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1 Introduction

Color-kinematic duality (BCJ duality), which was suggested by Bern Carrasco and Jo-

hansson [1, 2], provides a deep insight into the study of scattering amplitudes. According

to BCJ duality, full color-dressed Yang-Mills amplitudes are expressed by summing over

trivalent (Feynman-like) diagrams, each of which is associated with a color factor and a

kinematic factor (BCJ numerator) sharing the same algebraic properties (i.e., antisymme-

try and Jacobi identity). Once the color factors are replaced by BCJ numerators of another

copy Yang-Mills amplitude, we obtain a gravity amplitude.

A significant consequence of BCJ duality is that tree-level color-ordered Yang-Mills

amplitudes satisfy BCJ relations where the coefficients for amplitudes are functions of

Mandelstam variables. Together with the earlier proposed Kleiss-Kuijf [3] (KK) relations,

BCJ relations reduce the number of independent color-ordered Yang-Mills amplitudes to

(n−3)! (see the field theory proofs [4, 5] and string theory approaches [6, 7]). Though BCJ

relations are first discovered in Yang-Mills theory, they actually hold for amplitudes in many

other theories including: bi-scalar theory, NLSM [8], which can be uniformly described in

the framework of CHY formulation [9–12]. It was pointed out that fundamental BCJ

relation can be regarded as the most elementary one since the minimal basis [4] and a

set of more general BCJ relations [5, 6] are generated by them [13]. Nevertheless, in some

situations, one may encounter BCJ relations which have much more complicated forms than

knowns ones. Such relations can be neither directly understood as a result of fundamental

relations nor straightforwardly proved by Britto-Cachazo-Feng-Witten [14, 15] recursion or

CHY formula. Therefore, a new approach to nontrivial BCJ relations is required.

Apart from the BCJ relations for amplitudes, the construction of BCJ numerators in

various theories is also an important direction. In NLSM, there are three distinct construc-

tions of BCJ numerators, all of which are polynomial functions of Mandelstam variables.

(i) A construction based on off-shell extended BCJ relation (see [8]) was suggested by Fu

and one of the current authors [16] (DF). In DF approach, the set of half-ladder numer-

ators with the first and the last lines fixed (which serves as a basis of BCJ numerators)

are expressed by proper combinations of momentum kernels [17–22]. Since the off-shell ex-

tended BCJ relation [8] was proved by the use of Berends-Giele recursion (Feyman rules),

the DF type BCJ numerators can be essentially regarded as a result of Feyman rules. (ii)

A much more compact construction of BCJ numerators in NLSM, which was based on

Abelian Z theory, was provided by Carrasco, Mafra and Schlotterer (CMS) [23]. A half

ladder numerator of CMS type is elegantly expressed by only one momentum kernel. (iii)

In a more recent work [24], a graphic approach to polynomial BCJ numerators (DT type

numerator) in NLSM, which was based on CHY formula was proposed by Teng and one

current author. All the three distinct constructions given above must produce the same

scattering amplitudes in NLSM, but this equivalence is still not proven explicitly.

In this paper, we derive highly nontrivial generalized BCJ relations (gauge invariance

induced relations) by imposing gauge invariance conditions and CHY-inspired dimensional

reduction on the recent discovered graphic expansion of color-ordered Einstein-Yang-Mills

(EYM) amplitudes [24]. Expansion of EYM amplitudes was first proposed in [25] and fur-
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ther studied in [24, 26–32]. In the series work [24, 29, 31, 32], general recursive expansion

for all tree-level EYM amplitudes and the graphic expansion of EYM amplitudes in terms of

pure Yang-Mills ones were established. When gauge invariance condition for the so-called

fiducial graviton is imposed, the recursive expansion of EYM amplitudes induces relations

between those amplitudes with fewer gravitons. Equivalently, when the graphic expan-

sion [24] is considered, such gauge invariance induced relation implies a relation between

color ordered Yang-Mills amplitudes whose coefficients are functions of both momenta and

polarizations. To induce amplitude relations where all coefficients are functions of Mandel-

stam variables, one should convert all polarizations in the coefficients into momenta. In the

current paper, we propose gauge invariance induced relations based on the following two

crucial observations: (i) One can impose the gauge invariance conditions for several gravi-

tons simultaneously. (ii) The gauge invariance conditions are independent of dimensions.

With these two critical observations in hand and inspired by the dimensional reduction in

CHY formula [12], we define (d+d)-dimensional polarizations and momenta whose nonzero

components are expressed by only d-dimensional momenta. Imposing the gauge invariance

in (d + d) dimensions on the graphic expansion [24] of single-trace EYM amplitudes, we

naturally induce nontrivial amplitude relations where all coefficients are polynomials of

Mandelstam variables (in d dimensions). In the framework of CHY formula, such relations

become nontrivial relations between Parke-Taylor factors. As a consequence, the gauge in-

variance induced relations hold for not only color-ordered Yang-Mills amplitudes but also

color-ordered amplitudes in other theories such as bi-scalar theory and NLSM.

An interesting application of our gauge invariance induced relation is the proof of equiv-

alence between different approaches to NLSM amplitudes. Full color-dressed NLSM am-

plitudes can be spanned in terms of bi-scalar amplitudes via dual Del Duca-Dixon-Maltoni

(DDM) [33] decomposition (The dual DDM decomposition for Yang-Mills amplitudes are

given in [11, 22, 34–41], for NLSM amplitudes are provided in [8, 16, 23, 24]), in which

the coefficients are half-ladder BCJ numerators with fixing the first and the last lines. Al-

though the three distinct approaches: Feyman rules, Abelian Z theory and CHY formula

provide different types of half-ladder BCJ numerators, they must produce the same NLSM

amplitudes through the dual DDM decomposition. This equivalence condition then re-

quires nontrivial relations between color-ordered bi-scalar amplitudes. By using the gauge

invariance induced relations and defining partial momentum kernel, we prove that the three

distinct constructions of BCJ numerators produce the same NLSM amplitudes precisely. In

other words, the equivalence between the three different approaches to NLSM amplitudes

is explicitly proven. The relation between main results of this paper is provided as

gauge invariance

+

dimensional reduction

⇒ generalized BCJ (3.15) (1.1)

⇒

relation (5.3) ⇒ equivalence between CMS & DT

↗
↘

relation (5.4) ⇒ equivalence between DF & CMS

.
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The structure of this paper is given as follows. In section 2, we provide a review of the

background knowledge including CHY formula, the recursive expansion and the graphic

expansion of EYM amplitudes. In section 3, we induce generalized BCJ relations by com-

bining gauge invariance conditions and dimensional reduction. Partial momentum kernel,

which is important for the discussions in this paper, is introduced in section 3. A review

of the three distinct constructions of BCJ numerators in NLSM is provided in section 4.

In section 5, we prove the equivalence between CMS type and DT type numerators by in-

ducing identities expressed by partial momentum kernel. The proof of equivalence between

DF type and CMS type numerators is given in section 6. We summarized this paper in

section 7. Complicated graphs and proofs are included by appendices.

2 A review of CHY formula and the expansion of EYM amplitudes

In this section, we review the CHY formula [9–12, 42] for various theories and the recur-

sive/graphic expansion of EYM amplitudes which will be used in the coming sections.

2.1 CHY formula

CHY formula expresses a tree level on-shell amplitude with n massless particles by inte-

gration over n scattering variables zi

A =

∫
dΩCHYILIR, (2.1)

where dΩCHY is Möbius invariant measure which contains the condition that scattering

variables satisfy the following scattering equations∑
j 6=i

ki · kj
zi − zj

= 0, (i = 1, . . . , n). (2.2)

Here ki denotes the momenta of the particle i. The integrand ILIR in (2.1) relies on

theories. An important feature is that the CHY formula is independent of dimensions.

The CHY integrand for BS, YM, EYM and GR amplitudes. The CHY integrands

for color-ordered bi-scalar (BS), Yang-Mills (YM), single-trace EYM amplitudes (EYM) as

well as gravity (GR) amplitudes are given by1

IBS
L (σσσ1,n) = (−1)

(n+1)(n+2)
2 PT(σσσ1,n), IBS

R (ρρρ1,n) = (−1)
(n+1)(n+2)

2 PT(ρρρ1,n) (2.3)

IYM
L (σσσ1,n) = (−1)

(n+1)(n+2)
2 PT(σσσ1,n), IYM

R = Pf ′[Ψ] (2.4)

IEYM
L (σσσ1,r) = (−1)

(n+1)(n+2)+s(s+1)
2 PT(σσσ1,r)Pf[ΨH], IEYM

R = Pf ′[Ψ] (2.5)

IGR
R = Pf ′[Ψ], IGR

R = Pf ′[Ψ]. (2.6)

In (2.3) and (2.4), the boldface Greek letters σσσ1,n and ρρρ1,n denote permutations of all n

external particles 1, 2, . . . , n. The Parke-Taylor factor PT(σσσ1,n) is defined by

PT(σσσ1,n) =
1

zσ(1)σ(2)zσ(2)σ(3) . . . zσ(n)σ(1)
, zij ≡ zi − zj . (2.7)

1The total signs follows from the paper [31].
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The reduced Pfaffian Pf ′[Ψ] in (2.4), (2.5) and (2.6) is given by

Pf ′ [Ψ] ≡ (−1)i+j

zij
Pf
[
Ψi,j
i,j

]
, Ψ =

(
A −CT

C B

)
, (2.8)

where Ψi,j
i,j means that the i, j-th (1 ≤ i, j ≤ n) rows and columns are removed. Building

blocks of the 2n× 2n-skew matrix Ψ are

Aab =

{
ka·kb
zab

a 6= b

0 a = b
Bab =

{
εa·εb
zab

a 6= b

0 a = b
Cab =

{ εa·kb
zab

a 6= b

−
∑
c 6=a

εa·kc
zac

a = b , (2.9)

in which ka and εa are momentum and polarization of the particle a. In the CHY expression

of single-trace EYM amplitude (2.5), PT(σσσ1,r) denotes the Parke-Taylor factor for r gluons

with the order σ(1), σ(2), . . . , σ(r). The matrix ΨH is the one obtained by removing those

rows and columns with respect to gluons in Ψ.

The CHY integrand for NLSM amplitudes. The CHY integrands for color-ordered

NLSM amplitudes are obtained by dimensional reduction strategy [12]. In particular,

INLSM
L has the same expression with IYM

L , while INLSM
R is obtained by extending IYM

R to

(d+ d+ d)-dimensions and defining momenta and polarizations as follows:

Ka = (ka; 0; 0) Ea =

{
(0; 0; ea) a = 1 and n

(0; εa; 0) a = 2 . . . n− 1
, (2.10)

with e1 · en = 1. The matrix Ψ(d+d+d) is thus written as

Ψ(d+d+d) =

(
A −CT

C B

)
, (2.11)

where the A, B, C are defined via replacing the polarizations and momenta in (2.9) by the

(d+d+d)-dimensional ones E and K correspondingly. With the explicit components given

in (2.10), we immediately arrive C = 0, A = A and B = B. As a consequence, the reduced

Pfaffian Pf ′
[
Ψ(d+d+d)

]
is factorized into:

Pf ′
[
Ψ(d+d+d)

]
= Pf ′(A)Pf(B) =

(−1)n+1

σ1n
Pf ′(A) Pf(B1,n

1,n) . (2.12)

By a further replacement εa → ka, we reduce Pf ′
[
Ψ(d+d+d)

]
to the final expression of the

NLSM integrand INLSM
R

Pf ′
[
Ψ(d+d+d)

]∣∣∣
εa→ka

=
[
Pf ′(A)

]2
= INLSM

R . (2.13)

To sum up, NLSM amplitudes are obtained by performing the following replacements

on Yang-Mills amplitudes

εa · kb → 0

εa · εb →


ka · kb {a, b} ⊂ {2 . . . n− 1}
1 {a, b} = {1, n}
0 a ∈ {1, n} and b ∈ {2 . . . n− 1} , or vice versa

(2.14)
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2.2 Expansions of EYM amplitudes

Tree level color-ordered EYM amplitude can be expressed recursively by ones with fewer

gravitons and/or fewer traces. One can repeat this expansion until all amplitudes become

pure Yang-Mills ones, then the expansion coefficients are constructed by graphic rules. Now

we review the expansions of single-trace EYM amplitudes. The expansions of multi-trace

amplitudes can be found in [32].

