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1 Introduction

In superconformal field theories, it has been known that there exist families of conformal

field theories (CFTs) connected by exactly marginal deformations [1]. Such families are

called ‘conformal manifolds’. Recently, refs. [2, 3] discussed whether conformal manifolds

exist in the case without supersymmetry (See also [4, 5]). Let us consider a candidate

marginal deformation of a given CFT

SCFT → SCFT + g

∫

ddX O(X) (1.1)

where O is a marginal operator whose conformal dimension is d. By using conformal

perturbation theory [6], the β-function can be determined perturbatively and the order

g2 and g3 terms are related with certain three- and four-point functions of the candidate

marginal operator respectively. From the condition that these terms vanish, one obtains a

constraint on the coefficients of three-point functions with at least one marginal operator

and a sum rule in terms of coefficients of three-point functions and conformal blocks. If a

CFT satisfies the above constraint and the sum rule, there is a possibility that the theory

has a conformal manifold.

What happens if boundaries or defects exist? Naively, we expect that the boundaries

or defects do not change the β-function of an ambient1 operator since a boundary marginal

operator is expected not to influence correlation functions of ambient operators away from

1In papers discussing defect and boundary conformal field theories in the context of holography, it has

been common to use the word “ambient” space for the spacetime of the field theory away from the boundary

so that the word “bulk” can be reserved for the spacetime of the holographic dual. While this current paper

does discuss holography only tangentially, we still stick with this convention in order to avoid any future

confusion.
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the boundary. Correspondingly the β-function of ambient operators does not give new

interesting information. In contrast, the ambient marginal operator does drive the β-

function of the boundary operator. In two-dimensional CFTs, these aspects were explored

in [7]. In this paper, we generalize the results in [2, 3] to CFTs with boundaries or defects.

Or we can also say that we generalize the results in [7] to higher dimensional CFTs.

This paper is organized as follows. In section 2, we will derive necessary conditions such

that conformal manifolds with boundaries or defects exist by using conformal perturbation

theory. In section 3, we will give simple examples of conformal manifolds. To exhibit

that β-functions of these examples vanish, we employ differential regularization. We will

conclude in section 4. In appendix A, we give a detailed discussion of the asymptotic

behavior of conformal blocks.

2 Constraints from conformal perturbation theory

Let us consider boundary conformal field theories (BCFTs) or defect conformal field the-

ories (dCFTs) and deform them by introducing an marginal ambient operator O and a

marginal boundary operator Ô,

SBCFT → SBCFT + g

∫

ddX O(x,w) + ĝ

∫

dd−1x Ô(x) . (2.1)

The conformal dimension of the ambient operator is ∆ = d, and that of the boundary

operator is ∆̂ = d − 1. We use capital letters for the ambient coordinates and lower

case letters for the boundary coordinates. w represents a coordinate perpendicular to the

boundary or defect. We use hats for quantities on the boundary. The β-functions of

these operators are obtained by using conformal perturbation theory [6]. Following [8], we

consider the overlaps

〈O(∞)|0〉g,ĝ,V,V̂ (2.2)

and

〈Ô(∞)|0〉g,ĝ,V,V̂ (2.3)

where O(∞) = limX→∞X2dO(X) and Ô(∞) = limx→∞ x2(d−1)Ô(x). The state

|0〉g,ĝ,V,V̂ = exp

(

g

∫

V
O + ĝ

∫

V̂
Ô

)

|0〉 (2.4)

is obtained by deforming the theory in a finite region surrounding the origin. Note that V

(V̂ ) is a small region surrounding the origin in the ambient (boundary) spacetime. Here

we introduce
∫

V =
∫

V ddX and
∫

V̂ =
∫

V̂ dd−1x to simplify expressions. We can obtain the

β-functions by demanding that these overlaps do not depend on an UV cut-off scale. By
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expanding the overlaps in terms of coupling constants, we obtain

〈O(∞)|0〉g,ĝ,V,V̂ ≃ 〈O(∞)〉+ ĝ

∫

V̂
〈O(∞)Ô(x)〉+

ĝ2

2

∫

V̂1

∫

V̂2

〈O(∞)Ô(x1)Ô(x2)〉

+
ĝ3

6

∫

V̂1

∫

V̂2

∫

V̂3

〈O(∞)Ô(x1)Ô(x2)Ô(x3)〉

+ g

∫

V
〈O(∞)O(X)〉+

g2

2

∫

V1

∫

V2

〈O(∞)O(X1)O(X2)〉

+ gĝ

∫

V

∫

V̂
〈O(∞)O(X)Ô(x)〉

+
g2ĝ

2

∫

V1

∫

V2

∫

V̂
〈O(∞)O(X1)O(X2)Ô(x)〉

+
gĝ2

2

∫

V

∫

V̂1

∫

V̂2

〈O(∞)O(X)Ô(x1)Ô(x2)〉+ · · · ,

(2.5)

and

〈Ô(∞)|0〉g,ĝ,V,V̂ ≃ 〈Ô(∞)〉+ ĝ

∫

V̂
〈Ô(∞)Ô(x)〉+

ĝ2

2

∫

V̂1

∫

V̂2

〈Ô(∞)Ô(x1)Ô(x2)〉

+
ĝ3

6

∫

V̂

∫

V̂1

∫

V̂2

〈Ô(∞)Ô(x1)Ô(x2)Ô(x3)〉

+ g

∫

V
〈Ô(∞)O(X)〉+

g2

2

∫

V

∫

V
〈Ô(∞)O(X1)O(X2)〉

+ gĝ

∫

V

∫

V̂
〈Ô(∞)O(X)Ô(x)〉

+
g2ĝ

2

∫

V1

∫

V2

∫

V̂
〈Ô(∞)O(X1)O(X2)Ô(x)〉

+
gĝ2

2

∫

V

∫

V̂1

∫

V̂2

〈Ô(∞)O(X)Ô(x1)Ô(x2)〉+ · · · ,

(2.6)

