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1 Introduction

When the energy FE, of the photon is large compared to the strong interaction scale A,
the radiative leptonic decay B — /v, of the charged B meson is the simplest decay that
probes the light-cone structure of the B meson, relevant to QCD factorization of exclusive
B decays [1]. In this respect, this decay represents the analogue of the yy* — 7% form factor
for mesons with a heavy quark, in which case the mass my of the quark sets the scale of the
hard interaction. Factorization at leading power in an expansion of the decay amplitude
in A/E, and A/my has been established [2, 3] to all orders in the strong coupling o.
In this approximation, the branching fraction depends only on the leading-twist B-meson
light-cone distribution amplitude (LCDA) ¢ (w) [4, 5]. More precisely, it is proportional
to the square of the inverse moment 1/\%, which is the most important B-meson LCDA
parameter in exclusive decays. Yet, Ap remains uncertain by a large factor with estimates
ranging from 200 MeV favoured by non-leptonic decays [6, 7] to 460 & 110 MeV from QCD
sum rules [8]. The radiative leptonic decay has therefore been suggested as a measurement
of Ap [9]. Including next-to-leading logarithmic resummed radiative corrections, known
next-to-leading power effects and an estimate of an unknown next-to-leading power form
factor £(E,), the partial branching fractions Br(B — ~v{vy, E, > E¢y) have been predicted
in [9] and have been employed by the BELLE collaboration to provide a constraint on Ag
from their complete data set [10]. The main limitation of this method is due to A/E, and
A /my, power corrections.

In this paper we attempt to quantify the leading power-suppressed effects. A factor-
ization analysis of the radiative leptonic decay in next-to-leading power would be desirable
and interesting by itself, but this can presently not be done with rigour comparable to
leading power due to a lack of understanding of “endpoint contributions” in the LCDAs,



where the spectator partons in the B meson carry an anomalously small momentum frac-
tion w < A. We therefore resort to the light-cone sum rule technique [11], which expresses
the contribution of the endpoint region in the partonic calculation through a dispersion
relation in terms of hadronic resonance parameters and B-meson LCDAs. This technique
was originally applied to the analogous problem for the yy* — 7° form factor [12, 13] and
for the problem at hand in [14] in the tree-level and leading-twist approximation for the
B-meson LCDAs. The one-loop correction to the leading-twist approximation for the dis-
persive representation of the soft contribution was added in [15]. The reanalysis [15] of the
predicted branching fraction including these new contributions led to a considerable weak-
ening of the bounds on Ag. The purpose of the present paper is twofold: first, we focus on
power corrections from higher-twist B-meson LCDAs using the complete parametrization
of these LCDAs from [16]. Second, we perform an extensive analysis of the model depen-
dence by quantifying the uncertainty through different families of B-meson LCDA models
with a consistent implementation of the equation-of-motion constraints. Taken together,
this results in a more reliable assessment of the potential of radiative leptonic decay for
determining the inverse-moment parameter Ag than in previous work [9, 15].

The outline of the paper is as follows. In section 2 we provide the relevant definitions,
kinematics and notation. The subsequent two sections 3 and 4 contain the results for the
power-suppressed hard-collinear contributions to the form factor and the dispersive repre-
sentation of the soft endpoint contributions, respectively. Section 5 presents the numerical
analysis of the form factors including the above results in several B-meson LCDA models.
We summarize in section 6. Appendix A collects formulae for and relations between the
two- and three-particle B-meson LCDAs up to twist four employed in this work.

2 Kinematics and notation

The radiative leptonic B-meson decay amplitude!

-~ B GrVup,,_ = o _ _
A(B™ = ~ytig) = =22 (03 |047 (1 — 5) ey, (1 — 45)b| B) (2.1)

V2

can be written in terms of two form factors, Fy and F4, defined through the Lorentz

decomposition of the hadronic tensor

To(prq) = —i / a7 (0T (™ () (0} (1 — 75)b(0)}| B~ (p + )

(pv)

Here p and g are the photon and lepton-pair momenta, respectively, so that p +q = mpv

= €urpp’ V' Fy + z[ — g (pv) + vup,,] Fa—i fBmp + py-terms. (2.2)

is the B-meson momentum in terms of its four-velocity. In the above jhn = > q €adVnq is
the electromagnetic current. The v,v, term is fixed by the Ward identity [9, 17]

p"T,, = —ifpmpu, (2.3)

In the following, ¢ may refer to the electron or muon. The muon mass is set to zero in the kinematic

expressions below.



and the terms proportional to p, contract to zero with the photon polarization vector,
see [9] for more details.

The form factors can be written as functions of the lepton-pair invariant mass squared
¢2, or, equivalently, of the photon energy E, = vp in the B-meson rest frame:

¢ = (mpv — p)2 = mQB +p% - 2mpE, . (2.4)

For a real photon, p? = 0 and

2 2
_Mmp—4q mp

E 0<E, <=2
2mp -7 = 927

v =

0<q¢*<m%. (2.5)
The differential decay width is given by
dF aemG%\VubP

2F 2 2
= S T (1—m;> (‘FV‘ + > , (2.6)
Y

where, following [9],2 the contact term in (2.2) is included in the axial form factor.

e fB
E’Y

Fa+

For large photon energies the form factors can be written as [9]

FV(E’Y) = mR(E%M) + f(E“/> + Af(EW) )
FA(E,) = SR B R, )+ €(5,) - AE(E,). 2.7)

The first term is equal in both expressions and represents the leading-power contribution
in the heavy-quark expansion (HQE). It originates only from photon emission from the
light spectator quark in B meson (figure 1). In the above, fp is the decay constant of B
meson, and the quantity Ap is the first inverse moment of the B-meson LCDA,

o
o S (2.8)
The factor R(E,,p) in (2.7) takes into account radiative corrections (see [9] for details)
and equals one at the tree level.

The remaining terms in (2.7) are the power-suppressed, 1/m; and 1/(2E,), corrections.
They are written as a sum of the “symmetry-preserving” part, i.e. the same for the both
form factors Fy and F4, and the “symmetry-breaking” part which has opposite sign. The
leading contributions to the symmetry-breaking part are [9]

esfemp ey fpmp
2E7mb (QEV)Q '

AE(E,) = (2.9)

The equality of the two form factors at leading power in the heavy-quark and large
photon energy (E, ~ my) expansion is a consequence of the left-handedness of the weak
interaction current and helicity-conservation of the quark-gluon interaction in the high-
energy limit. In terms of the helicity form factors F'y = (Fy £ F4)/2, the above implies

2Note the change of notation: Fj4 is denoted by Fy4 in [9].



Figure 1. Leading contribution to B — ~v/{v,.

that F, = A& vanishes at leading power, while £ represents the power correction to the
non-vanishing helicity form factor F_. Our aim is to provide improved estimates of £(E.)
and A¢(FE,), for which currently factorization formulae are not available. We split the
calculation into “higher-twist corrections” of order A/E, and A/m; from the region where
the currents in (2.2) are separated by a small light-cone distance 2% ~ 1/(mA), and the
soft or endpoint corrections. In case of the former, the virtuality of the quark propagator
that joins the weak and electromagnetic vertex (see figure 1) is hard-collinear, that is
of order myA. The latter arise when the light-cone projection w of the spectator-quark
momentum become anomalously small w < A, such that the quark propagator virtuality
E,w enters the soft region, A2, Note that in this work “soft” always refers to the virtuality
of the propagator, and should be distinguished from the “soft region” in the factorization
treatments [2, 3, 9] where it refers to the region w ~ A, which defines the B-meson LCDA.

3 Higher-twist corrections

The higher-twist corrections can be accessed via the light-cone expansion of the weak-
electromagnetic current product at 22 — 0.
At tree level one can replace the b-quark by the effective heavy quark field

qyub = qyuhy + 271%(;%1‘/2‘5% +... (3.1)
where D = Ip — (v- D)g. Then for the u-quark contribution (figure 1) we get
T (p,q) = —ieuy/mp / d*a e (0| T{a(z)yu(x) 5(0)y, (1 — 75)hy (0)} B(v))
— D [t 0T (o) 00) (1 = 1) B, OHB@) + .. (32)
up to terms O(1/m7) which will be neglected.
We should note that (3.1) does not represent the correct heavy-quark/large-energy

expansion of the weak current when the covariant derivative contains a collinear gluon field.
In this case the tree-level expansion of the current in soft-collinear effective theory must be



used (see [18]). However, we shall make use of the above expression only to compute the
light-cone expansion of the u-quark propagator in a soft-gluon background. Whenever a
diagram involves a hard-collinear gluon propagator (as is the case for radiative corrections
and the soft factorizable four-particle contribution discussed in the following section), we
compute the corresponding contribution with the QCD current and quark-gluon vertex
rather than the effective ones.
For the contribution in the first line of (3.2), using the light-cone expansion of the
quark propagator [19]
I i g 1

1 ~
u(z)u(0) = /0 du{i:vngpg(ux)y"’yg, + (2u — 1):UngpU(u3:)'yU} +.o..,

(3.3)

o2m2 2t 8m2x2

and the definitions of B-meson LCDAs collected in appendix A we obtain

u ; eip:c . Y
T/SV) = /d4x o [(vx)gm, + i€ppo v ]
z2 1 -
« {<I>+(vx) + 2%G4 (vz) — 4/ du {(2u —1)¥y — \114} (vx,uvx)} +...
0

e meB eipa: .
N 1127r2/d4x ! [(v2) gy + 1€ po V7]

X {(I>+(va:) + 22GYV (vz) — 2(1:?;2@'“3(1):10) - :Lj/ol du [\114 - @4} t4(1):1;, uvx)}

+ ... (3.4)

where in the second representation we combined the “genuine” higher-twist contributions
to the two-particle DA G4 with the contributions of three-particle LCDAs. The ellipses
stand for the contributions proportional to p,(p,), vu(v,) and terms O(l/E%) Note that
the first term &4 (vz) in the curly bracket produces not only the known leading-order
(R(Ey, 1) — 11in (2.7)), leading-power expression that we drop here, but also a power
correction that has to be retained.

