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1 Introduction

Conformal field theories (CFTs) are characterised by a set of local primary operators,

labelled by their scaling dimension ∆ and Lorentz spin `. The set of all {∆, `} is denoted

the spectrum of the theory. An important property of CFT is that these operators satisfy an

algebra, the operator product expansion (OPE). The structure constants of this algebra,

denoted OPE coefficients, together with the spectrum constitute the CFT data. Using

the OPE, any correlator of local operators can be decomposed into conformal blocks and

expressed in terms of the CFT data. Associativity of the OPE is equivalent to the statement

that decompositions along different channels should lead to the same final answer. This

leads to strong constraints on the CFT data, especially when supplemented with other

physical requirements, such as unitarity [1].

In the Lorentzian regime correlators develop singularities when two operators become

null separated. The basic realisation of the analytic bootstrap is that singularities in one

channel are a consequence of high spin operators being exchanged in the dual channel.

This idea was first used in [2, 3] to constrain the large spin sector of generic CFTs in

the non-perturbative regime. The perturbative regime was subsequently analysed in [4]

for conformal gauge theories. From these developments the results of [5] for large spin

operators could be understood as arising from crossing symmetry. In a series of papers [6, 7]
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an algebraic machinery to compute the CFT data as a series in inverse powers of the spin

was developed. This led to the proposal of a large spin perturbation theory [8], a method

to compute the CFT data to all orders in inverse powers of the spin from the singularities

in the dual channel. The essence of these developments is that the full CFT data can be

reconstructed from the singularities of the correlator (to be precisely defined below), up to

ambiguities for finite, usually low, values of the spin. A drawback of the method is that

these ambiguities are generally not under control. In some perturbative contexts, such as in

the weakly coupled CFTs studied in [9], crossing symmetry itself constrains the ambiguities

and the CFT data can be extrapolated down to spin two. In a remarkable paper [10] it was

shown that this is the case even in a non-perturbative context.1 All this was put on firmer

ground in a beautiful paper [13] which proved that indeed the CFT data is an analytic

function of the spin and arises solely from the singularities of the correlator. This was

done through an inversion formula analogous to the Froissart-Gribov integral. Requiring

the correct Regge behaviour for the CFT correlator also precludes all ambiguities for spin

higher than one. The inversion formula of [13] can not only be regarded as the resummed

version of large spin perturbation theory, but it also proves that its results indeed do resum

into analytic functions of the spin.

In this paper we will apply the method of large spin perturbation theory to the Wilson-

Fisher (WF) model in d = 4− ε dimensions. In [9] results were obtained for the anomalous

dimensions of weakly broken currents to the first non-trivial order in ε. Other interesting

analytic approaches in the spirit of the conformal bootstrap, that have led to results for

the WF model in the ε-expansion include [14–19]. In a series of papers [20–23] a proposal

has been put forward for an alternative method to compute CFT data analytically. In this

approach one uses Mellin space and crossing symmetry is built in. Consistency with the

OPE then constrains the CFT data. This method has been applied to the WF model in

the ε-expansion leading to impressive results. More precisely, the CFT data for weakly

broken currents has been obtained to cubic order in ε. The purpose of the present paper

is first to show how these results can be recovered from the perspective of large spin

perturbation theory or equivalently from the inversion integral mentioned above. To cubic

order the relevant divergences of the correlator arise, via crossing symmetry, from just two

operators in the crossed channel: the identity operator and the bilinear scalar operator.

This makes our derivation very simple: in the present framework it essentially involves a

first-order computation. The simplicity of our method is also manifest when dealing with

the O(N) model where the results to cubic order follow straightforwardly from those for

N = 1. A remarkable feature of our computation is that the convergence properties of

the inversion integral allow to extrapolate the results down to spin zero. Conservation of

the stress tensor together with a matching condition for spin zero lead to two non-trivial

constraints, that allow to fix not only the dimension of the external operator but also the

dimension of the scalar operator ϕ2. We then move on to the computation at fourth order.

In this case the divergences of the correlator are more involved and arise from infinite

1See [11] for another very interesting application to non-perturbative theories and [12] for a discussion

on tauberian theorems that justify these extrapolations.
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towers of operators with arbitrarily large spins. The computation is complicated by the

appearance of new operators in the OPE at quadratic order. A remarkable feature of these

operators, together with intuition from perturbation theory, makes it possible to guess their

contribution to the divergence, and hence to determine the CFT data of weakly broken

currents to fourth order. The results for the anomalous dimensions agree with those in

the literature, computed by Feynman techniques, while the OPE coefficients are a new

result. From the latter we deduce the central charge of the WF model to fourth order in

the ε-expansion:

CT
Cfree

= 1− 5

324
ε2 − 233

8748
ε3 −

(
100651

3779136
− 55

2916
ζ3

)
ε4 + · · · , (1.1)

a new result as well. This paper is organised as follows. The computation up to cubic order

is presented in section 2. After introducing the basic ingredients we show how to understand

the inversion formula from the perspective of large spin perturbation theory. Since we are

dealing with leading twist operators, the inversion problem for SL(2,R) suffices. Then we

proceed to obtain the CFT data for leading twist operators, up to this order, from the

double discontinuity of the correlator. We also show how to generalise these results to

the O(N) model. In section 3 we tackle the problem to fourth order and give the full

answer for the anomalous dimensions and OPE coefficients of leading twist operators. We

finish with some conclusions. Appendix A contains a database of the necessary inversion

integrals to compute the CFT data at hand, while appendix B contains expressions for

double discontinuities at fourth order.

2 Lorentzian OPE inversion in the ε-expansion

2.1 Generalities

Consider the four-point correlator of a scalar field ϕ in a d-dimensional CFT

〈ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)〉 =
G(z, z̄)

x
2∆ϕ

12 x
2∆ϕ

34

, (2.1)

where we have introduced the cross-ratios

zz̄ =
x2

12x
2
34

x2
13x

2
34

, (1− z)(1− z̄) =
x2

14x
2
23

x2
13x

2
34

. (2.2)

Crossing symmetry implies(
1− z
z

)∆ϕ

G(z, z̄) =

(
z̄

1− z̄

)∆ϕ

G(1− z̄, 1− z). (2.3)

The correlator admits a decomposition in conformal blocks. The s-channel decomposition

reads

G(z, z̄) =
∑
∆,`

a∆,`(zz̄)τ/2g∆,`(z, z̄), (2.4)

– 3 –



J
H
E
P
0
7
(
2
0
1
8
)
1
3
1

where g∆,`(z, z̄) are the d−dimensional conformal blocks and the twist τ = ∆ − ` is the

dimension minus the spin. Assume there is a free point where the correlator reduces to

that of generalised free fields (GFF)

G(0)(z, z̄) = 1 + (zz̄)∆ϕ +

(
zz̄

(1− z)(1− z̄)

)∆ϕ

. (2.5)

The intermediate operators are the identity and towers of bilinear operators of twist

2∆ϕ + 2n and spin `. We will be interested in leading twist operators with n = 0. In

this case the OPE coefficients read

a
(0)
` =

2 ((∆ϕ)`)
2

`!(`+ 2∆ϕ − 1)`
, (2.6)

where (a)n is the Pochhammer symbol. As we show below, these OPE coefficients are fixed

by the structure of divergences of the correlator. Next we consider perturbations by a small

parameter g. This introduces a correction to the scaling dimensions and OPE coefficients

of the leading-twist operators

∆` = 2∆ϕ + `+ γ
(1)
` g + · · ·

a` = a
(0)
` + a

(1)
` g + · · · . (2.7)

We will assume that at this order no new operators appear in the OPE ϕ × ϕ. From the

analysis of [8] it follows that the only solutions consistent with crossing symmetry have

finite support in the spin. For generic ∆ϕ these solutions can be constructed following [24].