where the dots represent higher order terms. To obtain the β-functions, we have to pick up

logarithmic divergent parts in (2.5) and (2.6). The β-function of the ambient operator is

not expected to give any new constraints because the boundary operator does not change

the ambient theory. In fact, at leading order of ĝ, the two-point function is involved and it

does not diverge. At the next order, one can show that the three-point function does not

diverge logarithmically using a conformal block decomposition (2.21) which we will discuss

later. At the order gĝ, it is almost impossible to evaluate the contribution explicitly because

this involves a three-point function with two ambient operators and one boundary operator.

However, if we assume the order between two coupling constants as g ∼ ĝ2, we can consider

this term as a higher order term. We will discuss the order between g and ĝ and difficulties

of computations of three-point functions later. In total, from the ambient β-function, we

get the same constraints as obtained in [2, 3]. We do not repeat their computations and

do not write the constraints explicitly, here.

Hence our main attention is the overlap of the boundary operator (2.6). The first term

is the one-point function and does not give any logarithmic divergence. The next three

– 3 –
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terms are the counterparts of similar terms in the β-function of the ambient operator. From

them we get constraints similar to those of the ambient operator case except for the fact

that the corresponding correlation functions live entirely on the boundary. The last five

terms are peculiar to BCFTs or dCFTs and are the interesting terms we wish to analyze.

Before evaluating each term, we comment on the relative order between g and ĝ. In

general, they can be dialed independently and we mainly assume g ∼ ĝ2 throughout this

paper except one example encountered in section 3.1. One important rationale for this

choice is the fact that the ambient operator can be regarded as two boundary operators

when using the method of images to enforce the boundary conditions. Using this standard

method the insertion of a single ambient operator together with its mirror operator for

the purposes of actually evaluating the correlators effectively inserts two operators into the

correlation function. So if ĝ counts the number of boundary operators inserted, in terms

of determining the difficulty of the calculation to be performed it makes sense to count

g ∼ ĝ2. With this scaling we can also argue that the very complicated computation of the

order g2-term, which we will discuss later, is higher order than the terms we discuss in

detail and can be neglected for our purposes.

Order g-term. The two-point function of an ambient operator and a boundary operator

is determined as [9]

〈O(x1, w)Ô(x2)〉 =
B

OÔ

(2w)∆−∆̂(x212 + w2)∆̂
(2.7)

where xij means xi − xj and B
OÔ

is a coefficient appearing in the boundary operator

product expansion,

O(x,w) =
∑

n

B
OÔn

(2w)∆−∆̂n

Ôn(x) . (2.8)

Then the order g-term in (2.6) becomes

g

∫

V
ddX〈Ô(∞)O(X)〉 = g

∫

V
ddX

B
OÔ

(2w)∆−∆̂
(2.9)

where we normalize two-point functions such that 〈Ô(∞)Ô(0)〉 = 1. The integral about x

gives only a volume factor.2 A logarithmic divergence comes from the integral about w.

Since ∆− ∆̂ = 1 we can evaluate

g

∫

V
ddX

B
OÔ

(2w)∆−∆̂
∼ gB

OÔ
log Λ (2.10)

where we ignore unimportant prefactors to determine necessary conditions such that the

β-function vanishes. Hence the necessary condition is

B
OÔ

= 0 (2.11)

for the marginal operators O and Ô.

2In our notation, X = (x,w).
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Order gĝ-term. Next, we evaluate the divergence of the order gĝ-term. To the best

of our knowledge, the conformal block decomposition of a three-point function with one

ambient operator and two boundary operators has not been obtained before except in

two-dimensional CFTs [10]. Hence we give a detailed derivation of the conformal block

decompositions by using a Casimir method here.

A three-point function with one ambient operator and two boundary operators has the

following general form,

〈O1(x1, w)Ô2(x2)Ô3(x3)〉

= (−2P1 · P̂2)
−

∆1+∆̂2−∆̂3
2 (−2P1 · P̂3)

−
∆1+∆̂3−∆̂2

2 (−2P̂2 · P̂3)
−

∆̂2+∆̂3−∆1
2 f(η) .

(2.12)

Here we introduce embedding coordinates P1, P̂2, P̂3 and B, and they are expressed as

P1 = (1, x21 + w2, x1, w) , P̂2 = (1, x22, x2, 0) ,

P̂3 = (1, x23, x3, 0) , B = (0, 0, 0, 1)
(2.13)

on the projective null cone and η is the conformal cross-ratio,

η =
(−2P1 · P̂2)(−2P1 · P̂3)

(−2P̂2 · P̂3)(P1 ·B)2
=

(x212 + w2)(x213 + w2)

x223w
2

. (2.14)

See [11] for the details of the embedding formalism in BCFTs and also for the Casimir

method for the conformal block decomposition of two-point functions. The three-point

function satisfies the Casimir differential equation,

L̂2
1〈O1Ô2Ô3〉 = −C∆̂〈O1Ô2Ô3〉 (2.15)

with C∆̂ = ∆̂(∆̂− d+ 1). The differential operator L̂ is defined as

L̂ÂB̂ := PÂ

∂

∂P B̂
− PB̂

∂

∂P Â
(2.16)

and its square is given by

L̂2 :=
1

2
L̂ÂB̂L̂

ÂB̂

= PÂP
Â ∂

∂P B̂

∂

∂PB̂

− PÂ

∂

∂PÂ

(

PB̂

∂

∂PB̂

)