The recursive expansion of single-trace EYM amplitudes. Single-trace EYM am-

plitude A(1, 2, . . . , r‖H) with r gluons and s gravitons was shown to satisfy the following

recursive expansion [29]

A(1, 2, . . . , r‖H) =
∑
hhh| h̃

Chi(hhh)A(1, {2, . . . , r − 1} {hhh, hi}, r‖ h̃). (2.15)

In the above equation, we choose a fiducial graviton hi ∈ H. The summation notation

stands for the sum over all possible splittings of the graviton set H \ hi → hhh| h̃ and sum

over all permutations of elements in hhh for a given splitting. For example, if we have three

gravitons H = {h1, h2, h3} and choose h3 as the fiducial graviton, then hhh| h̃ implies the

following five terms

H \ {h3} → ∅ | {h1, h2};
H \ {h3} → {h1} | {h2}; H \ {h3} → {h2} | {h1};
H \ {h3} → {h1, h2} | ∅; H \ {h3} → {h2, h1} | ∅. (2.16)

Assuming the permutation of elements of given hhh is {i1, i2, . . . , ij}, the coefficient Chi(hhh)

is defined by

Chi(hhh1) ≡ εhi · Fij · Fij−1 · · · · · Fi1 · Yi1 , (2.17)

where Fµνa is the linearized field strength of particle a

Fµνa ≡ kµa ενa − εµakνa (2.18)

and Yi1 denotes the sum of all momenta of gluons in the original gluon set which appear on

the left hand side of i1. An explicit example is given by the expansion of the single-trace

EYM amplitude A(1, 2, . . . , r‖h1, h2, h3) with r gluons and three gravitons. By choosing

h3 as the fiducial graviton and summing over the five terms in (2.16), we finally express

the single-trace EYM amplitude with three gravitons by those amplitudes with two, one

and no graviton:

A(1, 2, . . . , r‖h1, h2, h3) = (εh3 · Yh3)A(1, {2, . . . , r − 1} {h3}, r‖h1, h2) (2.19)

+(εh3 · Fh1 · Yh1)A(1, {2, . . . , r − 1} {h1, h3}, r‖h2)
+(εh3 · Fh2 · Yh2)A(1, {2, . . . , r − 1} {h2, h3}, r‖h1)
+(εh3 · Fh1 · Fh2 · Yh2)A(1, {2, . . . , r − 1} {h2, h1, h3}, r)
+(εh3 · Fh2 · Fh1 · Yh1)A(1, {2, . . . , r − 1} {h1, h2, h3}, r).
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Graphic rule for the pure Yang-Mills expansion of single-trace EYM ampli-

tudes. Applying the recursive expansion (2.15) repeatedly until there is no graviton re-

maining in the graviton set, we finally expand the single-trace EYM amplitude in terms of

color-ordered Yang-Mills amplitudes

A(1, 2, . . . , r‖H) =
∑

σσσ∈{2,...,r−1} permsH

C(1,σσσ, r)A(1,σσσ, r). (2.20)

Here, we summed over all possible permutations obtained by merging together the original

gluon set {2, . . . , r−1} and the set of gluons (‘half gravitons’) which come from the graviton

set H. The relative order of gluons should be preserved, while the ‘perms’ under the summa-

tion notation means that all possible relative orders of elements in H should be considered.

Given order σσσ, the full coefficient C(1,σσσ, r) can be determined by the following graphic rule.2

Graphic rule for the expansion of EYM amplitudes.

(1) Define a reference order ρρρ of gravitons, then all gravitons are arranged into an ordered

set

R = {hρ(1), hρ(2), . . . , hρ(s)}. (2.21)

(2) Pick the last graviton hρ(s) in the ordered set R, an arbitrary gluon l ∈
{1, 2, . . . , r − 1} (noting that the gluon r is not considered here) as well as gravi-

tons hi1 , hi2 , . . . , hij ∈ H s.t. the relative order of them in σσσ satisfies3 σ−1(l) <

σ−1(hi1) < σ−1(hi2) < . . . σ−1(hij ) < σ−1(hρ(s)). Now consider each particle in the

set {l, hi1 , hi2 , . . . , hij , hρ(s)} as a node, we define a chain starting from the node hρ(s)
and ending at the node l. The graviton hρ(s) here is mentioned as a the starting point

of this chain, while the gluon l is mentioned as a root. All other gravitons on this

chain are mentioned as internal nodes of this chain. The factor associated to this

chain is

εhρ(s) · Fhij · Fhij−1
· · · · · Fhi1 · kl. (2.22)

Remove hi1 , hi2 , . . . , hij , hρ(s) from the ordered set R and redefine R

R→ R ′ = R \ {hi1 , hi2 , . . . , hij , hρ(s)}. (2.23)

(3) Picking l′ ∈ {1, 2, . . . , r−1}∪{hi1 , hi2 , . . . , hij , hρ(s)}, the last element hρ′(s′) in R ′ as

well as gravitons hi′1 , hi′2 , . . . , hi′
j′

in R ′ s.t., σ−1(l′) < σ−1(hi′1) < σ−1(hi′2) < · · · <
σ−1(hi′

j′
) < σ−1(hρ′(s′)), we define a chain {l′, hi′1 , hi′2 , . . . , hi′j′ , hρ(s′)} starting from

hρ(s′) and ending at l′. This chain is associated with a factor

εhρ′(s′) · Fhi′
j′
· Fhi′

j′−1

· · · · · Fhi′1 · kl
′ . (2.24)

Remove hi′1 ,hi′2 , . . . , hi′
j′

, hρ′(s′) from R ′ and redefine R → R ′′ = R′ \
{hi′1 , hi′2 , . . . , hi′j′ , hρ′(s′)}.

2The interpretation of this rule is different from that given in [24], for the convenience of discussions in

the coming sections.
3In this paper, element in the i-th position of permutation σσσ is denoted by σ(i). If σ(i) = a, the position

of a in this permutation is denoted by i = σ−1(a).
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(4) Repeating the above steps until the ordered set R becomes empty, we get a graph

(‘forest’) with gluons as roots of trees.4 For a given graph F , the product of the

factors accompanied to all chains produces a term C[F ](σσσ) in the coefficient C(1,σσσ, r)
in (2.20). Thus the final expression of C(1,σσσ, r) is given by summing over all possible

graphs defined above

C(1,σσσ, r) =
∑

F∈{Graphs}

C[F ](1,σσσ, r). (2.25)

The expansions of Pfaffians in the CHY formula of single-trace EYM ampli-

tudes. It is worth closing this section by translating the expansions (2.15), (2.20) of

EYM amplitudes into the language of CHY formulation (see [31]). In CHY formulation,

the recursive expansion (2.15) reflects

(−1)
s(s+1)

2 PT(1, 2, . . . , r)Pf [ΨH] =
∑
hhh| h̃

(−1)
|h̃|(|h̃|+1)

2 Ch1
(hhh)PT(1, {2, . . . , r − 1} {hhh, h1}, r)Pf

[
Ψh̃

]
,

(2.26)

where r and s are the numbers of gluons and gravitons respectively, |h̃| denotes the number

of elements in the set h̃. The pure Yang-Mills expansion (2.20) implies

(−1)
s(s+1)

2 PT(1, 2, . . . , r)Pf [ΨH] =
∑

σσσ∈{2,...,r−1} permsH

C(1,σσσ, r)PT(1,σσσ, r). (2.27)

The expansion coefficients Ch1(hhh) and C(1,σσσ, r) in (2.26) and (2.27) are given by (2.17)

and (2.25) respectively. We emphasize that the relations (2.26) and (2.27) hold for arbitrary

dimensions.

3 Gauge invariance induced relations

In this section, we induce nontrivial generalized BCJ relations for color-ordered Yang-Mills

amplitudes (also bi-scalar amplitudes and color-ordered NLSM amplitudes) by combining

gauge invariance conditions with CHY inspired dimensional reductions. The coefficients

of amplitudes in the gauge invariance induced relations are polynomials of Mandelstam

variables.

3.1 Inducing generalized BCJ relations by gauge invariance and dimensional

reduction

In the pure Yang-Mills expansion (2.20) of EYM amplitude A(1, 2, . . . , r‖H), each term

C[F ](1,σσσ, r) (see (2.25)) of the expansion coefficient C(1,σσσ, r) is expressed as a product of

Lorentz invariants ε · k, ε · ε and k · k and constructed by the grapic rule in section 2.2.

The gauge invariance states that the amplitude A(1, 2, . . . , r‖H) has to vanish under the

replacement εh → kh for any given graviton h ∈ H. Hence, a relation for pure Yang-Mills

amplitudes [29] follows

0 =
∑

σ∈{2,...,r−1} permsH

C(1,σσσ, r)
∣∣∣
εh→kh

A(1,σσσ, r). (3.1)

4Note that a starting point of a chain is not necessary a leaf of a tree.
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For a given graph in the expansion of C(1,σσσ, r), the graviton h can be either an internal

node or a starting point of a chain. In the former case, the gauge invariance condition

is naturally encoded by Fµνh |εh→kh = 0, thus this contribution has to vanish. The only

nontrivial contributions are those graphs in which the graviton h plays as the starting

point of a chain. The gauge invariance condition is then reduced to

0 =
∑

σ∈{2,...,r−1} permsH

∑
F∈GσσσH [h]

C[F ](1,σσσ, r)
∣∣∣
εh→kh

A(1,σσσ, r), (3.2)

where GσσσH[h] denotes the set of graphs for permutation σσσ, where h plays as starting point of

a chain. As shown by examples in [29, 32] ( similar discussions on the gauge invariance rela-

tions can be found in [25, 26, 30, 43–45]), (3.2) is generated by known BCJ relations, thus it

is not new relation beyond known BCJ relations. Nevertheless, a systematical study on the

connection between (3.2) and the standard KK and BCJ relations still deserves future work.

Coefficients in the relation (3.2) still contain polarizations. To induce a relation where

coefficients are only functions of Mandelstam variables sij = ki · kj , we should ‘turn’ all

polarizations in the expansion of coefficients to momenta. One reasonable approach to

realize this point is combining gauge invariance conditions with dimensional reduction

inspired by CHY formulation. Our discussion is based on the following crucial observations:

(1) Gauge invariance conditions for more than one graviton can be imposed simulta-

neously. This can be understood from two different aspects. (i) Since the pure

Yang-Mills expansion (2.20) is obtained by applying the recursive expansion (2.15)

repeatedly, we can take gauge invariance condition for (2.15) instead. If we replace

εha by kha for more than one graviton ha ∈ A ⊆ H (A consists of at least two gravi-

tons) on the r.h.s. of (2.15), there is at most one graviton plays as the fiducial one.

The polarizations of the rest of the gravitons belonging to A are contained by either

Fµν or an EYM amplitude with fewer gravitons. When replacing εha by kha for all

ha ∈ A on the r.h.s. of (2.15), every term has to vanish due to the antisymmetry of

Fµν or/and the gauge invariance condition for EYM amplitudes with fewer gravitons

(as an inductive assumption). (ii) In the language of CHY formula (2.1), polar-

izations are packaged into (reduced) Pffafians. When the replacement εh → kh for

a given graviton h ∈ H is imposed, the ΨH matrix becomes degenerate because two

rows/columns coincide with each other (Noting the diagonal entry Chaha for C matrix

vanishes due to scattering equation (2.2)) as shown by the left matrix in the following

· · · · · · · · · · · · · · · · · ·
· · · kha ·khbzhahb

· · · · · · kha ·εhbzhahb
· · ·

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · kha ·khbzhahb

· · · · · · kha ·εhbzhahb
. . .

· · · · · · · · · · · · · · · · · ·


→



· · · · · · · · · · · · · · · · · ·
· · · kha ·khbzhahb

· · · · · · kha ·khbzhahb
· · ·

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · kha ·khbzhahb

· · · · · · kha ·khbzhahb
. . .

· · · · · · · · · · · · · · · · · ·


. (3.3)

If we take gauge invariance conditions for more than one graviton, e.g. ha and hb,

the matrix Ψ is also degenerate for the same reason (see the right matrix in (3.3)),

thus the Pfaffian has to vanish.
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(2) The gauge invariance conditions are independent of dimensions. This is because the

statements (i) and (ii) in (1) hold for arbitrary dimension space.

Having (1) and (2), we can conveniently carry on our discussions in the framework of

CHY formula. The recursive and graphic expansions for amplitude reflect corresponding

relations for Pfaffians (2.26) and (2.27). Since CHY formula does not depend on the

dimension of space, we can extend the Pfaffian Pf [ΨH] in the graphic expansion (2.27)

to (d + d)-dimensions by defining (d + d)-dimensional polarizations Eha (all ha ∈ H) and

(d+ d)-dimensional momenta Ki for all external particles, so that

Eha · Kha = 0, (for all ha ∈ H); Ki · Ki = 0 (for all particles i);
r+s∑
i=1

Ki = 0 (3.4)

are satisfied. According to our observations (1) and (2), the Pfaffian Pf [ΨH] in (d+ d) di-

mensions on the l.h.s. of (2.27) must vanish under the replacement Eha → Kha for all ha ∈ A

where A is a nonempty subset of H. Consequently, the r.h.s. of the graphic expansion (2.27)

in d+ d dimensions has to vanish when Eha are replaced by Kha for all ha ∈ A ⊆ H:

0 =
∑

σσσ∈{2,...,r−1} permsH

C(1,σσσ, r)
∣∣∣ Eha→Kha
for all ha∈A

PT(1,σσσ, r). (3.5)

Once the coefficients C(1,σσσ, r) in the above equation are expressed by graphs (see eq. (2.25))

and the gauge invariance conditions are imposed, a chain in which any ha ∈ A ⊆ H plays

as an internal node vanishes due to the antisymmetry of the (d+ d) dimensional strength

tensor FUV
ha
≡ KUhaE

V
ha
−KVhaE

U
ha

. Thus only those graphs where all ha ∈ A play as starting

points of chains survive. The relation (3.5) then turns to

0 =
∑

σσσ∈{2,...,r−1} permsH

[ ∑
F∈GσσσH [A]

C[F ](1,σσσ, r)
∣∣∣ Eha→Kha
for all ha∈A

]
PT(1,σσσ, r). (3.6)

Here, GσσσH[A] denotes the set of graphs corresponding to the permutation σσσ, where all ele-

ments in the nonempty subset A play as starting points of chains (Note that other elements

in H may also be starting points of chains).

