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1 Introduction

Relative entropy is among the most powerful tools available for characterizing the distin-

guishability of two quantum states, and has recently found broad application in holography:

its equality on bulk and boundary convincingly identifies the entanglement wedge as the

dual to a given boundary region [1]; its positivity and monotonicity leads to proofs of the

average null energy condition [2] and the generalized second law [3]; its expansion about

the vacuum leads to a derivation of Einstein’s equations from the dynamics of entangle-

ment [4–9]. One might hope to use relative entropy to further probe questions related to

the black hole information paradox, such as how easily the black hole microstates can be

distinguished from the coarse-grained thermal state of the black hole.

Unfortunately, despite our ability to make general statements about its properties,

relative entropy is not an easy quantity to compute in black hole microstates. Unlike its

less-useful cousins — the entanglement and Renyi entropies — it lacks a simple replica

expression as a four-point function, and instead requires calculation of n-point correlators

of heavy operators [10, 11].

Bao and Ooguri [12] have recently identified an analog quantity which can be more

easily computed — the Holevo information χ. Given an ensemble ρ =
∑

i piρi of density

matrices ρi, the Holevo information is the average entropy of the ρi relative to ρ:

χ(ρ) =
∑
i

piS(ρi||ρ)

= S(ρ)−
∑
i

piS(ρi) . (1.1)
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Here the ρi and ρ are normalized density matrices, the pi form a normalized probability

distribution, and in the second line we used the definition of relative entropy:

S(σ||ρ) = −tr(σ log ρ) + tr(σ log σ). (1.2)

Since the average relative entropy χ is equal to the average difference in von Neumann

entropy between ρ and the ρi, computation of χ reduces to the computation of tractable

(heavy-light) four-point functions.

Bao and Ooguri estimated this quantity for the thermal density matrix of a black hole

in anti-de Sitter space at temperature 1/β:

ρBH = Z−1
∑
i

e−βEi |Ei〉〈Ei|. (1.3)

Here the microstates ρi are the energy eigenstates |Ei〉〈Ei| weighted by a Boltzmann factor

pi ∝ e−βEi . They can be perfectly distinguished by an observer who has access to the

entire dual CFT, but a less omniscient observer has a more difficult task.

Within a ball-shaped subregion A` of the CFT with diameter `, average distinguisha-

bility is characterized by the Holevo information of the reduced density matrix ρ` obtained

by tracing over the complement of the region:

ρ` ≡ trĀ`ρ. (1.4)

In general dimension there is no known way to compute the S(ρ`) in field theory and so

one must resort to holographic arguments, using the HRRT [13, 14] formula in either the

black hole background or the (generically unknown) background created by a heavy opera-

tor. However, in large-c CFTs the vacuum block contribution to the heavy-heavy-light-light

four-point function can be computed using the bootstrap [15], which in turn makes it possi-

ble to compute S(ρi,`) in CFT [16] if one makes the assumption that conformal blocks other

than the vacuum do not contribute. Bao and Ooguri use this approximation to obtain [12]

χ(ρBH,`) ≈


0 ` ≤ πR
c
3 log

[
sinh(π`/β)

sinh(π(2πR−`)/β)

]
πR < ` < `crit

SBH ` ≥ `crit ,

(1.5)

where c is the central charge of the CFT and `crit is a critical length that follows from the

homology constraint in the Ryu-Takayanagi formula. We have reintroduced the radius R

of the spatial circle of the CFT and corrected several factors in this expression.

The vacuum block does not dominate at subleading orders in 1/c [17] and so one would

naturally expect (1.5) to receive corrections. However, we will show that 1/c corrections

to (1.5) are also induced by competition with the vacuum block in S(ρi,`) at leading order

in certain states. This generates 1/c corrections to the average relative entropy once the

rarity of these states is taken into account.

We will study these corrections in the β →∞ limit corresponding to the M = 0 BTZ

black hole [18, 19], which has a microscopic description in terms of D-branes whose near-

horizon geometry is AdS3 × S3 [20] (the S3 is necessary in the microscopic formulation
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of the theory and will play an important role). We restrict to infinitesimal intervals ` →
0 in the CFT, where the structure of entanglement entropy can be made particularly

explicit [21, 22]. The correction to χ that we estimate comes from states |i〉 whose R-

charges J scale with c, corresponding to gravitational solutions with angular momentum on

the S3. The expectation values 〈J〉i grow with the central charge, violating the assumption

of vacuum block dominance.

Our main result is an O(c0) correction to the average relative entropy in the small

interval limit `→ 0:

χ(ρBH,`) = α

(
`

R

)2

+ . . . (1.6)

where α is an O(c0) coefficient. The ellipses denote further positive corrections: at O(`2)

from BPS operators other than J with conformal weights h+ h̄ = 1, and at higher orders

in ` from higher-dimension operators. We also resolve the minor discrepancy between the

holographic and field-theoretic computations of [22].

The rest of this note is organized as follows. In section 2 we briefly review the work of

Bao and Ooguri and their input assumptions. In section 3 we review the work of Giusto

and Russo on entanglement entropy in black hole microstates, which leads to our main

result. We conclude in section 4 with some broader context. In the appendix we give two

derivations of the density of states at generic R-charges: the first is intuitive and can be

visualized; the second, which extends the thermodynamic analysis of Balasubramanian et

al. [23], allows us to systematically compute finite-N corrections.

2 Review of the Bao-Ooguri estimate

In the AdS3/CFT2 correspondence the BTZ black hole is dual to the thermal ensem-

ble (1.3). Following [12], we will be interested in characterizing the distinguishability1 of

the microstates ρi from the ensemble (1.3) on an interval of length ` in the CFT, which we

take to live on a circle of radius R. It is captured by the relative entropy

S(ρi,`||ρBH,`) = −tr(ρi,`log ρBH,`) + tr(ρi,`log ρi,`) , (2.1)

where ρi,` and ρBH,` are the reduced density matrices defined in (1.4). The average of this

quantity — the Holevo information — is equal to the average difference of von Neumann

entropies:

χ(ρBH,`) =
∑
i

piS(ρi,`||ρBH,`)

= S(ρBH,`)−
∑
i

piS(ρi,`) . (2.2)

It was recently argued [12] that the Holevo information is zero on intervals smaller than

half of the circle, ` < πR. We will argue in the next section that 1/c corrections make

the Holevo information nonzero even on infinitesimal intervals but first, we review the

arguments of [12], highlighting the assumption that will be violated in our scenario.