− (d− 1)PÂ

∂

∂PÂ

(2.17)

Note that Â runs from −,+, 1, · · · , d − 1. The Casimir differential equation reduces to a

second-order ordinary differential equation
(

4αβ

η
− (α+ β)2 − (d− 1)(α+ β) + ∆̂(∆̂− d+ 1)

)

f(η)

+ (4(α+ β + 1)(1− η)− 2(d− 1)η)f ′(η) + 4η(1− η)f ′′(η) = 0

(2.18)

where we introduced

α = −
∆1 + ∆̂2 − ∆̂3

2
, β = −

∆1 + ∆̂3 − ∆̂2

2
(2.19)

– 5 –
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to simplify expressions. Solutions of the Casimir equation are given by

f(η) = C1η
−α

2F1

(

d− 1− α+ β − ∆̂

2
,
−α+ β + ∆̂

2
, 1− α+ β, η

)

+ C2η
−β

2F1

(

d− 1 + α− β − ∆̂

2
,
α− β + ∆̂

2
, 1 + α− β, η

) (2.20)

where C1 and C2 are constants of integration. Since the three-point function is symmetric

under exchange of Ô2 and Ô3, f(η) should be symmetric in a similar manner. Thus, we

choose C1 = C2. We can determine the integration constants explicitly from the asymptotic

behavior of f(η). However, here we do not need to fix it since the overall normalization

is not important for our purpose of determining when the associated divergences vanish.

See appendix A for the detail of the asymptotic behavior of f(η). Then, the three-point

function can be decomposed as,

〈O1(x1, w)Ô2(x2)Ô3(x3)〉 =
∑

ℓ

B
O1Ôℓ

Ĉ
ÔℓÔ2Ô3

fℓ(η)

(x212 + w2)
∆1+∆̂2−∆̂3

2 (x213 + w2)
∆1+∆̂3−∆̂2

2 x
∆̂2+∆̂3−∆1

2

23
(2.21)

where the conformal block is given by

fℓ(η)=Cη
∆1+∆̂2−∆̂3

2 2F1

(

d−1+∆̂2−∆̂3−∆̂ℓ

2
,
∆̂2−∆̂3−∆̂ℓ

2
,1+∆̂2−∆̂3,η

)

+Cη
∆1+∆̂3−∆̂2

2 2F1

(

d−1+∆̂3−∆̂2−∆̂ℓ

2
,
∆̂3−∆̂2+∆̂ℓ

2
,1+∆̂3−∆̂2,η

)

(2.22)

with an unfixed coefficient C. Here B
OÔℓ

is a coefficient appearing in the boundary operator

product expansion as before and Ĉ
ÔℓÔÔ

is the coefficient appearing in the three-point

function of boundary operators,

〈Ô1(x1)Ô2(x2)Ô3(x3)〉 =
Ĉ
Ô1Ô2Ô3

x∆̂1+∆̂2−∆̂3

12 x∆̂2+∆̂3−∆̂1

23 x∆̂3+∆̂1−∆̂2

31

. (2.23)

Let us evaluate a divergence in the three-point function with two identical boundary

operators. Taking the x3 → ∞ limit and taking the normalization into account, the three-

point function becomes

〈O(x1, w)Ô(x2)Ô(∞)〉 =
∑

ℓ

B
OÔℓ

Ĉ
ÔℓÔÔ

fℓ(η)

(x212 + w2)∆/2
. (2.24)

The integration over x2 gives a volume factor and hence the total integral of the three-point

function reduces to

∫

dw

∫

dd−1x (x2 + w2)−∆/2η∆/2
2F1

(

d− 1− ∆̂ℓ

2
,
∆̂ℓ

2
, 1, η

)

(2.25)

– 6 –
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where η = (x2 +w2)/w2. Note that the integration regions are not the whole of spacetime

but the small region surrounding the origin. After a change of variables x → wx, the

integral becomes
∫

dw

∫

dr wd−1−∆rd−2η∆/2
2F1

(

d− 1− ∆̂ℓ

2
,
∆̂ℓ

2
, 1, η

)

(2.26)

up to unimportant prefactors. Here r is a radial coordinate. The r-integral does not diverge

and the w-integral diverges logarithmically. Correspondingly we get a constraint
∑

ℓ

B
OÔℓ

Ĉ
ÔℓÔÔ

= 0 (2.27)

for the marginal operators O and Ô. The summation over ℓ runs over all operators ap-

pearing in the boundary operator product expansion of the marginal ambient operator.

Other terms. When we dial g and ĝ independently, we can regard other terms as higher

order terms by setting g ∼ ĝ2 as noted above. However, they cannot be dialed indepen-

dently in some examples like super Janus as we will see later in subsection 3.1. In the

situation where g ∼ ĝ, we have to evaluate three-point functions with two ambient oper-

ators and one boundary operator in order to determine the order g2ĝ contribution, which

in a scheme where g ∼ ĝ is of the same order as the ĝ3 term we accounted for. However,

the order g2ĝ contribution is significantly more complicated than the three-point functions

with one ambient operator and two boundary operators we calculated above: the former

can be regarded as five-point function when using the folding trick while the latter can be

regarded as four-point function. In practice, when we decompose the three-point functions

to conformal blocks, they depend on two conformal cross-ratios and a Casimir differential

equation becomes a partial differential equation. Like conformal blocks of a four-point

function in standard CFTs, it might be difficult to obtain analytical solutions of this par-

tial differential equation. Hence we do not further consider evaluating constraints from

this three-point function. It is necessary to check whether new constraints are compatible

with other constraints when g ∼ ĝ. As we will see later, super Janus does not rule out the

existence of marginal couplings with this scaling and we hope that this new constraint is

consistent with the other constraints.

