) usually used when taking limits in formulas for

the hypergeometric function 2F1 (i.e. for N = 1) to special values of its parameters [139]:

when e.g. one upper and one lower parameter are negative integers, one takes

z−
k+m

2 2F1

(−m, b− k+m
2

−k −m
; z

)

= lim
h→−(k+m)/2

lim
a→−h−m

zh2F1

(

h+ a, h+ b

2h
; z

)
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rather than

lim
a→(k−m)/2

2F1

(

a− k+m
2 , b− k+m

2

−k −m
; z

)

,

where k,m are positive integers and b is generic. One can show that the second function

is a linear combination of the first and its shadow.

After these introductory remarks we now want to start with our general formula (A.1)

and set l = 0, i.e. λ2 = λ1− ǫ
2 . For the moment we shall assume that the dimension d is not

even so that upon specializing λ, the twisted Harish-Chandra function is actually just equal

to a block, up to a normalizing prefactor 42a+1+ǫ+l−2λ1(z1z2)
−acα1

(λ1, λ2). By applying a

Whipple transformation [79] to the inner 4F3 function in eq. (A.1), we can perform a sum

via Saalschütz formula, yielding34

Φ̃(λ1,λ2;z1,z2)

∣

∣

∣

∣

l=0

=
(z1z2)

1+ǫ
2

+a−λ1

42a+1+ǫ−2λ1

∞
∑

n,m,p=0

(−z1)
n+pzm−p

2

n!m!p!

( ǫ

2

)

m−n−p

( ǫ

2

)

p
(−m)n+p

×
(

ǫ
2+1

)

m−n
(

ǫ
2

)

m−n

(

1
2+a−λ1,

1
2+b−λ1

)

n
(

1+ ǫ
2−2λ1

)

n

(

1+ǫ
2 +a−λ1,

1+ǫ
2 +b−λ1

)

m
(

1+ ǫ
2 ,1+ǫ−2λ1

)

m

. (B.1)

By changing the order of summation, we can rewrite this expression as

=
(z1z2

16

)
1+ǫ
2

+a−λ1
∞
∑

n,m=0

(−z1)
nzm−n

2

n!m!

( ǫ

2

)

m−n

( ǫ

2

)

n
(−m)n

(

1+ǫ
2 +a−λ1,

1+ǫ
2 +b−λ1

)

m
(

ǫ
2 ,1+ǫ−2λ1

)

m

×

×7F6

( − ǫ
2−m,1+

− ǫ
2
−m

2 ,−n,−m+n,−ǫ+2λ1−m, 12+a−λ1,
1
2+b−λ1

− ǫ
2
−m

2 ,1− ǫ
2−m+n,1− ǫ

2−n,1+ ǫ
2−2λ1,

1−ǫ
2 −a+λ1−m, 1−ǫ

2 −b+λ1−m
;1

)

.

The inner well-poised 7F6(1) is now to be transformed to another one using the S6 symmetry

of this function. Namely, we can apply a particular identity labeled W (1; 2) = W (3; 4) by

Bailey [82], employ the series representation for the resulting inner 7F6(1) function and

shift the summation indices. This leads to

=
(z1z2

16

)
1+ǫ
2

+a−λ1
∞
∑

p=0

(z1z2)
p

p!

(

ǫ
2 ,ǫ−2λ1,

1+ǫ
2 ±a−λ1,

1+ǫ
2 ±b−λ1

)

p

(1+ǫ−2λ1)
2
2p

(

1+ ǫ
2−2λ1

)

p

(B.2)

×2F1

( 1+ǫ
2 +a−λ1+p, 1+ǫ

2 +b−λ1+p

1+ǫ−2λ1+2p
;z1

)

2F1

( 1+ǫ
2 +a−λ1+p, 1+ǫ

2 +b−λ1+p

1+ǫ−2λ1+2p
;z2

)

,

where n and m summations were absorbed into the two 2F1 hypergeometric functions.

Using Chu-Vandermonde identity [79] in the form

(

ǫ
2

)

p
(

1 + ǫ
2 − 2λ1

)

p

= (−1)p
p
∑

r=0

(−p, 1− 2λ1)r
(

1 + ǫ
2 − 2λ1

)

r

1

r!

34The analysis by Horn’s theorem [137] shows that the absolute convergence for this series representation

of the twisted Harish-Chandra function in fact takes place on a the extended domain ℜui > 0 and 0 <

ℑui < 2π. This is, of course, consistent with the fact that the single twisted Harish-Chandra function for

generic dimension, being proportional to a block, is bound to be regular at the wall z1 = z2 according to

our discussion in subsection 5.1.