1By distinguishability we mean that there exists an operator O such that tr(ρiO) 6= tr(ρBHO).
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In order to evalute (2.2) one needs the von Neumann entropies of the reduced density

matrices. When the CFT is holographic, these entropies are determined by the HRRT

formula [13, 14],

SRT (ρ`) =
length(Γ`)

4G
. (2.3)

Here Γ` is the extremal surface in the bulk dual of ρ, homologous to the boundary region A`.

When ρ = ρBH the dual geometry is the BTZ black hole. The homology constraint

then implies a critical length `crit where the extremal surface splits into two disconnected

pieces, one wrapping the black hole and another homologous to the complementary region:

S(ρBH,`) =

{
SRT (ρBH,`) ` < `crit

SRT (ρBH,2πR−`) + SBH ` ≥ `crit.
(2.4)

The bulk dual of a generic microstate is not known, but one can still study the S(ρi,`)

using field-theoretic methods. Bao and Ooguri [12] estimated the microstate entropies

using the results of [16], which starts from the replica trick for entanglement entropy in

1+1d CFTs [24]:

S(ρi,`) = −tr ρi,`log ρi,` = lim
n→1

1

1− n
log
[
Z−1〈Ψi(∞)Tn(u, ū)T−n(v, v̄)Ψi(0)〉

]
. (2.5)

Here u and v are the endpoints of the interval, |Ψi〉 = |i〉⊗n, the Tn are twist operators

with weights hT = h̄T = c
24
n2−1
n , and we have made explicit the renormalization factor Z.

The four-point function in (2.5) can be expanded in conformal blocks2 [16], using a

scale transformation to move the operators to (0, 1, x,∞):

〈Ψi(∞)Tn(x, x̄)T−n(1)Ψi(0)〉 =
∑
Op

a(i)
p F(nc;nhi, hT , hp; 1− x)F̄(nc;nh̄i, h̄T , h̄p; 1− x̄) .

(2.6)

Here the sum runs over Virasoro primaries, a
(i)
p = CiipC

p
T T , and x = u/v is the conformal

cross-ratio. We have chosen to expand in the t-channel to anticipate our eventual interest

in the small-interval limit.

In large-c conformal field theories this expression can be evaluated at leading order

in c under the additional assumption of vacuum block dominance [25], i.e. that the sum is

well-approximated by the contribution of the identity and its descendants:

lim
c→∞

〈Ψi(∞)Tn(x, x̄)T−n(1)Ψi(0)〉
?
≈ F(nc;nhi, hT , 0; 1− x)F̄(nc;nh̄i, h̄T , 0; 1− x̄) . (2.7)

This approximation is valid (in some range of x) only in states where a
(i)
p grows slowly with

c for all light primaries Op [16, 25]. In the next section we consider a class of black hole

microstates that violate this condition and discuss their impact on χ.

If one simply assumes vacuum block dominance, the correlator in (2.5) can be com-

puted in the limit n→ 1 [16] using the known form of the heavy-heavy-light-light vacuum

2The computation of (2.8) in [16] starts on the plane and transforms to the cylinder. In the next section

we will evaluate (2.5) directly in the theory on the cylinder.
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block [15] in the channel in which it dominates. The result is the vacuum block contribution

to S(ρi,`):

S(ρi,`)|vac =
c

3
log

[
βi
π ε

sinh

(
πmin(`, 2πR− `)

βi

)]
, (2.8)

where

βi =
2π√

24hi/c− 1
(2.9)

and ε is the UV cutoff. When ` > πR the vacuum block dominates in the channel obtained

by replacing ` with 2πR − ` [16], leading to the min in (2.8). This is the expression that

is used in [12] to obtain the estimate (1.5), with the weight hi of the microstate fixed by

demanding βi = β. It agrees precisely with the holographic entropy (2.3) in the BTZ

geometry if one relaxes the homology constraint [16].

Collecting (2.4) and (2.8), the vacuum block contribution to χ is

χ(ρBH,`)|vac =


0 ` < πR

SRT (ρBH,`)− SRT (ρBH,2πR−`) = c
3 log

[
sinh(π`/β)

sinh(π(2πR−`)/β)

]
πR ≤ ` ≤ `crit

SBH ` > `crit.

(2.10)

We will see that the failure of vacuum block dominance makes χ ∼ O(c0) even when

`� πR.

3 Fuzziness and distinguishability

3.1 Entanglement entropy in the M = 0 BTZ microstates

We will study the Holevo information in a string theory setup where the microstates of the

black hole can be identified explicitly: the near-horizon limit of the D1-D5 brane system,

whose CFT description includes 1/4-BPS states that are dual to microstates of the M = 0

BTZ black hole (×S3 × M4). The study of these states and their identification with dual

geometries [26] is a rich subject with a long and tempestuous history;3 we will not make

use of this identification here. Our results follow solely from the properties of 1/4-BPS

operators in the CFT4 and are independent of (but consistent with) the identification of

certain BPS operators with bulk geometries. For more details of the CFT see e.g. [23, 26,

37–39] and references therein.

The field theory description of the microstates is obtained by considering type IIB

string theory on S1 × M4 with N1 D1s wrapping the S1 and N5 D5s wrapping all the

compactified directions, with the closed string sector decoupled by the near-horizon limit.

