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ABSTRACT: We construct a crossing symmetric basis for conformal four-point functions
in momentum space by requiring consistent factorization. Just as scattering amplitudes
factorize when the intermediate particle is on-shell, non-analytic parts of conformal corre-
lators enjoy a similar factorization in momentum space. Based on this property, Polyakov,
in his pioneering 1974 work, introduced a basis for conformal correlators which manifestly
satisfies the crossing symmetry. He then initiated the bootstrap program by requiring its
consistency with the operator product expansion. This approach is complementary to the
ordinary bootstrap program, which is based on the conformal block and requires the cross-
ing symmetry as a consistency condition of the theory. Even though Polyakov’s original
bootstrap approach has been revisited recently, the crossing symmetric basis has not been
constructed explicitly in momentum space. In this paper we complete the construction of
the crossing symmetric basis for scalar four-point functions with an intermediate operator
with a general spin, by using new analytic expressions for three-point functions involving
one tensor. Our new basis manifests the analytic properties of conformal correlators. Also
the connected and disconnected correlators are manifestly separated, so that it will be
useful for the study of large N CFTs in particular.
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1 Introduction

Conformal field theory (CFT) is a universal testbed for physicists and mathematicians.
Starting from the scale invariance of high energy scatterings, it has experienced a vast
range of applications, including critical phenomena and string theory. In particular, the
outstanding development in d = 2 CFT has brought about intensive interplay between
physics and mathematics in connection with the representation theory, integrable systems
and hypergeometric functions. The AdS/CFT correspondence [1-3] has established CFT
as a probe of quantum gravity and triggered recent research activities in CF'T on higher



dimensional spacetimes (see, e.g., [4-7] for review articles and references therein). More-
over, its application reaches even cosmology, where the conformal group as the de Sitter
isometry is crucial to analyze inflationary correlators [8-21]. By further developing our
CF'T techniques, we would like to enlarge the scope of our theoretical toolkit.

The basic ingredients of CFT are three-point functions. Once the operator spectrum is
specified, four-point and higher order correlators can in principle be calculated from three-
point functions by using the operator product expansion (OPE). For example, four-point
functions of primary scalars with an identical conformal mass dimension A are given by

2 .2 2 .2
~ ~ _ _ Tio9T Ty,
<01($1)02($2)03($3)O4(m4)> = E 012n034n$122A$342AGn ( ;2 34, 54 33) N (11)
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where the summation is over all the primary operators and the numerical constants éijk are
the OPE coefficients. The conformal block G,, can be determined uniquely by conformal
symmetry. In this expansion, the crossing symmetry is not manifest, hence it gives a non-
trivial constraint on the theory together with unitarity or reflection positivity (if any) [22].
This conformal bootstrap approach has been very successful in d = 2 [23]. Furthermore,
recent years have seen a remarkable progress in its application to CFTs in higher dimen-
sions. Following the seminal works by Dolan and Osborn [24-26], various properties of
conformal blocks have been clarified so far and the bootstrap program has been promoted
both numerically and analytically [27-40].

While the recent development in the bootstrap program is mostly based on the ordi-
nary conformal block, Polyakov in his pioneering 1974 work [41] employed another basis
for conformal correlators as a framework for the bootstrap program. Analogously to the
Kallén-Lehmann spectral representation of scattering amplitudes, he introduced a crossing
symmetric basis for momentum space correlators as

(O1(k1)O2(k2)Oa(ks)Oa(ka))’ = 3 (Wi + WP + W), (1:2)

n

where we introduced (...) = (2m)46% (> k;)(...)" and W) is what we call the s-channel
Polyakov block enjoying a consistent s-channel factorization as we elaborate in section 3.1.
In this basis, the crossing symmetry and thus (non-)analyticity in each channel are manifest
by construction. On the other hand, consistency with the OPE is obscured, hence it gives
a nontrivial constraint on the theory. Polyakov demonstrated that the consistency with
the OPE determines anomalous dimensions and OPE coefficients of O(N) models in the
d = 4—e dimension (see [42] for a recent generalization). This bootstrap approach therefore
plays a complementary role to the one based on the ordinary conformal block.

Even though Polyakov’s original bootstrap approach is very elegant, this direction
has not been explored very much until recently, essentially because of technical complica-
tions due to conformal symmetry in momentum space. Indeed, Polyakov did not derive an
explicit form of the block WT(LS) in momentum space, but rather he proposed a crossing sym-
metric basis in position space. Recently in [43, 44], Gopakumar et al. revisited Polyakov’s
bootstrap approach in Mellin space. In particular, they showed that the crossing symmetric
basis is nothing but the Witten exchange diagram by explicit computations in Mellin space.
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Figure 1. Three-point functions of two scalars and one tensor can be obtained by acting a differ-
ential operator Aja3,, on the cubic Witten diagram of three scalars, with an additional factor z*
multiplied to the vertex in the integrand.

To further promote the recent revival of Polyakov’s original bootstrap idea, we would like
to complete the construction of the crossing symmetric basis in momentum space in light
of recent developments on conformal correlators in momentum space.

The purpose of this paper is to explicitly construct the crossing symmetric basis in
momentum space, following Polyakov’s original argument based on analyticity and fac-
torization. As a first step, in the present paper, we focus on scalar four-point functions

I Since our work is rather technical, we would like to outline

in d = 3 Euclidean space.
the punchline of our results in the rest of this introduction. For our construction, it is
important to first clarify the analytic properties of three-point functions. Conformal three-
point functions in momentum space were intensively studied recently in [16-20, 46-53].
For example, three-point functions of primary scalars are given by [16, 46-49]

oo

(O1(k1)O2(k2)03(k3)) = 0123/0 %Bm(kl;Z)Buz(k%Z)BVg(k?);Z)a (1.3)
where (23 is the OPE coefficient and B, is the bulk-to-boundary propagator of the (would-
be) dual bulk scalar. Interestingly, the radial coordinate z of the AdS Poincaré patch
naturally appears when one solves the conformal Ward-Takahashi identity in momentum
space. We emphasize that our argument does not rely on the AdS/CFT correspondence,
even though we use its terminology to make the notation intuitive. As a consequence,
analytic properties of three-point functions are captured by those of the bulk-to-boundary
propagators. For construction of the Polyakov block for an intermediate spinning operator,
we need three-point functions of two scalars and one tensor as well. As depicted in figure 1,
we find in appendix B that they are obtained by simply acting a differential operator Aj;a3,,
(its definition is given in section 4.2) on an integral similar to eq. (1.3) as?

/ o d S
(O1(k1)O2(k2)0s3,, (k3)) :A123m/ ﬁz By, (k1; 2) By, (k2; 2) By, (k3; 2) (1.4)
0

!The results in general dimensions will be presented in [45].

*The integral (1.4) is convergent only when |Revi|+ |Reva|+ |Revs| < s+ 2. Otherwise, there appears
a singularity near z = 0 and we need to perform analytic continuation [48, 49], which may be carried out,
e.g., by introducing the Pochhammer contour. A similar remark is applicable to our integral representation
for the Polyakov block.
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Figure 2. The Polyakov block for an intermediate spinning operator can be obtained by acting two
differential operators Ajs,,, and Asgy,,, on the scalar Witten exchange diagram with an additional
factor z® multiplied to the cubic vertices in the integrand.

where we introduced what we call the helicity basis by analogy with helicities of massless
particles, and O,, has a spin s and a helicity m [18]. As we discuss in section 4.3, the
differential operator Aj23,, is analytic in momenta, so that all the non-analyticities of three-
point functions are captured by the bulk-to-boundary propagator B, (k; z) in the integrand.
This is a technically important observation for our construction.

The above analytic properties of three-point functions now enable us to construct the
crossing symmetric basis. As we explain in section 3.1, Polyakov’s idea is to require that
non-analytic parts of the Polyakov block W,(LS) enjoy a consistent factorization, just as the
on-shell factorization of scattering amplitudes. In section 3.2, we show that the Polyakov

block for an intermediate scalar is nothing but the Witten exchange diagram:

d d
W = C19,Caun / L / 22
0
x By, (k1; Zl)Bl/Q(k2; Zl)gun(kw; 21, 22) By, (k3; 22) By, (ka; 22) , (1.5)

where G, (k12; 21, 22) is the bulk-to-bulk propagator. The essential point here is that
the z-ordered part of the bulk-to-bulk propagator is analytic in k12. As a result, the
non-analytic parts associated to the intermediate on-shell state manifestly reproduce the
factorization required by the Polyakov ansatz. This shows that momentum space is a
natural language for this program. It is then not difficult to generalize the construction to
intermediate spinning operators. The Polyakov block Wéf,? for an intermediate operator
O, with a spin s and a helicity m can be obtained again by acting the differential operators
Ao, and Asgy,, on an integral similar to eq. (1.5) as (see also figure 2)

W) _A12nmA34nm/ le/ dZ2 2

ag l/n

X By, (k15 21) By, (k2; Zl)gun(km; 21, 22) By, (k3; 22) By, (ka; 22) (1.6)

where as,, (m) is a numerical factor associated to the normalization of O,,,. This is our
main result. As a side remark, we would like to point out that the connected and discon-
nected correlators are manifestly separated in this basis (see section 3.3). We therefore



believe that our basis is useful not only for the Polyakov type bootstrap, but also for the
study of large N CFTs, which are holographically dual to weakly coupled bulk theories.

The rest of this paper is organized as follows. In section 2 we discuss analytic properties
of scalar two- and three-point functions in momentum space. In particular we demonstrate
that non-analytic parts of three-point functions factorize into analytic cubic vertices and
two-point functions. In section 3 we introduce Polyakov’s analyticity based argument and
illustrate that momentum space provides a natural language for this program. By requiring
consistent factorization in each channel, we show that the Polyakov blocks for intermediate
scalars are nothing but the Witten exchange diagrams. In section 4 we then generalize
the argument to the intermediate spinning operators and complete the construction of the
crossing symmetric basis. Some technical details are collected in appendices.

2 Analytic properties of scalar two- and three-point functions

In this section we discuss analytic properties of two- and three-point functions in momen-
tum space. To avoid technical complication associated with spins, we first focus on scalar
correlators in this section. As we will see in section 4, however, most of analytic proper-
ties discussed in this section are carried over to correlators involving operators with spins.
Throughout the paper, we work on the d = 3 Euclidean space unless otherwise stated.