We can guess the form of the new constraint. The three-point function can be decom-

posed to conformal blocks,

〈Ô(∞)O(X1)O(X2)〉 =
∑

m,n

B
OÔm

B
OÔn

Ĉ
ÔÔmÔn

F (η1, η2) (2.28)

where η1 and η2 are conformal cross-ratios. An integration in terms of X2 gives a volume

factor and our concern is how the integration in terms of X1 behaves. If it does not diverge

at all, it obviously does not give any new constraint. If it diverges logarithmically, we will

get a constraint,
∑

m,n

B
OÔm

B
OÔn

Ĉ
ÔÔmÔn

= 0 . (2.29)

This seems a reasonable constraint. In all other cases, the constraint would be more

complicated.

– 7 –
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3 Examples

3.1 Super Janus

One candidate for conformal manifolds in a CFT with boundaries or defects is super

Janus [12, 13]. Janus type field theories often have holographic duals in terms of the

Janus solution of type IIB supergravity [14] or related solutions. Their defining charac-

teristic is that the gauge coupling constant jumps across the defect. We can consider this

jumping coupling constant as the ambient marginal deformation operator. This becomes

more apparent when we employ the folding trick. Without supersymmetry, such a field

theory has no boundary marginal operator added to the action and it is a good candidate

for conformal manifolds. Note that in the Janus case we start out with a CFT without

defects or boundaries and the defect gets only introduced by the particular ambient space

operator we introduce. This means that the constraints we have to check are identical to

those in a CFT without boundary. Indeed the marginal operator of the Janus field theory

satisfies constraints obtained in [2, 3]. One could argue that Janus is just one more example

of the results obtained in [2, 3], but the fact that the deformation results in a dCFT is

somewhat non-trivial. At strong coupling, one can use the holographic dual to see that at

least in this regime the Janus deformation is, in fact, exactly marginal to all orders: the

dual geometry has an AdS4 factor, which indicates an unbroken conformal invariance, even

in the presence of an order one Janus deformation.

To restore supersymmetry in the Janus field theory, we need to add boundary terms

and we can regard these boundary terms as boundary marginal operators. The Lagrangian

of the N = 4 super Yang-Mills theory is written as

LN=4 = −∂µφ
∗
I∂

µφI −
i

2
ψ̄IΓ

µ∂µψI + F ∗
I FI +W ′

IFI −
i

2
W ′′

IJ ψ̄IP+ψJ

−
1

4g2
F a
µνF

aµν −
i

2g2
λ̄aΓµDµλ

a +
1

2g2
DaDa + Lint

(3.1)

where we use different normalizations for the chiral multiplets and the vector multiplets and

interaction terms are not written explicitly. The Lagrangian of super Janus is constructed

as

Lsuper Janus = LN=4 − γε(w)LN=4 − 2∂wg Im
δW

δg
− ∂w

(

1

4g2

)

λ̄aΓ5λa (3.2)

where γ is a dimensionless parameter and expressed by using gauge coupling constants g+
for w > 0 and g− for w < 0,

γ =
g2+ − g2−
g2+ + g2−

. (3.3)

From the Lagrangian, the ambient operator is determined as

γO = −γε(x3)LN=4 (3.4)

and two boundary operators are given by

γḡÔ1 = −2γḡ Im
δW

δg
(3.5)

– 8 –
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and
γ

ḡ2
Ô2 =

γ

2ḡ2
λ̄aΓ5λa (3.6)

respectively. From these expressions, we see that it is not possible to dial the two boundary

operators independently. In the situation where ḡ ∼ 1, the ambient operator and the

boundary operators are of the same order. In this case, we have to evaluate a three-point

function with two ambient operators as mentioned before.

We can check perturbatively whether super Janus has a conformal manifold by ex-

plicit computation of correlation functions. In fact, all relevant correlation functions van-

ish trivially and super Janus is indeed a possible candidate of conformal manifolds with

boundaries or defects. Once again, the existence of holographically dual supergravity solu-

tions [13, 15, 16] to super Janus involving an AdS4 factor indicates that at least at strong

coupling this theory indeed does have a conformal manifold. Our discussion above applied

to minimal supersymmetric Janus, where counter terms were added in order to restore

at least some supersymmetry. Janus solutions preserving extended supersymmetries have

also been constructed [17] and the dual field theories for these maximally supersymmetric

Janus type field theories are of course also candidates for dCFTs with conformal manifolds.

If we do not add any counter terms to restore supersymmetry, we obtain an example

of a conformal manifold without supersymmetry. We suspect that if we were to add the

counter terms with arbitrary coefficients, in particular with our preferred g ∼ ĝ2 scaling,

we would still obtain a dCFT with a conformal manifold. However any supersymmetry,

and any connection to a known holographic dual, would be lost.

3.2 Mixed dimensional QED

Mixed dimensional quantum electrodynamics (QED) is standard QED coupled to fermions

localized on a lower-dimensional boundary or defect. Here we restrict our attention to four-

dimensional QED coupled with a fermion on a co-dimension one boundary. This model

was explored by [18, 19] and we will review it and give a new derivation of the β-function

by using a differential regularization [20] which is a position space regularization and hence

more suited to the task of regulating theories without translation invariance. As noted

in [19], this model is conformal to all orders in perturbation theory. Reproducing at least

the leading order result is a reassuring check of our methods.