Going over to the momentum space and identifying the two relevant Lorentz structures,
we find from this expression

ewfpmp A >
ety = 4E3{1 - 2g + 2/ dw Inw ¢ (w)

dwq dws ~ 1t4
+/0 /0 w1+w2 4 — 4] (Wl,wz)}
= %{—1—}—2/0 dw ]nwd)tB / dwl/ dw2 1/)4+¢4] (w1,WQ)}

_ eufBms [ > B duwsy
- { 1+2/0 o Tnw 6% () 2/0 =2 44(0. w)} (3.5)
ewfBm
AL, = e (3.6)
v



where ¢%(w) is the “genuine” twist-three contribution to the LCDA ¢_(w), cf. (A.6).
Interestingly, ]f/tm only involves the three-particle LCDAs on the line x = 0 in the (s, x)-
representation [16], see (A.32), that are directly related by the equation of motion (EOM)
relations (A.23), (A.30). This property allows one to rewrite the answer in several equiv-
alent forms, as shown above. The AgM /5, -term arises from the first term @, (vx) in the
curly bracket and agrees with the corresponding contribution in (2.9) obtained in [9] by a
different method.

From the analysis of the renormalization group behaviour [16] one expects

¢t—3(w) Nw0> (Z)4(0,(.U2) Nw%a g—v&yw(w) Nw27

¢3(wr,ws) ~ wiws, Pa(wi,wa) ~ ha(wr,wa) ~ wiws, (3.7)

so that all integrals are endpoint-finite for small w;. Hence, to the twist-four accuracy there
is no overlap with the soft region. Contributions of higher twist-five, six, etc., are suppressed
by extra powers of the photon energy E, in the hard-collinear region. These contributions
can, however, have power-like endpoint divergences that spoil the power counting. Hence,
the soft endpoint contributions from higher-twist terms are not necessarily suppressed by
powers of 1/E., relative to the twist-four terms. We will discuss this mechanism in more
detail in the next section.

The contribution from the second line in (3.2) can be calculated using the operator
identity

. 1
g(x)I" D¢ hy(0) = ngj(x)Fhv(O)+i/O du i q(z)z” gG pe(ux)Thy(0) — 5—=G(x)Thy(0) . (3.8)

Since this contribution is suppressed by 1/my, for this case we only need the leading term
in the 1/FE,, expansion. We obtain

u A >
gl/mb: € meB{—2+/ dw Inw ¢B(w)

dmp E
+2/ dwl/ M¢3w1,w2){1—mlnm+wz}},
w1

_ eufpmp duwn dwo
= 4mbE { 2+ 2/ / oLt o d3 wl,LUQ)} (39)

ALY, =0. (3.10)

The complete higher-twist corrections 1/E,,1/my, are given by the sum of the above
two contributions

fht - 51/E7 + fl/mbv
Agh = epfBmp  eyufpmp
2Emy | (2E,)2

(3.11)

where for A¢" we have added the contribution of the photon emission from the b-quark [9].
The second equation of (3.11) agrees with the previous result (2.9). The absence of an



endpoint divergence in the higher-twist correction arises as a consequence of non-trivial
relations between the various terms in (3.4) and it would be interesting to understand
this in the context of a factorization theorem for the 1/E, power corrections, which is,
however, beyond the scope of the present paper. A previous attempt [15] to compute
f?}EW did not include the G; term and used an incorrect parametrization of the three-
particle matrix element (A.14), resulting in a qualitatively different, endpoint-divergent
higher-twist correction.

4 Soft corrections

In addition to higher-twist corrections, the power-suppressed contributions to the form
factors can originate from large distances between the currents in (2.2), 22 ~ 1/A2, which
cannot be accessed in the light-cone expansion. The soft distance between the currents
implies that the B-meson LCDA is probed in the endpoint region w <« A. Such contri-
butions may or may not be “visible” through the infrared (endpoint) divergences of the
hard-collinear higher-twist contributions, and cannot be factorized in terms of the LCDAs
without additional assumptions. We will use the approach suggested in [14] that is based
on using dispersion relations and quark-hadron duality. This technique has originally been
proposed for the study of the v*y — 7 transition form factor [12] and has become the
method of choice for this reaction, see e.g. [13, 20] for recent refinements. Our aim is to
put the calculation of the radiative leptonic decay form factors on the same level as the
~v*~v — 7 transition form factor.

The starting point is the more general process B — /v, with a transversely polarized,
virtual photon with p? < 0. If —p* ~ mpA, the correlation function in (2.2) does not
receive any soft endpoint contribution and can be calculated (in principle) in terms of the
B-meson LCDAS of increasing twist to arbitrary power in the 1/E., 1/my, 1/p* expansion.
The idea is to access the real photon limit p? = 0 starting from this expansion by using the
dispersion relation. In this way, the explicit evaluation of soft contributions is effectively
replaced by a certain ansatz (assumption) for the hadronic spectral density in the p2-
channel. The procedure can be understood as the matching of two different representations
for the correlation function (2.2) — the QCD calculation in terms of quarks and gluons vs.
physical hadrons in the intermediate state — and is usually referred to as light-cone sum
rules (LCSR) [11]. The LCSR approach provides a well-motivated model for the yet to be
defined matrix elements for the endpoint contribution in the framework of the factorization
treatment [2, 3, 9]. Whether or not the soft, endpoint contribution implies an endpoint
divergence in the hard-collinear region in the factorization approach, is then related to the
renormalization properties of these matrix elements.

On the one hand, one can argue on general grounds that the generalized form factors
Fp_ sy (Ey, p?) (FB—~~ refers to both, vector and axial, Fy, and F4) satisfy an unsubtracted
dispersion relation in the variable p? at fixed 2m BE, =2mpup = mQB +p% —¢%. Separating
the contribution of the lowest-lying vector mesons p,w, we write

_ prB—>p(q2) +1/Oo SImFB—w*(EWS)
m%*pQ T Js

FB—)’y* (E’yvp2) d 5 ;

0 — (4.1)



where sg defines an effective continuum threshold. For simplicity we combined here the
p and w contributions in one resonance term assuming m, ~ m, and the zero-width
approximation. In this expression, f, is the usual decay constant of the vector meson and
Fp_,(¢%) is a generic B — p(w) transition form factor, whose explicit definition will not
be needed. Since there are no massless states, the real photon limit is recovered by setting
p? — 0in (4.1).

On the other hand, the same form factors can be calculated for sufficiently large —p?
using QCD factorization. The result, F' QCDF(E,y, p?), satisfies a similar dispersion relation

B—~*
QCDF
1 [~ ImEF5- " (Ey,s)
FOCPY (p 2 :/ d =7 4.2
B—yy ( ’yvp) T 0 S 8—]92 ) ( )

where the limit p? — 0 cannot be taken directly. Singular terms in 1/p? appear (cf. [13] for
the case of the yy* — ¥ form factor), signalling that QCD factorization cannot be applied
directly to the real photon case p? = 0 beyond the leading power in 1/m; and 1/ E,.

The main assumption of the method (quark-hadron duality) is that the physical spec-
tral density above the threshold sg coincides with the calculated in QCD spectral density
upon averaging with a smooth weight function over a sufficiently broad interval of the
energy s:

Im Fp_\(Ey,s) ~Im FESBF(EV, s) for s> sq. (4.3)
For the simplest sum rule, one uses that the QCD factorization calculation must reproduce
the “true” form factors Fp_,«(E,,p?) for asymptotically large values of —p?. Equating
the two representations (4.1) and (4.2) at p?> — —oo and subtracting the contributions of
s > 8o from the both sides one obtains

1

50
CD
IoFpp(@?) = — /0 dsIm FF0T (B, 5). (4.4)

In practical applications of this method one uses an additional trick [21] which allows one
to reduce the sensitivity to the duality assumption in (4.3) and simultaneously suppress the
contributions of higher twists in the light-cone expansion. This is done by passing to the
Borel representation of the dispersion relation, which effectively substitutes 1/(s — p?) —
exp(—s/M?). The net effect on (4.4) is the appearance of an additional weight factor under
the integral:

S
prB—>p(q2) = % / i ds e~ (s=mp)/M? 1y FSSB*F(E% s). (4.5)

0
The value of the Borel parameter M? corresponds, roughly speaking, to the inverse (Eu-
clidean) distance at which the matching is done between the quark and hadron represen-
tations. In ideal case there should be no M?2-dependence so that varying M? within a
certain window, usually M? = 1 —2GeV?2, one obtains an indication of the accuracy of the

calculation.