In the first two subsections we review basics of two- and three-point functions in
momentum space. In particular we introduce a building block of three-point functions
called the triple- K integral [47-49], which is essentially the cubic Witten diagram. We then
elaborate on its analytic properties in the last subsection. The cubic vertices introduced
there are relevant when constructing a crossing symmetric basis for conformal correlators.

2.1 Two-point functions

In momentum space two-point functions of primary scalars are given by

A=3/2 _ Coo (kz)y , (2.1)

(O(k)O(~k))" = Coo (k?)
where k = |k|, A is the scaling dimension of O, and v = A — 3/2. In this paper, for
notational simplicity, we use (...)" for correlation functions with the momentum conser-
vation factor dropped. More explicitly, (...) = (27)35%(>_k;){...)". The corresponding
two-point functions in position space are

(O(@1)0(22)) = Coo (22%) " with éoozzzvﬂe»/zw

Coo, (2.2)
where notice that 6’00 is positive in unitary CFTs, but Cpo is not necessarily positive.

As is clear from eq. (2.1), two-point functions are not analytic in k, or equivalently in
k%, unless v is an integer.> When we analytically continue k2, we introduce a branch cut
along k% < 0. The discontinuity on the branch cut is

Discz (O(k)O(—k)) = Coo |[E?|” (e™ — ™) = 2iIm (O(k)O(—k))’, (2.3)

3For simplicity, we do not consider operators with an integer v in this paper.



where the imaginary part of the two-point function on the r.h.s. is evaluated at Im k? = ¢
with a positive infinitesimal number ¢ as usual.

2.2 Three-point functions

In momentum space three-point functions of primary scalars are given by [46-49]

(01(k1)Os (k)O3 (k)Y = Ciog /0 - %Byl(kl; DBy (ko )Boy (ki 2),  (2.4)

where B, is the bulk-to-boundary propagator of the (would-be) dual bulk scalar:*

By (k: 2) ?jr(y)kvzif/?m(kz) (2.5)

ra-—
- (2yy)z3/2_” [(kz)”l_l,(kz) — (k2)"I, (k)] . (2.6)
Also I,(z) and K,(z) are the modified Bessel functions of the first and the second kinds,
respectively. We call them the Bessel I and K functions in short. The bulk-to-boundary
propagator B, (k; z) is a solution for the scalar equation of motion on AdSy,

{2263 — 220, — 2°k? — m2] B,(k;z) =0, (2.7)

2

where m? = v? — 9/4 is the dual scalar mass. Our normalization is chosen such that

I(-v)

By, (k;z) — 232V (1 + O((kz)2)) + W(V)

k:2”z3/2+”(1 + O((kz)2)) . (28)

As is clear from the large z behavior of modified Bessel functions,

T 1
K, (2) = /=227, I(2) = ——2"12% for z>1, 2.9
@3 0= 29)

the bulk-to-boundary propagator B, (k;z) decays in the limit kz — oo. Since the inte-
gral (2.4) contains three K, (z)’s, it is called the triple-K integral. We refer the reader to
the references [48, 49] for its detailed properties.

The origin of the triple-K integral may be understood in the following three ways:

1. First, the integral (2.4) is nothing but the Witten diagram for the cubic coupling
P10203 (¢; is the dual of O;) if we identify z with the radial coordinate of the Poincaré
patch. It respects the AdS isometry by construction, hence it is conformally covariant.

2. Indeed, we may explicitly check that the triple-K integral satisfies the conformal
Ward-Takahashi identity in momentum space. By requiring an appropriate analytic
behavior, scalar three-point functions may be determined uniquely up to an overall
coefficient from conformal symmetry [48].

4We emphasize that our argument does not rely on the AdS/CFT correspondence. We, however, use the
term “bulk-to-boundary propagator” of the would-be dual bulk field to make the notation more intuitive.
Also, for notational simplicity, we call the would-be dual field simply the dual field in the rest of this paper.
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Figure 3. Due to momentum conservation, external momenta of correlation functions form a
polygon. The soft limit of an external momentum, say k4 — 0 (the left figure), corresponds to the
OPE limit in position space, where one operator is far separated from the others (the right figure).

3. It is also possible to obtain the triple- K integral by Fourier transforming the position
space three-point function,

6’123
(x%2) 1A123 (.213%3) 1A132 (x%?)) 10’

(O1(x1)O2(2)O3(23)) = (2.10)

where Ay = A + Aj — Ay, As we compute in appendix B.4, the OPE coefficient
(123 in position space is related to the one Ci23 in momentum space as

P( A%31 )F( A532 )F( A523 )F( A1+A22+A3*3)
27030 (11T (v2) T (v3)

5123 = C1a3 . (2.11)

2.3 Factorization of three-point functions

We then discuss analyticity of three-point functions. First, the triple-K integral (2.4) is
defined in such a way that it is regular after an appropriate analytic continuation in v;. It
is therefore analytic as long as the integrand is analytic. Non-analyticity then shows up
only in the squeezed limit, where one of the three momenta is much smaller than the other
two. As the soft limit expansion (2.8) of the bulk-to-boundary propagator shows, the only
source of non-analyticity is the second term in the square bracket of eq. (2.6). Note that
the soft limit of external momenta is nothing but the momentum space counterpart of the
OPE limit in position space (see figure 3). The non-analytic component is then responsible
for the intermediate on-shell state and thus the singular behavior in the OPE limit.

Let us take a closer look at analyticity of three-point functions (O1(k1)O2(k2)Os(ks))’
with respect to k3 (with k; fixed). As we mentioned, the only source of non-analyticity
is the bulk-to-boundary propagator for Os. The non-analytic part of three-point functions
then factorizes into analytic cubic vertices and the discontinuity (imaginary part) of two-
point functions as

DiSCkg <01 (kl)oz(k2)03(k3)>, = Tlg;g(kl, ktg; k3)COgOgDiSCk§ (]C%)VS
= Ti2;3(k1, k2; k3) Discy2(O3(k3)Os(—ks))" . (2.12)



Here we defined the cubic vertex Tia.3 by

Tio:3(k1, ks k3)

'l — >*d
_ LU —vs) Cias | B (ks 2B b 202520 L k) (2.13)
2vs Cos05 Jo 24

which is analytic with respect to k3 around k3 = 0. We use this cubic vertex in the next
section when constructing the crossing symmetric basis for conformal four-point functions.

For later use, it is convenient to notice that the cubic vertex (2.13) has a singularity in
the collinear limit defined by ki 4+ ko = k3: as we mentioned, the Bessel K and I functions
behaves in the large z region as eq. (2.9), so that the bulk-to-boundary propagator has

—kz  Since the integrand of cubic vertices contains the

k1+k27k3)z

an exponential suppression ~ e
Bessel I function, it has an exponential factor ~ e~ in the large z region. The
integral then converges only when k; + k2 > k3. In particular, the exponential suppression

disappears in the collinear limit & 4+ k2 = k3 and thus becomes singular and non-analytic.

3 Crossing symmetric basis: intermediate scalar

In this section we construct a crossing symmetric basis for momentum space four-point
functions, following Polyakov’s argument based on analyticity and factorization [41]. For
technical simplicity, we focus on the case with an intermediate scalar in this section. Ex-
tension to the case with an intermediate spinning operator will be given in the next section.

After introducing Polyakov’s argument in section 3.1, we show in section 3.2 that the
crossing symmetric basis is nothing but the Witten exchange diagram. Actually, this equiv-
alence was already shown in Mellin space by explicit computations [44]. However, we find
that momentum space provides a natural language for this program. In particular we elab-
orate on the emergence of the bulk-to-bulk propagator by studying analytic properties in
momentum space. Section 3.3 is devoted to the intermediate identity operator case, which
is separately treated in our construction. We there emphasize that the connected and dis-
connected contributions to four-point functions are manifestly separated in this approach.

3.1 Factorization ansatz a la Polyakov

In ordinary Lorentzian field theories, scattering amplitudes are analytic off shell and their
non-analytic parts, associated to on-shell particle creations, enjoy the factorization prop-
erty. For example, tree-level four-point amplitudes in ¢3 theory are schematically given by

(4pt scattering) = (3pt vertex) x x (3pt vertex) + (t,u-channels), (3.1)

m2 —s — ie
where s = — (k1 +k2)? is the Mandelstam variable. When the exchanged particle is on-shell,
the propagator becomes non-analytic and the non-analytic part factorizes as

m2 — ;

] X (3pt vertex) . (3.2)
s — i€

Discs [4pt scattering] = (3pt vertex) x Discg [

Notice that cubic vertices and t, u-channel diagrams are analytic in s since our interaction
is local. Also, contact vertices, if any, are analytic as long as we consider local interactions.
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Figure 4. In the collapsed limit, an internal momentum, say ki, becomes soft compared to
external momenta (the left figure). This limit corresponds to the OPE limit in position space,
where operators are separated into two groups far away as depicted in the right figure.

Let us now move on to our CFT argument. In [41] Polyakov introduced a CFT
correlator analogue of such a factorization property. As we demonstrated in section 2,
non-analytic parts of three-point functions can be reformulated as

DiSCkg <01(k1)02(k2)03(k3)>/ = Tm;g(kl, k:g; kg) DiSCkg <O3(—k3)03(k3)>, . (3.3)

Notice that factorization occurs even in three-point functions because we are considering
correlators rather than scattering amplitudes. Note also that 77,3 is analytic in k3 around
k3 = 0. In analogy with ordinary field theories, we call Ti2.3 the cubic vertex.® Similarly,
we require that non-analytic parts of four-point functions are factorized into the form,

DiSCs <01 (kl)OQ (kg)Og(k3)04(k4)>/
= Tigm(ki, k2; —k12) Discs (O (k12) On(—k12)) Tagn (K3, ka; —ksa) (3.4)

where the intermediate operator O, runs over all the primary operators. They are de-
scribed in the basis with diagonal two-point functions in particular. We also introduced
k;; = k; + k;. Later, we use the Mandelstam type variables s, t, and u defined by

s=—(k1+ko)?, t=—(ki+k3)?, u=—(k +ks)>. (3.5)

Since the on-shell conditions are not imposed on the external momenta, these variables are
independent in contrast to the scattering amplitude case. Notice here that the collapsed
limit k;; — 0, where the non-analyticity shows up, is the momentum space analogue of
the position space OPE limit (see figure 4). In a similar fashion, we require factorization
in the t, u-channels as well.