The Lagrangian of mixed QED is given by

S = −
1

4

∫

d4X F 2
µν +

∫

d3x iψ̄γiDiψ (3.7)

where the covariant derivative is Di = ∂i − igAi and the metric is mostly plus. The

ambient space has a boundary at w = 0 and the fermion is localized on this boundary.

In [19], it was shown that the β-function of the mixed dimensional QED vanishes by using

standard momentum space methods. However, boundaries or defects break translation

invariance and Fourier transformation to momentum space is challenging except in some

simple situations. For instance, the Janus type field theory does not work well in momentum

space. Most notably, the propagator which is easily constructed in position space using

– 9 –
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the method of images, does not have a simple momentum space representation. Since we

would like to consider such Janus type field theory in this paper, we reproduce results

in [19] using a regularization directly in position space.

Here we summarize our notation, basically following [19]. A propagator for a d-

dimensional scalar field is given by

GS(x1, w1, x2, w2) = CS

[

1

((x1 − x2)2 + (w1 − w2)2)
d−2

2

+
1

((x1 − x2)2 + (w1 + w2)2)
d−2

2

]

(3.8)

with coefficient

CS =
1

(d− 2)Vol(Sd−1)
, Vol(Sd−1) =

2πd/2

Γ(d/2)
. (3.9)

Using this propagator, the propagator of a gauge field can be written as

Gµν
G (x1, w1, x2, w2) = ηµνGS(x1, w1, x2, w2) . (3.10)

A propagator of a fermion on co-dimension one boundary is given by

GF(x1, x2) = CF
γi(x1 − x2)i

((x1 − x2)2)(d−1)/2
= −

CF

d− 3
γi∂i((x1 − x2)

2)−(d−3)/2 (3.11)

with coefficient

CF =
1

Vol(Sd−1)
. (3.12)

In the following, we set d = 4. Gamma matrices satisfy anti-commutation relations,

{γi, γj} = −2ηij (3.13)

where ηij is mostly plus as noted above. A three-dimensional Laplacian is introduced as

∇2 = ηij∂i∂j (3.14)

and the differential identity

∇2 1

|x|
= −4πδ(x) (3.15)

is satisfied. Using the above equations, we can show that

γi∂iGF(x1, x2) = −4πδ(x12) . (3.16)

We use above equations in the following computations.

We wish to evaluate one-loop corrections of propagators and vertex operators. For the

photon propagator, the one-loop correction does not diverge logarithmically because the

internal fermion propagators gives an integral like
∫

d3z1d
3z2

1

|z12|4
(3.17)

where z12 = z1 − z2. This integral does not give any logarithmic divergence and it is not

necessary to regulate the integral for our purpose.

– 10 –



J
H
E
P
0
7
(
2
0
1
8
)
1
5
6

x1 x2z1 z2

(a) One-loop correction of the fermion propaga-

tor.

x1

x2

z1

z2

z3

X

(b) One-loop correction of the vertex operator.

Figure 1. Feynman diagrams.

The one-loop correction of the fermion propagator (see figure 1a) is evaluated as

= (ig)2
∫

d3z1d
3z2GF(x1, z1)γ

iGF(z1, z2)γ
jGF(z2, x2)GG,ij(z1, z2)

= −
2

3
(ig)2CFCS

∫

d3z1d
3z2GF(x1, z1)γ

k∂k

(

1

|z12|3

)

GF(z2, x2) . (3.18)

Note that only the photon propagator with arguments restricted to the boundary appeared

in the above expressions.

The heart of differential regularization is to use the following replacement,

1

|x|3
= −∇2 logM |x|

|x|
. (3.19)

This replaces the singular |x|−3 with a much more amendable expression which, in partic-

ular, has a well defined Fourier transform. The expression (3.19) can easily be shown to be

true for any non-vanishing |x|. The replacement of |x|−3 is hence valid up to (potentially

infinite) contact terms. Removing these infinite contact terms is exactly what a renormal-

ization procedure needs to accomplish. We also see that the price to pay is that we had

to introduce a mass scale M , just as is familiar from momentum space based regulariza-

tion schemes. The β-functions of the theory will be determined by the requirement that

physical quantities do not depend on the arbitrary mass scale M . Using (3.19) we obtain

= −
2

3
(ig)2CFCS

∫

d3z1d
3z2GF(x1, z1)γ

k∂k

(

−∇2 logM |z12|

|z12|

)

GF(z2, x2) .

(3.20)

Eventually we get

M
∂

∂M

( )

=
g2

6π2
GF(x1, x2) . (3.21)

– 11 –



J
H
E
P
0
7
(
2
0
1
8
)
1
5
6

Finally, we evaluate the one-loop correction of the vertex operator (See figure 1b),

= (ig)3
∫

d3z1d
3z2d

3z3GF(x1, z1)γ
iGF(z1, z2)γ

jGF(z2, z3)γ
m

×GF(z3, x2)GG,im(z1, z3)GG,jµ(z2, X)

= 2(ig)3C2
FCS

∫

d3z1d
3z2d

3z3GF(x1, z1)γ
iγkγjγlγi

× ∂k

(

1

|z12|

)

∂l

(

1

|z23|

)

1

|z13|2
GF(z3, x2)GG,jµ(z2, X) . (3.22)

To pick up a logarithmic divergent part, we use a following replacement

∂k

(

1

|z12|

)

∂l

(

1

|z23|

)

1

|z12 + z23|2
= ∂k

(

1

|z12|
∂l

(

1

|z23|

)

1

|z12 + z23|2

)

− ∂k

(

1

|z12|

)

1

|z23|
∂l

(

1

|z12 + z23|2

)

− ∂k∂l

(

1

|z12|

)

1

|z23||z12 + z23|2
.