With this refinement, substituting (4.5) into (4.1) and using (4.3), one obtains for
p? — 0 [14]

1 [0 d 1 [>~d
Fpny(Ey) = — = Im FQCDF(E% s) e (T / T FQCDF(E% s)

T Jo m% B—y* T Jso 5 B—vy*
CDF
= FF (B, + €55 (B,) . (4.6)

In passing to the second line we extend the lower limit of the second integral to 0 and

subtract the added contribution from the first. In this way the second integral equals

FJCPF (BEy)=F QCDF(EW, p? = 0) calculated using QCD factorization and

B—y B—y*
1 [%0ds | s (e m2)/m2 CD
é-%)i’y(E'Y) — 7'(/(; ? |:7’n%e (s mp)/M — ]_ ImFgﬁ,‘/* (E'V’S) (47)

is the soft correction that originates from the nonperturbative modification of the spectral
density. Conceptually, the effect of this modification is to create a mass gap in the vector-
meson mass spectrum. Separating in (4.7) the contributions that are the same for the form
factors Fy and F4, and those of opposite sign, we can decompose the soft correction in
the “symmetry-preserving” part £&°%(E,), and the “symmetry-breaking” part A (E.)
in the notation of (2.7).

Note that both terms in the first line of (4.6) and hence the full result are finite,
whereas the decomposition as the sum of the “pure” QCD factorization expression and the
soft correction in the second line can in principle (but not in the above) produce logarithmic
and/or power divergences from the s — 0 region. In such cases (see example below), for
bookkeeping purposes we will attribute the whole contribution to the soft correction.

In the following we apply (4.6) to the leading-power and higher-twist hard-collinear

contributions calculated in [9] and in the previous section. That is, for each hard-collinear

FQCDF soft
B—y B—y

bative modification of the spectral function in the soft region.

contribution to (Ey) we obtain the corresponding &5 (E,) due to the nonpertur-
The soft correction to the leading-order, leading-twist hard-collinear contribution given
by the first term in the two equations (2.7) with R(E.,, u) set to 1 was considered in [14].

For the form factors at non-vanishing p?, we obtain,

¢+(w7:u)

m . (4.8)

[ee]
F‘(/LO)(EwPZ) = FELO)(EV,PQ) = eufBMB ULL/ dw
0
Here Uy, is the renormalization-group factor U (E,, pn1, fhe, i) [9] truncated to the leading-
logarithmic approximation,? which sums large logarithms from the hard scales pip1, fthe ~

my, E to a hard-collinear scale of order /—p?. The integral in (4.8) can be converted to the
form of a dispersion relation by the change of variables s = 2E,w. Following the procedure

3See appendix A of [9]. In the leading-logarithmic approximation, the cs(up) terms in (A.3) are ne-
glected. We follow the terminology of [9], which implies that LL includes the two-loop cusp and one-loop
non-cusp anomalous dimension in the renormalization group equation, NLL three-loop cusp and two-loop
non-cusp, and so on.



described above and changing the integration variable back to w = s/(2E), we obtain

gsoft (E ) o eumeB U ;TOWd 2E’Y —(2E'yw_m;2))/M2 o 1 ¢ ( )
(Lo)\F=v) = 2E»y LL 0 W mi%e ; +\W5 1)

AL (Ey) =0. (4.9)

(Lo

The soft correction defined by (4.9) comes from the region w < so/(2E,) ~ so/my,. With
V/50 a few times A, this is indeed an endpoint spectator-quark contribution corresponding
to contribution from a soft distance 1/A between the weak and electromagnetic current
in (2.2). For large scales u ~ m;, the LCDA ¢4 (w, ) ~ w for w — 0, hence one obtains a
power correction of the order of sg/(2E,A) for E, ~ m; — oo with respect to the leading,
hard-collinear contribution, in agreement with the usual power counting for the soft form
factor {(E,). Since the shape of ¢, (w, p1) is governed by the QCD scale A, while w is re-
stricted to values smaller than sqg/(2E,) < A in (4.9), one might be tempted to approximate
¢4 (w, 1) by its asymptotic behaviour ¢ (w, u) ~ w as w — 0. However, this would amount
to the first term in an expansion of the integral in powers of so/(£,A), which for realistic
values of s ~ 1.5 GeV? and E, ~1.5-2.5GeV is not a valid approximation. We therefore
always keep the full functional form of the LCDA in the integrals for the soft contributions.

Applying the same method to the next-to-leading order O(as) correction to the leading-
twist contribution requires factorizing the hadronic tensor into a hard matching coefficient
C(E,, pn1) and a hard-collinear function, which is convoluted with ¢4 (w). The hard func-
tion is independent of the hard-collinear variable —p? and is given in [9]. The hard-collinear
function calculated for p? = 0 in [2, 3] must be generalized to —p? # 0. The result can be
brought into the form [15]

SO eumeB _
f(Ntho)(Ev) = —on C(Ey, pn1) K™ (1n2)U (Ey, ptn1, ttn2, 11)
v
S0
2By 2B, _ E w'—m?2)/M? 1 eff
X/o dw/[mge (2E o)/ Y % (W' ),
AE o (By) =0, (4.10)

where “NLO” is meant to include the LO contribution and the prefactor includes the hard
NLO matching correction and next-to-leading-logarithmic resummation as given in [9].
The convolution of the generalized hard-collinear function with ¢ (w, p) after applying the
dispersive treatment and letting p?> — 0 at the end, is summarized in

s C 2 2 ,
o (W' ) = po (W', ) + a(ﬁF{ (1112 QEMW, + % - 1> o4 (', 1)

2 o0 o
+<21n s +3>w'/ P e s COY )

2E W / W dw  w
2 W' w—w d
—21 In ———
n 2E’yw, 0 dw In o dw ¢+(W7M)
W' yw —w d [
+ ; dwIn o Zqﬁ_,_(w,,u) + oy(w,p)| p. (4.11)

~10 -



The hard-collinear NLO contribution [9] can be written in this notation as

J(E’WM) _ do’ eff w
el / & e ). (4.12)

The soft correction for the O(as) leading-twist contribution was previously calculated
n [15]. We find that the above expression (4.11) can be rewritten into the one given
in [15] up to an obvious misprint.

For the higher-twist contributions considered in section 3, the dispersive treatment of
the soft contribution corresponding to the hard-collinear terms (3.5), (3.6), (3.9) and (3.10)
yields

50
soft eumpfp 7By 2Ey _opw-m2ymz 1| -
= — d - v - | =
50
esmpfp [2By 2Ey _opw-mymz 1| =
Sul"BJ B d = w—mg) /M~ | = 4.13
+ 4y B, /0 w [m,% e P " 2(w), ( )
50
2E~ 2F 2 2 1
Agsoft B — €u7anB/2Ev dw | 222 o= (Eyw—mp)/ M= _ — ) 4.14
5(tw—3,4)( ’Y) 4E3/ 0 w m% © 0 w (U(Z)+(W) ( )

As was the case with (3.5), (3.9) the result can be written in several equivalent ways using
the EOM, e.g.,

1(w) = —/wda& /00 @i[%ﬁ- a] (Wi, wa)

[1]

wewy W2 Owp
/ dw2/oo dwllaw 1/14+w4}(w1,w2)
+2 [ TdpotS(p) - 200 () + 264 () + 7 104 (w), (4.15)
=5(w) = 2 /0 %2 dalu,wn) -2 /0 ey /wlgqbg(wl,wm [anst
+ (A~ w) 94 (W) — W™ (w). (4.16)

In these expressions we used that [1&4—1—1;4} (w1 =0,wsy) = [1/14 + 124] (w1,we =0) =0.
Since the higher-twist contributions in section 3 do not suffer from a soft endpoint
divergence for real photon emission, the modification of the spectral density according
to (4.6) results in a soft correction (4.13), which is suppressed by an additional power of E.
and is therefore, strictly speaking, beyond our accuracy. However, the actual suppression
factor relative to the leading-power form factor is {1/E2,1/(myE,)} x so/(E,A) and since
so/(EyA) > A/E, such corrections can be numerically significant. We recall that also for
the leading-twist contributions (4.9) and (4.10), we keep the full expressions and do not
expand the result in powers of so/(E,A), M?/(E,A), since this expansion converges very

- 11 -
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Figure 2. Factorizable higher-twist corrections to B — v/fvy.

slowly for realistic energies F, ~ 1.5 — 2.5 GeV. Thus we take the soft corrections due to
twist-three and twist-four contributions into account in the numerical analysis.?