Based on the factorization property given above, Polyakov introduced a crossing sym-
metric basis for conformal four-point functions as® [41]

(O1(k1)Oa(k2) O3 () Oa(ka)) = > (Wi + W 4 W), (3.6)

n

5To be precise, Ti2.3 is the cubic vertex multiplied by two-point functions of O; and Os. Indeed, it is
non-analytic with respect to k1 and k2. We, however, call it the cubic vertex for simplicity.

5Just as in the case of the recursion relation for scattering amplitudes [54], there may exist analytic terms
which cannot be determined only from the analyticity argument, even though earlier works [41-44] on the
bootstrap program did not incorporate these contributions. In our context, such an ambiguity is generically
associated with bulk contact interactions. We expect that other physical criteria such as consistency with
OPE (see also [44]) and locality of the dual bulk theory will constrain these contributions in a significant
way. We do not go into this issue in detail, leaving it to future work.



where the label n again runs over all the intermediate primary operators. The function
WT(LS), which we call the s-channel Polyakov block in the following, is a conformally covariant
function enjoying the following two properties:

1. W,(LS) reproduces the non-analytic properties associated with the s-channel factoriza-
tion. More explicitly, we require

Discs WS =Ti9., (K1, ka; —k12) Discs (On, (k12)On(—k12)) Taan (K3, ka; —k3a),  (3.7)

where we described the intermediate operators O, in the basis with diagonal two-
point functions. Such a basis can easily be taken for scalar operators. Also, in
section 4, we introduce the diagonal basis for spinning operators.

2. WT(LS) has no non-analyticity other than the one in the s-channel collapsed limit s = 0.
In particular, it is analytic in k13 and k14, so that it does not introduce t, u-channel
discontinuity.

Also Wét) and W,S,u) are t,u-channel analogues of WT(LS) and enjoy similar properties. In
contrast to the ordinary conformal block, the crossing symmetry is manifest in this basis
by construction. On the other hand, the consistency with the OPE is obscured, hence it
gives a nontrivial constraint on the theory as Polyakov demonstrated [41].

While Polyakov completed the bootstrap pr)ogram in workable models elegantly, he

to conformal symmetry in momentum space, but rather he proposed a basis in position

did not derive an explicit form of the block W,(f because of technical complications due
space. Recently in [43, 44], Gopakumar et al. showed in Mellin space that the Polyakov
block Wés) is nothing but the Witten exchange diagram. In the next subsection we revisit
this equivalence and construct the Polyakov block in momentum space for the intermediate
scalar case. Essentially because momentum space manifests the analyticity and factoriza-
tion properties (3.7), our construction turns out to be quite simple and intuitive.

3.2 Witten exchange diagram is Polyakov block

We then construct the Polyakov block. Here we assume that the intermediate operator is
not the identity. The identity operator case is discussed separately in the next subsection.

Lessons from a naive trial. As a first step, it is instructive to start with a naive
candidate for the Polyakov block of the form,

Wr(LS) ; TlQ;n(kb k:g; —klg)<On(klz)On(—k12)>,T34;n(k37 k4; _k34) 9 (38)

which trivially satisfies the first requirement (3.7). However, it turns out to have undesired
non-analyticity and does not satisfy the second criterion. As we mentioned in the previous
section, the cubic vertex,

Tio,3(k1, k2 k3)

I'1—wv3) Ciaz [ dz 3/2q.—v
=" O, /0 1B (1 2) By, (ko 2) 22k L (s2) (3.9)

~10 -
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Figure 5. In the collinear limit, two external momenta are parallel and point the same direction.

is singular and non-analytic in the collinear limit k1 4+ ko = k3, essentially because of the
exponential growth, I,,(z) ~ e* (z > 1), of the Bessel I function in the large z region. This
singularity leads to an undesired singularity of eq. (3.8) in the collinear limit k; + ky = k12
for example (see figure 5). The ansatz (3.8) then does not respect the second criterion. Our
task is now to handle such an exponential growth of the Bessel I function appropriately.

Witten exchange diagram. We now proceed to showing that the improvement of the
naive ansatz (3.8) is nothing but the Witten exchange diagram. To see this, let us first
rewrite eq. (3.8) as

F(l )F(l—l/n Cl2n034n/ dzl/ dZQ
22un COnOn

% By, (kv; 21)Buy (ka: 21)Bys (ks 22) By, (kas z2>zi’/ 23, (ko2 1, (kia2s) .

r.h.s. of (3.8) = (3.10)

In the large z; region (i = 1,2), the integrand behaves as

~ e

—(k1+k2)z1—(k3+ka)z2+k12(z1+22) ’ (3‘11)

which is the origin of undesired non-analyticities mentioned above. One possible way to
remove this undesired exponential growth, without spoiling conformal covariance, is to
replace the two Bessel I functions by Bessel K functions. This choice is essentially the
ordinary conformal block. As we explain shortly, the ordinary conformal block has an
additional s-channel non-analyticity associated to the shadow operator, so that it does not
satisfy the first criterion for the Polyakov block.

The only thing we can do is then to replace one of the two Bessel I functions by a
Bessel K function. For example, if we replace I,,(ki2z1) by K, (ki221), the new integrand
behaves in the large z; region as

~ o~ (Fitk2)z1i—(ks+ka)z2—k12(21—22) ’ (3.12)
which is free from the undesired exponential growth when z; > zo. We therefore per-
form this replacement for the integral region z; > z5. Similarly, we replace I, (ki222) by

K, (k1222) in the region z; < z9. Actually, this is nothing but what we usually do when
constructing the bulk-to-bulk propagator. More explicitly, the bulk-to-bulk propagator in
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momentum space is given by’

Gy (k; 21, 22) = C'O_OF2(21”__1;)(V) [Q(zl - zg)zf/ng/zK,,(k:zl)L,(kzz) + (1« 2)} (3.14)

F(l — V)P(l — V) 3/2 3/2
= A (k1) I (k22)

(21 — )y (k)] (kz2) — 020 — zl)f,,(kzlﬂ_y(m)} , (3.15)

where the second line exactly reproduces eq. (3.10) accompanied by the bulk-to-boundary
propagators and integrals over the radial coordinates z;. Note also that the third line is
analytic in k. The Witten exchange diagram,

/OOM/OO @B (kl‘zl)B (k?g'zl)g (klg'zl ZQ)B (k J 2 )B (k y R ) (3 16)
0 Zil 0 Z% V1 ) V2 y Un, y #1, v3 \v3y 22 )Puy\v4, 22 ) .
therefore reproduces the s-channel non-analyticity required by the factorization ansatz.
Also, it has no other non-analyticity essentially because the bulk-to-bulk boundary prop-
agator has an exponential suppression in the large z; region. Indeed, the z-ordered part
of the propagator (3.15) was originally added to remove the undesired exponential growth
and thus undesired singularities of correlators. We therefore conclude that the Witten
exchange diagram satisfies the two criteria of the Polyakov block and write

WT(LS) = 012n034n/ dz41/ d7242
0 *1 Jo 2
X By, (k1; 21) By, (k23 21)Gu, (K12 21, 22) By (k3; 22) By, (ka; 22) - (3.17)

Why not the conformal block? Before closing this subsection, let us make a brief
remark on the difference of the Polyakov block and the ordinary conformal block. As we
mentioned, if our goal were only to remove the undesired exponential growth in the large
z; region, we could replace the two Bessel I functions by Bessel K functions, which gives
the triple- K integral squared. More precisely, conformal covariance requires the form,

(O1(k1)O2(k2)On(—ki12))' (On(k12)O3(k3)Oa(k4))’
(On(—k12)On(k12))’ ’

which is regular except for the s-channel collapsed limit k15 — 0. Since three-point func-

(3.18)

tions in the squeezed limit scales as
(01 (k1)0a(~k1)0 (0))' ox k1 +3+A=6 (3.19)

the collapsed limit k12 — 0 of eq. (3.18) is given by
k1A1+A2+An—6k3A3+A4+An—6

2v,
k13"

(3.18) for k12 —0. (3.20)

7A standard normalization in the bulk is
I'l-v)

BT (3.13)

Coo =

which makes the prefactor in the first line to be 1.
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collinear singularity k%;" kY ko 2vn

naive trial (3.8) \/ \/

..............................................................................................................................................

Polyakov block \/ \/

Figure 6. The naive trial (3.8) contains an undesired collinear singularity, even though its non-
analytic property around k12 = 0 is consistent with the Polyakov ansatz. On the other hand,
both of the conformal block and the Polyakov block are free from the collinear singularity. These
two are distinguished by the non-analyticity around ki3 = 0: the conformal block contains the
associated with the shadow operator, whereas the Polyakov block does not.

Un

non-analyticity k1_22

This non-analyticity is not the one required by the factorization ansatz Disc SW,(LS) x k:fg”,

but rather the one associated to the shadow operator o k2" [55-59] (the shadow of O,
has a scaling dimension 3 — A,,, which corresponds to a sign flip v, = —v,). Therefore, the
ordinary conformal block does not satisfy the Polyakov ansatz. In this way, the absence of
the non-analyticity associated with the shadow makes the Polyakov block different from the
ordinary conformal block. See also figure 6 for summary of the argument in this subsection.

3.3 Polyakov blocks for an intermediate identity operator

Finally, let us consider the intermediate identity operator. The two-point function of the
identity operator is 1 in position space, so that the momentum space two-point function is

(1(k) 1(=k)) = (27)36O) (k) . (3.21)

Here and in what follows, we denote the Fourier transform of the identity operator 1(x)
by 1(k), even though it is simply 1(k) = (27)36®) (k). Three-point functions involving the
identity operator are also given by

(O1(k1)Oa(k2) 1(ks)) = (2m)3%6®) (ks)Co,0,k7" = (2m)%6) (k3) (01 (k1)O2(k2)) . (3.22)

where note that Cp,0, may have a nonzero value only when O; and Oy have the same
scaling dimension. In the diagonal basis, Cp,0, vanishes unless they are identical. Three-
point functions have a delta function type non-analyticity in kg and factorize as

(O1(k1)O2(k2) 1(k3))" = Tizia(k1, kai k3)(L(ks) 1(—ks))". (3.23)

Here we introduced the cubic vertex T'24q (“id” represents that the third operator is the
identity operator) as

Tissa(k1, kas k3) = Co,0,k1"" (3.24)
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which is analytic in k3. The criteria in section 3.1 then determine the s-channel Polyakov
block T/Vigis) with the intermediate identity operator as

Wi(ds) = Tho;a(k1, ko; —k12)(1(k12) 1(—k12)) Tsasa(ks, ka; —ksa) . (3.25)

Here it is worth mentioning that the Polyakov block for the intermediate identity
operator is nothing but the disconnected part of four-point functions:

W) = (27)26®) (k12) (01 (k1) Oz (Kz2))' (O3(k3) Oa (ka)) (3.26)

More explicitly, the Polyakov blocks with the intermediate identity operator reproduce the
disconnected four-point functions as

(O1(k1)O2(k2)O3(k3)O4(ka))'|disconnected
= (2m)%6) (k12)(O1 (k1) Oa(k2))' (O3(k3)Oa(ka))’ + 2 terms
=W + Wy + gt (3.27)

On the other hand, the connected correlators may be expanded as

(01 (k1)O2(k2) 05 (k3)Oa(ka)) comnectea = 3 (W + WO+ W) | (3.28)
n#id

where the summation is over primary operators other than the identity operator.