Taking M4 much smaller than the S1, the theory becomes a 1+1d SCFT with N = (4, 4)

SUSY, whose central charge c = 6N1N5 ≡ 6N is determined by the number of D1 and D5

branes. At weak coupling the SCFT is conjectured to be a nonlinear sigma model on the

symmetric product orbifold (M4)N/SN [40]; at strong coupling it is dual to supergravity

in AdS3 × S3 × M4 [41].

3See [27–31] for reviews and [32–35] for some recent developments.
4The operators we study are chiral primaries [36].
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The microstates of the M = 0 BTZ black hole correspond to the Ramond ground states

of this D1-D5 CFT [42, 43]. Supersymmetry protects their dimensions and SU(2)L×SU(2)R
R-charges, which can therefore be extrapolated from the orbifold theory to the region of

moduli space where the theory has a gravitational dual. The R-charges of the black hole mi-

crostates are bounded by −N
2 < J3

L, J
3
R <

N
2 [36] and correspond to angular momenta on the

S3 in the bulk [44]. Most states have J3
L/R & O(

√
N), violating vacuum block dominance.

As in any CFT corrections to the vacuum entropy are particularly easy to isolate in

the small-interval limit, where the physics is determined by the twist operator OPE [21].

Since TnT−n has vanishing twist, only untwisted operators5 O = O(1)
p1 ⊗ · · · ⊗ O

(n)
pn appear:

Tn(w, w̄)T−n(w′, w̄′) =
1

|w − w′|4hT

[
1 +

∑
p

n∑
r=1

(w − w′)hp(w̄ − w̄′)h̄pCprT T O
(r)
p (3.1)

+
∑
p,q
r 6=s

(w − w′)hp+hq(w̄ − w̄′)h̄p+h̄qC
(pr,qs)
T T O(r)

p ⊗O(s)
q + . . .

]
,

with further terms subleading as w → w′. Here r, s are replica indices and the expansion

has been organized according to how many of the tensor factors in O are trivial (e.g. on

the second line the operator is Op on the rth factor tensored with Oq on the sth factor,

tensored with the identity on the remaining factors). This expansion was studied by [22]

in the Ramond ground states dual to the microstates of the M = 0 BTZ black hole; we

review their treatment, amending two points.

In any state |i〉, the entanglement entropy of a small interval can be computed by

plugging (3.1) into (2.5). We use coordinates w on the cylinder related to the plane

coordinates z via z = eiw, with the parametrization

w =
φ

R
+ iτ, τ ∈ R, φ ≡ φ+ 2πR. (3.2)

The operators in (3.1) are inserted at φ− φ′ = ` on a constant-τ slice.

As `→ 0 the dominant contributions to (3.1) come from the lightest operators in the

theory. The leading correction naively appears to be the first non-vacuum term in (3.1),

but this term vanishes for all primaries since CT T pr = 0 if Op is primary.6 In the M =

0 BTZ microstates, the leading correction to the entropy comes from a sum over the

lightest untwisted primaries with two tensor factors nontrivial. When these operators have

nontrivial expectation values they will contribute to the entanglement entropy. The OPE

coefficients C
(pr,qs)
T T can be determined by computing the expectation value of O(r)

p ⊗O(s)
q on

the replica manifold via a conformal map [21], then using the inverse of the Zamolodchikov

metric gab = 〈Oa|Ob〉 to raise the index [22].

We would like to compute the microstate entropies S(ρi,`) in the gravity regime, but

the orbifold CFT is at zero coupling. Fortunately, there is strong evidence that the gravity

5There are orbifolds and then there are orbifolds. Here we are in the theory on
(
(M4)N/SN

)n
/Zn.

6This follows from the vanishing of primary one-point functions on the plane. Generically one must keep

track of descendant contributions to this term, and the stress tensor will make an O(`2) contribution to the

entanglement entropy. However, 〈T 〉 = 0 in the Ramond ground states that we study in this paper. All

other descendants in the D1-D5 CFT will contribute to this term at higher orders in `.

– 6 –



J
H
E
P
0
7
(
2
0
1
8
)
1
7
9

computation of (3.1) can be extracted from the calculation in the orbifold theory. The idea

is as follows [22]: most operators acquire O(c) anomalous dimensions at strong coupling

and so will contribute negligibly to (3.1). However, 1/4-BPS operators are protected by

supersymmetry: their dimensions and three-point functions are independent of the cou-

pling [45]. To extrapolate results from the orbifold theory to gravity we therefore keep only

the contributions from these BPS operators (we will leave the 1/4 implicit for brevity). It

was shown in [22] that this prescription agrees exactly with the results obtained from a

generalization of the HRRT formula, apart from the vacuum piece we will correct.

The lightest BPS operators in the D1-D5 CFT have h + h̄ = 1 and thus appear at

O(`2) in the twist OPE (3.1). Inserting (3.1) into the formula for the entropy (2.5) and

evaluating the sum over r and s in this sector exactly as in [22], at O(`2) we find7

〈Ψi|Tn(w,w̄)T−n(w′, w̄′)|Ψi〉=
(
R

`

) c
6
n2−1
n

[
1+
∑
p,q

(
`

R

)2 (n2−1)

24n
M(p,q) 〈Op〉i〈Oq〉i+ . . .

]
(3.3)

whereM is the contraction of the Zamolodchikov metric with the plane two-point function:

M(p,q) = g{(p,q),(p
′,q′)}〈0|Op′(1)Oq′(0)|0〉plane. (3.4)

Among the lightest BPS operators are the holomorphic and antiholomorphic SU(2)L ×
SU(2)R R-symmetry currents JαL and JαR. For simplicity we will focus on corrections to

the Holevo information coming from the α = 3 components alone, neglecting the rest of

the lightest BPS operators; we will abbreviate J3
L/R ≡ JL/R. Our computation of these

corrections will be enough to show that χ & O(c0) at small `, since the other operators

that contribute at O(`2) make manifestly positive contributions to χ.