The equation (3.6) does not rely on details of (d+ d)-dimensional polarizations E and

momenta K, only the conditions (3.4) are required. Thus, we can assign details of polariza-

tions and momenta in (d+ d) dimensions appropriately s.t. (3.4) is satisfied. A reasonable

definition inspired by the dimensional reduction strategy (see (2.10)) in the CHY formula is

Ki = (ki; 0), (for all external particles); Eha = (0; kha), ha ∈ H (3.7)

which satisfies (3.4). With this assignment, the coefficients in the gauge invariance con-

dition (3.6) become polynomial functions of Mandelstam variables. When the coefficients

C(1,σσσ, r) in (d+ d) dimensions are expressed by the graphic rules and Eha in C(1,σσσ, r) are

replaced by Kha (ha ∈ A ⊆ H), chains in the graphs are classified into two types:
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(i) Type-1 Chains started by (d+ d)-dimensional polarizations Ea (a ∈ H \ A) have the

general form

Ea · Fhij
· Fhij−1

. . .Fhi1
· Kb. (3.8)

A chain of this type has to vanish if its length is odd, because we cannot avoid a factor

of the form Ei·Kj which is zero in the definition (3.7). Thus the length of nonvanishing

type-1 chains must be even. When plugging the components (3.7) into an even-length

chain of type-1, we get a chain expressed by d-dimensional Mandelstam variables

sahij shijhij−1
. . . shi1b (3.9)

associated with a factor (−1)
j+1
2 , where j is odd. Since the length L of this chain is

j + 1, the prefactor can be given by (−1)
L
2 .

(ii) Type-2 Chains started by (d+ d)-dimensional momenta Ka have the general form

Ka · Fhij
· Fhij−1

. . .Fhi1
· Kb. (3.10)

A chain of this type vanishes if its length is even, for an even-length type-2 chain

must contain a vanishing factor of the form Ei · Kj . Thus the length of nonvanishing

type-2 chains are odd. Inserting the choice of (d + d)-dimensional polarizations and

momenta (3.7) into an odd-length chain of this type, we arrive

sahij shijhij−1
. . . shi1b (3.11)

associated with a factor (−1)
j
2 , where j is even. The prefactor for this chain is further

expressed by the length L of the chain as (−1)
L−1
2 .

Collecting all nonzero chains together, we induce the following relation for PT factors in d

dimensions from the (d+ d)-dimensional gauge invariance condition (3.5):

0 =
∑

σ∈{2,...,r−1} permsH

∑
F∈G′σσσH [A]

D[F ](1,σσσ, r)PT(1,σσσ, r). (3.12)

Here, G′σσσH [A] denotes the set of graphs (constructed by the same rule in section 2.2) where all

elements in A ⊆ H (A 6= ∅) play as starting points of all odd-length chains. Possible chains

of even length must be started by elements in H\A. For a given permutation σσσ and a given

graph F ∈ G′σσσH [A], D[F ](1,σσσ, r) is obtained by associating chains with factors of the form

sahij shijhij−1
. . . shi1b, (3.13)

in which a and b are the starting points and ending points of a chain, while hi1 , . . . , hij are

internal nodes of this chain. Note that the prefactors of all chains in any given graph in

G′σσσH [A] together produce a same total factor (−1)
s
2
− 1

2
No , where s is the number of elements

in the set H and equal to the total length of all chains, No denotes the number of odd-length

chains and is equal to the order of the set A. The total factor thus does not appear in the

equation (3.12).
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Figure 1. All possible graphs with H = {h1, h2} and reference order R = {h1, h2}. Graphs (a) and

(b) correspond to the permutations {2, . . . , r − 1} {h1, h2}, while graphs (a) and (b) correspond

to the permutations {2, . . . , r − 1} {h2, h1}.

To translate the gauge invariance induced relation (3.12) for Parke-Taylor factors into

amplitude relation, we consider the expression∑
σσσ∈{2,...,r−1} permsH

∑
F∈G′σσσH [A]

(−1)
(n+1)(n+2)

2

∫
dΩCHYD[F ](1,σσσ, r)PT(1,σσσ, r)IR, (3.14)

where IR can be IBS
R , IYM

R or INLSM
R in (2.3), (2.4) or (2.13) correspondingly. Since the

coefficients D[F ](1,σσσ, r) are independent of the scattering variables, it can be moved outside

the integration. The relation for Parke-Taylor factors (3.12) then gives the following gauge

invariance induced amplitude relations

0 =
∑

σσσ∈{2,...,r−1} permsH

∑
F∈G′σσσH [A]

D[F ](1,σσσ, r)A(1,σσσ, r), (3.15)

for any nonempty A (A ⊆ H).

3.2 Examples for the gauge invariance induced relation (3.15)

Now let us present several examples of the gauge invariance induced amplitude rela-

tion (3.15).

3.2.1 H = {h1, h2}

The first example is given by H = {h1, h2}. If the reference order is fixed as R = {h1, h2},
all graphs given by the graphic rule in section 2.2 are displayed in figure 1. The graphs (a),

(b) in figure 1 contribute to permutations {2, . . . , r−1} {h1, h2}, while (c), (d) contribute

to the relative order {2, . . . , r − 1} {h2, h1}.
In the gauge invariance induced relation (3.15), the nonempty subset A cannot contain

only one element because the total length of all chains is an even number 2. If A contains

for example h1, i.e., there is an odd-length chain started by h1, we must have another odd-

length chain started by h2 so that the total length of all chains is even. Thus the nonempty

subset A of H can only be chosen as {h1, h2} while h1 and h2 are starting points of two
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length-1 chains in this example. The graph (b) which contains a length-2 chain does not

appear in our gauge invariance induced relation. The relation (3.15) for A = {h1, h2} reads

0 =
∑
σσσ

sh2Xh2sh1Xh1A(1,σσσ ∈ {2, . . . , r − 1} {h1, h2}, r)

+
∑
σσσ

sh2Xh2 (sh1Xh1 + sh1h2)A(1,σσσ ∈ {2, . . . , r − 1} {h2, h1}, r), (3.16)

where saXa ≡
∑

i∈{1,2,...,r−1}
s.t.σ−1(i)<σ−1(a)

sai. This relation is in agreement with a fundamental BCJ

relation.

3.2.2 H = {h1, h2, h3}

We consider the examples with H = {h1, h2, h3}. For the reference order R = {h1, h2, h3},
all possible graphs constructed by the graphic rules are provided by figure 2 in appendix A.

For any graph, the total length of all chains must be 3. As a result, the nonempty subset A

in the relation (3.15) can only contain odd number of elements, i.e., A can be {h1}, {h2},
{h3} or {h1, h2, h3}.

A = {h1}. If A contains only one element h1. Then h1 must leads to a length-1 chain

while h3 must leads to a length-2 chain sh3h2sh2a with an internal node h2. Among the

graphs in figure 2, only (a5) (for the relative order {h1, h2, h3}), (c3), (c4) (for the relative

order {h2, h1, h3}) and (d2), (d4), (d6) (for the relative order {h2, h3, h1}) contribute. Hence

the relation for A = {h1} is

0 =
∑
σσσ

sh1Xh1sh3h2sh2Xh2A(1,σσσ ∈ {2, . . . , r − 1} {h1, h2, h3}, r) (3.17)

+
∑
σσσ

(sh1Xh1 + sh1h2)sh3h2sh2Xh2A(1,σσσ ∈ {2, . . . , r − 1} {h2, h1, h3}, r)

+
∑
σσσ

(sh1Xh1 + sh1h2 + sh1h3)sh3h2sh2Xh2A(1,σσσ ∈ {2, . . . , r − 1} {h2, h3, h1}, r).

This relation is consistent with a fundamental BCJ relation.

A = {h2}. If A = {h2}, h2 must be the starting point of a length-1 chain under the choice

of reference order R = {h1, h2, h3}, while h3 must start a length-2 chain with the internal

node h1. The graphs (a3), (a4), (b2), (b4), (b6) and (c5) have nonvanishing contributions

and the relation (3.15) gives

0 =
∑
σσσ

sh2Xh2sh3h1sh1Xh1A(1,σσσ ∈ {2, . . . , r − 1} {h2, h1, h3}, r) (3.18)

+
∑
σσσ

(sh2Xh2 + sh2h1)sh3h1sh1Xh1A(1,σσσ ∈ {2, . . . , r − 1} {h1, h2, h3}, r)

+
∑
σσσ

(sh2Xh2 + sh2h1 + sh2h3)sh3h1sh1Xh1A(1,σσσ ∈ {2, . . . , r − 1} {h1, h3, h2}, r).

Again, the vanish of r.h.s. can be considered as a result of fundamental BCJ relation.
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A = {h3}. If A = {h3}, the element h3 can start either a length-3 chain or a length-1

chain. In the former case, both h1 and h2 must be internal nodes of the length-3 chain ((a6)

and (c6) in figure 2), while in the latter case h2 must start a length-2 chain with h1 as the

internal node ((a2), (b3), (e5) and (e6) in figure 2). All together, the relation (3.15) turns to

0 =
∑
σσσ

(sh3h2sh2h1sh1Xh1 + sh3Xh3sh2h1sh1Xh1 )A(1,σσσ ∈ {2, . . . , r − 1} {h1, h2, h3}, r)

+
∑
σσσ

sh3h1sh1h2sh2Xh2A(1,σσσ ∈ {2, . . . , r − 1} {h2, h1, h3}, r)

+
∑
σσσ

sh3Xh3sh2h1sh1Xh1A(1,σσσ ∈ {2, . . . , r − 1} {h1, h3, h2}, r) (3.19)

+
∑
σσσ

sh3Xh3sh2h1(sh1Xh1 + sh1h3)A(1,σσσ ∈ {2, . . . , r − 1} {h3, h1, h2}, r),

which is not as trivial as previous examples. One can check this identity by expanding all

amplitudes in terms of BCJ basis amplitudes.

A = {h1, h2, h3}. Now we consider the case A = {h1, h2, h3}, for which all elements in

H play as starting points of odd-length chains. The only possibility is that all chains are

of length 1. The relation (3.15) then gives rise

0 =
∑
σσσ

sh1Xh1
sh2Xh2

sh3Xh3
A(1,σσσ ∈{2, . . . , r−1} {h1,h2,h3}, r) (3.20)

+
∑
σσσ

(sh1Xh1
+sh1h2

)sh2Xh2
sh3Xh3

A(1,σσσ ∈{2, . . . , r−1} {h2,h1,h3}, r)

+
∑
σσσ

(sh1Xh1
+sh1h2

+sh1h3
)sh2Xh2

sh3Xh3
A(1,σσσ ∈{2, . . . , r−1} {h2,h3,h1}, r)

+
∑
σσσ

sh1Xh1
(sh2Xh2

+sh2h3
)sh3Xh3

A(1,σσσ ∈{2, . . . , r−1} {h1,h3,h2}, r)

+
∑
σσσ

(sh1Xh1
+sh1h3)(sh2Xh2

+sh2h3)sh3Xh3
A(1,σσσ ∈{2, . . . , r−1} {h3,h1,h2}, r)

+
∑
σσσ

(sh1Xh1
+sh1h3

+sh1h2
)(sh2Xh2

+sh2h3
)sh3Xh3

A(1,σσσ ∈{2, . . . , r−1} {h3,h2,h1}, r).

The r.h.s. of the above relation gets contributions from eighteen graphs (a1), (b1), (b5),

(c1), (c2), (d1), (d3), (d5), (e1), (e2), (e3), (e4), (f1), (f2), (f3), (f4), (f5) and (f6).

Both the sum of the first three rows and the sum of the last three rows vanish due to

fundamental BCJ relation.

3.2.3 H = {h1, h2, h3, h4}

We consider a much more nontrivial case with H = {h1, h2, h3, h4} as the last example.