To contrast this property with the ordinary conformal block, let us consider the leading
order of the so-called large N CFT, whose four-point functions contain only the discon-
nected pieces as

(O1(k1)Oo(k2)O3(k3)O4(k4))
= (21)303) (k12) (01 (k1) Oa(k2)) (O3(k3)O4(ks)) + 2 terms . (3.29)

This four-point function can be expanded in, e.g., the s-channel conformal blocks as

(O1(k1)O2(k2)O3(k3)O4(ka))’
=> (O1(k1)O2(k2)On(—k12)) (On(k12)O3(k3)O4(k4))’
- (

(3.30)

where the intermediate operator O, runs over the double trace operators schematically
of the form ~ O0"0, in addition to the identity operator. Notice that the double trace
operators originate from the decomposition of the t- and u-channel parts in (3.29). On the
other hand, in the crossing symmetric basis, we can expand the four-point functions as

(O1 (K1) 02 (k2)O3(ks)O4(ka)) = WS + W 4+ wl (3.31)

1
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Essentially because we are introducing the Polyakov blocks for all the channels, only the
identity operator shows up as the intermediate operator.®

To summarize, in the crossing symmetric basis, the disconnected and connected four-
point functions are manifestly separated into the Polyakov blocks for the identity and
non-identity operators. This property will be a big advantage for the study of large N
CFTs in particular. In large N CFTs, the connected and disconnected correlators start
at different orders in the 1/N expansion. As a result, in the ordinary conformal block
expansion, the connected correlators are scrambled by the subleading corrections to the
disconnected correlators. We expect that our new basis provides a complementary approach
to large N CFTs, which are holographically dual to weakly coupled bulk theories [60].

4 Extension to the case with an intermediate spinning operator

In this section we extend the construction of the crossing symmetric basis to the case with
an intermediate spinning operator. The basic idea is the same as the intermediate scalar
case, but there appears some technical complication due to the spin structure. To handle
the spin structure, it is convenient to employ what we call the helicity basis, which is
analogous to the helicity basis of massless particles. In section 4.1 we first summarize the
basic properties of two-point functions in momentum space and introduce the helicity basis.
In section 4.2 we provide a useful expression for three-point functions of two scalars and
one tensor in the helicity basis. We then discuss their analytic properties and construct the
crossing symmetric basis with an intermediate spinning operator in section 4.3. Technical
details of this section are collected in appendices A and B.

4.1 Two-point functions and helicity basis

A standard technique to handle symmetric traceless tensors in CFT is to contract all vector
indices of the tensor operators with a null vector € called the polarization vector [61, 62].”
More explicitly, we introduce a shorthand notation [18],

.0 =" Oy ps. s s (4.1)

80ne might wonder why there are no contributions from the double trace operators in the crossing
symmetric expansion of the large N CFT. Here we briefly sketch how to see it from an explicit calculation
(more details will be presented elsewhere [60]). In general, the double trace operator Oq4.s. ~ O9™O has a
scaling dimension 2A + n + «, where A is the dimension of O and -~ is the anomalous dimension. In the
large N CFT, the anomalous dimension «y vanishes just like free field theories. A careful evaluation of the
triple- K integral, the Polyakov block, and the ordinary conformal block then shows that

(O(k1)O(k2)Ouv.(ks))’ = Co00,, 0G"), W) =Céoo,, 0,
<O1(k1)02(k2)0d.t.(—k12)>/<0d-t~(k12)03(k3)04(k4)>/
(Od.t.(k12)O4a.s.(—k12))’

= Cd00,, 0(1"), (3.32)

where we used the normalization factors C' of position space and set Co w1.0a. = O(1) for simplicity.
Also, eq. (3.29) implies that CN’oood_tA = O(1). Hence, in the large N CFT, i.e., in the limit v — 0, the
contributions from double trace operators vanish in the crossing symmetric expansion, whereas they do not
in the conformal block expansion.

9We use the bold and ordinary fonts for vectors and their components, e.g., € and €“. Here p is the
vector index.
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where s is the spin of the operator O. In momentum space, two-point functions of primary
operators with general spins are given by [18] (see also appendix A.1 for the derivation)

e &s o I 2v _(ﬁk)(ék) ° (v—s,—1/2) o kQ(eé)
(. 0(k)&.0(—k)) = Cook < e >Ps <1 (e.k)(é.k))’ (4.2)

where A is the scaling dimension of O, two null vectors € and € are the polarization

)

vectors, and P,E“’ﬁ is the Jacobi polynomial. See appendix D.1 for the definition of the
Jacobi polynomial and formulae used in this paper. Note that the corresponding two-point

functions in position space take the form,

[(6%){[}%2 — 2(6.%12)(€.$12)]8
(23,)AFs ’

(e.0(21)&.O(@2)) = Coo (4.3)
where the normalization factor 500 in position space is related to the momentum space
one Cpo by

22V—87r—3/2w000 _ (4.4)

Coo = sl (—v)

More details are in appendix A.1, but the above is all what we need in the main text.
When we work in momentum space, it is convenient to introduce what we call the

helicity basis. Let us parameterize the polarization null vectors as'®

€ = (cos,sinep,i), €= (cosv), —siny)’, —i), (4.5)

where we set k = (0,0, k) without loss of generality by using the rotational invariance of
the correlator. Angles ¢ and v’ represent rotation angles around the momenta k and —k,
respectively. The e-dependent factors in two-point functions are then reduced to the form,

k)(e.k k%(e.€
ek /ige o1 (e.k()e(ée.l:) = —oost +4), o)
so that the correlator (4.2) may be reformulated as
(e.0(k)&*.0(—k)) = Coo (k*)" (=) P72 (—cos(yp + ') . (4.7)

As we show in appendix A.2, we may rewrite it as [18, 63]
S .
(€.0(k)E.0(=k)) = Coo (K*)" Y as(m) ™), (4.8)
m=—s
where m is identified with the rotation charge around the momentum of each operator, so
that it is analogous to the helicity of massless particles. Based on this analogy, we call m
the helicity in the following. The coefficients as,(m) are defined by

T(s+1/2)T(s — v+ 1/2)0(m + v + 1/2)

V(s —m)(s + m) T(v + 1/2)0(m — v + 1/2)’ (4.9)

as,(m) =

0ur definition of ¢ is different from the one in [18] by a sign factor: ¥fe.e = —¥inere- Our definition of
Yhere is associated with the rotation around —k, whereas 1{} ... is associated with the rotation around k.
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I'(z+n)
I'(z)

Note in particular that as,(m) = as,(—m). A detailed derivation of these results is

where (2), = is the shifted factorial (also known as the Pochhammer symbol).

provided in appendix A.
Let us now identify each m component in the summation (4.8) with the contribution
from the helicity m operator. For this purpose, we define the helicity m operator as

27 d ) 27 d / ) ,
Onn(k) = /O %e‘mwes.O(k), O (—k) = /O %e—lmw e.0(k), (4.10)

where the polarization vector € is defined through eq. (4.5) upon an appropriate rotation.
In this basis, the two-point function takes a simple form,

(Om (k)0 (—k)) = 0 Coo as,(m) (k)" . (4.11)
Notice in particular that the helicity basis provides a diagonal basis for spinning operators.

4.2 Three-point functions

We now proceed to three-point functions of two scalars and one symmetric traceless tensor.
In position space, they are given by [41]

[‘7%3(6'5813) - x%g((ﬁ.wgg)]s
)
(2, BBz t) (2,1 FBraats) (73§ Baur)

<01($1)02(ZB2)68.03($3)> = 6123 (4.12)
where O; (i = 1,2) are primary scalars of dimensions A;, and O3 is a spin s primary
symmetric traceless tensor of dimension As. The momentum space correlators can be
obtained either by Fourier transformations or by explicitly solving the conformal Ward-
Takahashi identities in momentum space. In appendix B, we provide detailed derivations
of them in both methods. Below, we summarize the results there.

Spin 1. Before stating general results, it is instructive to elaborate the structure of three-
point functions in the spin 1 and spin 2 cases. Since the denominator of eq. (4.12) takes
a similar form to the scalar three-point functions, the three-point functions in momentum
space will be expressed in terms of triple-K type integrals. The polarization-dependent
factor in the numerator will give derivatives in momenta. Indeed, for s = 1, we find

<01 (kl)OQ(kQ)E.Og(k3)>/

o0
x |e.(ky — ko) + €.(ky + kz)A@?)ljSJ /0 gzsm(zﬁ; 2)By, (kg 2)Byy (ks 2),  (4.13)
where the last factor is a triple- K type integral. Notice that its integrand has an additional
factor z compared with scalar three-point functions. On the other hand, the prefactor
inside the square brackets carries information of the polarization vector €. As expected,
this factor contains derivatives in the momenta k;, which are packaged into a differential
operator D193 defined by

K2 — I3
k3

Doz = (k10k, + koOky, — Ar +5+6) — [(klakl — Ay) — (k2Ok, — A2)|, (4.14)
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where the subscripts 123 denote the labels of the operators O;. Note that when acting
the operator 193 on the triple-K integral, we regard ki, ko and k3 as three independent
variables. More explicitly, Ok, k3 = Ok,k3 = 0 for example. Notice also that ©123 has an
odd parity, D123 — —®193, under the exchange 1 <> 2.