To obtain S(ρi,`) from (3.3) we must include the renormalization factor Z, which was

omitted in [22]. In the theory on the plane, the renormalization factor Zplane = ε−4hT is

introduced in order to make the entropy dimensionless [24]. However, there is no need to

fix the units in (3.3) and so it seems we are free to choose Zcyl as we please. We will fix it

here by demanding that the leading divergence in S(ρi,`) approaches the vacuum entropy

on the plane when `� R. This scheme is natural in light of the conformal symmetry: we

should get the same results regardless of whether we do the computation directly in the

theory on the cylinder, or by transforming the four-point function on the plane normalized

by Zplane. Thus we take

Zcyl =
( ε
R

)−4hT
. (3.5)

Taking Zcyl into account, focusing just on the contribution of JL/R and following the

computation of M(J,J) = 12/c in [22], we find

S(ρi,`) =
c

3
log

`

ε
− 1

c

(
`

R

)2 (
〈JL〉2i + 〈JR〉2i

)
− . . . (3.6)

7Note that we have obtained a slightly different expression from the corresponding equations (4.9-10)

of [22], which would have 〈Op′〉i〈Oq′〉i inside the sum in our (3.4) instead of 〈Op〉i〈Oq〉i outside. This does

not affect their results since gab is block-diagonal in the space of BPS operators with h+ h̄ = 1.
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Figure 1. Schematic depiction of the extremal surfaces when the spacetime is the M = 0 BTZ black

hole (left) and that of a microstate with macroscopic 〈J〉 (right). We work entirely in the CFT and so

make no use of these surfaces, but their correspondence with the boundary entropies is precise [22].

where . . . denotes the contribution of the other BPS and higher-dimension operators. We

have found a different vacuum contribution than [22] due to our inclusion of the renor-

malization factor (3.5); with this minor correction, the result agrees exactly with the holo-

graphic computation in [22] of the entropy at O(`2) using the deformed HRRT surface in

the gravity background dual to the microstate (see figure 1). We will not however make

use of this interesting fact.

Reintroducing the contributions of the remaining BPS operators with h+ h̄ = 1,

S(ρi,`) = S(ρi,`)|vac + S(ρi,`)|BPS + . . . . (3.7)

This is the exact microstate entropy at O(`2).

3.2 Average relative entropy of the M = 0 BTZ microstates

The microstates |JL, JR〉 of the D1-D5 black hole are labelled by their left and right R-

charges (JL, JR). We compute the average relative entropy χ of the zero-temperature

density matrix8

ρBH =
∑
JL,JR

p (JL, JR) |JL, JR〉〈JL, JR| ≡
∑
JL,JR

p (JL, JR) ρ(JL,JR) (3.8)

dual to the M = 0 BTZ black hole × S3 [23]. We have left the other quantum numbers

implicit as they do not affect the contribution we compute. The probability p (JLJR) that

a microstate has charges (JL, JR) is the number of states dJL,JR with those charges divided

by the total number of states, i.e.

p (JL, JR) ∝ dJL,JR . (3.9)

8The relative entropy between two microstates in the short interval limit can be lower-bounded directly,

without taking an average. Eq. (50) of [11] applied to the M = 0 BTZ microstates implies that if two

microstates have different R-charges, 〈J〉i ∼ ca and 〈J〉j ∼ cb, then S(ρi|ρj) & c2·max(a,b) in the large c

limit. In particular, an atypical microstate with 〈J〉 ∼ c will have at least an O(c2) relative entropy with a

typical microstate, which has 〈J〉 ∼
√
c.
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We will compute contributions to the average relative entropy of ρBH restricted to an

interval of length `,

χ(ρBH,`) =
∑
JL,JR

p (JL, JR) S(ρ(JL,JR),`||ρBH,`)

= S(ρBH,`)−
∑
JL,JR

p (JL, JR) S(ρ(JL,JR),`) . (3.10)

In the limit `→ 0 this inherits the spectral structure of (3.7):

χ(ρBH,`) = χ(ρBH,`)|vac + χ(ρBH,`)|BPS + . . . (3.11)

where . . . denotes subleading terms in `. The first term vanishes as `→ 0 [12] because the

vacuum block contribution is equal to the thermal entropy when ` < πR. The second is

O(`2):

χ(ρBH,`)|BPS =
1

c

(
`

R

)2 ∑
JL,JR

p (JL, JR)
(
J2
L + J2

R

)
+ . . . . (3.12)

We will ignore the (positive) contributions of the other BPS operators with h+ h̄ = 1 and

so obtain only a lower bound.

Specifying to M4 = T 4 for concreteness, in the appendix we find the density of states9

dJL,JR = e2π
√

2
√
N−|JL+JR|−|JL−JR| (3.15)

at leading order in N when JL/R ∼ O(N) (recall that c = 6N).

We can combine (3.15) with (3.6) and (3.9) to evaluate (3.12). Approximating the sum

over R-charges by an integral, we obtain

χ(ρBH,`)|BPS ≈
1

c

(
`

R

)2 ∫ +N/2

−N/2
dJL dJR p (JL, JR)

(
J2
L + J2

R

)
+ . . .

= α

(
`

R

)2

+ . . . (3.16)

where α ∼ O(c0) and . . . denotes the contribution of the other BPS operators with h+ h̄ =

1. This is our main result.

There is an important caveat that does not affect our conclusion. The density of

states (3.15) is only valid at JL/R ∼ O(N) while typical states of the D1-D5 CFT have

9The density of states had previously been computed [23] in the regime where only one linear combina-

tions of the R-charges, J+ ≡ JL + JR, is O(N):

dJL,JR = e2π
√
2
√
N−|J+| (3.13)

at leading order in N . Our more general expression (3.15) implies a logarithmic correction to the density

of states at fixed J+ ∼ O(N) from the sum over the other linear combination J− ≡ JL − JR:∫ N

−N
dJ− dJL,JR ∝ e

2π
√
2
√
N−|J+|

√
N − |J+|. (3.14)

– 9 –



J
H
E
P
0
7
(
2
0
1
8
)
1
7
9

JL/R ∼ O(
√
N) [23].10 In appendix A.2 we show that when JL/R ∼ O(

√
N) the density of

states is

dJL,JR = e2π
√

2
√
N−γ+|JL+JR|−γ−|JL−JR| , 0 < γ± < 1 (3.17)

where the γ± must be determined numerically but are smooth functions of JL/R. We also

show that if we use this more accurate density of states instead of (3.15) in the appropriate

region of the integral in (3.16), we still find that α ∼ O(c0).