(3.23)

Note that ∂k is a derivative in terms of z1 while ∂l is a derivative in terms of z2. The

first and second terms do not give any logarithmic divergences, so we ignore them and

concentrate on the third term from now on. After changing the variable from z2 of ∂l to

z1, we get an identity,

∂k∂l

(

1

|z12|

)

1

|z23||z12 + z23|2

=

(

∂k∂l −
1

3
ηkl∇

2

)(

1

|z12|

)

1

|z23||z12 + z23|2
+

1

3
ηkl∇

2

(

1

|z12|

)

1

|z23||z12 + z23|2
.

(3.24)

The first term does not give any contribution when we solve Callan-Symanzik equation.

Eventually, the one-loop correction of the vertex operator reduces to

(ig)3
2

3
C2
FCS

∫

d3z1d
3z2d

3z3GF(x1, z1)γ
j∇2

(

1

|z12|

)

1

|z23||z12+z23|2
GF(z3,x2)GG,jµ(z2,X)

=−(ig)3
2 ·4π

3
C2
FCS

∫

d3z2d
3z3GF(x1, z2)γ

j 1

|z23|3
GF(z3,x2)GG,jµ(z2,X) (3.25)

=−(ig)3
2 ·4π

3
C2
FCS

∫

d3z2d
3z3GF(x1, z2)γ

j∇2

(

−
logM |z23|

|z23|

)

GF(z3,x2)GG,jµ(z2,X)

where we used

γiγkγjγkγi = γj . (3.26)

Thus the derivative of the one-loop correction of the vertex operator becomes

M
∂

∂M

( )

= −(ig)3
2(4π)2

3
C2
FCS

∫

d3z GF(x1, z)γ
jGF(z, x2)GG,jµ(z,X)

=
g2

6π2
× . (3.27)
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To determine the corresponding β-function and anomalous dimensions, we need to

solve the Callan-Symanzik equations which encode independence of physical correlation

functions from the arbitrary RG scale M . The Callan-Symanzik equations are given by

(

M
∂

∂M
+ β

∂

∂g
+ 2γg

)

Gµν
G (X1, X2) = 0 , (3.28)

(

M
∂

∂M
+ β

∂

∂g
+ 2γψ

)

GF(x1, x2) = 0 , (3.29)

(

M
∂

∂M
+ β

∂

∂g
+ γg + 2γψ

)

Γg(x1, x2, X) = 0 . (3.30)

The β-function and γ can be expanded as

β = β1g
2 + β2g

3 +O(g4) , (3.31)

γg = γg,1g
2 + γg,2g

3 +O(g4) , (3.32)

γψ = γψ,1g
2 + γψ,2g

3 +O(g4) . (3.33)

Note that we can easily check that the order O(g0) and O(g1) vanish in β and γ. Substi-

tuting (3.31), (3.32) and (3.33) into the Callan-Symanzik equations, we easily obtain

β1 = β2 = 0 , (3.34)

γg,1 = γg,2 = 0 , (3.35)

γψ,1 = −
1

6π2
. (3.36)

These results are in perfect agreement with [19]. While these calculation only establish

conformality of mixed dimensional QED through the first few orders in perturbation theory,

it was argued in [19] that this behavior will continue to all orders in the perturbative

expansion.

3.3 Mixed dimensional QED with jumping coupling constant

To obtain non-supersymmetric conformal manifolds with both ambient and boundary de-

formations, we add a marginal ambient operator to mixed dimensional QED. As we saw,

the kinetic term of a gauge field with a jumping coupling constant is a nice candidate. We

consider the Lagrangian,

S = −
1

4

∫

d4X (1− γε(x3))F
2
µν +

∫

d3x iψ̄γiDiψ (3.37)

where γ = (g2+−g2−)/(g
2
++g2−) as before. This model has both a marginal ambient operator,

γO =
γ

4
ε(x3)F

2
µν (3.38)

and a marginal boundary operator,

ḡÔ = ḡψ̄γiAiψ . (3.39)

Unlike super Janus, this model has independent couplings γ and ḡ.

– 13 –
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We can easily confirm that correlation functions with an odd number of boundary oper-

ator insertions vanish because they contain an odd number of gauge fields. For correlation

functions with an even number of boundary operators, we need to evaluate them individ-

ually. At two loop order, a non-trivial correlation function comes from the three-point

function with two boundary operators but it does not give any logarithmic divergence.

We can also confirm that the β-function vanishes by using differential regularization.

When compared with mixed dimensional QED, this model has a more complicated photon

propagator away from the boundary. The scalar and hence the photon propagator still have

the structure of (3.8) with a direct and mirror charge term, but the relative weight of the

two terms is different once we include a jumping coupling. However, when we computed

one-loop corrections of the fermion propagator and the vertex operator in mixed dimen-

sional QED, only propagators with both arguments on the boundary appeared. When the

arguments of the photon propagators are restricted to the defect, the propagators have a

same form.3 Consequently the one-loop corrections do not change after we add the jumping

coupling constant and we conclude that the β-function still vanishes.

4 Conclusion

In this paper we discussed conformal manifolds with boundaries or defects. Using conformal

perturbation theory for the boundary operator, we obtained the following constraints,

B
OÔ

= 0 , (4.1)
∑

ℓ

B
OÔℓ

Ĉ
ÔℓÔÔ

= 0 (4.2)

in addition to similar constraints obtained in [2, 3]. The two coupling constants are dialed

independently except some examples and we assumed g ∼ ĝ2. In this case, the two obtained

constraints are sufficient up to order ĝ3, but in other cases, we have to evaluate difficult

higher-point correlation functions and would get additional constraints.