Spin 2. Similarly, the spin 2 result is given by
(O1(K1)O2(K2)e*.03(k3))"

AstD (Az 4+ D1923)(Az — 2+ Di93)
) Az + Do 9 3 123
o [(e.k2) + (e.k2)(€.k3) A + (e.k3) 4A3(A3 —1)
X / §Z2Bm(k51§z)81/2(k‘2;Z)BV3(k3;Z) ’ (4‘15)
0

where the integrand of the triple-K type integral is accompanied by a factor z2. The

prefactor inside the square brackets is now a second order polynomial of the differential
operator ®123. Here one might wonder that k; and ks are not symmetric in the expres-
sion (4.15). However, it is easy to find that eq. (4.15) can be reformulated as

(01 (k1)O2(k2)e?.Os(ks))’

An— D (Ag — D193)(Ag — 2 — D193)
x [(e.kl) + (e.k1)(e.k3) A, + (e.k3) 4A3(A5 —1)
X / gZQBm (k13 2) By, (k25 2) Bug (k33 2) - (4.16)
0

Since D193 has an odd parity under the exchange 1 «» 2, it turns out that eq. (4.15) and
equivalently eq. (4.16) are consistent with the exchange symmetry of the two scalars.

General spin. Three-point functions with a general spin s accommodate similar struc-
tures as s = 1,2 mentioned above. In appendix B.2, we derive a general expression,

<01(k1)02<k2)68.03(k3>>, = 0123 Z n'(ssin)‘ (G.kg)s_n (6.’(53)” (4.17)
L !

Az+s+Dio3 o0
( 2 n)n dz |
By TFs—n)y Jy o7 Drnlk1i2)Bu(hai 2)Bus (ks 2),

where the triple-K type integral has an additional z° factor. Also, the prefactor is an s-th
order polynomial in ®193. Our normalization in momentum space is related to the position

Space one as

L(v)I(v2)I(v3)

Ciaz = C1232'°m%i* (A3 — 1)SF(A1223+5)F(A2321+5)F(A3122+S)F(At+2573) : (4.18)
Just as we did in the spin 2 case, we may rewrite it as
s / s - s! s—n n
(O1(k1)O2(k2)e®.03(k3)) = (—) Cmsnz_%n!(sn)! (e.k1)” " (e.k3) (4.19)

(A3+sf©123 _
2

n)n ®dz
x (A3—1—|—s—n) 0 ?Z BVl(kl;Z)BVQ(k%Z)BVS(k?);z)7
n
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which is consistent with the exchange symmetry of the two scalars. In particular we notice
that three-point functions vanish when two scalars are identical and the tensor Os has an
odd spin, as is implied also by the position space result (4.12).

Three-point functions in helicity basis. Finally, let us introduce three-point func-
tions in the helicity basis. Without loss of generality, we set the third momentum ks and
the polarization vector € as

ks =(0,0,k3), €= (cost,sint,i). (4.20)
It is convenient to parametrize the momentum ks as
ko = ko(cos xsin @, sin x sin 6, cosf) . (4.21)
The polarization-dependent factor is then written as
€.ky = ko (cos(yp — x)sinf +icosf) , e.ks=iks. (4.22)
Therefore, three-point functions involving the helicity m tensor, O3, , are (see also figure 1)
(O1(k1)O2(k2) 03, (k3))'

= /027r &y e~ (01(k1)O2(k2)e®.03(k3))’

2T
* dz

- A123m(k1,k2,k3;@123)/ ?zsl’)’l,l(kl;z)B,,2(k2;z)By3(k3;z). (4.23)
0

Here we introduced a differential operator Ajes  for —s < m < s as (see appendix C for
derivation)

Ai2s,, (K1, k2,k3;9123) (4.24)

s—|m| (A3+s+9123 _

2 ”)n
(A3—1+s—n)n ’

s~ Imlg! - s—|m|)! ~
:01232|m|\m]!(s_‘m|)! imx 7;) n‘(i—]‘mﬁn)'k; "Py_p, || (cosO) k3
where ﬁg,|m|<COS 0) is proportional to the associated Legendre function and normalized as
eq. (C.8). In the next subsection, we clarify analytic properties of three-point functions
involving one tensor based on the expression (4.23). As the appearance of triple-K type
integrals implies, we find that the argument goes quite similar to the scalar case discussed
in the previous section.

4.3 Construction of crossing symmetric basis

We proceed to discussing analytic properties of three-point functions (4.23) and con-
structing the crossing symmetric basis. First, according to the parametrizations (4.20)
and (4.21), the functions kg_”ﬁs_n7|m|(cos ) is a polynomial in ko. Next, the differen-
tial operator D193 enters eq. (4.24) in the combination k3®123, which is analytic because
(k¥ — k3)/ks = — (k1 — ko) .ks/ks = —k1, + ko, (see eq. (4.14)). We then conclude that the
operator Aja3, (K1, ko, k3;D123) is a polynomial in the momenta k; and the Euler opera-
tors k;O,. Since the Euler operator does not introduce new non-analyticity, non-analytic

properties of three-point functions are essentially captured by the triple- K integral.

~19 —



Cubic vertex. Let us then determine the cubic vertex. Just as the scalar three-point
function case, our starting point is the relation,

) *dz
DlSCkg/ e By, (k15 2) By, (k2; 2) By, (k3; 2)
0

= —F(l_y?’)/oo %zsb’ (k1; 2) By, (ka; 2) 232k 1,,, (ksz) x Disc (k3)” . (4.25)
v 0 A v\~ vo \ V2 3 v3\hv3 k2 \3 . .
Notice again that the I, part of the bulk-to-boundary propagator is responsible for the
non-analytic properties around k3 = 0, whereas the /_,, part is for removing the singularity
in the collinear limit k1 + k2 = k3. As we mentioned, the differential operator A;23,, does
not produce any new non-analyticity, so that the non-analytic parts of three-point functions
are obtained by acting Aj23,, on the r.h.s. of eq. (4.25). Moreover, the differential operator
®193 does not contain derivatives in k3. Therefore, the operator Ajs3, does not change
non-analytic properties around k3 = 0. All in all, we arrive at the factorization relation,

Discyz (O1(k1)O2(k2)03,, (k3))" = Ti2;,, (k1. ki k3)Discz (03, (—k3)Os,, (k3))" . (4.26)
where the cubic vertex Tis.3,, is given by

Th2:3,, (k1,k2; k3)

_ I'(1-vs) Auzs,, (b1, ko, k3; D123) / dz
2v3 00303 Qs g (m) 0 24

— By, (k1;2) By, (ko; 2) 2% 2kg 51, (ks2) . (4.27)

Notice that the cubic vertex is analytic at k3 = 0, just as the scalar three-point case. We
can also show that the cubic vertex satisfies the conformal WT identities for O, Oy and
the shadow of O3 by applying the argument given in appendix B.3.

Crossing symmetric basis. Finally, let us construct the crossing symmetric basis. In
the helicity basis, two-point functions are diagonal with respect to the spin and helicity, so
that the requirement (3.7) for the s-channel Polyakov block is simply carried over as

DiscsW,(Liz
= T2, (k1, k2; —k12) Discs(Oy,, (k12)On,, (—k12)) Tsa:n,, (K3, ka; k12) (4.28)

where Wéiz is the Polyakov block with an intermediate operator O,,, with spin s, helicity
m, and scaling dimension A,. Ti2.,,, and T34, are the cubic vertices we have just
introduced above. As we mentioned in section 3.1, we also require that the s-channel block
has no other non-analyticity. Since Aj2,,, and As4y,,, in the cubic vertices do not change
the non-analytic properties, we may apply the argument in section 3.2 in a straightforward
manner to conclude

W _ Aion,, (K1, k2, —k12; D120) Asan,, (k3, k4, k12; D34n)

m As,vy, (m)

dz dz
/ L[ 22 g 2By, (i 216, (k1o 21, 29)Bug (ks 22)Bog (Rt 22)

(4.29)
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where the second line is the Polyakov block for an intermediate scalar with an additional
factor z{z5 in the integrand. G,, (ki2; 21, 22) is the scalar bulk-to-bulk propagator defined
by eq. (3.15). On top of it, we have the helicity dependent differential operators A;s,,, and
Asun,, (see also figure 2). It is easy to see that eq. (4.29) enjoys the s-channel factorization
property (4.28) and does not have any other non-analyticities. The t- and u-channel
Polyakov blocks are also be defined in a similar fashion.

5 Conclusion

In this paper we explicitly constructed the crossing symmetric basis for conformal four-
point functions of primary scalars, following Polyakov’s analyticity based ansatz:

(O1(k1) O (k2) O3 (k) Oa (k) = 3~ (Wi + WLV W) (5.1)

By requiring consistent factorization in each channel, we showed that the Polyakov block
Wés) for an intermediate scalar is nothing but the Witten exchange diagram. The Polyakov
block for an intermediate spinning operator is given by eq. (4.29), as a natural extension of
the intermediate scalar case. As our construction demonstrated, momentum space provides
a natural language for this program, essentially because analytic structures are manifest in
momentum space. On the way to construction, we also found the new closed expressions
for momentum space three-point functions of two scalars and one tensor. Thanks to these
expressions, the Polyakov blocks for a spinning intermediate operator can be obtained by
simply acting the differential operator eq. (4.24) on the Witten exchange diagram for an
intermediate scalar, as depicted in figure 2. This is our main result.

As a concluding remark, we would like to present several promising future directions.
First, we have focused on three dimensional space in the present paper, for technical sim-
plicity. Even though there exist technical complications associated to spins and helicities,
it is conceptually straightforward to extend our argument to higher dimensions. We will
present this result in a forthcoming paper [45]. It will also be interesting to construct the
crossing symmetric basis for conformal correlators of (external) spinning operators such
as the energy-momentum tensor. These explicit forms of the crossing symmetric basis
will be useful to revisit and generalize Polyakov’s original bootstrap approach. Besides,
as we discussed in section 3.3, the connected and disconnected correlators are manifestly
separated in our basis, in contrast to the ordinary conformal block. We believe that this
is a big advantage when discussing the large N CFTs, which are holographically dual to
weakly coupled bulk theories. We will use this property to revisit positivity bounds on
effective interactions in the bulk [60]. Another interesting direction will be application
to cosmology. Recent progress in cosmology has shown that (non-)analytic structures of
higher-point correlators are useful to probe new particles coupled to the inflaton sector,
as is dubbed the “cosmological collider physics” program [18, 64—66]. Indeed, some of the
momentum space techniques used in this paper were developed in the context of cosmic
inflation. It will be useful to introduce a basis for inflationary correlators by extending our
construction. We hope to revisit these issues in near future.
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Note added. While this paper was being finalized, ref. [67] appeared on arXiv. There,
what they called the weight shifting operator was introduced in position space, whose action
on scalar Witten exchange diagrams gives those involving spinning fields (see also [68, 69]
for other differential operators in position space with a similar property). This seems similar
to the property of our differential operator A defined in momentum space as eq. (4.23),
even though these two operators have different origins and their relation is not clear. It
would be interesting to explore a possible connection thereof.
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A Two-point functions with spins in momentum space

In this and the next appendices, we derive two- and three-point functions with spins in
momentum space. For generality, we work in general dimension d = 2h in these appendices
unless otherwise stated, though we set d = 3 in the main part.