The nonempty subset in (3.15) is chosen as A = {h3, h4} and the reference order is chosen

as R = {h1, h2, h3, h4}. If h4 (h3) is starting point of a length-3 chain, h3 (h4) must

be starting point of a length-1 chain. Such graphs contain only two chains; if both h4
and h3 are starting points of length-1 chains, we must also have an length-2 chain of the

form sh2h1sh1Yh1 . The coefficients for all possible permutations are displayed as follows
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({h1h2h3h4} is used to denote the permutation 1, {2, . . . , r − 1} {h1, h2, h3, h4}, r for

short)

{h3h1h2h4}:sh4h2sh2h1sh1Xh1
sh3Xh3

+sh4Xh4
sh3Xh3

sh2h1(sh1Xh1
+sh1h3),

{h1h3h2h4}:sh4h2sh2h1sh1Xh1
(sh3Xh3

+sh3h1)+sh4Xh4
sh3Xh3

sh2h1sh1Xh1
,

{h1h2h3h4}:sh4h2sh2h1sh1Xh1
(sh3Xh3

+sh3h1+sh3h2)+sh4Xh4
(sh3Xh3

+sh3h2)sh2h1sh1Xh1
,

{h1h2h4h3}:sh4h2sh2h1sh1Xh1
(sh3Xh3

+sh3h1+sh3h2+sh3h4)+sh4Xh4
(sh3Xh3

+sh3h2+sh3h4)sh2h1sh1Xh1
,

{h3h1h4h2}:sh4Xh4
sh3Xh3

sh2h1(sh1Xh1
+sh1h3), {h1h3h4h2}:sh4Xh4

sh3Xh3
sh2h1sh1Xh1

,

{h1h4h3h2}:sh4Xh4
(sh3Xh3

+sh3h4)sh2h1sh1Xh1
, {h1h4h2h3}:sh4Xh4

(sh3Xh3
+sh3h4+sh3h2)sh2h1sh1Xh1

,

{h3h4h1h2}:sh4Xh4
sh3Xh3

sh2h1(sh1Xh1
+sh1h3+sh1h4),

{h4h3h1h2}:sh4Xh4
(sh3Xh3

+sh3h4)sh2h1(sh1Xh1
+sh1h3+sh1h4),

{h4h1h3h2}:sh4Xh4
(sh3Xh3

+sh3h4)sh2h1(sh1Xh1
+sh1h4),

{h4h1h2h3}:sh4Xh4
(sh3Xh3

+sh3h4+sh3h2)sh2h1sh1Xh1
,

{h3h2h1h4}:sh4h1sh1h2sh2Xh2
sh3Xh3

, {h2h3h1h4}:sh4h1sh1h2sh2Xh2
(sh3Xh3

+sh3h2),

{h2h1h3h4}:sh4h1sh1h2sh2Xh2
(sh3Xh3

+sh3h2+sh3h1)+sh4Xh4
sh3h1sh1h2sh2Xh2

,

{h2h1h4h3}:sh4h1sh1h2sh2Xh2
(sh3Xh3

+sh3h2+sh3h1+sh3h4)+sh4Xh4
sh3h1sh1h2sh2Xh2

{h2h4h1h3}:sh4Xh4
sh3h1sh1h2sh2Xh2

, {h4h2h1h3}:sh4Xh4
sh3h1sh1h2(sh2Xh2

+sh2h4). (3.21)

3.3 The boundary case A = H and partial momentum kernel

When we set A = H, every graph in the gauge invariance induced relation (3.15) only

contains length-1 chains (as shown by examples (3.16) and (3.20)). Then the relation (3.15)

becomes

0 =
∑

σσσ∈{2,...,r−1} permsH

∑
F∈G′σσσH [H]

D[F ](1,σσσ, r)A(1,σσσ, r). (3.22)

Assuming that the reference order is R =
{
hρ(1), hρ(2), . . . , hρ(s)

}
, let us analyze the coeffi-

cients in the above equation in more detail. A length-1 chain started by hρ(s) can end at any

gluon ls ∈ {1, . . . , r − 1} s.t. σ−1(ls) < σ−1(hρ(s)) and is associated with a factor shρ(s)ls .

A length-1 chain started by hρ(s−1) can end at any element ls−1 ∈ {1, . . . , r − 1} ∪ {hρ(s)}
s.t., σ−1(ls−1) < σ−1(hρ(s−1)) and is associated with a factor shρ(s−1)ls−1 . This observation

can be extended to arbitrary case: a length-1 chain started by hρ(i) in (3.22) can end at

any li ∈ {1, . . . , r − 1} ∪ {hρ(i+1), . . . , hρ(s)} s.t., σ−1(li) < σ−1(hρ(i)). The coefficient for

given permutation σσσ then reads∑
F∈G′σσσH [H]

D[F ](1,σσσ, r) =
∑

li∈{1,2,...,r−1}∪{hρ(i+1),...,hρ(s)}
s.t.σ−1(li)<σ

−1(hρ(i)) for all i=1,...,s

shρ(1)l1shρ(2)l2 . . . shρ(s)ls . (3.23)

An interesting observation is that we can reexpress the coefficient (3.23) by defining

‘partial momentum kernel’. Given two permutations σσσ and ρρρ of elements in {2, . . . ,m} and

a nonempty subset H of {2, . . . ,m}, the partial momentum kernel S̃H[σσσ|ρρρ] is defined by

S̃H[σσσ|ρρρ] ≡
∏
a∈H

[
sa1 +

∑
l∈{2,...,m}

θ(σ−1(a)− σ−1(l))θ(ρ−1(a)− ρ−1(l))sal
]
, (3.24)
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where σ−1(a) and ρ−1(a) denote the positions of a in the permutations σσσ and ρρρ respectively.

Given a ∈ H and l ∈ {2, . . . ,m}, the product of two step functions in (3.24) is 1 if both

σ−1(a) > σ−1(l) and ρ−1(a) > ρ−1(l) are satisfied, otherwise 0. Explicit examples of the

partial momentum kernel are given as

S̃{2}[2345|2543] = s21, S̃{3}[2345|5423] = s31 + s32, (3.25)

S̃{2,5}[2345|4235] = s21(s51 + s52 + s53 + s54), S̃{2,3,4}[2345|3542] = s21s31(s41 + s43).

There are many useful properties satisfied by partial momentum kernels:

(i) Partial momentum kernel S̃H[σσσ|ρρρ] is symmetric under exchanging of permutations σσσ

and ρρρ, i.e.,

S̃H[σσσ|ρρρ] = S̃H[ρρρ|σσσ]. (3.26)

(ii) If the subset H is chosen as the full set {2, . . . ,m}, we arrive the usual momentum

kernel

S̃{2,...,m}[σσσ2,m|ρρρ2,m] = S[σσσ2,m|ρρρ2,m]. (3.27)

(iii) Assuming that ρρρB and ρρρ′B are two permutations of elements of a set B, while ρρρC

is a permutation of elements of C, the partial momentum kernel S̃C [ρρρB, ρρρC|σσσB σσσC]

satisfies

S̃C [ρρρB, ρρρC|σσσB σσσC] = S̃C

[
ρρρ′B, ρρρC|σσσB σσσC

]
. (3.28)

(iv) The following property which relates usual momentum kernel and partial momentum

kernel will be useful in the coming sections:

S [ρρρB, ρρρC|σσσB σσσC] = S [ρρρB|σσσB] S̃C[ρρρB, ρρρC|σσσB σσσC]. (3.29)

Having defined the partial momentum kernel (3.24) and choosing the reference order

as R = {hρ(1), hρ(2), . . . , hρ(s)}, we naturally write the coefficient (3.23) as∑
F∈G′σσσH [H]

D[F ](1,σσσ, r) = S̃H[σσσ|2, . . . , r − 1, hρ(s), hρ(s−1), . . . , hρ(1)]. (3.30)

The relation (3.22) for A = H is then conveniently given by

0 =
∑

σσσ∈{2,...,r−1} perms H

S̃H[σσσ|2, . . . , r − 1, hρ(s), hρ(s−1), . . . , hρ(1)]A(1,σσσ, r). (3.31)

For the cases with H = {h1, h2} and H = {h1, h2, h3}, (3.31) returns to the examples (3.16)

and (3.20) respectively. In fact, the relation (3.31) is consistent with the following funda-

mental BCJ relation for given permutation ηηη ∈ {2, . . . , r − 1} perms {H \ {hρ(s)}}

0 = shρ(s)1A(1,hρ(s),η(1),η(2), . . . ,η(r+s−2), r)

+(shρ(s)1+shρ(s)η(1))A(1,η(1),hρ(s),η(2), . . . ,η(r+s−2), r) (3.32)

+ · · ·+(shρ(s)1+shρ(s)η(1)+ · · ·+shρ(s)η(r+s−2))A(1,η(1),η(2), . . . ,η(r+s−2),hρ(s), r).
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4 Three types of BCJ numerators in NLSM

As an application of the gauge invariance induced relation (3.15), we will prove the equiva-

lence between distinct approaches to scattering amplitudes in NLSM: (i) traditional Feyn-

man diagrams, (ii) the CHY formula and (iii) the Abelian Z theory in the remaining

sections. The starting point of our proof is the fact that all three approaches result dual

DDM formula

M(1, . . . , n) =
∑

σσσ∈Sn−2

n1|σσσ|nA(1,σσσ, n), (n is even) (4.1)

with distinct (DF, CMS and DT) expressions of BCJ numerators n1|σσσ|n (as polynomial

functions of Mandelstam variables). The A(1,σσσ, n) in (4.1) are bi-scalar amplitudes. Thus

the three approaches are equivalent to each other if and only if the following relations for

bi-scalar amplitudes are satisfied:∑
σσσ∈Sn−2

nDF
1|σσσ|nA(1,σσσ, n) =

∑
σσσ∈Sn−2

nCMS
1|σσσ|nA(1,σσσ, n) =

∑
σσσ∈Sn−2

nDT
1|σσσ|nA(1,σσσ, n). (4.2)

We will review the three types of BCJ numerators in this section and prove the equivalence

condition (4.2) by using (3.15) in sections 5 and 6.

4.1 Three distinct constructions of BCJ numerators in NLSM

Now let us review the DF, CMS and DT types of BCJ numerators which correspond to

the Feynman diagram approach, Abelian Z theory and CHY formula.

The DF type numerators. The DF type BCJ numerator was derived by applying

off-shell extended BCJ relation [8, 16], which is based on Berends-Giele recursion (thus

Feynman diagrams). The explicit expression of DF type BCJ numerator is given by a

proper combination of momentum kernel:5

nDF
1|σσσ|n = (−1)

∑
ρρρ∈Γ

S[σσσ|ρρρ], (4.3)

where we summed over permutations ρρρ in Γ which is defined as the collection of permu-

tations satisfying the following conditions. For any a ∈ {2, . . . , n − 1}, we assume b (c)

is the nearest element on the l.h.s. (r.h.s.) of a in the permutation ρρρ, which satisfies

σ−1(b) > σ−1(a) (σ−1(c) > σ−1(a)).6 The permutations ρρρ in the DF type numerator (4.3)

are those satisfying either of the following two conditions: (i) There are odd number of

elements between a, b as well as a, c in the permutation ρρρ. (ii) There is no element between

5We adjust the total sign by (−1) to agree with the CMS type numerators.
6Here 1 and n are correspondingly considered as the first and the last elements in both permutations σσσ

and ρρρ. There is always a particle n (maybe not the nearest ) on the r.h.s. and l.h.s. of a in the permutation

ρρρ s.t. σ−1(n) = n > σ−1(a) in the sense of cyclicity, see [16].
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both a, b and a, c in the permutation ρρρ. Explicit examples are given as

nDF
1|23|4 = S[23|32] = −s21s31, (4.4)

nDF
1|2345|6 = −(S[2345|5243] + S[2345|5342] + S[2345|4352] + S[2345|4253] + S[2345|3254])

= (−1)
[
s51 (s41 + s42) (s31 + s32)s21 + s51 (s41 + s43) s31s21

+(s51 + s54 + s53)s41s31s21 + (s51 + s54 + s52)s41(s31 + s32)s21

+(s51 + s52 + s53)(s41 + s42 + s43)s31s21

]
. (4.5)

The CMS type numerators. The CMS type BCJ numerator, which comes from

Abelian Z theory [23], expresses each numerator in dual DDM decomposition by only

one momentum kernel:

nCMS
1|σσσ|n = (−1)

n
2 S[σ(2), σ(3), . . . , σ(n− 1)|σ(2), σ(3), . . . , σ(n− 1)]. (4.6)

Explicit expressions for four- and six-point cases are

nCMS
1|23|4 = S[23|23] = s21(s31 + s32)

nCMS
1|2345|6 = S[2345|2345] = s21(s31 + s32)(s41 + s42 + s43)(s51 + s52 + s53 + s54). (4.7)

It is worthy emphasizing that both DF and CMS types BCJ numerators manifest the rela-

beling symmetry of n− 2 elements, i.e., n1|σ(2),...,σ(n−1)|n can be obtained from n1|2,...,n−1|n
by the replacement 2, 3, . . . , n− 1→ σ(2), σ(3), . . . , σ(n− 1).