We stress again that the soft contribution cannot be obtained through the light-cone
expansion of the current product and as a consequence the usual hierarchy of the contri-
butions of different (collinear) twist breaks down: B-meson LCDAs of all twists can in
principle contribute to the form factor to the same power 1/ Es in the 1/E, expansion.
The basic idea of the light-cone sum rule approach is that higher-twist LCDAs have higher
dimension and their contribution to the form factors is, generically, suppressed by increas-
ing powers of the Borel parameter or continuum threshold, sg, M? > A2. Thus one can
hope that only the first few terms in this expansion are numerically important.

As noted above, this does not actually happen for the twist-3 and -4 contributions,
at least at the tree-level, due to their endpoint finiteness. In the following we consider
the simplest higher-twist contribution of this unsuppressed kind, the contribution of twist-
five and twist-six four-particle LCDAs in the factorization approximation — as a product
of lower-twist LCDAs and the quark condensate (cf. [13]), see the relevant diagrams in

4As noted above, the dispersion relation is done in p? at fixed E., = vp. Using instead the “canonical”
dispersion relation in p? for fixed ¢* would lead to the following modifications: first, an extra factor (1 —
w/mp) appears in the denominator of the w-integral in (4.8). Second, the upper limit on the invariant mass
is redefined from 2F,w —w? < 50 t0 2E,w —w? < 50 (1—w/mp). In both versions we expand this constraint
assuming w ~ Aqcp < E4,my and take into account O(w/Ey), O(w/mpg) terms, which is consistent with
twist-four accuracy in the collinear expansion. The resulting difference in the soft correction, which is
already suppressed as 1/E, with respect to the leading term, is suppressed by an additional factor 1/msz,
and should be viewed as an ambiguity of the method. This ambiguity is, in principle, of the same order as
the term in =5 in (4.13). For the other terms it is yet higher order, if we accept that terms (so/(E,A))*
should be retained whenever possible, whereas higher-order terms in so/(msA) can be dropped. We note
that different terms in Z; formally contribute at different order in the so/(E,A) expansion; e.g. the term
w4 (w) in the expression for =i contributes to the form factor only at order 1/E2 (so/(E,A))?. The
symmetry-breaking soft contribution (4.14) is entirely of this order.

- 12 —



figure 2. For the diagram in figure 2 a we obtain after a short calculation

Figla . Z‘eufBWLngCF <ﬂu> o ¢— (w)
T, (pq) = 18p°E, Tr [ﬁf’m%(l - ’75)?4 /0 dwm
+0(1/E3), (4.17)

where (@) ~ —(240 MeV)? (at the scale 1 GeV) is the quark condensate. If |p?| ~ E, A this
contribution is suppressed by three powers of the hard-collinear scale in agreement with
twist counting. However, the real photon limit p> — 0 cannot be taken because of the 1/p?
factor, and also the integral of the twist-three DA ¢_(w) becomes logarithmically divergent
in this limit. The effect of the dispersion relation improvement is, for the simplest case of
a pure pole in p?, the substitution [22]

1 1 p2=0 1

> 5 —
—-p

-~ (4.18)

DN

In this way the contribution to the form factors corresponding to (4.17) remains finite but
the power counting changes and we obtain a term O(1/E?) similar to the hard-collinear
contribution of the twist-three and twist-four LCDAs considered in section 3.

The other diagrams in figure 2 can be evaluated in a similar manner.> We find that
the contributions in figures 2 a, ¢, e get promoted in the limit p?> — 0 to a 1/ E,% correction,
whereas the contributions in figures 2 b, d, f remain of order O(1/ Eg) and can be neglected.
We obtain

2 _ 50
6??3_576) (E/y) _ eugsCF<uu>meB {em%/M2 /0\2]5"y diw(efQE,\,w/M2 o 1) Qs\iVW(w)

48E,%, m% w
< dw m> m2 /M2 5 m2 /M2
+/50 w<2Epw — e/ )(bv—vw(w)_Ae o }
2By v B
2 _
SO eugscF<UU>meB m2 /M2
A& 56 (By) = — eme/ M (4.19)

48E% m%)\B

Note that to our working accuracy one has to substitute ¢_(w) by the “Wandzura-Wilczek
contribution” ¢V (w) (A.13).

5 Results

In the numerical study presented below we use the NLL resummed result for the leading-
power form factors [9] and the power-suppressed contributions £ + A in (2.7) given by the

5The calculation of the diagrams in figures 2 b, ¢, d is straightforward, while figure 2 e can most easily
be obtained using the background-field expansion of the quark propagator [19]. Figure 2 f effectively
corresponds to a contribution from the two-particle twist-five LCDA ¢_(w) (see appendix A), which can
be factorized into a product of the quark condensate and a lower-twist LCDA. Figures 2 a, b involve a
hard-collinear gluon propagator and therefore have to be calculated with the full QCD current and vertex,
as mentioned before. It turns out, however, that the difference to using HQET rules appears only at order,
1/(myE2), beyond the accuracy of our calculation.

~13 -



o 1GeV
AL 0.291552 GeV as (1o0) 0.348929
1 (1.5+£0.5) GeV i my/2 + 2my,
mp (4.8 4+0.1) GeV A mp — my
AL INY 0.5+0.1 204 + 2%, (0.25 £ 0.15) GeV?
50 (1.54+0.1) GeV? M? (1.25 £ 0.25) GeV?
(au)(po) —(240 £ 15 MeV)?
mp 5.27929 GeV m, 0.77526 GeV
Gr 1.166378 x 107° GeV 2 B 1.638 x 10125
/B (192.0 £4.3) MeV [23] | [V;p|™ | (3.70 £0.16) x 10~° [24]

Table 1. Central values and ranges of all parameters used in this study. The four-flavour Aqcp
parameter corresponds to as(myz) = 0.1180 with three-loop evolution and decoupling of the bottom
quark at the scale my,.

sum of hard-collinear higher-twist and soft corrections

_ ¢ht soft soft soft
£=¢ ‘(3.11) &eo) (4.10) T &tw-3.0) (4.13)  Stw-s.0) (4.19)
Af = A ht A soft A soft ) 1
¢ ¢ ‘(3.11) T Alfo-3.) (4.14) + f(“”_5’6))(4.19) (5:1)

For the reader’s convenience we have indicated the corresponding equation numbers.

The nonperturbative inputs in the calculation have to be defined at a certain reference
scale, po. As was done in previous work, we use pug = 1GeV. Unless stated otherwise,
the values of all scale-dependent hadronic parameters given below refer to this scale. In

the calculation of the leading-power contributions to the form factors and the related soft

oft
NLO)

as default. In the absence of the two-loop non-cusp anomalous dimension of the twist-2

correction 5? we evolve the inputs to the hard-collinear scale u, adopting p = 1.5 GeV
B-meson LCDA ¢4 (w), we perform the evolution in the LL approximation. Higher-twist
contributions and the related soft corrections are always evaluated at the scale pg. We use
three-loop running of the strong coupling with ny = 4 active flavors. The central values
and ranges of all parameters are collected in table 1.

The principal input in our analysis is provided by the leading-twist B-meson LCDA
¢+ (w). For the leading-power contribution to the form factors, the precise functional form
of the LCDA is not important as it can be expressed in terms of the logarithmic moments®

o0 —E
G = / d B g ABCTE (5.2)
0 w w

®Note that our definition of the log-moments differs from those in [8] and [9] by the substitution In p/w —
In(e”"? Ap/w) and In o /w — In(e”"# Ap /w), respectively. The purpose of this change is to decorrelate the
log-moments from the value of Ap in the models for ¢4 (w) considered below.
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Figure 3. B-meson leading-twist LCDA Ag¢y (w, o) for the three models described in the text.

with 69 = 1 defining Ap. To the NLL accuracy only the values of Ap, &1 and &9 are needed.
The LCDA and the moments are renormalization scale dependent. For brevity, we omit
the explicit scale argument pu.

In contrast, the evaluation of the soft (endpoint) contributions requires the full func-
tional form of the LCDAs. We will use three two-parameter families of functions to assess
the model dependence of the soft contribution. In the s-space representation (A.6) [25, 26]

1
775:)(3) =1F1(14+2/b,2/b, —swpy) = <1 - 2bsw0> e 50 0<b<1, (5.3a)
77«(&[)(8) = 1F1(2 + a7 27 _SOJ(]) 9 _05 <a<< 1 5 (53b)
0" (s) = 1F1(3/2 + a,3/2, —sw), 0<a<05, (53c)

corresponding in momentum space to

M) = |1 bw | W 4
o) = [0+ 52 Gt (5.42)
14+a
() _ 1 w —w/wo
d)-‘r ((U) - F(2 +CL) wg+ae ) (54b)
() = VT @ wfen [(—a,3/2 — a,w)uw) (5.4¢)

C20(3/2+a) w?

where 1 F)(a, (3, 2) is a hypergeometric function, and U(«, 3, z) the confluent hypergeo-
metric function of the second kind. The above functional forms are assumed to hold at
o =1GeV.