We studied three examples in section 3. In subsection 3.1, we studied super Janus.

It has one ambient operator and two boundary operators but the coupling constants of

boundary operators depend each other and we cannot keep a desired relation g ∼ ĝ2 for both

boundary operators. In this sense this model is an exceptional example. As by-product, we

obtained a simple example of conformal manifolds without boundary operators. Next, we

treated mixed dimensional QED in subsection 3.2. As noted in [19], this model is exactly

conformal. We reconfirmed this statement based on a differential regularization [20] which

is a position space based regularization. However, this model does not contain any ambient

marginal operator and all boundary operator product expansion coefficients vanish. Hence

this satisfies the constraints we obtained trivially. To construct a non-trivial example, we

add a jumping coupling constant to the mixed QED. We confirmed that this model satisfies

our new constraints and also has a vanishing β-function using differential regularization.

3There is a slight semantic difference. In subsection 3.2 we assume that there is a boundary at w = 0

but now we assume that there is a defect.
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A Asymptotic behavior of conformal blocks

As well-known, the three-point function has the following general form,

〈O1(x1, w)Ô2(x2)Ô3(x3)〉 =
f(η)

(x212 + w2)
∆1+∆̂2−∆̂3

2 (x213 + w2)
∆1+∆̂3−∆̂2

2 x∆̂2+∆̂3−∆1

23

(A.1)

In this appendix, we drive the asymptotic behavior of the conformal blocks, f(η). See

section 2 in [9] for the asymptotic behavior of the conformal block of the two-point function

in the boundary channel decomposition.

Let us remind the ambient operator can be expanded by boundary operators,

O(x,w) =
∑

n

B
OÔn

(2w)∆−∆̂n

Ôn(x) . (2.8)

When the ambient operator approaches the boundary, w → 0, the three-point function can

be approximated as

〈O1(x1, w)Ô2(x2)Ô3(x3)〉 ∼
B

OÔℓ

(2w)∆1−∆̂ℓ

〈Ôℓ(x1)Ô2(x2)Ô3(x3)〉

=
B

OÔℓ

(2w)∆1−∆̂ℓ

·
Ĉ
ÔℓÔ2Ô3

x∆̂ℓ+∆̂2−∆̂3

12 x∆̂ℓ+∆̂3−∆̂2

13 x∆̂2+∆̂3−∆̂ℓ

23

. (A.2)

Since descendant operators are sub-leading compared to primary operators, such operators

can be ignored.

On the other hand, the three-point function itself can be approximated as,

〈O1(x1, w)Ô2(x2)Ô3(x3)〉 =
f(η)

(x212 + w2)
∆1+∆̂2−∆̂3

2 (x213 + w2)
∆1+∆̂3−∆̂2

2 x∆̂2+∆̂3−∆1

23

∼
η

∆̂ℓ−∆1
2

w∆1−∆̂ℓ

·
f(η)

x∆̂ℓ+∆̂2−∆̂3

12 x∆̂2+∆̂3−∆̂ℓ

23 x∆̂ℓ+∆̂1−∆̂2

31

. (A.3)

Note that w → 0 corresponds to η → ∞ since the conformal cross-ratio is given by

η =
(x212 + w2)(x213 + w2)

x223w
2

. (A.4)

In total, the asymptotic behavior of f(η) is given by

f(η) →
B

O1Ôℓ
Ĉ
ÔℓÔ2Ô3

2∆1−∆̂ℓ

η
∆1−∆̂ℓ

2 . (A.5)
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In section 2, we obtained two independent solutions of the Casimir equation. One of

them behaves as

η−α
2F1

(

−1− α+ β + d− ∆̂

2
,
−α+ β + ∆̂

2
, 1− α+ β, η

)

→ η−
α+β+∆̂

2 = η
∆1−∆̂

2 . (A.6)

Since the intermediate expression is symmetric under the exchange of α and β, another

solution also has the same asymptotic behavior. We confirm that overall normalization of

constants of integration can be fixed from the boundary condition on the boundary.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] R.G. Leigh and M.J. Strassler, Exactly marginal operators and duality in four-dimensional

N = 1 supersymmetric gauge theory, Nucl. Phys. B 447 (1995) 95 [hep-th/9503121]

[INSPIRE].

[2] V. Bashmakov, M. Bertolini and H. Raj, On non-supersymmetric conformal manifolds: field

theory and holography, JHEP 11 (2017) 167 [arXiv:1709.01749] [INSPIRE].

[3] C. Behan, Conformal manifolds: ODEs from OPEs, JHEP 03 (2018) 127

[arXiv:1709.03967] [INSPIRE].

[4] S. Hollands, Action principle for OPE, Nucl. Phys. B 926 (2018) 614 [arXiv:1710.05601]

[INSPIRE].

[5] K. Sen and Y. Tachikawa, First-order conformal perturbation theory by marginal operators,

arXiv:1711.05947 [INSPIRE].

[6] J.L. Cardy, Continuously varying exponents and the value of the central charge,

J. Phys. A 20 (1987) L891 [INSPIRE].

[7] M.R. Gaberdiel, A. Konechny and C. Schmidt-Colinet, Conformal perturbation theory beyond

the leading order, J. Phys. A 42 (2009) 105402 [arXiv:0811.3149] [INSPIRE].

[8] Z. Komargodski and D. Simmons-Duffin, The random-bond Ising model in 2.01 and 3

dimensions, J. Phys. A 50 (2017) 154001 [arXiv:1603.04444] [INSPIRE].