For the present paper we will be interested in the case ∆ϕ = d−2
2 at leading order in

g. In this case it was proven in [9] that crossing symmetry admits a non-trivial solution

only around d = 4, with support for spin zero. We define the coupling constant g as the

anomalous dimension of the bilinear operator with spin zero

∆0 = 2∆ϕ + g. (2.8)

All other quantities will be computed in terms of this coupling constant. In [9] it was also

shown that ∆ϕ can receive corrections only at order g2. Note that the dimensionality of

space-time can differ from four by at most something of order g, so that d = 4 − ε with

g ∼ ε. The correction to the OPE coefficients can be found through an extension of the

analysis of [9]. Again, the corresponding solution has support only for spin zero and one

finds a0 = a
(0)
0 (1 − g + · · · ). In summary, for spin two and higher the corrections start at

order g2

∆` = 2∆ϕ + `+ γ
(2)
` g2 + · · · , ` = 2, 4, · · · ,

a` = a
(0)
` + a

(2)
` g2 + · · · , ` = 2, 4, · · · , (2.9)

and the same is true for the external operator

∆ϕ =
d− 2

2
+ γ(2)

ϕ g2 + · · · . (2.10)

We would like to find the corrections consistent with crossing symmetry. Our method relies

on the fact that the double-discontinuity (to be defined below) of the correlator contains

all the relevant physical information. Let us explain this in more detail.
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2.2 From large spin perturbation theory to an inversion formula

Consider a basis of SL(2,R) conformal blocks f∆,`(z̄). We find it convenient to introduce

the following normalisation

f∆,`(z̄) = r∆+`
2
k∆+`

2
(z̄), rh =

Γ(h)2

Γ(2h)
, (2.11)

with kh(z̄) = z̄h 2F1(h, h, 2h, z̄) a standard hypergeometric function. We are interested in

solving the following inversion problem: find â` such that∑
∆=2∆ϕ+`,
`=0,2,···

â`f∆,`(z̄) = G(z̄), (2.12)

for a given G(z̄) containing an enhanced singularity as z̄ → 1. By enhanced singularity

we mean a contribution which becomes power-law divergent upon applying the Casimir

operator a finite number of times, and as such it cannot be obtained by a finite number of

conformal blocks. This is equivalent to saying that G(z̄) contains a double discontinuity.

For a correlator the double discontinuity is defined as the difference between the Euclidean

correlator and its two analytic continuations around z̄ = 1

dDisc[G(z̄)] ≡ G(z̄)− 1

2
G	(z̄)− 1

2
G�(z̄). (2.13)

An algorithm to find â` as a series in 1/` to all orders was developed in [8]. The idea is the

following. First recall that the SL(2,R) conformal blocks are eigenfunctions of a quadratic

Casimir operator

D̄f∆,`(z̄) = J2f∆,`(z̄), (2.14)

where D̄ = z̄2∂̄(1 − z̄)∂̄ and J2 = 1
4(∆ + `)(∆ + ` − 2) is called the conformal spin. We

then assume that â` ≡ â(J) admits an expansion in inverse powers of the conformal spin

â(J) =
∑
m

am
J2m

(2.15)

and define the following family of functions

h(m)(z̄) =
∑

∆=2∆ϕ+`,
`=0,2,···

f∆,`(z̄)

J2m
. (2.16)

From the explicit form of the blocks we can compute

h(0)(z̄) =
∑

∆=2∆ϕ+`,
`=0,2,···

f∆,`(z̄) =
π

4

(
z̄

1− z̄

)1/2

+ regular, (2.17)

where the regular terms do depend on ∆ϕ but are not important for us. The sequence of

functions h(m)(z̄) can then be generated by the inverse action of the Casimir

D̄h(m+1)(z̄) = h(m)(z̄). (2.18)
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The inversion problem (2.12) then amounts to decomposing G(z̄) in the basis of functions

h(m)(z̄). The precise range of m depends on the specific form of G(z̄). The recursion (2.18)

can be used to systematically construct the functions h(m)(z̄) and hence find the coefficients

am. More specifically, one matches the double-discontinuity on both sides of (2.12). To

make contact with the inversion formula of [13] assume there exists a family of projectors

K(m)(z̄) such that ∫ 1

0
dz̄K(m)(z̄) dDisc

[
h(n)(z̄)

]
= δmn. (2.19)

Having the projectors K(m)(z̄) we can write

â(J) =

∫ 1

0
dz̄K(z̄, J) dDisc [G(z̄)] , (2.20)

where

K(z̄, J) =
∑
m

K(m)(z̄)

J2m
. (2.21)

As will be clear momentarily, the precise form of these projectors will not be necessary.

Acting on both sides of (2.12) with the Casimir operator D̄ and integrating by parts

we obtain (
D̄† − J2

)
K(z̄, J) = 0 (2.22)

where we have assumed the absence of boundary terms and D̄† = ∂̄(1− z̄)∂̄z̄2. Introducing

the notation J2 = h̄(h̄ − 1) we find two independent solutions related by h̄ ↔ 1 − h̄. We

will be interested in the one regular for positive h̄. Requiring the inversion formula to give

â(J) = 1 for G(z̄) = h(0)(z̄) fixes the overall normalisation. We find it convenient to use

an integral representation that leads to the following result

â(h̄) =
2h̄− 1

π2

∫ 1

0
dtdz̄

z̄h̄−2(t(1− t))h̄−1

(1− tz̄)h̄
dDisc [G(z̄)] . (2.23)

Integrating over t leads to the inversion formula presented in [13]. For all the inversions

needed in this paper it will be convenient to integrate first over z̄.

While this discussion is not a rigorous derivation of the inversion formula, for a deriva-

tion see [25], it explains its relation to large spin perturbation theory. In appendix A we

give several results relevant for our computations below. In all cases the integral is con-

vergent in the region h̄ > 1. For our application below this means the integral converges

and is expected to give the right answer for ` > 0. Below we will discuss the case ` = 0 in

more detail.

2.3 Inverting discontinuities in the ε-expansion

Let us return to the correlator introduced at the beginning of this section. We will use the

inversion formula to compute the CFT data of leading twist operators in an expansion to

cubic order in ε (or rather g). Crossing symmetry implies∑
∆=τ`+`,
`=0,2,···

â`z
τ`/2f∆,`(z̄) = z∆ϕ

(
z̄

1− z̄

)∆ϕ

G(1− z̄, 1− z)

∣∣∣∣∣
small z

, (2.24)
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where the sum runs over leading twist operators with τ` = 2∆ϕ+g2γ
(2)
` + · · · and the OPE

coefficients are related to â` by a` = â`r τ`
2

+`. According to our discussion above, the CFT

data appearing on the l.h.s. of (2.24) can be recovered from the double-discontinuities of

the r.h.s. Up to cubic order in g those are straightforward to compute, as they only arise

from the identity operator and the bilinear operator of spin zero, so that

∑
∆=τ`+`,
`=0,2,···

â`z
τ`/2f∆,`(z̄) = z∆ϕ

(
z̄

1−z̄

)∆ϕ(
1+a0(1−z̄)∆0/2g∆0,0(1−z̄,1−z)+regular

)∣∣∣∣∣
small z

,

(2.25)

where, recall, ∆0 =2∆ϕ+g. The regular terms do not contribute to the double-discontinuity

to the order we are considering. The d-dimensional conformal block for a scalar exchange

between two identical scalar operators was given in [26]

g∆,0(1−z̄,1−z) =
∑
m,n=0

(∆/2)2
m (∆/2)2

m+n

m!n! (∆+1−d/2)m (∆)2m+n

(1−z)m(1−z̄)m(1−zz̄)n. (2.26)

Note that in order to extract the small z dependence the sum over n has to be performed.