A.1 Two-point functions by Fourier transformation

Let us compute the two-point function (¢*.0(k)é*.O(—k))" in this appendix. This has been
computed in [63] by Fourier transformation in general dimensions and in [18] by solving
the Ward-Takahashi (WT) identities in three dimension. Here we review the derivation
by Fourier transformation, which enables us to fix the relative overall constant between
position-space and momentum-space correlators.

Our convention for Fourier transformation is

O(k) = / iy e~ O(g) (A1)

where O(x) is the position space operator and O(k) is the momentum space one.
Combining this with the two-point function in position space (4.3) gives

(5.0(k)&.0(—k))

— Coo Z (Z) 22}(1”12(;”&)_ %) (e.e) <e.aak>a (é.;k:)a B2y (A2)

a=0
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Here we applied the binomial expansion after replacing position coordinates in the numer-
ator of eq. (4.3) by momentum derivatives, and then used the Fourier transformation of
(22)~% given by the formula,

, T(h —
/ddac otk (1,2)704 — 92(h—a) h (F(a)a) (k2)a7h ) (A3)
We also defined ¥ = A — h. The momentum derivatives can be rewritten as (¢ = —v — a)

(<36) (=3%) o (om) oo o]
“ L (=2)3tM(al)2 D (c+at+m) (€.8) ™ (e.k)™(e.k)™

- (m!)?(a=m)!T(c) (k2)cFatm , (A4)

m=0

S a S S
where we used €.€ = €.€ = 0. Applying this and the resummation Z Z = Z Z to
a=0m=0 m=0 a=m

eq. (A.2) gives
(e5.0(k)&E.0O(—k))

o~ Lo (8 27D (m—v)D(h4v4s—m—1), _ . . [(ek)(ek)]"
=Coo (k2) Z <m> F(h+u—1)F(h+y+s) (6'6) |: k2 :| ) (A5)

m=0
where we used the following summation formula

- al (—1)° _ (-)"™m!T(h+v+s—m—1)
2 (s—a)lla—m!T(w+h+a) (s—m)T(h+v—1)D(h+v+s) (A.6)

a=m

Changing the summation index m — s — m, using the definition of the Jacobi polyno-
mial (D.1), and applying the formula I'(—v)['(v + 1) = —n/sin(nv), we arrive at

e.k)(e. s 2(e.€
(e2.0(k)&.0(—k)) = Coo (K*)” (—W) plv—sh=2) (1 - (Ekk()(el:» . (A

where the overall constant Cpp is given by

sIT(—v)
I'(v+s+h)

This result for h = 3/2 gives eq. (4.2) in the main text.

Coo = 252w ph 6’00 . (A.S)

A.2 Helicity basis

The expression (4.2) is compact, but to understand the helicity dependence, it is more
useful to rewrite it in such a form that the angles among momenta and helicity vectors are
manifest [18, 63]. In this subsection we concentrate only on the three-dimensional case.
A general dimensional version will be presented in a forthcoming paper [45].

To simplify the analysis, we set the null helicity vectors to (4.5) by using the O(3)-
rotational invariance. The two-point function (4.2) then becomes

Coo(k*)" (=) P =712 (= cos(y) +¢)) . (A.9)
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We can easily see that the Jacobi polynomial is defined on the unit circle and only depends
on the angle 1) +1. Furthermore, P*~%~1/2) (t) is a polynomial of degree s, and any power
cos™ (1) + ') can be expanded by {cosn(¢ + ')} with n = 0,1,--- ,m. Therefore, the
Jacobi polynomial Ps(yfs’fl/m(— cos(1) + ¢')) can be expanded as

Pg(u—s,—l/?)(_ cos(v + ') = ag + 2 Z am cosm (v + '), (A.10)
m=1

where the coefficients a, are given by

T df (v—s,~1/2)
Oy = —(cosm@)P;" ™% (—cos @)
0 2

I'(s+1/2)T'(s—v+1/2)I'(m+v+1/2)
V(s —m)(s+m)!IT(v+1/2)T(m —v+1/2)°

— () (A.11)

The integration (A.11) was carried out using the integration formula (D.4) after rewriting
cos m# as a Chebyshev polynomial defined in eq. (D.5). Substituting these results into the
two-point function (A.9), we find

(e2.0(k)e*O(—k)) = Coo (k)" Z as,, (m)emWitv) (A.12)

m=—s

where we introduced as,(m) = (—)°ay, for m > 0 and a,,(m) = a5, (—m) for m < 0.

B Three-point functions of two scalars and one tensor

In this appendix we derive two types of closed forms for three-point functions involving
two scalars and one tensor. The first expression is the one we used in the main text:'!

/ : s! s—n
g = — \E k3)" B.1
(O1(k1)O2(k2)€®.O3(ks3)) 0123;:()”!(8_”)! (€.k2)’ " (e.k3) (B.1)
(A3+S+©123 _n) 1
2 n S . . .
. (Az—14+s—n), /0 AN By, (ky:2) By, (k3 2)Buy (k3 2),

where ®193 is a differential operator in k;’s, defined by eq. (B.29). As we discussed in
section 4, this expression manifests analytic properties of three-point functions, so that it
is useful for our construction of the crossing symmetric basis. We also derive the other form,

(O1(k1)O2(k2)e®.O3(k3))

mi mo
= c123 Z Z Z d123(q1, g2, m1,ma) (—)™

m1+mo=s q1=0 g2=0

x (€k1)™ D (€ka)™ ? (—ek3) " 2T (1 +q, o+ @2, V3 — 1 — q2),  (B.2)

1 As we mentioned in the previous section, we work in general dimension d = 2h in this section.

— 24 —



where cj93 and dj93 are numerical coefficients given by eq. (B.51) and eq. (B.52), respec-
tively, and Zs is a triple-K type integral,

* dz

(a1, a9, g) = /O 2 B (k4 2) B (o 2) B (ks =) (B.3)

As we discuss in appendix B.4, this expression naturally arises when we perform Fourier
transformation of the position space correlators. Even though the derivation itself is a bit
technical, the two closed forms are a part of the main results of this paper. The rest of
this appendix goes along the line of the derivation of the first expression (B.1).

Following the argument in appendix C of [18], we begin with a general ansatz,'?

(O1(k1)Oa(ka)e*.O3(ks)) = k5™ 247N " "5y (k1, k2) , (B.4)

n=0

where Ay = A1 + Ay + Az and we introduced
vy=€ky —€eky, d=€ki+eks, ri=— (i=12). (B.5)

Notice that we already used the dilatation symmetry to fix the exponent of k3. Also it is
easy to show that eq. (B.4) provides the most general ansatz consistent with the dilatation
symmetry and the polarization vector dependence. Our task is now to determine the
functions a,,(k1, k2). In appendix B.1, we first derive a recursion relation for a,, by using a
subset of special conformal Ward-Takahashi (WT) identities. We then solve the recursion
relation explicitly in appendix B.2. The initial condition for this program will be given
in appendix B.3. The relation between the momentum space correlator and the position
space one is discussed in appendix B.4 by performing Fourier transformation.

B.1 Recursion relations for a,,

In momentum space, the special conformal WT identity is stated as
b.K (O1(k1)O2(k2)e®.03(k3)) =0, (B.6)

where an explicit form of the special conformal generator K is given by

3
bK=> [b.ai( —2(A; —d+1) + 2k;.0;) — (b-ki)aﬂ

=1

+ 2[6.33(17.35) - (b.e)(ag.ae)] . (B.7)

For later convenience, we contracted the generator with an arbitrary vector b. Also, we
introduced a shorthand notation,

0 0

61‘:671%, 852&

(B.8)

aglhere) _ a(there).

s—n

20ur definition of ay, is slightly different from the one in [18]:
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A useful observation is that the second line of eq. (B.7) trivially acts on ks-independent
functions. We therefore write the three-point functions as functions of ki and ko. In
particular, k3 should be understood as k2 = (k1 + k2)?. Another observation is that the
last term in the first line of eq. (B.7) vanishes when b.k; = b.k2 = 0. For this choice of
b (we also assume €.b # 0 for later convenience), the special conformal WT identity is
simply [18]
2
[b.{)i( oA —d+ 1)+ zki.ai)} (01(k1)O2(k2)e*.O5(k3)) =0.  (B.9)
=1

(2

Notice that this is a subset of the special conformal WT identity, hence there still exist two
independent conditions associated with b which does not satisfy b.k; = b.ko = 0. These
two conditions may be used to constrain ag as we discuss in appendix B.3.