The three models in (5.4) for the limiting values of the parameters (5.3) are shown in
figure 3. They can be viewed as particular cases of the more general three-parameter ansatz

77+(3):1F1(a7ﬁ7_3w0)7 a,B>1,
Ot (w) = 11:235(2) e /OB — a, 3 — o, w/w) - (5.5)
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For this ansatz

Ap = G—jen. o= (A1) —wla—1)+InG—.

etc., so that the only dimensionful parameter wy can be traded for Ap and the logarithmic

(5.6)

moments defined in (5.2) depend on the “shape parameters”, a and S.

The particular choices (5.3), (5.4) are motivated by the experience in the modelling of
the pion LCDA, where especially the endpoint behaviour came under scrutiny in connection
with the BaBar and BELLE measurements of the v* — &~y transition form factor, see
e.g. [13, 27-29]. The parameter range indicated in (5.3) corresponds to —0.306853 < 01 < 0
for Model I, —0.306853 < o7 < 0.693147 for Model II and —0.693147 < o7 < 0 for
Model III, so that, taken together, they cover the range

—0.693147 < 01 < 0.693147 (5.7)

for arbitrary Ap. The value g; = 0 corresponds to the simple exponential model ¢ (w) =
(w/wd) e~w/“0 suggested in [4].

The large-momentum behaviour of the B-meson LCDA can be studied in perturbation
theory in a cutoff scheme [30]. In this way the first moment [j'" dwwe (w) is related to
a properly defined A(up) = mp — my(up) and the second moment, [J dww?dy(w), to
matrix elements of the quark-gluon operators (A.25), which were estimated with QCD sum
rules [4, 31]. However, it was shown in [32] that such relations do not generally provide
significant constraints on the logarithmic moments &1, 09, since they can be satisfied by
adding a large-momentum “tail” to any given (reasonable) model for ¢ (w). Following this
argument, we will assume that the “true” LCDA can be written as

Gr(w, p) = ¢ (w, ) + 64 (w, 1), (5.8)

where ¢7°%(w, i) refers to one of the models specified in (5.4) and the added “tail” is
concentrated at large momenta w > Ag. Its role is to ensure that the relations for the first
two moments are satisfied to the required accuracy. We assume that this additional term
can be chosen in such a way that the first few logarithmic moments are not affected [32]. In
this case an explicit expression for d¢4 (w, p) is not needed as it does not enter any of the
three contributions to the form factors: neither (1) the perturbative leading-twist leading-
power contribution, as it is expressed in terms of the logarithmic moments, nor (2) the soft
corrections, as they originate from small momenta, nor (3) higher-twist corrections, as they
are expressed directly in terms of A and higher-twist matrix elements /\2E, )\%I (see below).”

In ref. [16] several models for the higher-twist LCDAs have been suggested that have
the expected low-momentum behaviour and satisfy the (tree-level) EOM constraints. One
can show that these models can be obtained as particular cases of the more general

"We must assume that d¢4 decreases sufficiently fast at w — oo so that its first few moments are finite.
While this cannot hold true in general due to perturbative radiative corrections [33], the assumption is
necessary for consistency of tree-level calculations of higher-twist contributions as performed here. See also
the appendix.
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ansatz (A.39). For these models one obtains the remarkably simple expression

_ ewfBMB { 2()\]25 + 2)\%{) 1}
2F? 6{&2 +2)\5+ 23, 2
cufpmp [ A, AOG = Xy)
dmpE, | A 6A2 +2X\% + N2, |7

fht(Ev) =

(5.9)

and the higher-twist correction does not depend on the functional form of the profile
function f(w) in the ansatz (A.39).

We use the range my, = 4.7+4.9 GeV for the pole mass and define A = mp —my,. It has
to be mentioned that the derivation of the higher-twist corrections is based on equations
of motion at tree level [16, 34]. For consistency, the relations between moments of the
LCDA and local matrix elements have to be assumed at tree level as well, eq. (A.24). The
scheme-dependence of A and our result (3.11), (5.9) for the higher-twist correction should
be cancelled by a correction proportional to ppas/m that has not been calculated so far.
Before this is done, the numerical value of A (or, equivalently, of the b-quark pole mass
my) should be viewed as an educated guess.

The matrix elements A% and A% are defined in (A.25). The existing QCD sum rule
estimates (A.27) fall in the range

0.1 GeV2 <204 + )% < 0.4 GeVZ,  XL/0%, =0.5+0.1. (5.10)

For this range of values, the dependence of the higher-twist correction in (5.9) on )\% and
)\%{ is rather weak so that a large uncertainty in the matrix elements does not play a major
role, except for large Ap.

In order to understand the qualitative features of soft corrections let us consider the
leading-order twist-two contribution §?§fot) (4.9) as an example. Normalizing to the leading-
order QCD result (2.7), and extracting the expected 1/(2E,) suppression factor we de-
fine [14]

~

ft
gsoft (E ) _ eumeB U, 5?EO)(EW)
(LO) Y 2E7)\B (/.L) LL 2E'y ’
s0/2E
£Soft QE’Y —(2EByw—m2)/M? 1
Loy (By) = 2E,Ap(k) dw | =—Le CErwmm)/ME_ Z\ 6 (w, p). (5.11)
0 G v

This expression involves two parameters — the continuum threshold sy and the Borel

parameter M? — which we choose in the range
1.4GeV? < 590 < 1.6GeV?,  1.0GeV? < M? < 1.5GeV?. (5.12)

The soft correction originating from twist-five and twist-six LCDAs depends in addition
on the quark condensate (iu)(1 GeV) = —(240 & 15 MeV)3.

In the asymptotic regime p? ~ AqepE, — oo the LCDA ¢4 (w, i) is driven by the
renormalization group flow to linear behaviour ¢4 (w) ~ w¢’ (0) for w — 0 independent on
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Figure 4. The leading-order soft correction normalized to the corresponding QCD result,
?Eg)@ GeV) (5.11), as a function of the first logarithmic moment oy (5.2) for the three models

of the leading-twist B-meson LCDA defined in (5.4a) (blue), (5.4b) (green) and (5.4c) (red), re-
spectively, and for three different values of Ap as specified on the plots.

oft

Lo) (Ey) — const - Ag¢', (0) + O(1/E,) so
that the soft correction is proportional to the (in this limit finite) derivative of the LCDA

the initial condition at low scales. In this case é\f

at zero momentum. For physically interesting photon momenta E, ~ 1.5 — 2.5GeV the
dominance of the w — 0 region does not hold since the integration in (5.11) goes over the
momentum region 0 < w < 300 < 500 MeV that is comparable with the characteristic mo-
mentum scale Ap in the LCDA. Thus the integral is determined by global properties of the
LCDA (normalization, width, etc.) rather than the endpoint behaviour. The situation is
similar in this respect to the better studied reaction v*y — 7 in which case it was shown [13]
that an anomalous endpoint behaviour of the pion LCDA cannot explain by itself the strong
scaling violation observed by BaBar [35] up to much higher scales Q2 ~ 20 + 30 GeV?.

(E5) (5.11) depends only
“soft (EW —
2GeV) in figure 4 as a function of &; for three different values of Ap and central values

(Lo)
of the sum rule parameters, so = 1.5GeV? and M? = 1.25GeV2. The blue, green and
red curves are obtained using models I, I, and Il in (5.4), respectively, with the indicated

~

soft

As already noticed in [14], the normalized soft correction £ (o)

weakly on photon energy E. (in the relevant range). For illustration we plot £

o~

soft
(Lo)
—1.0 GeV corresponds to a power-suppressed contribution to the form factors of the order

of (=1.0GeV)/(2E,) with respect to the leading-order, leading-twist result. It attracts
attention that f?ﬁg)@ GeV) can be both positive and negative, and depends strongly on

parameter range. Note that this correction can be quite sizable, e.g., the value £

the value of the first logarithmic moment, o;. For a given o1, the correction is fairly close
in all three models (in the regions where there is an overlap). This agreement is trivial for
o1 = 0 as all models reduce to the same simple exponential model, but it is not trivial for
the whole range. Note also that the precise small-w behaviour of the LCDA is irrelevant:
for model I the derivative ¢/ (0) is changing from zero to infinity as the parameter a and
o1 change sign, with no visible effect on the result.