4 Discussion

At the outset we motivated our investigation of the Holevo information by a hope that it

would aid in study of the information paradox. Let us outline some steps in that direction.

Ultimately, one would like to calculate some bulk probe of the distinguishability be-

tween the black hole microstates and the naive black hole geometry dual to the thermal

state. Relative entropy is such a probe, but it is hard to calculate. However, we have

seen that the average relative entropy — the Holevo information — can be estimated quite

easily under sufficiently controlled circumstances. Fortunately, it is a decent substitute for

the relative entropy in addressing certain interesting questions. Suppose we are wondering

whether or not most states of a particular black hole have a firewall near the horizon.

In this case one can simply ask whether χ is large in a region that probes the horizon.

Unfortunately, we do not know much about the microstates of black holes that may have

firewalls, and our approach has restricted us to both supersymmetry and small `.

One step towards a more realistic black hole is the M > 0 BTZ black hole dual to the

D1-D5-p system. Its decoupling limit is the same CFT we have studied but the microstates

have nonzero momentum Np along the common D1-D5 direction. There are additional light

BPS operators with nontrivial expectation values in these states, and since 〈T 〉 ∼ Np 6= 0

the stress tensor also contributes to χ at O(`2) [46]. Despite much recent progress (see

e.g. [47–54]) knowledge of the D1-D5-p microstates is not comprehensive; one would still

need to know how the expectation values are distributed in order to compute contributions

to χ. At the end of the day one would like to break supersymmetry and study evaporating

black holes, but knowledge of their microstates is even more sparse [55–59].

There are also prospects in higher dimensions. In AdS5 there is a close analog of the

D1-D5 system, the LLM geometries [60], which are dual to 1/2-BPS states of N = 4 super-

Yang Mills. The analog of the black hole for these geometries is the superstar solution [61–

63]. While the LLM geometries are explicitly known, computation of the entanglement

entropies seems to be difficult,11 though there has been some recent progress in a different

duality frame [64].

What about the vacuum block approximation? It is crucial to much of the recent

technology that has been developed to study both correlation functions and bulk recon-

struction in AdS3 [65–71]. We do not know whether or not this affects the ability of these

10There are also states with JL/R < O(
√
N) but in such states the vacuum block dominates over J-

exchange, so they make negligible contributions to the part of χ that we are estimating.
11We thank Michael Gutperle, Mukund Rangamani and Joan Simón for discussion on this point.
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methods to make predictions about what happens near black hole horizons — one might

suspect that the gravitational physics is sufficiently universal — but it could be useful to

extend their approach to WZW models. With such techniques one can probe much further

into the bulk than we have been able to here.

It is also natural to ask if χ itself has some interpretation in terms of ordinary (non-

replica) correlation functions. While the relative entropy can be expressed in terms of the

expectation value of the modular hamiltonian as ∆〈K〉 −∆S, the first term drops out of

the average. From the fact that two density matrices have a nonzero relative entropy we

can conclude that there is some operator such that tr(ρiO) 6= tr(ρO), which must even be

local since we consider small `, but the average expectation values are necessarily equal:∑
pitr(ρiO) = tr(ρO).

The corrections to χ(`)|vac that we have studied persist at finite `, though a parametric

estimate is outside the scope of our approach. Still, they will reduce the length of the

smallest interval on which the microstates can be perfectly distinguished (where χ saturates

to SBH) from the value computed in [12], at which the RT surface starts to wrap the horizon.

These corrections also lead to saturation before the quantum extremal surface [72] starts

wrapping the horizon since the sum over geometries gives an extra contribution to the

relative entropy that is not captured by the entanglement of bulk fields.

Finally we briefly discuss further corrections to χ(`)|vac. First, χ receives further pos-

itive contributions at O(`2) from other BPS operators with h+ h̄ = 1. It seems reasonable

to conjecture that the contributions of these operators do not increase α beyond O(c0),

though they might. One would need to know the distribution of their expectation values.

The second source of correction is more interesting. Our O(c0) result comes at the order

typically associated with quantum effects in the bulk. For instance, at O(c0) one must

account for the entanglement of bulk fields, which generically contains state-dependent

pieces as in (3.7) and so χ will be further corrected. Of course this is just the usual story

of quantum corrections in the bulk — the same effect gives rise to mutual information at

O(c0) between distant boundary intervals — but it is intriguing that there is an interplay

here with the sum over geometries.
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Figure 2. The black hole microstates correspond to colored partitions of N , which can be illustrated

as a collection of multiwound colored strings: Nn,i is the number of strings with winding number

n and color i.

A Density of states at generic R-charges

A.1 Intuitive derivation of the density of states

Supersymmetry protects the ground states of the D1-D5 CFT dual to the microstates of

the M = 0 BTZ black hole. This is relevant for our purposes because it implies that the

number of states with R-charges JL/R remains constant as we go from the strongly-coupled

regime, where the system is dual to gravity in AdS3× S3×M4, to zero coupling, where the

system is described by an orbifold theory on (M4)N/SN . We can therefore use the orbifold

description to obtain a particularly simple derivation of the density of states. We will need

just one fact [26] about the ground states |ψ〉 in the orbifold theory: they are completely

characterized by a set of integers,

|ψ ({Nn,i})〉 ←→
∏
n,i

(
Φ(i)
n

)Nn,i
. (A.1)

Here Φ
(i)
n is a twist operator permuting n out of the N copies of the seed theory (which

is an SCFT on M4) and i runs over all the fields in the seed. Note that n here has no

connection to the replica index used in the entropy calculations in the main text.