We then apply the condition (B.9) to the ansatz (B.4). By reorganizing the differential
operator in terms of b.01 &+ b.92, eq. (B.9) can be rephrased as

[(Ag — 2)(1).61 + b82) + (b61 — bag)( — (Al — AQ) +ki1.01 — kz.ag)]

% [kgAt—Qd—s sz—nénan(ﬁl, ,{2) =0, (B.lO)

n=0

where we used the fact that three-point functions have a scaling dimension A; — 2d (after
dropping the delta function for momentum conservation). The next step is to rewrite the
momentum derivatives as those in 7, d, k1, k2. For this, we use the following relations:

b.0;f(ky, ko, ks) =0 (i=1,2),

(b.81 — b.82)y = 2(e.b), (b.8] — b.82)0 =0,
(b.81 + b.85)y =0, (b.81 + b.8)0 = 2(e.b),
(k1.81 — kg.ag)’}/ = (5, (k1.81 — k2.62)5 =7,

(k1.01 — k9.09)k3 = (k7 — k3)k3,
(k1.81 — kQ.ag)/ﬂ = —(I’i% — K}% — 1)%1 s
(k1.81 — kz.ag)HQ = —( % — I{% + 1)%2 . (B.ll)

An important point is that the operator b.9; trivially acts on a, since this is a function of
ki1, ko, and k3. We then arrive at

0= [(Ag — 1)05 + 602 + 0,05 — aﬂ)} > T (1, ) (B.12)

n=0

Here we used €.b # 0 and introduced a differential operator,
D = (k? — K3) (k10x, + K20k, — A+ 5+ 2d) — (/ﬁl&ﬂ — K20k, — A1 + A2> , (B.13)

which contains derivatives in k1 and ko only. Also note that we regard ~, §, k1 and ko as
independent variables in the expressions (B.12)-(B.13). For example, we have 0,7 = 0 and
[D,~] = 0, which let us solve the recursion relation as we discuss in the next subsection.
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Finally, by rewriting eq. (B.12) into the form,

S

Z { —(s—n)y* " 1" D

n=0

+n(Az—1+s5—n)y" 0"+ (s —n)(s—n— 1)78_"_2(5"“} a, =0, (B.14)

we may pick up the desired recursion relation for a,, from the O(6™) terms as

s—n
n+1)(Az3—2+s—n)

(pi1 = ( (Dan —(s—n+ 1)an,1) , (B.15)

where we define a_; = 0 for convenience. Also note that this recursion relation is consistent
with as41 = 0. Once a concrete form of ag is given, we may compute a,, at least recursively.
We can easily see that a, is schematically of the form,
[n/2]
ap, ~ Z D" qq, (B.16)
k=0

up to numerical coefficients independent of momenta and polarization vectors. Substituting
this back into (B.4), we have

s [n/2]

(O1(k1)Oa(ka)e®.Os(ks)) = k57247563~ N " i p(7/8)" D" *Fay, (B.17)
n=0 k=0

where we wrote numerical coefficients as «, ;. Note that agg = 1 in particular.

B.2 A closed form of 3pt functions

It might seem difficult to find a closed form of «,, , but it is actually possible to find a
closed form of (B.17) by solving the special conformal WT identity (B.12). The special
conformal WT identity in terms of (B.17) reads

s [n/2]
[(Ag — 1) + 802 + 70,05 — aﬂ)} 535 anp(1/6)° "D Hag| =0, (B.18)
n=0 k=0
It is convenient to further rewrite it as
(Ag — 1)05 + 602 + 70,05 — aﬂ)} [5%7;(7/5)%} =0, (B.19)
where we introduced
s [n/2]
hp(2) =Y Y ez "D, (B.20)
n=0 k=0

Let us here recall that we regard =+, § and k; as independent variables, so that
[D,~] = [D, d] = 0, in the relation (B.19). Thanks to this property, we can think of hp(z) as
a function of z with a parameter D. Our problem is now equivalent to solving the equation,

0= [(Ag —1)05 + 602 + 40,05 — 0773} [58 hD(y/a)} , (B.21)

—97 —



for v and 0. By setting z = 7/ in the above, we can reduce it into
s(As—1) + ((s — Ag)z — D)3, + (1 — z2)a§}h9(z) ~0. (B.22)

Notice that the function hp(z), by construction (B.20), is a polynomial in z of order s.
We can therefore find its unique solution, which is a hypergeometric function,

Az—s+D 1—-z
2 T2 ’

hD(Z) 0.8 2F1 < — S, Ag - 1; (B.23)
This is indeed a polynomial of order s because the hypergeometric function has negative
integer —s in its first slot.'> The coefficient of proportionality may depend on D, but we
can fix it by requiring hp(z) = z° + ---, which follows from apo = 1 mentioned in the
previous subsection. We then arrive at

B s—n(A3—s+D )
ho(2) = nz_:ﬂ 2 (A(g e ;)_)n ( ) (z—1)" . (B.25)

By substituting this back into (B.17), we obtain

(O1(k1)O2(k2)e®.O3(k3))’
A3z—s+D

C2ds N s 8 L, (B )
:k?)At 2d 5225 n( )(7_5)7155 n s nao
oy n (Ag -1+ ’I”L)S_n

s

_ 1.At—2d—s 57' on " . o
— ;)”‘(S—nﬂ (eka)™" (ko) x5 (2w, (B26)

(A3+23+D o n)

where we performed a change n — s — n at the second equality.
Our final task is now to find the initial condition ag for the recursion relation. We
work on this problem in the next subsection and find

* dz

(—2)%ap = 0123/0 ﬁszyl(m; 2)By, (ke; 2)Bug(1; 2) , (B.27)

where the OPE coefficient Cio3 in momentum space is related to the position space one
as eq. (B.59). Also its normalization is chosen in such a way that the final expression is
simple. By substituting this explicit form into eq. (B.26) and rescaling the integration
variable in the triple-K integral as z — k3z, we conclude that

<01(k1)02(k2)68.03(k}3)>, = 0123 Z n'(ssln)‘ (6.’62)87” (E.k)g)n (B28)
r QL2 :

Az+s+Di123 00
( 2 n)n dZ s
X o p——— R By, (k1;2)By, (ka; 2) By, (ks; 2)

3 The concrete relation is

) (O n. (B.24)
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where we introduced the rescaled differential operator ®123 as'

K — 13

3] =
123 k%

(k10k, + k2, — A + 5+ 2d) — (klakl ko, — A+ Ag) . (B.29)

This is the first closed form (B.1). Here k1, k2 and k3 should be understood as independent
variables when Dj23 acts on the triple-K integral. More concretely, O, k3 = 0 (i = 1,2)
for example. Note also that the final form (B.28) depends on the space dimension d only
through the differential operator ®123 and the triple-K integral.

Before discussing the initial condition problem, let us take a quick look at the symmetry
under the exchange 1 <+ 2 of the two scalars. Since eq. (B.17) implies the invariance of
three-point functions under (4, D) — (—d, —D), we may reformulate eq. (B.26) as

(O1(k1)O2(k2)e®.O3(ks3))

/{,‘At_ﬁ_s - 9s—n S 5" 5s—n(A3_28_D+n)sfn B.30
S () G O . (B30

n=0

This yields another expression for three-point functions:

<01(’C1)02(k2)65.03(k3)>/ — (_)50123 Z n'<:ln)' (e.kl)s—n (6.’63)” (B.31)
—n !

(A3+52—®123 _n)

*© dz
(Ag—1+s—n) “/0 Sd+1”? By, (k1;2)Bu, (ka; 2) By (k3; 2) -

By comparing this expression with eq. (B.28), we see in particular that the three-point
function vanishes when two scalars are identical and the tensor has an odd spin s.

B.3 Initial condition ag

So far, we have used a subset of the special conformal WT identity (B.6) with b satisfying
b.k; = b.ks = 0. In this subsection, we determine the initial condition ag by solving the
residual W'T identities for b.k; # 0 and b.ko # 0. To simplify the calculation, we also set
b.e = 0 [18]. For later convenience, let us first modify the ansatz (B.4) as

(01(k1)Os(ka)e*.03(k3)) = S 7* 76" ap k1, b, ks) (B.32)

n=0

where we rescaled a, as a,(k1, ke, k3) = I<:3At_2d_5an(k1 /ks3, ka/ks). Also, it follows from
the dilatation WT identity that a,’s are (A; — 2d — s)-th order homogeneous polynomials.
The special conformal WT identity for b.k; # 0, b.ks # 0 and b.e = 0 is then given by

b.K > v 6" (k1 ko, ks) = 0, (B.33)
n=0

14YWe added the subscripts 123 (the labels of the operators O;) to the differential operator ® in order to
clarify the dependence on the momenta k; and the scaling dimensions A; (¢ = 1,2, 3), and the spin s of Os.
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where the generator K in (B.33) reads'®

2 9 5o 29 59 )

K=bk (- il
b bkl ( ,Cl(l/l) +/C3<I/3) =+ kg 8k3 k3 8k3 y

2 0 2 0
. - —_— - — B.34
+ b.ky ( ICQ(VQ) + K:g(l/;g) + s 8]{3586 s 8163587) , ( 3 )

with a differential operator,

2 2w,—-10

Also note that, similar to (B.12), we regard 7, d, k1, ko, k3 as independent variables. Picking
up d'-terms gives closed equations for g,

]Cl (1/1)50 = ICQ(VQ)ao = Kg(l/g)ag. (B36)

This is actually the same as the special conformal WT identity for scalar three-point
functions. Following the scalar three-point function case [47], let us take the ansatz,

ap /OOO %Z’s+2d7Atf1(klz)fg(kgz)fg(kgz), (B37)

z

where the proportionality constant is k;-independent. The integral (B.37) gives a
(At — 2d — s)-th order homogeneous polynomial in k;, so that it satisfies the dilatation WT
identity manifestly. The special conformal WT identity (B.36) may then be rephrased as

,CZ(I/Z)fl(kZZ) = z2fz(kzz) . (B.38)

Here we have fixed the normalization of the r.h.s. by rescaling of z, which may be absorbed
into the proportionality constant in eq. (B.37). Its general solution is given by

ﬂ@pnwpKM@+B%@ﬂ. (B.39)

Similarly to the argument at the end of section 2.3, the B component leads to undesired
singularities of the integral (B.37), hence we set B = 0. This choice means that f;(k;z) is
a bulk-to-boundary propagator multiplied by a factor z”, up to a normalization constant.
Therefore, ag can be written as

~ > dz
ao(k1, ko, k3) o / ﬁzsb’yl(/ﬁ;z)lgy2 (ko; 2) By, (ks; 2) (B.40)
0

and ag(k1, kK2) = ao(k1, k2, 1) by definition. Notice here that eq. (B.27) corresponds to the
choice of the proportionality constant (—2)~5Cas3.