[9] D.M. McAvity and H. Osborn, Conformal field theories near a boundary in general

dimensions, Nucl. Phys. B 455 (1995) 522 [cond-mat/9505127] [INSPIRE].

[10] D.C. Lewellen, Sewing constraints for conformal field theories on surfaces with boundaries,

Nucl. Phys. B 372 (1992) 654 [INSPIRE].

[11] P. Liendo, L. Rastelli and B.C. van Rees, The bootstrap program for boundary CFTd,

JHEP 07 (2013) 113 [arXiv:1210.4258] [INSPIRE].

[12] A.B. Clark, D.Z. Freedman, A. Karch and M. Schnabl, Dual of the Janus solution: an

interface conformal field theory, Phys. Rev. D 71 (2005) 066003 [hep-th/0407073]

[INSPIRE].

[13] A. Clark and A. Karch, Super Janus, JHEP 10 (2005) 094 [hep-th/0506265] [INSPIRE].

– 16 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0550-3213(95)00261-P
https://arxiv.org/abs/hep-th/9503121
https://inspirehep.net/search?p=find+EPRINT+hep-th/9503121
https://doi.org/10.1007/JHEP11(2017)167
https://arxiv.org/abs/1709.01749
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.01749
https://doi.org/10.1007/JHEP03(2018)127
https://arxiv.org/abs/1709.03967
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.03967
https://doi.org/10.1016/j.nuclphysb.2017.11.013
https://arxiv.org/abs/1710.05601
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.05601
https://arxiv.org/abs/1711.05947
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.05947
https://doi.org/10.1088/0305-4470/20/13/014
https://inspirehep.net/search?p=find+J+%22J.Phys.,A20,L891%22
https://doi.org/10.1088/1751-8113/42/10/105402
https://arxiv.org/abs/0811.3149
https://inspirehep.net/search?p=find+EPRINT+arXiv:0811.3149
https://doi.org/10.1088/1751-8121/aa6087
https://arxiv.org/abs/1603.04444
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.04444
https://doi.org/10.1016/0550-3213(95)00476-9
https://arxiv.org/abs/cond-mat/9505127
https://inspirehep.net/search?p=find+EPRINT+cond-mat/9505127
https://doi.org/10.1016/0550-3213(92)90370-Q
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B372,654%22
https://doi.org/10.1007/JHEP07(2013)113
https://arxiv.org/abs/1210.4258
https://inspirehep.net/search?p=find+EPRINT+arXiv:1210.4258
https://doi.org/10.1103/PhysRevD.71.066003
https://arxiv.org/abs/hep-th/0407073
https://inspirehep.net/search?p=find+EPRINT+hep-th/0407073
https://doi.org/10.1088/1126-6708/2005/10/094
https://arxiv.org/abs/hep-th/0506265
https://inspirehep.net/search?p=find+EPRINT+hep-th/0506265


J
H
E
P
0
7
(
2
0
1
8
)
1
5
6

[14] D. Bak, M. Gutperle and S. Hirano, A dilatonic deformation of AdS5 and its field theory

dual, JHEP 05 (2003) 072 [hep-th/0304129] [INSPIRE].

[15] E. D’Hoker, J. Estes and M. Gutperle, Ten-dimensional supersymmetric Janus solutions,

Nucl. Phys. B 757 (2006) 79 [hep-th/0603012] [INSPIRE].

[16] M. Suh, Supersymmetric Janus solutions in five and ten dimensions, JHEP 09 (2011) 064

[arXiv:1107.2796] [INSPIRE].

[17] E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS type IIB interface solutions. I. Local

solution and supersymmetric Janus, JHEP 06 (2007) 021 [arXiv:0705.0022] [INSPIRE].

[18] S. Teber, Electromagnetic current correlations in reduced quantum electrodynamics,

Phys. Rev. D 86 (2012) 025005 [arXiv:1204.5664] [INSPIRE].

[19] C.P. Herzog and K.-W. Huang, Boundary conformal field theory and a boundary central

charge, JHEP 10 (2017) 189 [arXiv:1707.06224] [INSPIRE].

[20] D.Z. Freedman, K. Johnson and J.I. Latorre, Differential regularization and renormalization:

a new method of calculation in quantum field theory, Nucl. Phys. B 371 (1992) 353

[INSPIRE].

– 17 –

https://doi.org/10.1088/1126-6708/2003/05/072
https://arxiv.org/abs/hep-th/0304129
https://inspirehep.net/search?p=find+EPRINT+hep-th/0304129
https://doi.org/10.1016/j.nuclphysb.2006.08.017
https://arxiv.org/abs/hep-th/0603012
https://inspirehep.net/search?p=find+EPRINT+hep-th/0603012
https://doi.org/10.1007/JHEP09(2011)064
https://arxiv.org/abs/1107.2796
https://inspirehep.net/search?p=find+EPRINT+arXiv:1107.2796
https://doi.org/10.1088/1126-6708/2007/06/021
https://arxiv.org/abs/0705.0022
https://inspirehep.net/search?p=find+EPRINT+arXiv:0705.0022
https://doi.org/10.1103/PhysRevD.86.025005
https://arxiv.org/abs/1204.5664
https://inspirehep.net/search?p=find+EPRINT+arXiv:1204.5664
https://doi.org/10.1007/JHEP10(2017)189
https://arxiv.org/abs/1707.06224
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.06224
https://doi.org/10.1016/0550-3213(92)90240-C
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B371,353%22

	Introduction
	Constraints from conformal perturbation theory
	Examples
	Super Janus
	Mixed dimensional QED
	Mixed dimensional QED with jumping coupling constant

	Conclusion
	Asymptotic behavior of conformal blocks