Expanding the r.h.s. of (2.24) in powers of g up to cubic order and keeping only terms that

contribute to the double discontinuity we obtain

∑
∆=τ`+`,
`=0,2,···

â`z
τ`/2f∆,`(z̄) = z∆ϕ

(
z̄

1−z̄

)∆ϕ

+ (2.27)

+z∆ϕ z̄∆ϕa0

(
g2

8
log2(1−z̄)(1+ε∂ε+g∂∆)+

g3

48
log3(1−z̄)

)
g

(4d)
2,0 (1−z̄,1−z),

where

g
(4d)
2,0 (1− z̄, 1− z) =

log z̄ − log z

z̄
,

∂εg
(4d)
2,0 (1− z̄, 1− z) =

(log z̄ − log z)(log z̄ − 2) + 2ζ2

2z̄
, (2.28)

∂∆g
(4d)
2,0 (1− z̄, 1− z) =

Li2(1− z̄) + log z̄ − log z − ζ2

z̄
,

and only the small z limit has been considered. We would like to recover the CFT

data for leading twist operators from these singularities. This data admits the following

decomposition

â` = â
(0)
` + g2â

(2)
` + · · · ,

τ` = 2∆ϕ + g2γ
(2)
` + · · · , (2.29)

where

â
(0)
` =

2(2h̄− 1)Γ
(
h̄+ ∆ϕ − 1

)
Γ (∆ϕ) 2Γ

(
h̄−∆ϕ + 1

) , h̄ = `+ ∆ϕ. (2.30)

– 7 –
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In order to apply the inversion procedure we follow [27] and introduce

â` = U
(0)

h̄
+

1

2
∂h̄U

(1)

h̄
,

â`γ` = U
(1)

h̄
, (2.31)

where we have made clear that the natural variable in which to express U
(0)

h̄
, U

(1)

h̄
is

h̄ = `+ ∆ϕ as opposed to `. These combinations are the ones that preserve the reciprocity

principle proven in [6].2

U
(0)

h̄
=
∑ u

(0)
m

J2m
, U

(1)

h̄
=
∑ u

(1)
m

J2m
, (2.32)

where in principle these expansions could contain both even and odd powers of 1/J as well

as logarithmic insertions. In terms of these expansions we obtain

∑
m

z∆ϕ

(
u(0)
m +

1

2
log zu(1)

m

)
h(m)(z̄) = z∆ϕ

(
z̄

1− z̄

)∆ϕ

+ (2.33)

+ z∆ϕ z̄∆ϕa0

(
g2

8
log2(1− z̄) (1 + ε∂ε + g∂∆) +

g3

48
log3(1− z̄)

)
g

(4d)
2,0 (1− z̄, 1− z).

This has exactly the form of the inversion problem discussed above. With the inversion

formulas given in appendix A we find

U
(0)

h̄
= â

(0)
` + (2h̄− 1)

(
− g2

(h̄− 1)2h̄2
+
ζ2(h̄− 1)h̄+ 1

(h̄− 1)2h̄2
g2ε− ζ2(h̄− 1)h̄− S1

(h̄− 1)2h̄2
g3

)
+ · · · ,

U
(1)

h̄
=

2(1− 2h̄)

(h̄− 1)h̄
g2 +

2(2h̄− 1)

(h̄− 1)h̄
g2ε+

2(2h̄− 1)S1

(h̄− 1)h̄
g3 + · · · , (2.34)

where S1 denotes the harmonic number with argument h̄ − 1. These results encode the

full CFT data for leading twist operators to cubic order. They translate easily into the

standard anomalous dimensions and OPE coefficients and agree exactly with those obtained

previously in [21].

2.4 Matching conditions at low spin

Let us write the result we have just obtained for the anomalous dimensions in terms of the

full h̄f , defined as h̄f = `+ ∆ϕ + 1
2γ`. We obtain

∆` = 2∆ϕ + `− g2

(h̄f − 1)h̄f
+
g2ε+ (g3 − g2ε)S1

(h̄f − 1)h̄f
+ · · · (2.35)

These results followed only from crossing symmetry of a single correlator and the inversion

procedure used in this work shows that they basically follow from a one-loop computation

2For the present computation we find it convenient to work with this ‘bare’ h̄ as opposed to the full one,

given by h̄f = ∆`+`
2

. The standard reciprocity principle for the CFT-data is usually expressed in terms of

the full conformal spin h̄f (h̄f − 1). Note that h̄f and h̄ coincide to leading order.

– 8 –
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0 2 4 6

`

τ`

∆0

2∆ϕ

Figure 1. Schematic graph of τ`. As we move from spin two to spin zero we move to the left of

the pole at h̄f = 1, denoted by a red line. Note the change of sign in the correction. Assuming the

standard continuation in (2.35), we reproduce the correct dimension on both sides.

(since squares of anomalous dimensions will generate discontinuities only at quartic order).

We now impose two further matching conditions at low values of the spin

∆2 = d, (2.36)

∆0 = 2∆ϕ + g. (2.37)

The first condition is implied by the existence of a conserved stress tensor and fixes the

dimension of the external operator

∆ϕ = 1− 1

2
ε+

1

12
g2 − 1

8
g3 +

11

144
g2ε+ · · · . (2.38)

The second condition arises from the requirement that the inversion results can be extrap-

olated down to spin zero.3 For ε, g 6= 0, in order to reach ` = 0 we need to continue ∆`

to the left of the pole at h̄f = 1. We will assume the standard continuation across a pole,

i.e. the expression (2.35) remains valid also in this region. This is summarised in figure 1.

Note that in the epsilon expansion h̄f − 1 ∼ ε, so that the limit is somewhat subtle. To

leading order we obtain the following relation

− gε+ 3g2 = 0. (2.39)

This equation has two solutions. One corresponds to the free theory with g = 0 and the

other corresponds to

g =
1

3
ε+ · · · , (2.40)

fixing the relation between g and ε. Plugging this into the expression for ∆ϕ we obtain

∆ϕ = 1− 1

2
ε+

1

108
ε2 + · · · , (2.41)

3We would like to thank Aninda Sinha for suggesting this idea.
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which exactly agrees with the well known value for the WF model! The order g4 results

obtained in the next section allow us to go one order further, and find the relation

g =
1

3
ε+

8

81
ε2 + · · · . (2.42)

Fixing the relation between g and ε, and all the quantities entering the problem.

2.5 O(N) model

The method used in this paper generalises to the O(N) model immediately. Let us consider

the WF model with N scalar fields ϕi with global O(N) symmetry in d = 4− ε dimensions.