The integers Nn,i can be chosen freely up to the constraint∑
n,i

nNn,i = N, (A.2)

which implies that the ground states |ψ〉 are in one-to-one correspondence with colored

partitions of N , with i labelling the different colors. This is depicted in figure 2.12

An asymptotic estimate of the number of uncolored partitions was derived by Hardy

and Ramanujan [73]:

P (N) = e
π
√

2N
3 (A.3)

to leading order in N . We have one color for each boson and half a color for each fermion

(due to bosonization), so the total number of colors is the central charge of the seed theory,

NB +
NF

2
≡ cs. (A.4)

12The figures in this appendix can be read quite literally: the Φ
(i)
n map to the usual string creation

operators αi−n under U-duality [26].
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The total number of microstates is then the number of partitions with cs colors:

Pcs(N) = e2π
√

cs
6
N (A.5)

at large N . Notably, the logarithm of this quantity is the Bekenstein-Hawking entropy of

the M = 0 BTZ black hole [74] (once α′ corrections have been taken into account).

One can extend this reasoning to obtain (3.15).13 First, note that the fields i are

labeled by their R-symmetry charges. Focus on the four R-charged bosons, which carry

(JL, JR) = (±1/2,±1/2), (±1/2,∓1/2). (A.6)

In terms of the linear combinations J± = JL ± JR, they carry

(J+, J−) = (±1, 0), (0,±1). (A.7)

Suppose we want to estimate the number of states with fixed J+ ∼ O(N). This is a small

fraction of the total number of states (A.5), since a typical colored partition will not carry

much R-charge; we must fix some of the coloring so that the corresponding state carries

J+.14 At large N , the dominant contribution comes from the configurations depicted in

figure 3. These configurations have |J+| singly-wound strings whose color corresponds to

either (J+, J−) = (1, 0) or (−1, 0), depending on the sign of J+; the remainingN1 = N−|J+|
elements can be in an arbitrary configuration. The number of these configurations is the

number of colored partitions of the unfixed remainder,

Pcs(N1) = e2π
√

cs
6

(N−|J+|) (A.8)

at large N . Configurations with some of the J+ carried in multi-wound strings are sublead-

ing, since fewer elements will be left unfixed. Likewise subleading are configurations with

J+ carried by fermions, since the Pauli exclusion principle makes it impossible to carry

all of J+ in singly-wound fermionic strings. The collection of strings carrying J+ can be

thought of as a Bose-Einstein condensate [23].

To estimate the density of states at generic JL/R we must estimate the number of

colored partitions with both J+ and J− fixed. Following the same logic as above, most of

these partitions will have the structure depicted in figure 4, with two condensates: one made

of |J+| singly-wound strings carrying (J+, J−) = (±1, 0), and another made of |J−| singly-

wound strings carrying (J+, J−) = (0,±1), with the signs again determined by those of J±.

The entropy then comes from colored partitions of the remaining N2 = N − |J+| − |J−|
elements:

dJL,JR ≈ Pcs(N2) = e2π
√

cs
6

(N−|JL+JR|−|JL−JR|). (A.9)

The theory on M4 = T 4 has cs = 12, which yields (3.15).

13The argument given in this section was originally used in [23] to intuitively explain the density of

states (3.13).
14The unfixed part will be R-neutral on average since the fields come in pairs with equal and opposite

charges.
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Figure 3. A typical state with positive J+ ∼ O(N) and J− ∼ 0. The red strings carry (J+, J−)

charges (1, 0) while the other strings carry other R-charges, including zero. The freedom to pick

any colored partition of the remaining N − |J+| elements gives rise to the entropy (3.13).

Figure 4. A typical state with positive J± ∼ O(N). The red strings carry (J+, J−) = (1, 0) and the

green strings carry (J+, J−) = (0, 1). The freedom to pick any colored partition of the remaining

N − |J+| − |J−| elements gives rise to the entropy (3.15).

A.2 Thermodynamic derivation of the density of states

Eq. (3.15) can be confirmed by a direct calculation of the density of states, which also

enables us to study corrections. In this section we extend appendix B of [23] to general

JL,R & O(
√
N). Before proceeding to our extension we warm up with a review of their

original calculation of dJL,JR , valid in the regime where JL + JR ∼ O(N) and JL− JR ∼ 0.

Our presentation is largely self-contained but the reader may also find it useful to consult

their more detailed exposition.15

Appendix B of [23] computes the density of states for J+ ∼ O(N) by starting with the

partition function of the D1-D5 CFT at the orbifold point with a chemical potential µ+,

Z(β, µ+) = tr e−β(N−µ+J+) . (A.10)

When N is large this can be evaluated via the saddle point approximation, leading to an

expression for the entropy at fixed J+. Note that in this expression, unlike in (1.3), β is not

the inverse of the physical black hole temperature but rather an auxiliary chemical potential

conjugate to the left-moving excitation number N ≡ NL (i.e. it is the inverse “effective

temperature” βL of the left-movers); in particular, the physical Hawking temperature TH =(
T−1
L + T−1

R

)−1
= 0.

The seed of the orbifold has NB left-moving bosons and NF left-moving fermions. Out

of these states, nB of the bosons have J+ = 1 and another nB have J+ = −1. Similarly,

15We use a slightly different notation than [23], who study the linear the combinations (−J+, J−) ≡ (J, J̃).