15When deriving eq. (B.34), it is convenient to identify ks as ks = |ks|, rather than ks = |k1 + k2|.
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B.4 Three-point functions by Fourier transformation

Finally, let us discuss the relation between the momentum space correlator and the position
space one. The Fourier transformation of the position space correlator (4.12) is given by

(O1(k1)O2(k2)e®.O3(k3))

5 () ) ()

mi1+mo=s

/ dd dd —ikl.yl—ikg.y2
X y1a-y2 T T —
[(yl — y2) ]2(A123+s) [y%]2(A231+S 2m1)[

yg]%(A312+8—2m2) ’ (B.41)

where we replaced the position coordinates in the numerator of eq. (4.12) by momentum
derivatives, after the binomial expansion. The integral here is essentially the same as the
scalar three-point function, hence it gives a triple-K integral. A more precise relation is
given through a formula (see, e.g., [47] for derivation),

e—ik1.y1—ik2.y2
d%yd%ys
/ [(y1 — y2)?]%s[y3] [yf]

9d-+3h—2a; - 2h o gy B »
= gooihpe (ks
I'(a1)T(a2)I(a3)T(ar — h) /0 Z1=h 2131{ i i—ai=h( Z)}

where we defined a; = a1 + az + a3. Substituting (B.42) back into (B.41), we find the
following derivatives:

8 mi 8 m2 9] d 3 Vit
i=1

where we introduced ms = 0 for notational simplicity. Since the triple- K integral depends

, (B.42)
k3=|k1+k2|

(B.43)

)
k3=|k1+ka|

only on the magnitudes k; of the momenta k;, we can replace the derivatives in k; by those
in k;. More explicitly, for i = 1,2 we have

(i.aii)aﬂki):(e.ki) (i dk) 7k, (B.44)
(e.ai) FE1 + ko) = (—eks)? (k dk)

where each function f depends only on the magnitudes of the momenta. Also, we used

: (B.45)
kngklfktg

€.€ = 0. Combining them with the generalized Leibniz rule (i = 1,2), we have

(e. a?c) L (k) fa(r + K]

() [ (o) fz-uﬁ)] x [ (e ) fatlln + Rl

(B.46)
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Eq. (B.43) may then be reformulated as

m1+mao=s q1=0 q2=0
2

* dz s vit+qi V3—q1—
X /O ﬂ(_z) H {kz i KVi-i-qz'(kiz)} k33 “ qQKV3—Q1—CI2 (k3z) : (B‘47)
=1

Here and in the rest of this section, we use k3 and |k; + k2| interchangeably because there
are no more derivatives. Also we used a relation following from eq. (D.10),

10,, o
o (KK (k2)) = =2k Ky (k2), (B.48)

which induced the shift of the arguments in the triple- K integrals. By applying this result
to (B.43), we arrive at the second expression for momentum space correlators,

(O1(k1)O2(ka)e®.Os(k3))’

mi1  mao
= C193 d123(q1, g2, m1, ma) (—)™?
PSS )

mi1+mo=sqi =0 qg:O

X (€k1)™M 1 (€.ka)™ P (—eks) " 2T (i + 1, 2+ @2, V3 — 1 — q2),  (B.49)

where we wrote the triple- K integral in terms of the bulk-to-boundary propagator B, as

* dz
Ts(a1, ag, as) :/ ﬁszal(kl;Z)BOQ(ICQ;Z)BO%(]C?,;Z). (B.50)
0
We also introduced a new overall factor,
~ o [(v1)T(2)(v3)
— 1-s_d s/ _\s
c1o3 = C123 27 °m°( ) F(A1223+8)F(A2321+5)F(A3122+8)1“(At+28*d) ’ (B51)
and a numerical coefficient,
s! (V1>Q1 (VQ)@
d123(q1, g2, m1,ma) =
( ) qi!g2!(m1 — 1)/ (m2 — q2)! (V3 — @1 — 42) g1 +42
A A
y (231+8 _ ml) (132+8 _ m2) . (B.52)
2 - 2 o

Initial value ag. Let us now clarify the relation between the normalization factor Ctog
in momentum space and the position space OPE coefficient C123. For this purpose, let us
rewrite the closed form (B.49) into the form of the ansatz (B.4) as

(O1(k1)O2(k2)e®.O5(k3))

mi ma
=cigaks 2 YT YT dios(qr,q2,ma,my) (=)™ 270

mi1+mo=sq;=0qg2=0

><(V—i—é)mlfql(é—v)mr‘”5q1+q2Is(V1+CI1,V2+Q2,V3—Q1—CI2)k P (B.53)
i=Ki, k3=
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Comparing this with eq. (B.4), we find

a=2"cias > di23(0,0,m1,mg) Ty(v1, v, v3)| (B.54)
i fma=s ki=ki, ka=1

The normalization factor Cia3 in eq. (B.27) is therefore given by

Ciag = (=1)%cra3 Y di23(0,0,m1,mg). (B.55)

mi1+mo=s

More explicitly, we may use the formulae (B.24) and

Iy —a—p)
Iy —a)l(y=58)

to evaluate the summation in eq. (B.55) as!'®

Aogay — Aqe Aogay —
Z d123(070,m1,m2):<2318> 2F1<—3,1_ 132+s; 231 s;1>

2 F1 (o, B;7y;1) =

(B.56)

2 2 2
mi1+mo=s
= (A3 —1)s. (B.58)
We therefore conclude that
Ciaz = (—1)°(As — 1) c123
~ s d. [(v1)T(v2)(v3)
_ 1-s, d;s o
= C1232 °m%° (A3 1)5F(A1223+s)F(A2321+8)F(A3122+8)F(At-zs—d) ’ (B.59)

C Explicit form of A;s3

In this appendix we derive the analytic form (4.23)—(4.24) of the three-point function with
helicity m tensor O3, . The central part of the computation is the integral,

2w d )
/0 % e (€.ky) " (e.k3)"™ . (C.1)

Under the parametrizations (4.20)—(4.21), it is given by

S—n n o dw —ima) : . s—n
(C.1) = (k2)* "™(iks) —e [cos(1) — x) sin @ + i cos 0]

0 2
2

—-n(; n_,—im d —im
= (k)" "(ik3)"e X/o %e v
) 2 di/)
= (ko)® " (iks)"e "X 5, oS |m|y - [cossin@ + icosO]°" (C.2)
0 s

[cosysinf + icos @] ™"

where we performed a change of the integration variable 1) — 1 + x at the second equality.

160ne might wonder that the exchange symmetry of two scalars is not manifest in the second expression.
However, we may also write

A3z — A Aq32 —
Z d123(0,07m1,m2)=<%8) 2F <—S71— 23;+S; 13; 5;1), (B.57)

mi1+mo=s

instead of the first equality in eq. (B.58). Both the two expressions indeed give the same result at the end.
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To perform the integral in the last line of eq. (C.2), let us first set ¢ = cos® and use
the Chebyshev polynomial (D.5). Applying the Rodrigues formula (D.2) to the Chebyshev

polynomial, we can rewrite the integral as

_1)Im| 1 [m| 1
2|m(|(11/)2)||77/—1dt [im(l —t2>m_2] +(tsinf +icosf)*". (C3)

Integrating this by parts |m| times, we find

B sinl™l ¢ (s —n)! ! 2\ m=2 (i Oi cos 0)° 1Ml
(C.3) = 2|m|(1/2)|m|ﬂ(s_n_‘mD!/_ldt(l £2)m =4 (¢sin +icos ) (4

Note that it vanishes when s —n — |m| < 0. To evaluate the integral in the above, we use
the following integral form of the Gegenbauer polynomial [70]:!”

PPV (cosh)  vol(SP-3) [t 5 D4 o
CPAD(1) T vol(5P72) /1 dt (1 =) 7 (cos —itsin0)", (C.5)

where C\ is the Gegenbauer polynomial (D.6) and vol(S”) is the volume of the D-
dimensional unit sphere

D o
vol(S*) = F(oE (C.6)
It then follows from egs. (C.4) and (C.5) that
s—n—Iml(g _ )1 <
(C.3) = 2|mZ| = f‘jm';‘!)"m “PS_n,‘m‘(cose). (C.7)
Here we introduced ﬁg,|m|(COS ) defined by
Pyi(cosd) = sin™l ¢ il (c0s6) (C.8
2,jm| (cos 0) 1= sin Cé‘f‘ﬂ:‘lm(l) , .8)

which is proportional to the associated Legendre function [70].
We therefore conclude that

on s—|m)| _
dy b _ () s—n _ EPPN
S0 e (e ) " (eks)" = kg "kpe B, 6). (C.9
/0 271'6 (6 2) (6 3) 9|m| < ‘ | ) 2 3€ s n,\m\(COS ) ( )

It is then straightforward to derive eqs. (4.23)—(4.24) from this expression.

17 A derivation of the integral formula will be provided also in our forthcoming paper [45].
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D Special functions

We summarize the definition and properties of special functions used in this paper.

D.1 Jacobi polynomials

The Jacobi polynomial is defined as

v Tt~ (n\Tatfentmel) (1-1\"
qu ﬁ)(t)_n!r(a+ﬁ+n+1)z<m> F(a+m+1) ( 5 ) . (D.l)

m=0
In general, the following Rodrigues’ formula plays a central role:

PB4y = (=1 (1—8)"(1+ t)’ﬂ%; {(1 —)* (1 + t)‘”"} : (D.2)

The Jacobi polynomials are orthogonal in the sense that

1
/ dt (1 —t)*(1 + )P PleP) (1) PP (1)
-1

22t Dla+n+ D)I(B+n+1)
S a+f+2n+1 all(a+B+n+1)

Sam - (D.3)

The orthogonality for m # n follows from the Rodrigues’ formula (D.2). The normalization
factor can be found as a special case o = 7 of the integral formula (7.391.10, p.807, [71])

n

/1 dt (1—1)*(1+1)P PLB) (1) PO (¢)
-1

29 T(y4B+n+14m)T(y—at+n—m)(a+m+1)T(8+n+1) (D.4)
~ m!(n—m)! L(y+B+n+ D) (y—a)(a+B+m+n+2) ' '

We obtain eq. (D.3) for m = n by first setting m = n to cancel I'(y — «) and then setting
« = v, whereas m # n can be obtained by setting o = ~y first.

In this paper we use the Chebyshev and Gegenbauer polynomials, which are defined
as special cases of the Jacobi polynomial. The Chebyshev polynomial is defined as

_ VT p5-3)

which has the property T),(cosf) = cosnf and Ty(t) = 1. The Gegenbauer polynomial is
defined as

Cl (1) = 2 pleaema) gy (D.6)

which satisfies Cfla)(l) = (2a),/nl.
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D.2 Bessel functions

The modified Bessel functions, I and K, of the first and second kinds, respectively, are
defined by

e Py a+2n
()= 3 2 (0.7

—nll(a+n+1) ’
Ka(2) = gom—l-a() = La(2)]. (D.8)

We call these functions the Bessel I and K functions in short. Also, the Bessel differential

equation, the defining differential equation of these functions, is given by
df(z) | _df(z)
2
2 T2 +z dz
which is useful to derive the bulk-to-boundary propagator B, (k; z) from the equation (2.7).

— (22 4+ ) f(z) =0, (D.9)

A useful relation of the modified Bessel functions is
1d
—[2K o (2)] = =22 K, 1(2). (D.10)

zdz

In the main text, we also use the asymptotic behavior around z ~ oo, which is given by

Kq(z) ~ \/Zzl/zez, Io(2) ~ \/12?21/262. (D.11)
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