We can now consider the four point correlator of the fundamental field ϕi. Intermediate

operators decompose into the singlet (S), symmetric traceless (T) and anti-symmetric (A)

representations of O(N). It is convenient to write the crossing equations as

fS(z, z̄) =
1

N
fS(1− z̄, 1− z) +

N2 +N − 2

2N2
fT (1− z̄, 1− z) +

1−N
2N

fA(1− z̄, 1− z),

fT (z, z̄) = fS(1− z̄, 1− z) +
N − 2

2N
fT (1− z̄, 1− z) +

1

2
fA(1− z̄, 1− z), (2.43)

fA(z, z̄) = −fS(1− z̄, 1− z) +
2 +N

2N
fT (1− z̄, 1− z) +

1

2
fA(1− z̄, 1− z),

where fR(z, z̄) = ((1− z)(1− z̄))∆ϕGR(z, z̄). The crossing equations at leading order have

been analysed in [9] with the methods of large spin perturbation theory. Again, at leading

order the fundamental field does not acquire any corrections while

γ
(1)

ϕ2
S

= g ≡ gS , γ
(1)

ϕ2
T

=
2

2 +N
g + · · · ≡ gT . (2.44)

In order to reconstruct the CFT data from double discontinuities we note that these arise

from the identity operator, present in the singlet representation, and the bilinear fields in

the singlet and symmetric-traceless representation, which acquire an anomalous dimension

at order g. By looking at the double discontinuity of the identity operator on the r.h.s.

of the crossing equations (2.43) we see that at leading order the OPE coefficients of the

symmetric traceless and anti-symmetric representations are exactly as before, while those

of the single representation have an extra factor of 1/N .

â
(0)
A/T,` = â

(0)
` , â

(0)
S,` =

1

N
â

(0)
` , (2.45)

where ` is even for the symmetric-traceless and singlet representations and odd for the anti-

symmetric representation. A careful analysis of the crossing conditions also determines the

corrections to order g of the OPE coefficients for the spin zero operators:

aS/T,0 = a
(0)
S/T,0(1− gS/T + · · · ). (2.46)

By looking at the crossing equations (2.43) and comparing them with our computation for

the N = 1 case, it is then straightforward to write down the result for U
(1)

h̄
= â`γ` for each
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representation. We obtain

U
(1)

S,h̄
=

1

N2

(
(2− 4h̄)

(h̄− 1)h̄
g2
S +

2(2h̄− 1)

(h̄− 1)h̄
g2
Sε+

2(2h̄− 1)S1

(h̄− 1)h̄
g3
S

)
+
N2 +N − 2

2N2

(
(2− 4h̄)

(h̄− 1)h̄
g2
T +

2(2h̄− 1)

(h̄− 1)h̄
g2
T ε+

2(2h̄− 1)S1

(h̄− 1)h̄
g3
T

)
+ · · · ,

U
(1)

T,h̄
=

1

N

(
(2− 4h̄)

(h̄− 1)h̄
g2
S +

2(2h̄− 1)

(h̄− 1)h̄
g2
Sε+

2(2h̄− 1)S1

(h̄− 1)h̄
g3
S

)
+
N − 2

2N

(
(2− 4h̄)

(h̄− 1)h̄
g2
T +

2(2h̄− 1)

(h̄− 1)h̄
g2
T ε+

2(2h̄− 1)S1

(h̄− 1)h̄
g3
T

)
+ · · · ,

U
(1)

A,h̄
=

1

N

(
(2− 4h̄)

(h̄− 1)h̄
g2
S +

2(2h̄− 1)

(h̄− 1)h̄
g2
Sε+

2(2h̄− 1)S1

(h̄− 1)h̄
g3
S

)
− 2 +N

2N

(
(2− 4h̄)

(h̄− 1)h̄
g2
T +

2(2h̄− 1)

(h̄− 1)h̄
g2
T ε+

2(2h̄− 1)S1

(h̄− 1)h̄
g3
T

)
+ · · · , (2.47)

where again the harmonic number S1 is evaluated at h̄ − 1. The OPE coefficients can be

obtained in exactly the same way. All the results are in full agreement with those obtained

in [23, 28].4

3 Results to fourth order

3.1 New operators at second order

Before proceeding to solve the crossing constraints to higher order, we would like to make

the following crucial observation. At order g2 new intermediate operators are expected

to appear, since the Lagrangian contains a quartic interaction vertex. They are of the

schematic form ϕ2�n∂µ1 · · · ∂µ`ϕ2 and have twist τ = 4 + 2n and spin `. These operators

are expected to acquire an anomalous dimension to order ε. Hence, they generate a double

discontinuity, proportional to the square of their anomalous dimension, to order g4. Fur-

thermore, these operators are highly degenerate in perturbation theory, so that computing

this double discontinuity would require solving a mixing problem. The statement that the

CFT data can be reconstructed from the double-discontinuities of the correlator is not

restricted to leading twist operators and the method described in this paper can again be

used to find the leading OPE coefficients of these operators. The steps are very similar to

the ones above, and to second order in g we find

a4+2n,` =


Γ(`+2)2

Γ(2`+3)
`2+3`+8

12(`+1)(`+2)g
2 + · · · for n = 0,

O(g4) for n 6= 0.
(3.1)

This is a somewhat surprising result: only operators with approximate twist four appear at

this order.5 As we will see, this constrains the possible structure of double discontinuities

at fourth order and it will allow us to solve the problem completely. Given the convergence

of the inversion integrals we expect these results to be valid down to spin zero.

4Now gS = 2+N
8+N

ε+ 6 (N+2)(N+3)

(N+8)3
ε2 + · · · and gT = 2

8+N
ε+ 36+4N−N2

(N+8)3
ε2 + · · · .

5As a byproduct, this result justifies an ansatz made in [29], where the vanishing of OPE coefficients

involving operators with n 6= 0 was assumed.
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3.2 Solving the inversion problem at fourth order

The contribution arising from leading twists operators in a perturbative ε-expansion can

be encoded as follows

G(z, z̄)|small z =
∑
m

z∆ϕ

(
u(0)
m +

1

2
log z u(1)

m +
1

8
log2 z u(2)

m + · · ·
)
h(m)(z̄), (3.2)

where u
(q)
m ∼ g2q for small g. As before the u

(q)
m are the coefficients in the large J expansions

of U
(q)

h̄
, whose relation to the usual OPE data is

â` (γ`)
p = U

(p)

h̄
+

1

2
∂h̄U

(p+1)

h̄
+

1

8
∂2
h̄U

(p+2)

h̄
+ · · · . (3.3)

To order g4 the double-discontinuity of the correlator arises from four distinct contributions,

so that

G(z, z̄)|small z = z∆ϕ

((
z̄

1− z̄

)∆ϕ

+ Iϕ2 + I2 + I4 + regular

)
. (3.4)

Iϕ2 denotes the contribution from the scalar bilinear operator. To cubic order it was given

in the previous section. It is straightforward to compute it to fourth order and the result is

given in appendix B. I2 denotes the contribution arising from leading twist operators of spin

two and higher: the square of their anomalous dimension generates a double-discontinuity

at fourth order. Since these operators are non-degenerate, this contribution can be readily

computed and it is given in appendix B. As already mentioned, a direct computation

of I4 would require solving a mixing problem, for instance by considering more general

correlators.6 However note that at fourth order I4 involves four-dimensional conformal

blocks evaluated at the classical twist four. This implies the following structure