The DT type numerators. Being different from the previous two constructions, the DT

type numerator which is based on the graphic expansion of amplitudes and the dimensional

reduction in CHY formula is not a symmetric form. This type of BCJ numerators are ex-

panded by graphic rule instead of momentum kernels. The construction of nDT
1|σσσ|n is given by

• Consider 1 as the root of a tree and define a reference order of elements in {2, . . . , n−
1}, say R ≡ {ρ(1), . . . , ρ(s = n− 2)}.

• Pick ρ(s) in {σ(2), . . . , σ(n − 1)}. Construct a chain C[1] ≡ {l = 1, i1, . . . , ij , ρ(s)}
of even length started by ρ(s) towards 1 with internal nodes i1, i2, . . . , ij (j is odd)

s.t. σ−1(l = 1) < σ−1(i1) < σ−1(i2) < · · · < σ−1(ij) < σ−1(ρ(s)). This chain is

associated with a factor

sρ(s)ijsijij−1 . . . si2i1si11. (4.8)

Remove this chain from the ordered set R → R′ = R \ {i1, i2, . . . , ij , ρ(s)} ≡
{ρ′(1), . . . , ρ′(s′)}.

• Repeat the previous step: pick ρ′(s′) ∈ R′ and construct a chain C[2] ≡
{l′, i′1, . . . , i′j′ , ρ′(s′)} of even length (j′ is odd), which starts from ρ′(s′) towards a

node l′ on C[1] and satisfies σ−1(l′) < σ−1(i′1) < · · · < σ−1(i′j′) < σ−1(ρ′(s′)). The

new chain C[2] is associated with a factor

sρ′(s′)i′
j′
si′
j′ i
′
j′−1

. . . si′2i′1si′1l′ . (4.9)
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Remove this chain from the ordered set R → R′′ = R′ \ {i′1, i′2, . . . , i′j , ρ′(s′)} ≡
{ρ′′(1), . . . , ρ′′(s′′)}.

• Repeat the above steps until the ordered set R becomes empty. Each new even-

length chain is attached to nodes which have been used and associated with a factor.

Collecting the factors corresponding to all chains in a graph and summing over all

possible graphs (noting that the total phase factor is (−1)
n
2
−1), we finally get the

BCJ numerator nDT
1|σσσ|n.

By means of the conventions of notations established for the gauge invariance induced

relation (3.15), we can write the numerators of DT type as7

nDT
1|σσσ|n = (−1)

n
2

∑
F∈G′σσσ{2,...,n−1}[∅],

D[F ](1,σσσ, n) (4.10)

where the H set, whose elements serve as starting points or internal nodes of trees, is

chosen as {2, . . . , n−1}. The empty set ∅ in G′σσσ{2,...,n−1}[∅] means that all chains are of even

length. The explicit expressions for four-point numerators nDT
1|23|4 and nDT

1|32|4 are given by

nDT
1|23|4 = −s32s21, nDT

1|32|4 = 0, (4.11)

where the reference order is chosen as R = {2, 3}.

5 The equivalence between DT and CMS constructions of NLSM ampli-

tudes

The DT and the CMS types of numerators produce the same amplitude if and only if

the second equality in (4.2) holds. Substituting (4.10) and (4.6) into (4.2), we arrive the

following relation for bi-scalar amplitudes A(1,σσσ, n)∑
σσσ∈Sn−2

S[σσσ|σσσ]A(1,σσσ, n) =
∑

σσσ∈Sn−2

∑
F∈G′σσσ{2,...,n−1}[∅],

D[F ](1,σσσ, n)A(1,σσσ, n). (for even n) (5.1)

To prove the equivalence condition (5.1), we carry on our discussions in a more generic

framework:

(i) The momentum kernel S[σσσ|σσσ] is generalized to the partial momentum kernel

S̃H [{2, . . . , r − 1} σσσH|2, . . . , r − 1,σσσH] (5.2)

where H is an arbitrary nonempty set with s elements. When setting {2, . . . , r−1} = ∅
and H = {2, . . . , n−1}, we return to the original momentum kernel S[σσσ|σσσ] (σσσ ∈ Sn−2).

(ii) The number of external particles is not limited to be even. Amplitudes with odd

number external particles are also under consideration.

7The prefactor (−1)
n−2
2 is adjusted by (−1) to agree with that in CMS type. This adjustment does not

affect our discussions.
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(iii) The amplitude A(1,σσσ, n) can be color-ordered Yang-Mills, bi-scalar or color-ordered

NLSM amplitudes.

Having the above generalizations, we will prove the following two relations∑
σσσH

∑
ααα∈{2,...,r−1}

σσσH

S̃H [ααα|2, . . . , r − 1,σσσH]A(1,ααα, r)

=
∑

ααα∈{2,...,r−1}
permsH

∑
F∈G′αααH [∅]

D[F ](1,ααα, r)A(1,ααα, r) (for even s) (5.3)

and ∑
σσσH

∑
ααα∈{2,...,r−1}

σσσH

S̃H [ααα|2, . . . , r − 1,σσσH]A(1,ααα, r) = 0 (for odd s) (5.4)

corresponding to whether the number of elements in the set H is even or odd. Coefficients

of amplitudes therein are expressed by partial momentum kernels, while the summation
∑
σσσH

means that we sum over all possible permutations of elements in H. Consequences of the

relations (5.3) and (5.4) are deduced:

• When we set r = n (for even n), H = {2, . . . , n − 1} and {2, . . . , r − 1} → ∅, the

relation (5.3) naturally returns to the equivalence condition (5.1) for even n. Thus

the equivalence condition (5.1) between DT and CMS constructions is proven.

• When we set {2, . . . , r − 1} → {ρ(2), . . . , ρ(r − 1)} in the partial momentum kernel

S̃H in (5.4) and apply the property (3.28) and (3.26), the relation (5.4) then becomes∑
σσσH

∑
ααα∈ρρρ σσσH

S̃H [ααα|2, . . . , r − 1,σσσH]A(1,ααα, r) = 0 (for odd s). (5.5)

Multiplying a momentum kernel S[ρ(2), ρ(3), . . . , ρ(r−1)|2, 3, . . . , r−1] to both sides

of the above relation and applying the relation (3.29) between usual momentum kernel

and partial momentum kernel, we arrive an amplitude relation expressed by usual

momentum kernels∑
σσσH

∑
ααα∈ρρρ σσσH

S [ααα|2, . . . , r − 1,σσσH]A(1,ααα, r) = 0 (for odd s), (5.6)

where ρρρ is an arbitrary permutation of elements in {2, . . . , r − 1}. The boundary

case with H = {2, . . . , n − 1}, {1, . . . , r} → {1, n} shows very interesting relation for

amplitudes with odd number of external particles∑
σσσ∈Sn−2

S [σσσ|σσσ]A(1,σσσ, n) = 0 (for odd n). (5.7)

Although the relation (5.4) for odd s is not used in the proof of the equivalence con-

dition (5.1) between the DT and the CMS constructions of NLSM amplitudes, the re-

lation (5.6) as a result of (5.4), plays a crucial role in the proof of the equivalence

between the DF and CMS constructions in the next section. In the remaining discus-

sions of this section, we establish the graphic expansion of the partial momentum kernel

S̃H[{2, . . . , r − 1} σσσH|2, . . . , r − 1,σσσH] and prove the relations (5.3) and (5.4).
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5.1 Expressing partial momentum kernel by graphs

The partial momentum kernel S̃H[ααα ∈ {2, . . . , r−1} σσσH|2, . . . , r−1,σσσH] can be conveniently

expanded by the graphic rule in section (2.2), when replacing the factors εha ·Fhi1 ·· · ··Fhij ·kb
for each chain by shahi1shi1hi2 . . . shij b. The reference order R = {hρ(1), hρ(2), . . . , hρ(s)} is

chosen arbitrarily. We demonstrate this expansion by examples first.

Example-1: H = {h1, h2}. The σH in the partial momentum kernel S̃{h1,h2}[ααα ∈
{2, . . . , r−1} σH|2, . . . , r−1, σH] can be either {h1, h2} or {h2, h1}. If we define reference

order R = {h1, h2}, the partial momentum kernel with σH = {h1, h2} is expressed by the

sum of (a) and (b) in figure 1, while the partial momentum kernel with σH = {h2, h1}
is expressed by the sum of (c) and (d) in figure 1. If we change the reference order to

R = {h2, h1}, graphs contributing to σσσH = {h1, h2} (σσσH = {h2, h1}) become the graphs (c)

and (d) ((a) and (b)) in figure 1 with exchanging h1 and h2. Though the chain structures are

different for different choices of reference order, the expression of each partial momentum

kernel S̃{h1,h2}[ααα ∈ {2, . . . , r − 1} σH|2, . . . , r − 1, σH] is not changed.

Example-2: H = {h1, h2, h3}. We now consider the partial momentum kernel

S̃{h1,h2,h3}[ααα ∈ {2, . . . , r − 1} {h1, h3, h2}|2, . . . , r − 1, {h1, h3, h2}] (5.8)

where H contains three elements and σσσH in this example is chosen as σσσH = {h1, h3, h2}.
From the definition (3.24), (5.8) is given by the product of three factors[

sh11+
∑

i∈{2,...,r−1}
α−1(i)<α−1(h1)

sh1i

][
sh31+sh3h1 +

∑
i∈{2,...,r−1}

α−1(i)<α−1(h3)

sh3i

][
sh21+sh2h1 +sh2h3 +

∑
i∈{2,...,r−1}

α−1(i)<α−1(h2)

sh2i

]
.

(5.9)

This partial momentum kernel can be obtained as follows:

• Define a reference order of elements in H, e.g., R = {h1, h2, h3}.

• Pick the last element h3 in the ordered set R = {h1, h2, h3} and pick a term from the

factor corresponding to h3 in (5.9). Such a term has the form sh3j , where j can be

any element in {h1} ∪ {1, 2, . . . , r − 1} s.t., α−1(j) < α−1(h3). If j is an element in

{1, 2, . . . , r − 1}, we get a length-1 chain started from h3 towards {1, 2, . . . , r − 1}.
Else, if j = h1, we further pick a factor sh1k for k ∈ {1, 2, . . . , r − 1} satisfying

α−1(k) < α−1(h1), then a chain sh3h1sh1k started from h3 towards k have been

constructed. We take the j = h1 case for instance and continue our discussion.

• Remove the starting node h3 and the internal node h1 of the chain which have been

already constructed, from the ordered set R = {h1, h2, h3} and redefine R as R →
R′ = {h2}. Construct a chain started from the element h2 in R′ towards l ∈ {h1, h3}∪
{1, 2, . . . , r − 1}. Then we have a factor sh2l. For example, we choose l = h1.

• Remove h2 from R′, then the set R′ becomes empty. Putting the chains obtained

together, we arrive a term sh3h1sh1ksh2h1 corresponding to the graph (b4) of figure 2.
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• The full partial momentum kernel in this example is obtained by summing over all

possible graphs constructed by the above steps (displayed by the graphs (b1) ∼ (b6)

in figure 2).

Again, we emphasize that the reference order R can be chosen arbitrarily. If we change

the reference order, only the chains are changed, the structure of graphs and the final

expression of partial momentum kernel are not changed.

Now we extend our discussions to the graphic expansion of any partial momentum

kernel with the form:

S̃H[{2, . . . , r − 1} σσσH|2, . . . , r − 1,σσσH]

=

[
sσH(1)1 +

∑
i∈{2,...,r−1}

α−1(i)<α−1(σH(1))

sσH(1)i

][
sσH(2)1 + sσH(2)σH(1) +

∑
i∈{2,...,r−1}

α−1(i)<α−1(σH(2))

sσH(2)i

]

× · · · ×

[
sσH(s)1 + sσH(s)σH(1) + . . . sσH(s)σH(s−1) +

∑
i∈{2,...,r−1}

α−1(i)<α−1(σH(s))

sσH(s)i

]
. (5.10)

• Define a reference order R = {hρ(1), hρ(2), . . . , hρ(s)} for elements in the set H (as-

sume there are s elements in the set H). Pick hρ(s) and an arbitrary term shρ(s)hij
(σ−1(hij ) < σ−1(hρ(s))) from the factor corresponding to hρ(s). Then pick an ar-

bitrary term shijhij−1
(σ−1(hij−1) < σ−1(hij )) from the factor corresponding to

hij . Next, pick a term of the form shij−1
hij−2

(σ−1(hij−2) < σ−1(hij−1)) from

the factor corresponding to hij−1 , and so on. This procedure is terminated at a

factor shi1 l where l belongs to the set {1, 2, . . . , r − 1}. Putting all factors to-

gether, we get a chain shρ(s)hij
shijhij−1

. . . shi1 l. Redefine R by removing the in-

ternal nodes and the starting point of the chain which was already constructed:

R→ R′ = R \ {hi1 , . . . , hij , hρ(s)} ≡ {hρ′(1), hρ′(2), . . . , hρ′(s′)}.