The relative size of various contributions to the “symmetry-preserving” form factor
combination (Fy + F4)/2 (alias the helicity form factor F_) is illustrated in figure 5 for
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Figure 5. Perturbative (solid curves), soft (dashed curves) and higher-twist (dash-dotted curves)
contributions to the form factor (1/2)(Fy + Fa) as functions of photon energy E., for different
choices of the parameters Ag and o1. The colour coding corresponds to figure 3.

several choices of the parameters Ag and o;. We show the NLL resummed perturbative
result [9] (solid curves), the total soft correction ¢ = ?gfgo) + §?f£_374) + 5??3—5,6)7 and
the hard-collinear higher-twist correction £ by the solid, dashed and dash-dotted curves,
respectively. One sees that the higher-twist correction is negative and relatively small for
all cases, whereas the soft correction can be of either sign and for small Ag becomes rather
large. The effect of the soft correction is always to counteract the change of the perturbative
contribution due to the variation of A and, in particular, o; so that the sensitivity of the
form factor to the model of the LCDA is reduced upon accounting for the soft correction as
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Figure 6. Model-independent higher-twist [9] (black dash-dotted curves) and soft (dashed curves)
contributions to the form factor difference (1/2)(Fy — F4) for three choices of Ag. The soft cor-
rections are shown for oy = —0.69, 0, 4+0.69 in red, green and blue colour, respectively. The colour
coding corresponds to figure 3.

compared to the leading-power result alone. Among the different contributions to the soft
correction the part related to the leading-twist LCDA, 5?’1‘3&0) (4.10), is dominant in all cases;
the other two contributions are relatively small. In particular 5?53_5,6) is at most 6% of the
total value. This is reassuring, suggesting that soft contributions related to the LCDAs of
even higher twist can be small as well, and also because the approximation leading to (4.19)
is rather crude. We also find that the 1/m; power corrections are generally much smaller
than the 1/E., corrections, and so are the “genuine” three-particle higher-twist corrections

relative to those that can be related to two-particle terms by the equations of motion.

A similar decomposition of the various contributions to the “symmetry-breaking” form
factor difference A{ = (Fyy — Fl4)/2 is shown in figure 6. It is dominated by the model-
independent higher-twist correction (2.9) [9] (black dash-dotted curves) whereas the soft
contributions (dashed) turn out to be small in all cases. They are shown in three colours
corresponding to the choice g1 = —0.69,0,+0.69 at the boundaries and in the middle of
the three models’ envelope.

To visualize the relative importance of different uncertainties due to the choice of the
parameters in the range specified in table 1, we consider the vector form factor Fy for
E, =2GeV, and A = 0.35GeV, in the middle of the range of interest, and two extreme
values for the first logarithmic moment, o1 = £0.693. We obtain

Fy(E, =2GeV, A = 0.35GeV, 5, = 0.693)

+0.012 +0.000 +0.006 +0.001 +0.001
= 0.258 + + + + +
—0.017 —0.007 —0.006 —0.000/ . —0.001
my Iz Bh M 0

+0.016 +0.002 +0.004
+ ( ) + ( ) + ( > = 0.25870031 ,
—0.013/ 5 e \-0003) , , \-0.003)
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Figure 7. Vector form factor Fy (E,). The shaded regions on the upper panels show the variation
for a given model with the range of parameters specified in (5.3). The uncertainty due to other
parameters in the range specified in table 1 is shown on the three lower panels for g1 = £0.69 corre-
sponding to the boundary of the models’ envelope in the upper plot, and for o7 = 0 corresponding
to the simple exponential ansatz [4]. The colour coding corresponds to figure 3.

Fy(E, =2GeV,A\p =0.35GeV,5, = —0.693)

+0.013 +0.000 +0.010 +0.013 +0.003
= 0.435 + + + T i
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my u s M2 s0
+0.014 +0.002 +0.004
+ ( ) + ( ) + ( > = 043575055, (5.13)
—0.011) 5 e \0:002) , 0 \=0.008)

where we added the errors in quadrature to arrive at the final numbers. We do not include
here the uncertainty due to the B-meson decay constant fg, cf. table 1, which enters as an
overall factor, and can therefore trivially be added. Apart from this, the overall uncertainty
is only about 6-9%, with the main contributions from the b-quark mass (alias A), the Borel
parameter, and the twist-four matrix element 2)\% + )\%{. The hard-collinear factorization
scale (1) dependence of 5?;%0) turns out to be large (up to 30%) but is always anticorrelated
with the scale dependence of the leading-power contribution such that the u-dependence

of their sum is reduced compared to that of the leading power term alone.
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Figure 8. Axial form factor F4(E,). The legend follows figure 7.

Our final results for the vector Fy and axial Fl4 form factors are shown in figures 7
and 8, respectively.® The shaded regions on the upper panels in both figures show the
variation for a given model with the range of parameters specified in (5.3) and central
values for other parameters. The colour coding follows figure 3. The uncertainty from
variation of the other parameters in the range specified in table 1 is shown on the lower
panels for three cases: o1 = £0.69 corresponding to the boundaries of the three models’
envelope, and g7 = 0. For the last value our three models coincide and reduce to the simple
exponential model of ref. [4]. This uncertainty is below 15% in all cases.

Two important conclusions can be drawn from these results. First, the uncertainty
from all parameters except those of the leading-twist B-meson LCDA ¢ (w) is generally
smaller than the dependence on ¢ (w) itself, which is large. This is welcome, since the mea-
surement of the B — ~fuv, process is primarily seen as a means to determine the B-meson
LCDA ¢4 (w), in particular Ap. The calculation of the power-suppressed “soft symmetry-
preserving form factor” £ introduced in [9] — performed here within the dispersive sum-rule
approach — considerably improves the prediction relative to the agnostic parameterization
of [9] and the leading-order calculation of £ in [14]. Second, the dependence of the form
factors on the shape of the B-meson LCDA (which is mostly a dependence on & ) is as
strong as on Ag. Thus any future comparison with experiment should aim at the extrac-

8We recall that the contribution of photon emission from the final state lepton is not included in Fa,
cf. (2.6).
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tion of correlated values for Ag and “shape parameters” o1, etc., rather than extracting
Ap alone and treating the “shape parameters” as theoretical uncertainty parameters.

We finally calculate the partial branching fraction BR(B — vfvy, Ey > Epin), inte-
grating (2.6) over the photon energy interval Eni, < E, < mp/2. The result is shown in
figure 9 as a function of Ap for three values of the photon energy cut, Eniy, = 1.0 GeV,
FEpin = 1.5 GeV and Ei, = 2.0 GeV with colour coding referring to the three models as
discussed above. The band corresponds to the variation of 7 such that the envelope of all
three bands reflects the total o7 dependence. For this plot we adopted the exclusive |V
average, |Vyp| = (3.70 £ 0.16) x 1073 [24], but as in the case of fg, we do not include the
theoretical uncertainty, since the dependence on fp|V,| can in principle be eliminated by
normalizing to another exclusive b — u decay. The theoretical approach requires the pho-
ton energy to be large compared to the strong interaction scale A. We find that the power
corrections become increasingly large for smaller E, such that the expansion cannot be
considered reliable below E, ~ 1.5 GeV. Given that the first data is statistics-limited [10],
it is nevertheless tempting to extrapolate to Fnyn = 1.0 GeV, and we have done so in
figure 9 — adding that any conclusions drawn from this plot may at best be indicative.

6 Summary

In anticipation of the forthcoming high-statistics measurements of the radiative decay B —
vlvp by the BELLE II experiment at KEK we reconsider its QCD calculation. The interest
in this decay is mainly due to its distinguished role as the simplest process that probes the
light-cone B-meson distribution amplitude, which in turn is an important nonperturbative
input in QCD factorization for exclusive processes involving B mesons [1].

The main theoretical issue is to quantify the leading power-suppressed effects in 1/E,,
1/my, as the leading-power calculation is well understood [9]. Following the technique
used already in [14, 15] we employ dispersion relations and duality to calculate the power-
suppressed soft contributions. In this approach soft corrections arise from the modification
of the spectral functions of the hard-collinear perturbative contributions in the soft region,
guided by the requirement of a mass gap in the hadronic spectrum in the photon channel.
A strong feature of this technique is that the result is insensitive to redefinition of the hard-
collinear contributions (e.g. by introducing an explicit cutoff for the soft region), which only
affects the decomposition of the answer in hard-collinear and soft contributions but leaves
their sum intact.

The present work goes beyond previous ones [9, 14, 15] in several directions. On the
technical side, first, we present a calculation of power-suppressed higher-twist corrections
to the form factors that are due to higher Fock states in the B-meson and to the transverse
momentum (virtuality) of the light quark in the valence state. These two effects are related
by the equations of motion and in the sum a rather compact expression can be found,
which further reduces to a few constants under rather general assumptions on the form
of the higher twist LCDAs. The resulting correction to the form factors is negative and
not very large, of the order of 10-30% depending on the size of the leading contribution.
Second, we calculate the soft corrections due to twist-five and -six B-meson LCDAs in the
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Figure 9. Integrated partial branching fraction BR(B — ylvg, Ey, > FEpn) for Enin = 1 GeV
(left), Fmin = 1.5 GeV (right) and Epi, = 2 GeV (lower).

factorization approximation. These terms turn out to be much smaller than soft corrections
originating from the lower-twist LCDAs, which is encouraging, since it indicates that the
twist expansion for soft corrections is converging.