I4 = (log zg(z̄)− log z̄g(z)) log2(1− z̄), (3.5)

where g(z̄) arises from a sum over twist-four operators

g(z̄) =
1

8

∑
η`k2+`(1− z̄) (3.6)

for some η` equal to the weighted average, over degenerate operators, of the square anoma-

lous dimensions η` = 〈a4,`γ
2
4,`〉 =

∑
i a4,`,iγ

2
4,`,i. As such it is regular around z̄ = 1. Fur-

thermore, the structure of the OPE to this order implies the following expansion around

z = 0,7

g(z) = α0 log2 z + α1 log z + α2 + · · · . (3.7)

6The contribution from twist four operators to the anomalous dimension of leading twist operators

starts at order 1/`4, see [5], so that the leading terms in a 1/` expansion can still be computed without

its knowledge. This was done in [30] by applying directly the methods of [7] for isolated operators. Since

there is an accumulation point at twist two, one should be careful. In principle the correct procedure from

the large spin perspective would be to compute the double discontinuity due to the tower of twist-two

operators and then compute the anomalous dimensions from there. The procedure of [30] is justified since

the resulting series are convergent.
7Specifically, note that in equation (3.4), on the l.h.s. any higher powers logk z would have to be generated

by higher powers γk2,` of anomalous dimensions, which contribute only at order g2k and higher.
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We will now discuss how to fix U
(0)

h̄
, U

(1)

h̄
, U

(2)

h̄
to quartic order. Before we proceed, note

that the term log zg(z̄) in I4 will only contribute to U
(1)

h̄
. Hence U

(0)

h̄
and U

(2)

h̄
only require

minimal information about g(z), namely only its limit as z → 0. As a result, they could be

fully determined in terms of α0 and α2, even without any knowledge of twist four operators.

We will be able to do even better than this.

Let us start with U
(2)

h̄
. From the expressions in appendix B, it follows that Iϕ2 and I2 do

not contribute to U
(2)

h̄
, as they do not contain a log2 z piece. The whole contribution arises

then from I4 and is proportional to −α0 log z̄ log2(1− z̄). From the results in appendix A

this immediately gives

U
(2)

h̄
= −8α0

4(1− 2h̄)

h̄2(1− h̄)2
g4, (3.8)

which exactly agrees with â`(γ`)
2 to order g4 provided α0 = 1/16.

To compute U
(1)

h̄
one needs to know g(z). The full results for double discontinuities up

to cubic order as well as the double discontinuities in appendix B suggest that perturbative

results for the present correlator organise themselves in pure transcendental functions with

discontinuities around z̄ = 0, 1 and regular around z̄ = 1. Furthermore, the degree of these

functions increases with the perturbative order in a prescribed way.8 If this principle holds

then we expect g(z) to be given by a linear combination of the following building blocks{
log2 z̄,Li2(1− z̄), log3 z̄, log z̄ Li2(1− z̄),Li3(1− z̄),Li3

(
z̄ − 1

z̄

)}
. (3.9)

These blocks form a basis of functions as described above. Any other function with the

same features can be related to combinations of these by generalisations of the dilogarithm

identity Li2(1 − z̄) + Li2(z̄) + log(1 − z̄) log z̄ = ζ2, proven by Euler in 1768. The fact

that g(z̄) arises from twist four operators in the dual channel, constrains the possibilities.

Furthermore, consistency with (3.6) and (3.7) leads us to the following result

g(z̄) =
1

16
log2 z̄+α

(
−1

6
log3 z̄− 2

3
logzLi2(1−z̄)+Li3(1−z̄)+Li3

(
z̄−1

z̄

))
, (3.10)

with a single undetermined coefficient. We would like to stress that this expression can be

systematically tested as an expansion around z̄ = 1. Since k2+`(1− z̄) ∼ (1− z̄)2+`, to any

given order in (1−z̄) only a finite number of operators contributes and the mixing problem is

finite. For instance, twist four operators with spin zero and two are non-degenerate. Again,

their anomalous dimensions can be computed from the discontinuities of the correlator at

cubic order, exactly as done above for the leading twist operators,9 although this would be

a somewhat tedious computation. Instead, we will use the well known result given in [31].

In our conventions γ4,0 = 3g + · · · and γ4,2 = 4/3g + · · · . From (3.1) we can also read off

a4,0 = g2/6 + · · · and a4,2 = g2/160 + · · · . These values are exactly consistent with the

8More precisely, up to this order we will assume the answer can be written as combinations of polyloga-

rithms of z̄ and 1− z̄, without rational functions in front, such that the total degree increases linearly with

the loop order. This structure is very familiar in other perturbative contexts.
9Alternative, one can also use the method of multiplet recombination, [14], still purely by bootstrap

methods.
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expression for g(z̄) up to fifth order in (1 − z̄) and furthermore fix α = −3/2. With this

we find

g(z) =
1

16
log2 z − 1

2
ζ2 log z − 3

2
ζ3 + · · · , around z = 0. (3.11)

We have now all the ingredients to compute U
(0)

h̄
and U

(1)

h̄
to fourth order. Using the

inversion formulae in appendix A we find:

U
(1)

h̄
=

2(1−2h̄)

(h̄−1)h̄
g2+

2(2h̄−1)(3+S1)

(h̄−1)h̄
g3+

2h̄−1

6
(
h̄−1

)
h̄

(
6(

h̄−1
)2
h̄2

+
7+48S−2(
h̄−1

)
h̄

−9ζ2−6S2
1−36S1−12S−2−58

)
g4+· · · , (3.12)

U
(0)

h̄
= â

(0)
` +

(1−2h̄)

(h̄−1)2h̄2
g2+

(2h̄−1)

(h̄−1)h̄

(
3+S1

(h̄−1)h̄
+2ζ2

)
g3+

2h̄−1

12
(
h̄−1

)
h̄

(
2

(h̄−1)2h̄2

− 56+3ζ2+72ζ3+6S2
1 +36S1−12S−2

(h̄−1)h̄
−106ζ2+72ζ3−24ζ2S1−54S3

)
g4+· · · ,

(3.13)

where the argument of all nested sums, defined in appendix A, is h̄ − 1. The CFT data

can then be recovered from (3.3). In particular

γ` =
U

(1)

h̄
+ 1

2∂h̄U
(2)

h̄
+ · · ·

U
(0)

h̄
+ 1

2∂h̄U
(1)

h̄
+ · · ·

, (3.14)

and the result can be seen to exactly agree with that obtained in [32].10 In order to fix

∆ϕ and g(ε) to this order one could proceed exactly as before: ∆ϕ follows again from

conservation of the stress tensor while g(ε) follows from the matching condition at spin

zero. However, the later result to cubic order would require going to higher orders in

our computation. Instead, we will take a shortcut and assume the known value of the

dimension of the fundamental field ∆ϕ = 1− ε
2 + ε2

108 + 109
11664ε

3 + ( 7217
1259712 −

2
243ζ3)ε4 + · · · .