• We construct a chain from hρ′(s′) towards an element l′ ∈ {1, 2, . . . , r} ∪
{hi1 , . . . , hij , hρ(s)} by picking shρ′(s′)hi′

j′
, shi′

j′
hi′
j′−1

, . . . , shi′1
l′ (σ−1(l′) < σ−1(hi′1) <

· · · < σ−1(hi′
j′

) < σ−1(hρ(s′))) from the factors corresponding to hρ(s′), hi′
j′

,

. . . , hi′1 in the partial momentum kernel (5.10). The we get another chain

shρ′(s′)hi′
j′
shi′

j′
hi′
j′−1

. . . shi′1
l′ . Redefine R by R→ R′′ = R′ \ {hi′1 , . . . , hi′j′ , hρ′(s′)}.

• Repeat the above steps until the R set becomes empty. Then putting all chains

together, we get a graph. The sum of all possible graphs gives the partial momentum

kernel (5.10).

Obviously, if we define a unique reference order R for permutations ααα ∈ {2, . . . , r− 1} σσσH

with all possible σσσH, the above graphic expansions of partial momentum kernels S̃H[ααα ∈
{2, . . . , r − 1} σσσH|2, . . . , r − 1,σσσH] are related with the graphic expansion of C(1,σσσ, r)
(see (2.25)) in section (2.2) via replacing the factor εha · Fhij · · · · · Fhi1 · kb for every chain

by shahij shijhij−1
. . . shi1b.

– 22 –



J
H
E
P
0
7
(
2
0
1
8
)
1
7
7

5.2 Proof of the relations (5.3) and (5.4)

We have already shown that the equivalence condition (5.1) is a special case of the rela-

tion (5.3) with even s. In addition, we also have the relation (5.4) with odd s. Now let

us prove both relations (5.3) and (5.4) by expanding the partial momentum kernels into

graphs.

5.2.1 The proof of (5.3)

To prove the relation (5.3) for even s, we first investigate two examples.

Example-1: H = {h1, h2}. The simplest example for even s is the case H = {h1, h2}
(hence s = 2). If we choose reference order as R = {h1, h2}, the graphs corresponding to

σH = {h1, h2} (σH = {h2, h1}) are explicitly given by (a) and (b) ((c) and (d))in figure 1.

The l.h.s. of (5.3) for this case reads∑
ααα∈{2,...,r−1} {h1,h2}

S̃{h1,h2}
[
ααα
∣∣2, . . . , r − 1, h1, h2

]
A(1,ααα, r)

+
∑

ααα∈{2,...,r−1} {h2,h1}

S̃{h1,h2}
[
ααα
∣∣2, . . . , r − 1, h2, h1

]
A(1,ααα, r). (5.11)

Expanding the partial momentum kernels into graphs (see figure 1), we rewrite the above

expression as ∑
ααα∈{2,...,r−1} {h1,h2}

[
D[(a)](1,ααα, r) +D[(b)](1,ααα, r)

]
A(1,ααα, r)

+
∑

ααα∈{2,...,r−1} {h2,h1}

[
D[(c)](1,ααα, r) +D[(d)](1,ααα, r)

]
A(1,ααα, r), (5.12)

where D[(a)](1,ααα, r), D[(b)](1,ααα, r), D[(c)](1,ααα, r) and D[(d)](1,ααα, r) are coefficients associat-

ing to the graphs (a), (b), (c) and (d) in figure 1. The graphs (a), (c) and (d) in the above

equation contain two length-1 chains. They together contribute∑
ααα∈{2,...,r−1} {h1,h2}

D[(c)](1,ααα,r)A(1,ααα,r)+
∑

ααα∈{2,...,r−1} {h2,h1}

[
D[(c)](1,ααα,r)+D[(d)](1,ααα,r)

]
A(1,ααα,r)

=
∑

ααα∈{2,...,r−1} perms{h1,h2}

∑
F∈G′ααα{h1,h2}[{h1,h2}]

D[F ](1,ααα,r)A(1,ααα,r), (5.13)

which is nothing but the r.h.s. of the example (3.16), thus have to vanish. The only term

that survives is the graph (b) which contains no odd length chain∑
ααα∈{2,...,r−1} {h1,h2}

D[(b)](1,ααα, r)A(1,ααα, r) =
∑

ααα∈{2,...,r−1} perms {h1,h2}

∑
F∈G′ααα{h1,h2}[∅]

D[F ](1,ααα, r)A(1,ααα, r),

(5.14)

agrees with the r.h.s. of (5.3) with H = {h1, h2}.
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Example-2: H = {h1, h2, h3, h4}. Inspired by the previous example with s = 2, one

can expand all partial momentum kernels on the l.h.s. of (5.3) in terms of graphs for a

given reference order R. For the case H = {h1, h2, h3, h4}, the total length of all chains of

each expansion graph should equal to 4. On the other hand, the total length Ltotal of all

chains is given by

Ltotal = Lodd + Leven, (5.15)

where Lodd and Leven denote the total lengths of all odd- and even-length chains, respec-

tively. If a graph contains odd number of odd-length chains, the total length must be odd

according to the above equation. This conflicts with the fact Ltotal = 4. Therefore, the

number of odd-length chains must be even. In this example, each graph can contain 0, 2

or 4 odd-length chains. Thus for H = {h1, h2, h3, h4}, the l.h.s. of (5.3) is expanded as∑
ααα∈{2,...,r−1} permsH

∑
F∈G′αααH [∅]

D[F ](1,ααα, r)A(1,ααα, r)

+
∑

ααα∈{2,...,r−1} permsH

[ ∑
F∈G′αααH [{h1,h2}]

+
∑

F∈G′αααH [{h1,h3}]

+
∑

F∈G′αααH [{h1,h4}]

+
∑

F∈G′αααH [{h2,h3}]

+
∑

F∈G′αααH [{h2,h4}]

+
∑

F∈G′αααH [{h3,h4}]

]
D[F ](1,ααα, r)A(1,ααα, r)

+
∑

ααα∈{2,...,r−1} permsH

∑
F∈G′αααH [{h1,h2,h3,h4}]

D[F ](1,ααα, r)A(1,ααα, r). (5.16)

The last three lines vanishes due to the gauge invariance induced relation (3.15) with

A = {hi, hj} (hi, hj ∈ H) and A = {h1, h2, h3, h4} (the case with A = {h3, h4} and R =

{h1, h2, h3, h4} is explicitly given by the example (3.21)), while the first line is the r.h.s.

of (5.3) for s = 4.

General proof of (5.3). If H contains an arbitrary even number of elements (i.e., s is

even), the number of odd-length chains in any graph has to be even, as analyzed in the

s = 4 example. Thus the partial momentum kernel can be written as

SH

[
ααα ∈ {2, . . . , r − 1} σσσH

∣∣∣2, . . . , r − 1,σσσH

]
(5.17)

=
∑

F∈G′αααH [∅]

D[F ](1,ααα, r) +
∑

{hi1 ,hi2}⊂H

∑
F∈G′αααH [{hi1 ,hi2}]

D[F ](1,ααα, r) + . . .

+
∑

F∈G′αααH [H]

D[F ](1,ααα, r). (for even s)

Then the combination of amplitudes on the l.h.s. of (5.3) turns to∑
ααα∈{2,...,r−1}

permsH

[ ∑
F∈G′αααH [∅]

D[F ](1,ααα, r) +
∑

{hi1 ,hi2}⊂H

∑
F∈G′αααH [{hi1 ,hi2}]

D[F ](1,ααα, r)

+ · · ·+
∑

F∈G′αααH [H]

D[F ](1,ααα, r)

]
A(1,ααα, r) (5.18)
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Every term in the above expression have the general form

∑
ααα∈{2,...,r−1}

permsH

∑
F∈G′αααH [{hi1hi2 ,...,hij }]

D[F ](1,ααα, r)A(1,ααα, r). (for even s and j) (5.19)

If j 6= 0, the set {hi1hi2 , . . . , hij} ⊆ H is nonempty. Such a term has to vanish due to the

gauge invariance induced relation (3.15) for the nonempty subset A with even number of

elements. The first term in (5.18) (the case j = 0) is given by summing over all graphs

consisting of only even length chains, which is the r.h.s. of (5.3).

5.2.2 The proof of (5.4)

The first nontrivial example of (5.4) for odd s is given by H = {h1, h2, h3}. Let us study

this case before the general proof of (5.4).

Example: H = {h1, h2, h3}. We expand the partial momentum kernels on the l.h.s.

of (5.4) in terms of graphs for a fixed reference order R = {hρ(1), hρ(2), hρ(3)}. For a given

graph, the total length of all chains must be 3. As a consequence, the number of odd length

chains in each graph must be odd (in this example it can be 1 or 3). Thus the l.h.s. of (5.4)

for s = 3 is decomposed into

∑
ααα∈{2,...,r−1} permsH

[ ∑
F∈G′αααH [{h1}]

+
∑

F∈G′αααH [{h2}]

+
∑

F∈G′αααH [{h3}]

]
D[F ](1,ααα, r)A(1,ααα, r)

+
∑

ααα∈{2,...,r−1} permsH

∑
F∈G′αααH [{h1,h2,h3}]

D[F ](1,ααα, r)A(1,ααα, r), (5.20)

where each term on the first line vanishes due to the gauge invariance induced relation (3.15)

with A = {hi} (i = 1, 2, 3) (see the examples (3.17), (3.18) and (3.19) for R = {h1, h2, h3}),
while the last line vanishes because of the relation (3.15) with A = {h1, h2, h3} (see the

example (3.20) for R = {h1, h2, h3}). Hence all terms of the l.h.s. of (5.4) for s = 3 vanish

and the equation (5.4) for s = 3 is proven.

General proof of (5.4). If H contains an arbitrary odd number of elements (i.e., s is

odd), the number of odd length chains in any graph must be odd as shown in the s = 3

example. The graphic expansions of partial momentum kernels then read

SH

[
ααα ∈ {2, . . . , r − 1} σσσH

∣∣∣2, . . . , r − 1,σσσH

]
=

∑
{hi1}⊂H

∑
F∈G′αααH [{hi1}]

D[F ](1,ααα, r) +
∑

{hi1 ,hi2 ,hi3}⊂H

∑
F∈G′αααH [{hi1 ,hi2 ,hi3}]

D[F ](1,ααα, r) + . . .

+
∑

F∈G′αααH [H]

D[F ](1,ααα, r) (for odd s). (5.21)
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The combination of amplitudes in the l.h.s. of (5.4) leads to∑
ααα∈{2,...,r−1}

permsH

[ ∑
{hi1}⊂H

∑
F∈G′αααH [{hi1}]

D[F ](1,ααα, r) +
∑

{hi1 ,hi2 ,hi3}⊂H

∑
F∈G′αααH [{hi1 ,hi2 ,hi3}]

D[F ](1,ααα, r)

+ · · ·+
∑

F∈G′αααH [H]

D[F ](1,ααα, r)

]
A(1,ααα, n), (5.22)

in which, all terms must vanish due to the gauge invariance induced relation (3.15) for A

with odd number of elements. Thus the relation (5.4) is proven.

6 The equivalence between DF and CMS constructions of NLSM ampli-

tudes

The equivalence between DF and CMS constructions of NLSM amplitudes, i.e., the first

equality of (4.2) can be explicitly expressed by the following amplitude relation∑
σσσ∈Sn−2

∑
ρρρ∈Γ

S[σσσ|ρρρ]A(1,σσσ, n) = (−1)
n−2
2

∑
σσσ∈Sn−2

S[σσσ|σσσ]A(1,σσσ, n), (for even n) (6.1)

where Γ is defined in section 4. In this section, we will prove the relation (6.1). The

identity (5.6) (as a consequence (5.4)) with odd s is crucial for the proof. To show the

pattern, let us first discuss the four- and six-point examples as a warmup.

6.1 Warm-up examples

Now we take the cases with n = 4 and n = 6 as examples.

Four-point example. The simplest example is the four-point case, which have already

been discussed in [23] and [24]. The l.h.s. of the relation (6.1) for n = 4 is explicitly

written as

S[23|32]A(1, 2, 3, 4) + S[32|23]A(1, 3, 2, 4). (6.2)

Applying the relation (5.6) with H = {2} and H = {3} on the first and the second terms

respectively, we immediately get

− S[32|32]A(1, 3, 2, 4)− S[23|23]A(1, 2, 3, 4), (6.3)

which is the r.h.s. of (6.1) for four-point case.

Six-point example. The relation (6.1) for six-point amplitudes is much more nontrivial.