These linear combinations appear naturally in the gravitational description of the D1-D5 microstates as

their angular momenta in the transverse (x1, x2) and (x3, x4) planes [43].
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there are nF fermions each with J+ = ±1/2. We will follow [23] in leaving the numbers

of species general to faciliate comparison with their expressions.16 With these charge

assigments, the partition function (A.10) is [23]

Z(β, µ+) = tr e−β(N−µ+J+)

=
∞∏
n=1

[
(1 + z1/2qn)(1 + z−1/2qn)

]nF (1 + qn)NF−2nF

[(1− zqn)(1− z−1qn)]nB (1− qn)NB−2nB

≡ ZBZF (A.11)

where q = e2πiτ = e−β and z = e2πiν = eβµ+ . This can be rewritten in terms of special

functions as

ZB = 2nBqNB/24η(τ)−NB+3nB

[
sin(πν)

θ1(πν|τ)

]nB
(A.12)

and

ZF = 2−NF /2q−NF /24η(τ)−NF /2
[
θ2(πν/2|τ)

cos(πν/2)

]nF
θ2(0|τ)NF /2−nF . (A.13)

In the thermodynamic limit β → 0, corresponding to N � 1, the partition function

simplifies:

Z(β, µ+) ≈ βNB/2
(

µ+

sinπµ+

)nB
eπ

2cs/6β . (A.14)

Here cs is the central charge of the seed of the orbifold, cs = NB + NF /2, which is O(1).

The first factor is the least singular as β → 0 and can be neglected.

The saddle point approximation leads to the thermodynamic relations

N = −
(
∂ logZ

∂β

)
βµ+

=
csπ

2

6β2
+
nBµ+

β
g(µ+), J+ =

(
∂ logZ

∂(βµ+)

)
β

=
nB
β
g(µ+) , (A.15)

where

g(x) =
1

x
− π

tanπx
. (A.16)

From these expressions one obtains the entropy

S = β(N − µ+J+) + logZ =
csπ

2

3β
+ nB log

(
µ+

sinπµ+

)
= 2π

√
cs
6

(N − µ+J+) + log

(
µ+

sinπµ+

)
(A.17)

and the expectation value of J+,

J+ =
3µ+g(µ+)2

csπ2

[√
1 +

2csNπ2

3µ2
+g(µ+)2

− 1

]
. (A.18)

In the last two expressions we used nB = 1. The magnitude of J+ is controlled by the

behavior of g(µ+). In [23] µ+ is determined as follows: first, since N−µ+J+ is not a positive

16When M4 = T 4 the theory has NB = NF = 8, nB = 1 and nF = 4. When M4 = K3 the theory has

NB = 24, nB = 1, NF = nF = 0.
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operator when |µ+| > 1, we must restrict to |µ+| ≤ 1 in order to obtain a well-defined

partition function.17 Next, one demands that J+ ∼ O(N). As µ+ → 0, g vanishes linearly,

g(µ+) =
π2

3
µ+ +O(µ3

+), (A.19)

but it diverges as µ+ → ±1:

g(µ+) =
−1

µ+ ∓ 1
± 1 +O(µ+ ∓ 1). (A.20)

Thus if we take |µ+ − sign(J+)| ∼ N−1/2, (A.18) implies J+ ∼ O(N) and we have the

desired enhancement. Making this choice in (A.17), the density of states in this regime is

dJ+,J− = e2π
√

cs
6

(N−|J+|) when J+ ∼ O(N), J− ∼ 0 (A.21)

up to subleading corrections in N . This completes our review of [23].

To study the density of states at general JL/R we must also turn on a chemical potential

for J−:

Z(β,µ+,µ−) = tr e−β(N−µ+J+−µ−J−)

=
∞∏
n=1

[
(1+z1/2qn)(1+z−1/2qn)(1+ z̃1/2qn)(1+ z̃−1/2qn)

]nF (1+qn)NF−4nF

[(1−zqn)(1−z−1qn)(1− z̃qn)(1− z̃−1qn)]nB (1−qn)NB−4nB

≡ZBZF , (A.22)

where q = e2πiτ = e−β , z = e2πiν = eβµ+ and z̃ = e2πiν̃ = eβµ− . The second line follows

from the fact that the theory has nB states with charges (J+, J−) = (±1, 0), (0,±1), and

similarly for the fermions. We find

ZB = 22nBqNB/24η(τ)−NB+6nB

[
sin(πν+)

θ1(πν+|τ)

]nB [ sin(πν−)

θ1(πν−|τ)

]nB
(A.23)

and

ZF = 2−NF /2q−NF /24η(τ)−NF /2
[
θ2(πν+/2|τ)

cos(πν+/2)

]nF [θ2(πν−/2|τ)

cos(πν−/2)

]nF
θ2(0|τ)NF /2−2nF .

(A.24)

In the thermodynamic limit β → 0 corresponding to large N , the partition function

once again simplifies:

Z(β, µ+, µ−) ≈ βNB/2
(

µ+

sinπµ−

)nB ( µ+

sinπµ−

)nB
eπ

2cs/6β . (A.25)

The saddle point analysis leads to

N = −
(
∂ logZ

∂β

)
βµ+,βµ−

=
csπ

2

6β2
+
nBµ+

β
g(µ+) +

nBµ−
β

g(µ−),

J+ =

(
∂ logZ

∂(βµ+)

)
β,βµ−

=
nB
β
g(µ+), J− =

(
∂ logZ

∂(βµ−)

)
β,βµ+

=
nB
β
g(µ−), (A.26)

17This bound can also be obtained by requiring that the density of states is real.
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and the entropy

S = β(N − µ+J+ − µ−J−) + logZ =
csπ

2

3β
+ nB log

(
µ+

sinπµ+

)
+ nB log

(
µ−

sinπµ−

)
= 2π

√
cs
6

(N − µ+J+ − µ−J−) + log

(
µ+

sinπµ+

)
+ log

(
µ−

sinπµ−

)
(A.27)

where we again used nB = 1. Similarly, one finds the R-charges

J± =
3f±
csπ2

[√
1 +

2csNπ2g(µ±)2

3f2
±

− 1

]
(A.28)

where

f± = g(µ±) [µ± g(µ±) + µ∓ g(µ∓)] . (A.29)

As above we determine µ± in the density of states at J± ∼ O(N) by requiring that (A.28)

implies J± ∼ O(N). Once again this implies |µ± − sign(J±)| ∼ N−1/2 and so

dJL,JR = e2π
√

cs
6

(N−|J+|−|J−|) when (J+, J−) ∼ O(N). (A.30)

This is the expression we used to evaluate χ in (3.16).