– 56 –



J
H
E
P
0
7
(
2
0
1
8
)
1
8
0

and shifting p, r summation indices, we can rewrite our expression further as

=
(z1z2

16

)
1+ǫ
2

+a−λ1
∞
∑

r=0

(z1z2)
r

r!

(

1+ǫ
2 ± a− λ1,

1+ǫ
2 ± b− λ1

)

r

(1 + ǫ− 2λ1)2r
(

1 + ǫ
2 − 2λ1

)

r

×
∞
∑

p=0

(−z1z2)
p

p!

(

ǫ− 2λ1 + 2r, 1+ǫ
2 ± a− λ1 + r, 1+ǫ

2 ± b− λ1 + r
)

p

(ǫ− 2λ1 + 2r, 1 + ǫ− 2λ1 + 2r)2p
(B.3)

× 2F1

( 1+ǫ
2 + a− λ1 + r + p, 1+ǫ

2 + b− λ1 + r + p

1 + ǫ− 2λ1 + 2r + 2p
; z1

)

× 2F1

( 1+ǫ
2 + a− λ1 + r + p, 1+ǫ

2 + b− λ1 + r + p

1 + ǫ− 2λ1 + 2r + 2p
; z2

)

,

so that for the inner (p−) sum we can now use a beautiful identity of Burchnall-Chaundy

([140], formula (50))

2F1

(

A,B

C
; z1 + z2 − z1z2

)

=
∞
∑

p=0

(−z1z2)
p

p!

(A,B,C −A,C −B)p
(C)2p (C + p− 1)p

(B.4)

× 2F1

(

A+ p,B + p

C + 2p
; z1

)

2F1

(

A+ p,B + p

C + 2p
; z2

)

(provided both sides converge or assuming analytical continuation), and finally arrive at35

Φ̃(λ1, λ2; z1, z2)

∣

∣

∣

∣

l=0

=
( u

16

)
1+ǫ
2

+a−λ1
∞
∑

r,s=0

ur (1− v)s

r!s!

(

1+ǫ
2 + a− λ1,

1+ǫ
2 + b− λ1

)

r+s

(1 + ǫ− 2λ1)2r+s

×
(

1+ǫ
2 − a− λ1,

1+ǫ
2 − b− λ1

)

r
(

1 + ǫ
2 − 2λ1

)

r

, (B.5)

where u, v are the usual cross ratios defined in eq. (4.2). As in section 4, we identify

z1 = z, z2 = z̄. Once we pass to conformal blocks using our relation (4.13), we recognize

formula (3.32) in [26] (see also [24]). Dolan and Osborn obtained this formula from the

shadow formalism by calculating the corresponding integrals via Mellin transform, ignoring

all pole terms form the shadow contributions. As noticed e.g. in [24, 141, 142], this double

hypergeometric expression (B.5) can be rewritten as a linear combination of two F4 Appell

functions.36 It is clear that we can lift our restriction on ǫ and admit even values, literally

repeating the above calculation for the scalar exchange block which for even ǫ ∈ 2Z≥0 is

composed from two twisted Harish-Chandra functions.

The type of analysis we have presented here and in particular the use of Burchnall-

Chaundy type formulas, generalizes much beyond the specific case analysed here and allows

to relate expressions from our approach to those obtained through the shadow formal-

ism [26] or results from the embedding formalism [29, 143, 144]. In particular, we can go

35Note that, while previous manipulations just reshuffled summation order in an absolutely convergent

series, the application of Burchnall-Chaundy formula changes the domain of (absolute) convergence which

now becomes {u, v ∈ C| |1− v| < 1,
√

|u| −
√

1− |1− v| < 1}.
36Notice that the convergence region after using this connection formula changes to {

√

|u|+
√

|v| < 1},

so a diagonal wall is in fact re-introduced.
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through the same steps for any spin l > 0 (and ‘push out’ the finite summations associ-

ated to the spin being integer) to obtain finite sums of double hypergeometric functions

of Srivastava-Daoust (i.e. generalized Kampé de Fériet) type [138]. While the resulting

expressions can be used to compare with results from other approaches, we want to stress

that the expansion formulas we have derived in appendix A and their direct specializations

are typically simpler than those that are obtained by other techniques.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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