This together with the conservation of the stress tensor gives the relation between g and ε:

g =
ε

3
+

8

81
ε2 +

(
305

8748
− 4

27
ζ3

)
ε3 + · · · . (3.15)

Let us stress however, that the first two orders follow completely from our results, without

any additional input, and also the next term could be in principle computed in our formal-

ism. The result for the OPE coefficients is completely new. The most interesting quantity

that can be extracted from them is the central charge, related to the OPE coefficient for

` = 2. In terms of ε we find

CT
Cfree

= 1− 5

324
ε2 − 233

8748
ε3 −

(
100651

3779136
− 55

2916
ζ3

)
ε4 + · · · , (3.16)

10We would like to thank the authors of [30] for making us aware of a typo in [32].
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where we have stressed the fact that the contribution proportional to ε4 is also negative.

The result to cubic order exactly reproduces what was found in [21]. The result to fourth

order is new. Setting ε = 1 we see that this new contribution gets us closer to the highly

precise numerical result for the 3d Ising model found in [33, 34].

4 Conclusions

We have used analytic bootstrap techniques to derive the anomalous dimensions and OPE

coefficients of bilinear operators in the WF model in d = 4− ε dimensions, to fourth order

in the ε-expansion. To cubic order the computation is essentially straightforward, since the

double discontinuity arises solely from the identity operator and the bilinear scalar. This

simplicity is also manifest in the results of the O(N)-model, which in our framework follow

directly from the results for N = 1. At fourth order the situation is much more interesting,

since two towers of high spin operators, of twist two and four respectively, contribute to the

discontinuity. The contribution from twist two operators can be readily computed, while

the structure of perturbation theory, together with the explicit form of four-dimensional

conformal blocks, allows to make a proposal for the double discontinuity due to twist four

operators. This proposal can be systematically tested order by order in powers of (1 − z̄),

by solving a finite order mixing problem. In this paper we have not proved such a proposal,

but we have checked it to high order. With this result, we have found the CFT data to

fourth order. Two further constraints, namely conservation of the stress tensor, together

with a continuation to spin zero, allowed to fix the anomalous dimensions of both the scalar

operator ϕ2 as well as the dimension of the external operator. All within our framework.

There are several interesting open problems. A remarkable feature of our computation

is the apparent analyticity down to spin zero. This allowed us to reproduce constraints

analogous to those of a vanishing beta function. It would be interesting to understand

the systematics of this to higher orders, and even non-perturbatively. It would also be

interesting to understand the structure of double-discontinuities to higher orders in the

ε-expansion. Up to fourth order we have observed that the functions that appear have

pure transcendentality. It is tantalising to propose that this persists to higher orders.

This would greatly simplify the computation of CFT data. Another interesting problem

is the extension of the present methods to other CFTs. Large spin perturbation theory

has been successfully applied to several models at leading order, including cubic models in

six dimensions and large-N critical models [9], weakly coupled gauge theories [9, 35] and

fermionic CFTs [36, 37]. Another interesting family of CFTs are the multicritical models,

studied e.g. in [38]. A natural direction would be to extend these results to higher orders.

It would also be interesting to consider analytic constraints arising from mixed correlators.

In the present case one could consider correlators of the fundamental field and the bilinear

scalar. The crossing constraints for such a system are expected to be stronger than the

ones considered in this paper.
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A Some inversion integrals

In the body of the paper we arrived at the following inversion integral

â(J) =
2h̄− 1

π2

∫ 1

0
dtdz̄

z̄h̄−2(t(1− t))h̄−1

(1− tz̄)h̄
dDisc [G(z̄)] , (A.1)

where J2 = h̄(h̄− 1). As an example, used in the body of the paper, consider

G(z̄) =

(
z̄

1− z̄

)p
→ dDisc [G(z̄)] = 2 sin2(πp)

(
z̄

1− z̄

)p
. (A.2)

In this case

âp(J) =
2(2h̄− 1)Γ(h̄+ p− 1)

Γ(p)2Γ(h̄− p+ 1)
. (A.3)

This precise inversion problem was also considered in [10], with exactly the same result.

Other inversions used in this paper are presented in tables 1–2. In these tables we use the

nested harmonic sums Sa = Sa(h̄− 1) which for integer arguments take the values

Sa1,a2,...(n) =
n∑

b1=1

(sgn a1)b1

b
|a1|
1

b1∑
b2=1

(sgn a2)b2

b
|a2|
2

b2∑
b3=1

(sgn a3)b3

b
|a3|
3

· · · . (A.4)

For non-integer values of h̄ we make the standard analytic continuation from even argu-

ments n, see e.g. [39], so that for instance

S−2(x) =
1

4

(
ψ(1)

(
x+ 1

2

)
− ψ(1)

(
x+ 2

2

))
− ζ2

2
, (A.5)

where ψ(1)(x) is the trigamma function.

To evaluate these inversion integrals is non-trivial, but one can proceed as follows.

Expanding the function to invert in powers of 1−z̄
z̄ we are led to the integral entering

in (A.2). We then obtain an expression for the inverted function, as a power expansion

for large h̄, which can be resummed. The final result can then be checked numerically, for

finite values of h̄, to very high precision.
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G(z̄) â(J)

log2 (1−z̄)
4
(
2h̄−1

)
(h̄−1)h̄

log3(1−z̄) −24(2h̄−1)S1

(h̄−1)h̄

log4(1−z̄)
96
(
2h̄−1

)
(h̄−1)h̄

(
S2
1−ζ2−S−2

)
log2 (1−z̄)Li2 (1−z̄)

4
(
2h̄−1

)
(h̄−1)h̄

(ζ2+2S−2)

log3 (1−z̄)Li2 (1−z̄)
24
(
2h̄−1

)
(h̄−1)h̄

((S−3−2S−2,1)−3(S−3−2S1,−2)+3ζ2S1−2S3)

log2 (1−z̄)Li3 (1−z̄)
4
(
2h̄−1

)
(h̄−1)h̄

(−2(S−3−2S1,−2)+ζ3+2ζ2S1−2S3)

log2 (1−z̄)Li3

(
z̄−1

z̄

)
4
(
2h̄−1

)
(h̄−1)h̄

(
−2ζ3−

1

(h̄−1)3h̄3
− 2

(h̄−1)2h̄2
+2S3

)
Table 1. Inversions for G(z̄) not containing explicit powers of log z̄.

G(z̄) â(J)

log2 (1−z̄) log z̄ −
4
(
2h̄−1

)
(h̄−1)2h̄2

log2 (1−z̄) log2 z̄
8
(
2h̄−1

)
(h̄−1)h̄

(
−ζ2+

1

(h̄−1)2h̄2
+

1

(h̄−1)h̄
−2S−2

)

log2 (1−z̄) log3 z̄

24
(
2h̄−1

)
(h̄−1)h̄

(
2(S−3−2S1,−2)+ζ3−

1

(h̄−1)3h̄3

− 2

(h̄−1)2h̄2
+

ζ2
(h̄−1)h̄

+
2S−2

(h̄−1)h̄
−2ζ2S1

)
log3 (1−z̄) log z̄

24
(
2h̄−1

)
(h̄−1)h̄

(
−ζ2+

S1

(h̄−1)h̄
−2S−2

)

log4 (1−z̄) log z̄

48
(
2h̄−1

)
(h̄−1)h̄

(
− 2S2

1

(h̄−1)h̄
−4(S−3−2S−2,1)+6(S−3−2S1,−2)

+ 3ζ3+
2ζ2

(h̄−1)h̄
+

2S−2

(h̄−1)h̄
−6ζ2S1+2S3

)

log2(1−z̄)Li2(1−z̄)log z̄

4
(
2h̄−1

)
(h̄−1)h̄

(
−6(S−3−2S1,−2)− ζ2

(h̄−1)h̄

− 3ζ3−
2S−2

(h̄−1)h̄
+6ζ2S1

)
Table 2. Inversions for G(z̄) containing explicit powers of log z̄.
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B Double discontinuity at fourth order