So far we have computed the density of states when JL/R ∼ O(N). However, typical

microstates of the M = 0 BTZ black hole have JL/R ∼ O(
√
N). When JL/R ∼ O(

√
N),

we find that the density of states is

dJL,JR = e2π
√

cs
6

[N−γ+(J+)|J+|−γ−(J−)|J−|] when (J+, J−) ∼ O(
√
N). (A.31)

We have used time-reversal invariance to fix µ± = γ± sign(J±) for some 0 < γ± < 1, but the

γ±(J±) must be determined numerically by inverting the transcendental relation (A.28).

We will now quantify the error in our computation of χ in (3.16) caused by our use of (A.30)

over the whole range of JL/R.18

We should have used (A.31) instead of (A.30) in the appropriate region of the integral

in (3.16) when we computed χ. Consider the fractional error we made in computing χ,

∆χ

χ
=

∫ N
−N dJ+ dJ−

[
e2π
√

cs
6

[N−γ+(J+)|J+|−γ−(J−)|J−|] − e2π
√

cs
6

(N−|J+|−|J−|)
] (
J2
L + J2

R

)
∫ N
−N dJ+ dJ− e

2π
√

cs
6

(N−|J+|−|J−|) (J2
L + J2

R

) .

(A.32)

To be complete we have integrated over the entire range of J±, though the contribution from

J± ∼ O(N) vanishes since (A.30) approaches (A.31) in that regime. Our conclusion in the

main text that α ∼ O(c0) will hold true so long as the fractional error does not scale with N .

We will analyze the simpler quantity

ε(m) ≡

∫m√N
0 dJ+

[
e
√
N−γ+(J+)|J+| − e

√
N−|J+|

]
J2

+∫ N
0 dJ+ e

√
N−|J+| J2

+

. (A.33)

18One might have worried about logarithmic corrections to the density of states, but they are subleading

compared to modifications of the form (A.31).
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Figure 5. Left: γ+(J+) for N = 1000. Right: ε(m) at large N .

This quantity misses contributions from |J+| > m
√
N but such contributions will be neg-

ligible when m is sufficiently large. Here γ+ ≡ µ+ sign(J+), obtained by inverting (A.18),

is plotted in the left panel of figure 5. In the large-N limit and for sufficiently large m, ε

is equal to the fractional error (A.32) up to an overall O(1) multiplicative factor (see the

remarks in footnote 9).

In the right panel of figure 5 we plot ε(m) numerically for several different values of N .

There are two salient features. The first is the rapid convergence in m to an asymptotic

value ε?: we do not need to take m very large in order to obtain a good approximation

of ∆χ/χ, once the O(1) multiplicative factor is restored. This follows from the fact that

γ+ is monotonic and approaches 1 quite rapidly above J+ ∼ O(
√
N). The second feature

is the crucial one: convergence ε? → 0.1249 at large N . This leads to our conclusion that

α ∼ O(c0).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] X. Dong, D. Harlow and A.C. Wall, Reconstruction of bulk operators within the entanglement

wedge in gauge-gravity duality, Phys. Rev. Lett. 117 (2016) 021601 [arXiv:1601.05416]

[INSPIRE].

[2] T. Faulkner, R.G. Leigh, O. Parrikar and H. Wang, Modular Hamiltonians for deformed

half-spaces and the averaged null energy condition, JHEP 09 (2016) 038 [arXiv:1605.08072]

[INSPIRE].

[3] A.C. Wall, A proof of the generalized second law for rapidly-evolving Rindler horizons, Phys.

Rev. D 82 (2010) 124019 [arXiv:1007.1493] [INSPIRE].

[4] N. Lashkari, M.B. McDermott and M. Van Raamsdonk, Gravitational dynamics from

entanglement ‘thermodynamics’, JHEP 04 (2014) 195 [arXiv:1308.3716] [INSPIRE].

[5] D.D. Blanco, H. Casini, L.-Y. Hung and R.C. Myers, Relative entropy and holography, JHEP

08 (2013) 060 [arXiv:1305.3182] [INSPIRE].

– 18 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevLett.117.021601
https://arxiv.org/abs/1601.05416
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.05416
https://doi.org/10.1007/JHEP09(2016)038
https://arxiv.org/abs/1605.08072
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.08072
https://doi.org/10.1103/PhysRevD.82.124019
https://doi.org/10.1103/PhysRevD.82.124019
https://arxiv.org/abs/1007.1493
https://inspirehep.net/search?p=find+EPRINT+arXiv:1007.1493
https://doi.org/10.1007/JHEP04(2014)195
https://arxiv.org/abs/1308.3716
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.3716
https://doi.org/10.1007/JHEP08(2013)060
https://doi.org/10.1007/JHEP08(2013)060
https://arxiv.org/abs/1305.3182
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.3182


J
H
E
P
0
7
(
2
0
1
8
)
1
7
9

[6] T. Faulkner, M. Guica, T. Hartman, R.C. Myers and M. Van Raamsdonk, Gravitation from

entanglement in holographic CFTs, JHEP 03 (2014) 051 [arXiv:1312.7856] [INSPIRE].

[7] E. Hijano and P. Kraus, A new spin on entanglement entropy, JHEP 12 (2014) 041

[arXiv:1406.1804] [INSPIRE].

[8] T. Faulkner, F.M. Haehl, E. Hijano, O. Parrikar, C. Rabideau and M. Van Raamsdonk,

Nonlinear gravity from entanglement in conformal field theories, JHEP 08 (2017) 057

[arXiv:1705.03026] [INSPIRE].

[9] F.M. Haehl, E. Hijano, O. Parrikar and C. Rabideau, Higher curvature gravity from

entanglement in conformal field theories, Phys. Rev. Lett. 120 (2018) 201602

[arXiv:1712.06620] [INSPIRE].

[10] N. Lashkari, Modular Hamiltonian for excited states in conformal field theory, Phys. Rev.

Lett. 117 (2016) 041601 [arXiv:1508.03506] [INSPIRE].
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