On the analysis side, aiming to set the stage for the data analysis once more experi-
mental results become available, we present a detailed numerical study of the predictions
using a rather general class of models for the leading-twist LCDA, and the corresponding
error analysis. We find that the model dependence can be parameterized to a large extent
by Ap and by the value of the first logarithmic moment o7 (which we redefine, see (5.2),
compared to previous studies [8, 9] in order to decorrelate it from Ag). For a given LCDA,
the uncertainty of the calculation of the form factors is small, but the dependence of the
results on & (in addition to the expected dependence on Ap) is significant. Unless the
model space can be constrained otherwise, future data should be analyzed in terms of both
parameters, Ag and o7.
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The most important remaining theory issue in describing B — ~vfvy decay for large
photon energy is the consistent implementation of some version of a cutoff scheme [30]
together with the rederivation of the equation-of-motion relations between two-particle and
three-particle LCDAs in the same framework. This would allow the calculation of power-
suppressed effects with well-defined moments in the presence of a radiatively generated
tail of ¢ (w) and, hence, to get rid of A and most of the higher-twist matrix elements as
independent parameters. The two-loop evolution equation for the leading-twist B-meson
LCDA would also be useful for theoretical consistency to match the NLL accuracy of the
hard and hard-collinear evolution.

When this paper was being finalized, ref. [36] appeared suggesting a “hybrid” approach
where the calculation of the leading-power contribution using QCD factorization [9] is com-
plemented by the calculation of the power-suppressed correction due to photon emission
from large distances in terms of photon (rather than B-meson) LCDAs in the LCSR frame-
work. The soft form factor £ is then entirely independent of the parameters of the B-meson
LCDAs. A potential problem of such “hybrid” approaches is that the result is not insen-
sitive to the redefinition of the perturbative, hard-collinear contributions at sub-leading
power accuracy (see above). Nevertheless, the validity of this technique and its relation
to the approach used in the present work are interesting topics for further study. The
~v*~m form factor offers itself as a somewhat simpler process where such connections can
be investigated.
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A B-meson distribution amplitudes

Following [4] we define the B-meson LCDAs as matrix elements of the renormalized non-
local operators built of an effective heavy quark field h,(0) and a light antiquark at a
light-like separation,

Ola(n2) s, 0, O)1B(0) = 5 Fo T {sar P [ 04 (o) = § (24 = @)},
(A.1)
where
[zn,0] = Pexp [ig /Oldu nMA“(uzn)} (A.2)

is the Wilson line factor that ensures gauge invariance. Such factors are always implied.
Here and below v, is the heavy quark velocity, n, is a light-like vector, n? = 0, such

that n-v =1, Py = 3(1 +¢), I stands for an arbitrary Dirac structure, |B(v)) is the B-

meson state in the heavy quark effective theory (HQET) and Fp(p) is the scale-dependent
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HQET decay constant which is related to the physical B-meson decay constant, to one-loop
accuracy, as

fovms = Fp(u)K (1) = Fp(u) {1 + Cif‘s (3 In % = 2) +.. ] . (A.3)

The parameter z specifies the light antiquark position on the light cone. To fix the nor-
malization, we assume

1
n, = (1,0,0,1), n, = (1,0,0—-1), ’Uuzi(”u""ﬁu)? n-n=2. (A.4)

The functions @ (z,u) and ®_(z, ) are the leading- and subleading-twist two-particle
B-meson LCDAs [5]. They are analytic functions of z in the lower half-plane Im(z) < 0,
and are related by Fourier transformation to the momentum-space LCDAs

Do () = /0 o G (). (A.5)

We use upper (lower) case letters for the coordinate-space (momentum-space) distributions.
The coordinate-space LCDAs ®. can be written in the form [25, 26, 37]°

b ( __i ood is/z
+(z, 1) = = | dsse n+(8s 1)

O (o) = =2 [ s [+l 0] = O (o) + 0, (A6)

ZJo

where 74 (s, 1) and néo)(s, ) are twist-two and twist-three nonperturbative functions that

have autonomous scale dependence:

N4 (s, ) = Uy (55, pro)n+ (5, o)

1 (s, 1) = NI (511, 10)n (5, 10) - (A.7)

Here r = as(p) /as(po) and

Iy < 47 [ 1]
Uy (s;u, =expy ——>5 Inr —1+4+ - A8
Bi . o <P1 ﬁ1> )} 9 Loy 0
—onr+ | ———|[r—1-1Inr se“TE i) 2o " 20
280 To  Bo [ ) to)
where 268 40

The difference with the corresponding expression in [16, 26, 37] is that we included the terms
in 81 and the two-loop cusp anomalous dimension I'y, which is consistent with resummation
to the leading-logarithmic accuracy. We further replaced yu — pe’® to pass from the
coordinate-space version of the minimal subtraction scheme used there to conventional MS
scheme, cf. [38].

In notation of ref. [25] sn4 (s, ) = p+(1/s, ).
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In momentum space the exponential factors are substituted by Bessel functions, in
particular

b (w,11) = /O " ds /s Ty (20 (5. 1) (A.10)

This relation can be inverted to express 74 (s, u) in terms of ¢4 (w, p):

n (s, 1) = /0 " lea)%}s

For the generic ansatz (5.5), an analytic expression for the LCDA ¢, (w, ) at arbitrary

¢+(w7:u') : (All)

scale can be found in terms of hypergeometric functions using

wo /OOO ds (wos)P\/@Jl(Q\/&) 1F1 (a’ B, _wos) —
_ wT(BrE+p)l(a—p-2)
wo  I(a)l(B—p—2)

w\* P T(BT(p+2-0a)
— F — lLia—p—1,aa—p,— . (A2

Note that the LCDA ®_(z,p) is written as a sum of two terms. The first one,
OVW(z, ), is related to the leading-twist LCDA &, [5] and is traditionally referred to
as the Wandzura-Wilczek (WW) contribution. In momentum space

2oFo(p+2,p+3—06;2,p+3 — o, —w/wp)

o0 dw/
) = [ o). (A.13)

w

The second term, ®3(z, 1), is “genuinely” twist-three and can be expressed in terms of the
three-particle LCDA ®3 discussed below.

The three-particle quark-gluon matrix element is parametrized by eight invariant func-
tions that can be defined as [16]

<0|(j(n21)gsGuu(nZQ)Fhv(O)‘B(’U» =
1 .
= §FB(M) Tr{'y5FP+ [(vu’y,, — U Y) [\IJA — \IJV] — oYy — (nyvy, — nyvu) Xa
+ (n,u’yu - nz/'y,u) [W + YA] - ieuuaﬂnavB'YSXA + ieuuaﬁna’YBVS?A

— (nuvy — U)W+ (nuyy — nuyu)it Z} }(zl, Zo; L) - (A.14)

We use the standard (+, —, —, —) convention for the metric and 75 = i7°y17243. The totally
antisymmetric Levi-Civita tensor €,g,, is defined with €p123 = 1. The covariant derivative
is defined as D, = 9, —igA, and the dual gluon strength tensor as éw = %eumgG“B.
The momentum space distributions are defined through

U4 (21,22) :/ dwl/ dwy e 171wz Ya(wi,ws) (A.15)
0 0

and similarly for the other LCDAs.
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The invariant functions appearing in the Lorentz structure decomposition (A.14) can
be expanded in contributions of different collinear twist. One finds one LCDA of twist three

By =W, — Uy, (A.16)
and three twist-four LCDAs [16]
Py=U,+ Ty, Uy =4+ X4, Uy =Ty — X4. (A.17)

Neglecting contributions of four-particle operators of the type ¢gGGh, and gqgh, the fol-
lowing relation holds [16]

d d ~
—2z21D = | — 1) | U Al
2dz121 a(z1, 22) <dZ2Z2+ ) [ a(z1, 22) + 4(21,22)] , (A.18)

or, equivalently,

0 [thg + 4] (w1, w2) = —2w1 88<754(w1,w2)7 (A.19)
W1

[Va + Pa](wr, w2) — wam— 2o

so that only two of the three twist-four LCDAs are independent.
The analysis of the renormalization-group equations for the relevant operators [16, 37|
suggests the following representations:

<1>3<zl,z2,u>=/ ds[n§°>< YO (s)21,2) / dans(s,,) Ya(s, x| 21,22)]

Dy(z1,22,1 / ds/ dxn (s,z,p)Y, 4(1)(8 x|z1,22),
(U44Uy) (21,20, 1) = —/0 ds/ d:v774 )(s,x,u)Y4(;2 (s,x|z1,22), (A.20)
and
(Wa—Wa)(21, 20, 1) = (Wa= W) (21, 22, 1) + (Pa—Wa)" (21, 2, 1) , (A21)
where

(Wy—Ty)® = 2/0 ds (?) [néo)(s,u) Y3(0)(s |21, 22)

1 oo
4y [ dem(sm ) Yals, o1,
—00

(Wy—Uy)H = —/ ds/ da;%ﬁ_)(s,x,u) Zi;;)(s,a:\zl,zg). (A.22)
0 —o0

The Y- and Z-functions in these expressions are eigenfunctions of the large-N. evolu-

(0)

tions equations so that the corresponding nonperturbative coefficients 73 (s, i), n3(s, x, i)
(twist-three) and ngf)(s, x, 1), %i_)(s, x, ) (twist-four) have autonomous scale dependence
to this accuracy. The function 771(,)0) (s,p) is in fact not independent and can be obtained
by analytic continuation of 73(s,z, ) to the complex plane, x — i/2, see (A.33) below.