To order g4 the terms contributing to the double discontinuity from the bilinear opera-

tors are

Iϕ2 = log4(1−z̄)
1

192
(log z̄−logz)+log3(1−z̄)

1

24
(Li2(1−z̄)+3logz−3log z̄+2ζ2)

+log2(1−z̄)

(
−logz

46+3Li2(1−z̄)+log z̄+12ζ2

48
+

5

8
Li3(1−z̄)+

1

2
Li3

(
z̄−1

z̄

)

+
2(23+6ζ2) log z̄−Li2(1−z̄)(21log z̄+34)−106ζ2−4log3 z̄+log2 z̄+24ζ3

48

)
, (B.1)

I2 =
1

8
log2(1−z̄)

(
logz(ζ2−2)+2log z̄+

1

6
log3 z̄+Li3(1−z̄)−Li3

(
z̄−1

z̄

)
−ζ3

)
. (B.2)

In order to compute the first expression we used the value of the OPE coefficient for the

bilinear scalar operator, which is fixed by crossing to be a0 = 2(1− g − g2 + · · · ), and also

used the precise relation between g and ε.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in

4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].

[2] A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The Analytic Bootstrap and

AdS Superhorizon Locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].

[3] Z. Komargodski and A. Zhiboedov, Convexity and Liberation at Large Spin, JHEP 11 (2013)

140 [arXiv:1212.4103] [INSPIRE].

[4] L.F. Alday and A. Bissi, Higher-spin correlators, JHEP 10 (2013) 202 [arXiv:1305.4604]

[INSPIRE].

[5] L.F. Alday and J.M. Maldacena, Comments on operators with large spin, JHEP 11 (2007)

019 [arXiv:0708.0672] [INSPIRE].

[6] L.F. Alday, A. Bissi and T. Lukowski, Large spin systematics in CFT, JHEP 11 (2015) 101

[arXiv:1502.07707] [INSPIRE].

[7] L.F. Alday and A. Zhiboedov, An Algebraic Approach to the Analytic Bootstrap, JHEP 04

(2017) 157 [arXiv:1510.08091] [INSPIRE].

[8] L.F. Alday, Large Spin Perturbation Theory for Conformal Field Theories, Phys. Rev. Lett.

119 (2017) 111601 [arXiv:1611.01500] [INSPIRE].

[9] L.F. Alday, Solving CFTs with Weakly Broken Higher Spin Symmetry, JHEP 10 (2017) 161

[arXiv:1612.00696] [INSPIRE].

[10] D. Simmons-Duffin, The Lightcone Bootstrap and the Spectrum of the 3d Ising CFT, JHEP

03 (2017) 086 [arXiv:1612.08471] [INSPIRE].

– 18 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1126-6708/2008/12/031
https://arxiv.org/abs/0807.0004
https://inspirehep.net/search?p=find+EPRINT+arXiv:0807.0004
https://doi.org/10.1007/JHEP12(2013)004
https://arxiv.org/abs/1212.3616
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.3616
https://doi.org/10.1007/JHEP11(2013)140
https://doi.org/10.1007/JHEP11(2013)140
https://arxiv.org/abs/1212.4103
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.4103
https://doi.org/10.1007/JHEP10(2013)202
https://arxiv.org/abs/1305.4604
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.4604
https://doi.org/10.1088/1126-6708/2007/11/019
https://doi.org/10.1088/1126-6708/2007/11/019
https://arxiv.org/abs/0708.0672
https://inspirehep.net/search?p=find+EPRINT+arXiv:0708.0672
https://doi.org/10.1007/JHEP11(2015)101
https://arxiv.org/abs/1502.07707
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.07707
https://doi.org/10.1007/JHEP04(2017)157
https://doi.org/10.1007/JHEP04(2017)157
https://arxiv.org/abs/1510.08091
https://inspirehep.net/search?p=find+EPRINT+arXiv:1510.08091
https://doi.org/10.1103/PhysRevLett.119.111601
https://doi.org/10.1103/PhysRevLett.119.111601
https://arxiv.org/abs/1611.01500
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.01500
https://doi.org/10.1007/JHEP10(2017)161
https://arxiv.org/abs/1612.00696
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.00696
https://doi.org/10.1007/JHEP03(2017)086
https://doi.org/10.1007/JHEP03(2017)086
https://arxiv.org/abs/1612.08471
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.08471


J
H
E
P
0
7
(
2
0
1
8
)
1
3
1

[11] M. Cornagliotto, M. Lemos and P. Liendo, Bootstrapping the (A1, A2) Argyres-Douglas

theory, JHEP 03 (2018) 033 [arXiv:1711.00016] [INSPIRE].

[12] J. Qiao and S. Rychkov, A tauberian theorem for the conformal bootstrap, JHEP 12 (2017)

119 [arXiv:1709.00008] [INSPIRE].

[13] S. Caron-Huot, Analyticity in Spin in Conformal Theories, JHEP 09 (2017) 078

[arXiv:1703.00278] [INSPIRE].

[14] S. Rychkov and Z.M. Tan, The ε-expansion from conformal field theory, J. Phys. A 48

(2015) 29FT01 [arXiv:1505.00963] [INSPIRE].

[15] P. Basu and C. Krishnan, ε-expansions near three dimensions from conformal field theory,

JHEP 11 (2015) 040 [arXiv:1506.06616] [INSPIRE].

[16] F. Gliozzi, A. Guerrieri, A.C. Petkou and C. Wen, Generalized Wilson-Fisher Critical Points

from the Conformal Operator Product Expansion, Phys. Rev. Lett. 118 (2017) 061601

[arXiv:1611.10344] [INSPIRE].

[17] K. Roumpedakis, Leading Order Anomalous Dimensions at the Wilson-Fisher Fixed Point

from CFT, JHEP 07 (2017) 109 [arXiv:1612.08115] [INSPIRE].

[18] P. Liendo, Revisiting the dilatation operator of the Wilson-Fisher fixed point, Nucl. Phys. B

920 (2017) 368 [arXiv:1701.04830] [INSPIRE].

[19] F. Gliozzi, Anomalous dimensions of spinning operators from conformal symmetry, JHEP 01

(2018) 113 [arXiv:1711.05530] [INSPIRE].

[20] R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, Conformal Bootstrap in Mellin Space,

Phys. Rev. Lett. 118 (2017) 081601 [arXiv:1609.00572] [INSPIRE].

[21] R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, A Mellin space approach to the conformal

bootstrap, JHEP 05 (2017) 027 [arXiv:1611.08407] [INSPIRE].

[22] P. Dey, K. Ghosh and A. Sinha, Simplifying large spin bootstrap in Mellin space, JHEP 01

(2018) 152 [arXiv:1709.06110] [INSPIRE].

[23] P. Dey, A. Kaviraj and A. Sinha, Mellin space bootstrap for global symmetry, JHEP 07

(2017) 019 [arXiv:1612.05032] [INSPIRE].

[24] I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field

Theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].

[25] D. Simmons-Duffin, D. Stanford and E. Witten, A spacetime derivation of the Lorentzian

OPE inversion formula, arXiv:1711.03816 [INSPIRE].