By substituting the six-point numerators of DF type (4.5) into the l.h.s. of (6.1), we get∑
σσσ∈S4

(
S [σσσ|ρρρ = {σ(5), σ(2), σ(4), σ(3)}] + S [σσσ|ρρρ = {σ(5), σ(3), σ(4), σ(2)}]

+ S [σσσ|ρρρ = {σ(4), σ(3), σ(5), σ(2)}] + S [σσσ|ρρρ = {σ(4), σ(2), σ(5), σ(3)}]

+ S [σσσ|ρρρ = {σ(3), σ(2), σ(5), σ(4)}]
)
A(1,σσσ, n). (6.4)

To prove this expression equals to the r.h.s. of (6.1) with n = 6, we perform our discussions

by the following steps.
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Step-1. Collect those terms with a same ρρρ. For example, if ρρρ = {2, 3, 4, 5}, one finds that

the corresponding σσσ in (6.4) can be

{5, 3, 4, 2}, {5, 3, 2, 4}, {3, 5, 4, 2}, {3, 5, 2, 4}, {3, 2, 5, 4}. (6.5)

An interesting observation is that above permutations are those satisfying the ‘zigzag pat-

tern’: σ−1(5) < σ−1(4), σ−1(4) > σ−1(3) and σ−1(3) < σ−1(2). For convenience, we define

the collection of such permutations by Z{2|3|4|5}:

Z{2|3|4|5} ≡
{
σσσ |σ ∈ S4 s.t σ−1(5) < σ−1(4), σ−1(4) > σ−1(3), σ−1(3) < σ−1(2)

}
. (6.6)

Under this definition, terms with ρρρ = {2, 3, 4, 5} in (6.4) then give rise

T (2|3|4|5) ≡
∑

σσσ∈Z{2|3|4|5}

S[σσσ|2, 3, 4, 5]A(1,σσσ, 6). (6.7)

Terms corresponding to arbitrary ρρρ can be obtained by relabeling the above expression

T (ρ(2)|ρ(3)|ρ(4)|ρ(5)) ≡
∑

σσσ∈Z{ρ(2)|ρ(3)|ρ(4)|ρ(5)}

S[σσσ|ρρρ]A(1,σσσ, 6). (6.8)

All together, (6.4) becomes ∑
ρρρ∈S4

T (ρ(2)|ρ(3)|ρ(4)|ρ(5)). (6.9)

Step-2. For a given ρρρ, we collect terms corresponding to those permutations σσσ (σσσ ∈
Z{ρ(2)|ρ(3)|ρ(4)|ρ(5)}) in which ρ(2), ρ(3) and ρ(4) have a same relative order. For in-

stance, in the case ρρρ = {2, 3, 4, 5}, T (2|3|4|5) then becomes

T (2|3|4|5) =
[
S[5, 3, 4, 2|2, 3, 4, 5]A(1, 5, 3, 4, 2, 6) + S[3, 5, 4, 2|2, 3, 4, 5]A(1, 3, 5, 4, 2, 6)

]
+
[
S[5, 3, 2, 4|2, 3, 4, 5]A(1, 5, 3, 2, 4, 6) + S[3, 5, 2, 4|2, 3, 4, 5]A(1, 3, 5, 2, 4, 6)

+ S[3, 2, 5, 4|2, 3, 4, 5]A(1, 3, 2, 5, 4, 6)
]
, (6.10)

where the first line gets contribution from permutations σσσ ∈ Z{2|3|4|5} with the relative

order {3, 4, 2}; the second and the third lines get contributions from σσσ ∈ Z{2|3|4|5} with

the relative order {3, 2, 4}. By means of the property (5.6) with (H = {5}), we write the

first line in the above expression as

− S[3, 4, 5, 2|2, 3, 4, 5]A(1, 3, 4, 5, 2, 6)− S[3, 4, 2, 5|2, 3, 4, 5]A(1, 3, 4, 2, 5, 6). (6.11)

Similarly, the second and the third lines sum to

− S[3, 2, 4, 5|2, 3, 4, 5]A(1, 3, 2, 4, 5, 6). (6.12)

If we define

Z{2|3, 4, 5} ≡
{
σσσ |σ ∈ S4 s.t σ−1(3) < σ−1(4) < σ−1(5), σ−1(3) < σ−1(2)

}
, (6.13)
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the sum of (6.11) and (6.12) are further expressed by

T (2|3|4|5) = (−1)T (2|3, 4, 5) ≡ (−1)
∑

σσσ∈Z{2|3,4,5}

S[σσσ|2, 3, 4, 5]A(1,σσσ, 6). (6.14)

For the same reason, T (ρ(2)|ρ(3)|ρ(4)|ρ(5)) for arbitrary ρρρ is written as

T (ρ(2)|ρ(3)|ρ(4)|ρ(5)) = (−1)T (ρ(2)|ρ(3), ρ(4), ρ(5)) (6.15)

≡ (−1)
∑

σσσ∈Z{ρ(2)|ρ(3),ρ(4),ρ(5)}

S[σσσ|ρ(2), ρ(3), ρ(4), ρ(5)]A(1,σσσ, 6).

Therefore (6.9) turns to

(−1)
∑
ρρρ∈S4

T (ρ(2)|ρ(3), ρ(4), ρ(5)). (6.16)

Step-3. Now we collect terms in the combination of amplitudes (6.16) for a given element

ρ(2) ∈ {2, 3, 4, 5}. In the case of ρ(2) = 2, we have

(−1)
∑

σσσ∈perms {3,4,5}

T (2|σσσ) = (−1)
∑

σσσ∈perms {3,4,5}

∑
ααα∈Z{2|σ(3),σ(4),σ(5)}

S[ααα|2, σ(3), σ(4), σ(5)]A(1,ααα, 6).

(6.17)

For each relative order σσσ ∈ perms {3, 4, 5}, the sum over ααα ∈ Z{2|σ(3), σ(4), σ(5)} means

summing over all possible permutations ααα ∈ {2} {σ(3), σ(4), σ(5)} with α−1(2) >

α−1(σ(3)). When all possible σσσ ∈ perms {3, 4, 5} are taken into account, according to

the relation (5.6) with H = {3, 4, 5}, the above equation converts to the sum of all terms

with ααα ∈ {2} {σ(3), σ(4), σ(5)} s.t. α−1(2) < α−1(σ(3)) for all σσσ ∈ perms {3, 4, 5},
accompanied by a total minus. Hence, we arrive

(−1)
∑

σσσ∈perms {3,4,5}

T (2|σσσ) (6.18)

=
∑

σσσ∈perms {3,4,5}

T (2,σσσ)

≡
∑

σσσ∈perms {3,4,5}

S[2, σ(3), σ(4), σ(5)|2, σ(3), σ(4), σ(5)]A(1, 2, σ(3), σ(4), σ(5), 6).

The cases ρ(2) = 3, 4, 5 are obtained similarly. Finally, (6.16) becomes∑
σσσ∈perms {3,4,5}

T (2,σσσ)+
∑

σσσ∈perms {2,4,5}

T (3,σσσ)+
∑

σσσ∈perms {2,3,5}

T (4,σσσ)+
∑

σσσ∈perms {2,3,4}

T (5,σσσ)

=
∑
σσσ∈S4

S[σσσ|σσσ]A(1,σσσ,6), (6.19)

which is the r.h.s. of the equivalence condition (6.1) for n = 6.

To summarize the above steps, the six-point example for (6.1) is proved by[
l.h.s. of (6.1) (for n=6)

]
=
∑
ρρρ∈S4

T (ρ(2)|ρ(3)|ρ(4)|ρ(5)) =(−1)
∑
ρρρ∈S4

T (ρ(2)|ρ(3),ρ(4),ρ(5))

=
∑
ρρρ∈S4

T (ρ(2),ρ(3),ρ(4),ρ(5))=
[
r.h.s. of (6.1) (for n=6)

]
. (6.20)
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6.2 General proof of the relation (6.1)

Now let us extend the six-point example to a general proof of (6.1). As in six-point example,

we introduce zigzag permutations for any given ρρρ ∈ Sn−2 by

Z{ρ(2)|ρ(3)| . . . |ρ(2j)|ρ(2j+1), . . . ,ρ(n−1)} (6.21)

≡{σσσ|σσσ ∈Sn−2,s.t. σ−1(ρ(n−1))>σ−1(ρ(n−2))> .. .σ−1(ρ(2j+2))>σ−1(ρ(2j+1)),

σ−1(ρ(2j+1))<σ−1(ρ(2j)),σ−1(ρ(2j))>σ−1(ρ(2j−1)), . . . ,σ−1(ρ(3))<σ−1(ρ(2))}
(for j≥ 0 and even n),

where the j = 0 case is understood as Z{ρ(2), ρ(3), . . . , ρ(n− 1)} ≡ ρρρ. We further define a

linear combination of amplitudes

T (ρ(2)| . . . |ρ(2j)|ρ(2j + 1), . . . , ρ(n− 1)) ≡
∑

σσσ∈Z{ρ(2)|...|ρ(2j)|ρ(2j+1),...,ρ(n−1)}

S[σσσ|ρρρ]A(1,σσσ, n),

(6.22)

in which, the coefficients are momentum kernels. The six-point example (see (6.20)) implies

the following recursive relation between T (ρ(2)| . . . |ρ(2j)|ρ(2j + 1), . . . , ρ(n− 1)):∑
ρρρ∈Sn−2

T (ρ(2)| . . . |ρ(2j)|ρ(2j + 1), . . . , ρ(n− 1)) (6.23)

= (−1)
∑

ρρρ∈Sn−2

T (ρ(2)| . . . |ρ(2j − 2)|ρ(2j − 1), . . . , ρ(n− 1))

(
0 ≤ j ≤ n− 2

2

)
.

The proof of (6.23) is provided in appendix B. We consider two boundaries of this relation:

(i) The upper boundary is j = n−2
2 , for which the l.h.s. of (6.23) is∑

ρρρ∈Sn−2
T (ρ(2)|ρ(3)| . . . |ρ(n − 1)). In appendix C, we show that the collection of

all σσσ corresponding to a same ρρρ on the l.h.s. of (6.1) is Z{ρ(2)|ρ(3)| . . . |ρ(n−1)} (i.e.,

j = n−2
2 ). Thus the l.h.s. of (6.23) for j = n−2

2 is∑
ρρρ∈Sn−2

T (ρ(2)|ρ(3)| . . . |ρ(n− 1)) =
∑

σσσ∈Sn−2

∑
ρρρ∈Γ

S[σσσ|ρρρ]A(1,σσσ, n), (6.24)

which is the l.h.s. of the equivalence condition (6.1).

(ii) The lower boundary is j = 0. In this case, the sum on the r.h.s. of (6.23) is given by∑
ρρρ∈Sn−2

T (ρ(2), ρ(3), . . . , ρ(n− 1)) =
∑

σσσ∈Sn−2

S[σσσ|σσσ]A(1,σσσ, n) (6.25)

which is nothing but (upto a factor (−1)
n−2
2 ) the r.h.s. of (6.1).

When we start from the upper boundary and apply the relation (6.23) by n−2
2 times, we

arrive the lower boundary with the correct factor (−1)
n−2
2 . Thus the equivalence condi-

tion (6.1) is proven.

– 29 –



J
H
E
P
0
7
(
2
0
1
8
)
1
7
7

7 Conclusions

In this paper, we derived highly-nontrivial generalized BCJ relation (3.15) by imposing

gauge invariance and dimensional reduction on the graphic expansion of EYM amplitudes.

Two additional relations (5.3) and (5.4) expressed by partial momentum kernels are con-

sequent results of the gauge invariance induced relation (3.15). As an application, we

proved the equivalence between amplitudes constructed by three different types of BCJ

numerators. Thus the three approaches (Feynman rules, Abelian Z theory and CHY for-

mula) to NLSM amplitudes are equivalent to each other. This way we prove the CHY

formula of NLSM directly instead of relying on incomplete evidence, like the enhanced soft

behavior [46].

There are several further directions. (i) First, generalized BCJ relations induced from

the gauge invariance of multi-trace amplitudes deserves further consideration. (ii) Second,

it seems that the CHY-inspired dimensional reduction is not the unique way to reduce the

Lorentz invariants to pure Mandelstam variables. Along the line of unifying relation [47],

one can also turn the polarizations to momenta. In addition, other formulations of gauge

invariance identities were depicted in [26, 30, 43–45]. Thus it will be interesting to give a

more comprehensive understanding of the gauge invariance induced relations by consider-

ing [47] and [26, 30, 43–45].8 (iii) As we have seen, the gauge invariance induced relations

bridge the DF type BCJ numerators of NLSM amplitudes and the compact CMS type ones.

Maybe they will help us to find compact polynomial BCJ numerators of YM amplitudes

which are independent of any reference ordering from that of DF type. We know the sum of

BCJ numerators of all possible reference orderings satisfy this requirement, but how about

more compact ones? (iv) Last but not least, gauge invariance induced relations can also

be considered in string theory, which may lead to new applications for string amplitudes.
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A All graphs for H = {h1, h2, h3}

When we choose the relative order R = {h1, h2, h3}, all possible graphs are given by figure 2.