Explicit expressions for the eigenfunctions in coordinate and momentum space, and the
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corresponding anomalous dimensions can be found in [16, 37]. Note that the sum (\I/4+\Tl4)
is purely twist-four, whereas the difference (Q/4—\Tl4) contains both the twist-three con-
tribution that is related to ®3, and the “genuine” twist-four part. The two twist-four
nonperturbative functions on the line x = 0 are related as

[1+ Oss — 025% = 25A] (s, 1) = w554y ) (5,0,p) = mv/smi(s,0,) . (A.23)

This equation presents the nonlocal generalization of the moment relations [4]
> 45 > 2 72, 202 Lo
dww¢+(w):§/\, dww? ¢y (w) =2A +§)\E+§)\H, (A.24)
0 0

where )\QE and )\%{ parametrize the matrix element of the local quark-gluon operator

(01(0)g5 G (0)T 1o (0)| B(v)) =

i 1
=~ FpXy Ir |:’)/5FP+UW,] - &b (A%I - A%) Tr [751“P+(vu7,, - vwﬂ)] . (A25)

The matrix element can be estimated from QCD sum rules. One obtains

A% =0.1140.06 GeV?, A% = 0.18 £0.07 GeV?, [4] (A.26)
A% = 0.03 4+ 0.02 GeV?, A%, = 0.06 £ 0.03 GeV?, 31] (A.27)

where the second calculation takes into account some NLO corrections. Note that the ratio
R=),/)%, ~0.5 (A.28)

is almost the same in both calculations and is generally more reliable than the values of the
matrix elements themselves as many uncertainties cancel. If the moment relations (A.24)
are imposed, then, for a given leading twist LCDA ¢4 (w), only this ratio remains a free
parameter.

Physical quantities usually involve an integration over the position of the gluon field
operator and the resulting expressions often become much simpler, e.g.,

1 ~ 1t3 Y .
/0 du [‘114 - \114} (z,uz) = 27 20B(2) = —Z—Zg ; dse®/? nz())o)(s, ),
1 ~ qt4 i [ A =)
/0 du [‘114 - @4} (z,uz) = _Z?’/o dse™/* n\/sxy (5,0, 1), (A.29)

and, using (A.23),

[l e = - [/old““q"*(“z) 0L k(o)

_/O du { [\II4+\TI4] (z,uz) + [\114—1-@4} (uz,z)}. (A.30)
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A useful representation of the twist-four coefficient functions on the line x = 0 in terms of
the momentum-space LCDAs reads

o] 1

(5,0, ) f/ dwy jl/wi \/@ J1(2v/5uw1)J1 (2450w ) [1ha + 4] (wi,ws) , (A.31)
00 1

%1(1_)(570’#) \[ jl/w—l jl/%o %J1<2¢SUW1)J1(2VSﬁw2)[¢4—1;4]tw_4(w1,w2)-

The integrals appearing in the higher-twist corrections (3.5), (3.6) and (3.9), (3.10) to
B — vy can be expressed in terms of the LCDAs in the (s, z) representation as follows:

/Oodw Inw¢®(w) = —/ ds 77;%0)( S 1),
0 0
/0 511/ -2 [a—1a] " (w1, w2) = —TF/ NO& (5,0, 1), (A.32)

w1 +w2

Oodwl > d(,UQ _/ ds (0) /OOCLS (1)
/O / ot (wi,w2) = 3 il (s,1) — il (s,1),

where 17( )( 1) (A.6) and nél)(s, w) are the first two coefficients in the Laurent expansion
of n3(s,x, n) for x — —i/2,

- .
- Y (s, 10) + 05 (5,) + O (x + ;) : (A.33)

es—if2  m :c+i/2773

n3(s, , 1)

The leading off-light cone contributions in the current correlation functions can be
calculated in terms of the two-particle higher-twist LCDAs by extending the definition
from [5] to include O(z?) terms as follows:

(01a()T [, 01h (0)| B(w)) = —= Fis Tr 357 P /0 T 0 o () + a4 ()}
+UFpTY el Pag] /O "o 0 [, — 6 )() + 2o - g)(w)} . (A34)

It is assumed that |2%| < 1/A2. The two new LCDAs, g, (w) and g_(w) are of twist four
and five, respectively. They are not independent and can be calculated in terms of the
three-particle LCDAs and the two-particle LCDAs of lower twist [16, 34]. To the tree-level
accuracy one obtains in coordinate space

1

222Gy (2) = — {zd L + iz/_\] O, (z) — }(I)_(z) = 22/ udu Uy (z,uz), (A.35)

dz 2 2 0

5 d 1 - 1 5 [T

22°G_(2) = —|z2— — s +izA|P_(2) — P4 (2) — 2 udu Vs (z,uz), (A.36)

dz 2 2 0

where -
Gele) = [ doe e (o). (A.37)
0
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In the present context it is important that the expression for the two-particle LCDA G4 (z)
in (A.35) and the constraint in (A.23) are derived under the same assumptions; hence also
the relations in (A.24) have to be satisfied.

In practical calculations it proves to be advantageous to write G4 (z) as the sum of the
Wandzura-Wilczek part and the remaining twist-three and twist-four contributions

1 d 1 - 1
WW - = = . T AWW
GV (2) = 5,2 [zdz 5 + ZZA:| o, (2) 2 MY (2),
1
G (2) = _iq)tf(z) 1 / tdu Wy(z,uz), (A.38)
422 2 0

and to combine the higher-twist terms with the contribution of gluon emission from the
hard-collinear quark propagator, see (3.4). In this way, remarkable cancellations occur that
partially can be expected as a consequence of Ward identities.

In [16] several models for the higher-twist LCDAs have been suggested that incorporate
the correct low-momentum behaviour and satisfy the (tree-level) EOM constraints. One
can show that all these models can be obtained as particular cases of a more general ansatz

¢+ (w) =w f(w),

1
¢3(wi,wa) = —5%()\2]5 — )\%{) wlw% (w1 +wo),
1
Pa(wi,wo) = 5%(%29 + AF) ws fwr +wa), (A.39)

where f'(w) = df(w)/dw and the normalization constant s is fixed by the leading-twist
LCDA through the EOM relation (A.24) to

1 [ o 1
wl = 6/ dww?f(w) = A% + 6 (205 + A%). (A.40)
0

Here it is assumed that the function f(w) is normalized as fooo dww f(w) = 1 and decreases
sufficiently fast at w — oo so that at least the first three moments fooo dww® f(w), k =
1,2,3... are finite. While this cannot hold true in general due to the large-momentum tail
generated by perturbative radiative corrections [33], the assumption is consistent in the
context of tree-level calculations of higher-twist contributions as performed here.

From (A.19) one obtains for this ansatz
[ + Pa)(wr,wa) = 2(NE + M) wiws f(wi +w2) (A.41)

but for [¢y — 1Z4] only the integral (A.30) can be determined for a generic profile function
f(w) without additional assumptions. Luckily, only this integral is relevant for B — ~vfv,.1°
The WW part of ¢_ and g4 and the “genuine” twist-three part of ¢_ can be expressed in

9For the special choices of the profile function f(w) made in [16] the LCDAs 14 and {/;4 can be separated.
One obtains ¥4 (w1, ws2) = 2 AL wiws flwr + w2) and Yy (w1, ws) = 2 A% wiws flwi + w2).
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terms of f(w) in the form

0w = [T i),

03(0) = 0% ~ ) [ @)+ 4 @) -2 [T dp 1)
97" (W) = —% /OO dp (p " (p) +2(A - p)¢+(p))
=5 [ o3~ £0) (A2

For the particular combinations of the integrated LCDAs entering the higher-twist correc-
tions in (3.5), (3.6) and (3.9), (3.10) we find the remarkably simple results

o0 1
/ dw Inw @B (w) = —2(\% — \%),

6
dw1 dwo _ 1 2 2
/ / W1 + Wy ¢3 CL)l,UJQ) 3%()\E )\H)a
dw1 dw2 dwg 2
¢4+¢4] (w1,wa) =2 72¢4(0 ,w2) = #(AL + A, (A.43)
0 0

which do not depend on the shape of the function f(w). Also the auxiliary functions Z; 2(w)
n (4.15), (4.16) can be expressed simply as

= (w)= g%()\2 +2X%) [w? f(w) — 20V (w)] — 2wV (w) +3w? f(w) +w’ f/(w),  (A.44)

[1]

2(w) = —*%()\ Nir) [0 F () = 206 ()] + (A~ w) wf(w) —we™™ (w) (A.45)
with ¢V (w) given by (A.42) above.
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