[26] F.A. Dolan and H. Osborn, Conformal four point functions and the operator product

expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [INSPIRE].

[27] L.F. Alday and S. Caron-Huot, Gravitational S-matrix from CFT dispersion relations,

arXiv:1711.02031 [INSPIRE].

[28] A.N. Manashov, E.D. Skvortsov and M. Strohmaier, Higher spin currents in the critical

O(N) vector model at 1/N2, JHEP 08 (2017) 106 [arXiv:1706.09256] [INSPIRE].

[29] P. Liendo, L. Rastelli and B.C. van Rees, The Bootstrap Program for Boundary CFTd,

JHEP 07 (2013) 113 [arXiv:1210.4258] [INSPIRE].

[30] P. Dey and A. Kaviraj, Towards a Bootstrap approach to higher orders of ε-expansion, JHEP

02 (2018) 153 [arXiv:1711.01173] [INSPIRE].

– 19 –

https://doi.org/10.1007/JHEP03(2018)033
https://arxiv.org/abs/1711.00016
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.00016
https://doi.org/10.1007/JHEP12(2017)119
https://doi.org/10.1007/JHEP12(2017)119
https://arxiv.org/abs/1709.00008
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.00008
https://doi.org/10.1007/JHEP09(2017)078
https://arxiv.org/abs/1703.00278
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.00278
https://doi.org/10.1088/1751-8113/48/29/29FT01
https://doi.org/10.1088/1751-8113/48/29/29FT01
https://arxiv.org/abs/1505.00963
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.00963
https://doi.org/10.1007/JHEP11(2015)040
https://arxiv.org/abs/1506.06616
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.06616
https://doi.org/10.1103/PhysRevLett.118.061601
https://arxiv.org/abs/1611.10344
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.10344
https://doi.org/10.1007/JHEP07(2017)109
https://arxiv.org/abs/1612.08115
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.08115
https://doi.org/10.1016/j.nuclphysb.2017.04.020
https://doi.org/10.1016/j.nuclphysb.2017.04.020
https://arxiv.org/abs/1701.04830
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.04830
https://doi.org/10.1007/JHEP01(2018)113
https://doi.org/10.1007/JHEP01(2018)113
https://arxiv.org/abs/1711.05530
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.05530
https://doi.org/10.1103/PhysRevLett.118.081601
https://arxiv.org/abs/1609.00572
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.00572
https://doi.org/10.1007/JHEP05(2017)027
https://arxiv.org/abs/1611.08407
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.08407
https://doi.org/10.1007/JHEP01(2018)152
https://doi.org/10.1007/JHEP01(2018)152
https://arxiv.org/abs/1709.06110
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.06110
https://doi.org/10.1007/JHEP07(2017)019
https://doi.org/10.1007/JHEP07(2017)019
https://arxiv.org/abs/1612.05032
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.05032
https://doi.org/10.1088/1126-6708/2009/10/079
https://arxiv.org/abs/0907.0151
https://inspirehep.net/search?p=find+EPRINT+arXiv:0907.0151
https://arxiv.org/abs/1711.03816
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.03816
https://doi.org/10.1016/S0550-3213(01)00013-X
https://arxiv.org/abs/hep-th/0011040
https://inspirehep.net/search?p=find+EPRINT+hep-th/0011040
https://arxiv.org/abs/1711.02031
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.02031
https://doi.org/10.1007/JHEP08(2017)106
https://arxiv.org/abs/1706.09256
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.09256
https://doi.org/10.1007/JHEP07(2013)113
https://arxiv.org/abs/1210.4258
https://inspirehep.net/search?p=find+EPRINT+arXiv:1210.4258
https://doi.org/10.1007/JHEP02(2018)153
https://doi.org/10.1007/JHEP02(2018)153
https://arxiv.org/abs/1711.01173
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.01173


J
H
E
P
0
7
(
2
0
1
8
)
1
3
1

[31] S.K. Kehrein and F. Wegner, The Structure of the spectrum of anomalous dimensions in the

N vector model in 4− ε-dimensions, Nucl. Phys. B 424 (1994) 521 [hep-th/9405123]

[INSPIRE].

[32] S.E. Derkachov, J.A. Gracey and A.N. Manashov, Four loop anomalous dimensions of

gradient operators in φ4 theory, Eur. Phys. J. C 2 (1998) 569 [hep-ph/9705268] [INSPIRE].

[33] S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving

the 3d Ising Model with the Conformal Bootstrap II. c-Minimization and Precise Critical

Exponents, J. Stat. Phys. 157 (2014) 869 [arXiv:1403.4545] [INSPIRE].

[34] F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Precision Islands in the Ising and O(N)

Models, JHEP 08 (2016) 036 [arXiv:1603.04436] [INSPIRE].

[35] J. Henriksson and T. Lukowski, Perturbative Four-Point Functions from the Analytic

Conformal Bootstrap, JHEP 02 (2018) 123 [arXiv:1710.06242] [INSPIRE].

[36] M. van Loon, The Analytic Bootstrap in Fermionic CFTs, JHEP 01 (2018) 104

[arXiv:1711.02099] [INSPIRE].

[37] V. Guru Charan and S. Prakash, On the Higher Spin Spectrum of Chern-Simons Theory

coupled to Fermions in the Large Flavour Limit, JHEP 02 (2018) 094 [arXiv:1711.11300]

[INSPIRE].

[38] A. Codello, M. Safari, G.P. Vacca and O. Zanusso, Functional perturbative RG and CFT

data in the ε-expansion, Eur. Phys. J. C 78 (2018) 30 [arXiv:1705.05558] [INSPIRE].

[39] S. Albino, Analytic Continuation of Harmonic Sums, Phys. Lett. B 674 (2009) 41

[arXiv:0902.2148] [INSPIRE].

– 20 –

https://doi.org/10.1016/0550-3213(94)90406-5
https://arxiv.org/abs/hep-th/9405123
https://inspirehep.net/search?p=find+EPRINT+hep-th/9405123
https://doi.org/10.1007/s100520050162
https://arxiv.org/abs/hep-ph/9705268
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9705268
https://doi.org/10.1007/s10955-014-1042-7
https://arxiv.org/abs/1403.4545
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.4545
https://doi.org/10.1007/JHEP08(2016)036
https://arxiv.org/abs/1603.04436
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.04436
https://doi.org/10.1007/JHEP02(2018)123
https://arxiv.org/abs/1710.06242
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.06242
https://doi.org/10.1007/JHEP01(2018)104
https://arxiv.org/abs/1711.02099
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.02099
https://doi.org/10.1007/JHEP02(2018)094
https://arxiv.org/abs/1711.11300
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.11300
https://doi.org/10.1140/epjc/s10052-017-5505-2
https://arxiv.org/abs/1705.05558
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.05558
https://doi.org/10.1016/j.physletb.2009.02.053
https://arxiv.org/abs/0902.2148
https://inspirehep.net/search?p=find+EPRINT+arXiv:0902.2148

	Introduction
	Lorentzian OPE inversion in the epsilon-expansion
	Generalities
	From large spin perturbation theory to an inversion formula
	Inverting discontinuities in the epsilon-expansion
	Matching conditions at low spin
	O(N) model

	Results to fourth order
	New operators at second order
	Solving the inversion problem at fourth order

	Conclusions
	Some inversion integrals
	Double discontinuity at fourth order