The correspondence of graphs and the relative permutations σσσH is given by

{h1, h2, h3} : (a1) ∼ (a6); {h1, h3, h2} : (b1) ∼ (b6); {h2, h1, h3} : (c1) ∼ (c6);

{h2, h3, h1} : (d1) ∼ (d6); {h3, h1, h2} : (e1) ∼ (e6); {h3, h2, h1} : (f1) ∼ (f6).

(A.1)

8We thank Rutger Boels for helpful comments on this point.
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Figure 2. All possible graphs with H = {h1, h2, h3}. Graphs in each row contribute to permutations

{2, . . . , r − 1} σσσH for a given relative order σσσH.

B Proof of (6.23)

To prove the relation (6.23), we consider the l.h.s. for a given j:

∑
ρρρ∈Sn−2

T (ρ(2)| . . . |ρ(2j)|ρ(2j + 1), . . . , ρ(n− 1)). (B.1)

Assuming I2j−1 ≡ {i2, i3, . . . , i2j} with 2j − 1 elements is a subset of {2, . . . , n − 1}, we

can divide the set {2, . . . , n− 1} into two parts {i2, i3, . . . , i2j} and its complement I2j−1 =
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{2, . . . , n− 1} \ {i2, i3, . . . , i2j}. Then (B.1) can be arranged as∑
ρρρ∈Sn−2

T (ρ(2)| . . . |ρ(2j)|ρ(2j+1), . . . ,ρ(n−1)) (B.2)

=
∑

I2j−1⊆{2,...,n−1}

[ ∑
ρρρA∈perms I2j−1

∑
ρρρB∈perms I2j−1

T (ρA(2)| . . . |ρA(2j)|ρB(2j+1), . . . ,ρB(n−1))

]
.

in which, the first summation is over all possible choices of the subset I2j−1 for fixed j, the

second and the third summations are given by summing over all possible permutations of

elements in I2j−1 and I2j−1. For given I2j−1 and given ρρρA ∈ perms I2j−1, we write the sum

over ρρρB explicitly∑
ρρρB∈perms I2j−1

T (ρA(2)| . . . |ρA(2j − 2)|ρA(2j − 1)|ρA(2j)|ρB(2j + 1), . . . , ρB(n− 1))

=
∑

ρρρB∈perms I2j−1

∑
σσσ∈Z{ρA(2)|...|ρA(2j)|ρρρB}

S[σσσ|ρρρA, ρρρB]A(1,σσσ, n). (B.3)

According to the definition of zigzag pattern (6.21), the sum over σσσ in the above equa-

tion can be realized by the following two steps: (i) first fix a relative order σσσA of

ρA(2), ρA(3), . . . , ρA(2j), s.t.,

σσσA ∈
{

perms ρρρA s.t.σ−1A (ρA(2j−1))<σ−1A (ρA(2j)),σ−1A (ρA(2j−2))>σ−1A (ρA(2j−1)),

. . . ,σ−1A (ρA(3))<σ−1A (ρA(2))
}
, (B.4)

and sum over all possible permutations σσσ ∈ σσσA ρρρB s.t. σ−1(ρB(2j + 1)) < σ−1(ρA(2j)),

(ii) sum over all possible σσσA satisfying (B.4). Since ρρρB and σσσA are permutations of elements

from two disjointed sets, the sums over them commute with each other. Therefore, (B.3)

becomes

∑
σσσA

[ ∑
ρρρB∈perms I2j−1

∑
σσσ∈σσσA ρρρB , s.t.

σ−1(ρB(2j+1))<σ−1(ρA(2j))

S[σσσ|ρρρA, ρρρB]A(1,σσσ, n)

]
, (B.5)

where the first summation is taken over all σσσA satisfying (B.4). For a given σσσA satisfy-

ing (B.4), one can apply the relation (5.6) to the expression in the square brackets. Thus

the above expression evaluates to

(−1)
∑

ρρρB∈perms I2j−1

[∑
σσσA

∑
σσσ∈σσσA ρρρB , s.t.

σ−1(ρA(2j))<σ
−1(ρB(2j+1))

S[σσσ|ρρρA, ρρρB]A(1,σσσ, n)

]

= (−1)
∑

ρρρB∈perms I2j−1

[ ∑
σσσ∈Z{ρA(2)|...|ρA(2j−1),ρA(2j), ρρρB}

S[σσσ|ρρρA, ρρρB]A(1,σσσ, n)

]
= (−1)

∑
ρρρB∈perms I2j−1

T (ρA(2)| . . . |ρA(2j − 2)|ρA(2j − 1), ρA(2j), ρρρB), (B.6)
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in which the second equality is obtained by considering the definition of zigzag permuta-

tions (6.21):

Z{ρA(2)| . . . |ρA(2j−1),ρA(2j), ρρρB} (B.7)

= {σσσ|σσσ ∈Sn−2,s.t. σ
−1(ρB(n−1))> · · ·>σ−1(ρB(2j+1))>σ−1(ρA(2j))>σ−1(ρA(2j−1)),

σ−1(ρA(2j−2))>σ−1(ρA(2j−1)),σ−1(ρA(2j−3))<σ−1(ρA(2j−2)), . . . ,σ−1(ρA(3))<σ−1(ρA(2))}
= {σσσ|σσσ ∈σσσA ρρρB ,s.tσ

−1
A (ρA(2j−1))<σ−1

A (ρA(2j)),σ−1
A (ρA(2j−2))>σ−1

A (ρA(2j−1)),

. . . ,σ−1
A (ρA(3))<σ−1

A (ρA(2)) andσ−1(ρA(2j))<σ−1(ρB(2j+1))}.

Consequently, (B.2) becomes∑
ρρρ∈Sn−2

T (ρ(2)| . . . |ρ(2j)|ρ(2j+1), . . . ,ρ(n−1)) (B.8)

= (−1)
∑

I2j−1⊆{2,...,n−1}

[ ∑
ρρρA∈perms I2j−1

∑
ρρρB∈perms I2j−1

T (ρA(2)| . . . |ρA(2j−2)|ρA(2j−1), ρA(2j), ρρρB)
]
.

Now let us understand the summations on the r.h.s. of (B.8). Given I2j−1, we collect

terms with ρA(2j − 1) = a, ρA(2j) = b, (for given a, b,∈ I2j−1) then obtain a term∑
ρρρA′∈perms I2j−3

∑
ρρρB∈perms I2j−1

T (ρA′(2)| . . . |ρA′(2j − 2)|a, b, ρρρB), (B.9)

where we define I2j−3 ≡ I2j−1 \ {a, b}. Correspondingly, we also have other terms in (B.8)

with distinct I2j−1 (identical I2j−1 for the special case with ρA(2j−1) = b, ρA(2j) = a) but

a same I2j−3 ≡ I2j−1 \ {x, y}, where ρA(2j − 1) = x, ρA(2j) = y for an ordered pair (x, y)

satisfying x, y ∈ {a, b} ∪ I2j−1 = I2j−3. The sum of all such terms gives rise∑
ρρρA′∈perms I2j−3

[ ∑
x,y∈I2j−3

∑
{ρA(2j−1),ρA(2j)}∈perms {x,y}

∑
ρρρB∈perms I2j−3 \ {x, y}

T (ρA′(2)| . . . |ρA′(2j − 2)|ρA(2j − 1), ρA(2j), ρρρB)

]
. (B.10)

Defining ρA(2j − 1) ≡ ρB′(2j − 1), ρA(2j) ≡ ρB′(2j), ρB(2j + 1) ≡ ρB′(2j + 1), . . . ,

ρB(n − 1) ≡ ρB′(n − 1) and noting that for given ρρρA′ ∈ perms I2j−3 the other three

summations becomes
∑

ρρρB′∈perms I2j−3
, we reformulate the above expression as∑

ρρρA′∈perms I2j−3

∑
ρρρB′∈perms I2j−3

T (ρA′(2)| . . . |ρA′(2j − 2)|ρρρB′). (B.11)

Summing over all possible choices of I2j−3 ⊆ {2, . . . , n − 1}, we finally express the r.h.s.

of (B.8) by

(−1)
∑

I2j−3⊆{2,...,n−1}

∑
ρρρA′∈perms I2j−3

∑
ρρρB′∈perms I2j−3

T (ρA′(2)| . . . |ρA′(2j − 2)|ρρρB′)

= (−1)
∑

ρρρ∈Sn−2

T (ρ(2)| . . . |ρ(2j − 2)|ρ(2j − 1), ρ(2j), . . . , ρ(n)). (B.12)

Hence the relation (B.1) is proven.
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C Understanding the zigzag pattern of σσσ for given ρρρ in (6.1)

We first show that, if a given ρρρ = {ρ(2), ρ(3), . . . , ρ(n − 1)} on the l.h.s. of (6.1) can be

considered as a permutation in Γ(σσσ) for some permutation σσσ, the σσσ must satisfy the zigzag

pattern, i.e., σσσ ∈ Z{ρ(2)|ρ(3)| . . . |ρ(n− 1)}. This can be understood as follows:

• As defined in section 4.1, the element n is always considered as the last element in

both σσσ and ρρρ, thus we have σ−1(ρ(n−1)) < σ−1(n). Since there is no element between

ρ(n − 1) and n in the permutation ρρρ, according to the rule given in section 4.1 (see

the point (ii) below (4.3)), we deduce σ−1(ρ(n− 2)) > σ−1(ρ(n− 1));

• We now consider ρ(n − 2). In the permutation ρρρ, there is one element ρ(n − 1),

which satisfies σ−1(ρ(n − 1)) < σ−1(ρ(n − 2)), between ρ(n − 2) and n (note that

σ−1(ρ(n − 2)) < σ−1(n)). According to the rule given in section 4.1 (see the point

(i) below (4.3)), we deduce that σ−1(ρ(n− 3)) < σ−1(ρ(n− 2)).

• We further consider ρ(n − 3). Since σ−1(ρ(n − 3)) < σ−1(ρ(n − 2)) and there is

no element between ρ(n − 3) and ρ(n − 2) in the permutation ρρρ, we must have

σ−1(ρ(n− 4)) > σ−1(ρ(n− 3)), in accordance to the point (ii) below (4.3).

• We turn to ρ(n−4). Since σ−1(ρ(n−4)) > σ−1(ρ(n−3)), we should have σ−1(ρ(n−
5)) < σ−1(ρ(n− 4)) due to the point (i) below (4.3)).

• Repeat the above discussions, we find the general condition

σ−1(ρ(2j+2)) > σ−1(ρ(2j+1)), σ−1(ρ(2j+1)) < σ−1(ρ(2j)), (for j ≥ 1). (C.1)

Thus the permutation σσσ must be in Z{ρ(2)|ρ(3)| . . . |ρ(n− 1)} for given ρρρ.

Conversely, we show that ρρρ must be in Γ(σσσ) for any permutation σσσ ∈ Z{ρ(2)|ρ(3)| . . . |ρ(n−
1)}. This is because:

• For any σσσ ∈ Z{ρ(2)|ρ(3)| . . . |ρ(n− 1)}, if σ(a) = ρ(2j + 1) (σ(a) ∈ σσσ), we must have

some b > a and c > a s.t. σ(b) = ρ(2j + 2) and σ(c) = ρ(2j). In the permutation

ρρρ, ρ(2j + 2) and ρ(2j) are the nearest elements on the r.h.s. and l.h.s. satisfying

a = σ−1(2j + 1) < b = σ−1(2j) and a = σ−1(ρ(2j + 1)) < c = σ−1(ρ(2j + 2)). In

addition, there is no element between ρ(2j + 2), ρ(2j + 1) and ρ(2j), ρ(2j + 1) in the

permutation ρρρ. Thus the condition (ii) below (4.3) in section 4.1 is satisfied.

• For any σσσ ∈ Z{ρ(2)|ρ(3)| . . . |ρ(n − 1)}, if σ(a) = ρ(2j) (σ(a) ∈ σσσ), we have two

possibilities.

– If the nearest element σ(b) (and σ(c)) on the LSH (and r.h.s.) to ρ(2j) in

permutation ρρρ s.t. b > a (and c > a) has the form σ(b) = ρ(2k) (and σ(c) =

ρ(2k′)), we must have odd number of elements between σ(b) = ρ(2k) (and

σ(c) = ρ(2k′)) and σ(a) = ρ(2j) in ρρρ (because there must be odd numbers

between two even numbers). Thus the condition (i) in section 4.1 is satisfied;
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– Assuming the nearest element σ(b) (or σ(c)) on the LSH (or r.h.s.) to ρ(2j)

in ρρρ, which satisfies b > a (or c > a) has the form σ(b) = ρ(2k + 1) (or

σ(c) = ρ(2k′ + 1)), we always have ρ(2k + 2) (or ρ(2k′)), which is more nearer

to σ(a) = ρ(2j) in ρρρ and satisfies σ−1(ρ(2k + 2)) > σ−1(ρ(2k + 1)) = σ(b) >

σ(a) = ρ(2j) (or σ−1(ρ(2k′)) > σ−1(ρ(2k′ + 1)) = σ(c) > σ(a) = ρ(2j)). Thus

we return to the previous case.
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