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1 Introduction

The Randall-Sundrum (RS) model of warped extra dimensions [1], with both the Standard

Model (SM) gauge and fermion fields being in the 5-d bulk, provides important insights

into two of the most important and outstanding problems that we currently face in particle

physics: the Gauge-Hierarchy problem and the Fermion Mass Hierarchy/Flavor Puzzle [1–

6]. In order to address these two issues, while also satisfying the numerous experimental

constraints arising from collider, flavor and precision measurements [7–14], requires a highly

flexible framework that takes advantage of all the numerous O(1) free parameters that are

allowed within the RS model. Chief among these free parameters are the bulk masses for

the various SM fermions that are responsible for the ‘localization’ of the fermion wave-

functions within the 5-d bulk, which possess far-reaching consequences for both flavor and

neutrino physics [7, 8, 12, 15, 16]. In addition to these bulk mass parameters there are pos-

sible localized kinetic terms (BLKTs) [14, 17–21], on either or both the IR and UV branes,

for all of the gauge and fermion SM fields in addition to those that might be present for

the graviton. Of course, these various parameters can not be chosen arbitrarily or indepen-

dently. In addition to the many phenomenological and model-building constraints that are
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required to be satisfied by any realistic model [7–12], one needs to also be concerned about

possible unphysical regions of the parameter space wherein ghost and/or tachyon states for

the graviton or any of the SM fields may be present in the spectra [19]. Thus the identifi-

cation of such unphysical regions, a priori, would be a useful guide in the construction of

realistic and phenomenologically successful RS-based models. Unfortunately, no detailed

systematic study of where or when such unphysical regions of the RS model may appear is

currently available. The goal of the present paper is to address this situation and provide

such a guide.

In order to perform this analysis we first consider the case of a single fermion in the

bulk, before electroweak symmetry breaking, with a bulk mass m = kν and possessing

BLKTs on both the UV(IR) brane described by the parameters τ0(π), respectively.1 After

determining the general conditions for freedom from both tachyon and ghost instabilities

(obtained by considering possible imaginary roots for the eigenvalue equation and the nor-

malization factors of the corresponding eigenfunctions), for specific values of ν we determine

which values of τ0,π yield equations of motion that result in tachyon- and ghost-free spec-

tra. Specifically, for fixed values of ν, the physically allowed values of τ0,π which lead to

either tachyons and/or ghost states are determined. Once this is done, we then investigate

the issue of whether or not spontaneous symmetry breaking (SSB) of the SM electroweak

symmetry might influence these results. This requires the consideration of the simultane-

ous constraints on the two different fermion fields whose zero-modes we can identify with

the specific left- or right-handed SM fermion states. Note that since the SM Higgs vacuum

expectation value (vev) (∼ 246 GeV) is sufficiently below the phenomenologically allowed

Kaluza-Klein (KK) mass scale, & a few TeV, we can generally perform this analysis by

using a perturbative approach. We then demonstrate that SSB in the perturbative region

does not alter our previously results with respect to the physically allowed parameter space

regions.

The outline of this paper is as follows: in section 2 we present a review that provides

the necessary background information on the RS model, establishes our essential notation

and describes the assumptions to be used in the subsequent analysis. In section 3.1,

we provide the basic mathematical framework for performing the analysis and describe

the procedures that we will subsequently follow. In particular, we divide the relevant

range of the parameter ν into several distinct regimes that we will discuss separately. We

find that this is separation is most easily performed by considering the shifted parameter

η = −(ν + 1/2). In section 3.2, we consider the range η . −0.1, which corresponds

to a fermion localized close to the IR brane, while in section 3.3 the range η & 0.1,

corresponding to a fermion localized near the UV brane, is instead examined. Note that

the latter range includes the case of gravitons, which corresponds to η = 1. The rather

complex range −0.1 . η . 0.1, corresponding to a fermion largely delocalized in the bulk,

which includes the case of bulk gauge fields (i.e., η = 0) is considered in detail in section 3.4.

In section 3.5, we look beyond the possibility of purely imaginary tachyonic roots to the

1The case of a bulk gauge field or graviton is then analogous to the choice ν = −1/2 or 1/2, respectively.

This is because at these ν values, the equations of motion for the fermion fields are identical to those of a

bulk gauge field (if ν = −1/2) or a graviton (at ν = 1/2).
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case where possible complex roots might exist and determine that if such roots were to

exist, they would not correspond to any physical, propagating KK states. In section 4 we

analyze the possible influence of SM electroweak SSB on our previously obtained results

and demonstrate that if SSB can be treated perturbatively these results remain valid and

that no new parameter space regions are opened up by SSB. Our results and conclusions

are then summarized in section 5.

2 Randall-Sundrum framework

In this section, we provide a brief overview of the incorporation of bulk fermions in a generic

RS model framework. The model is constructed on a slice of AdS5 spacetime, with the

metric [1],

ds2 = e−2σηµνdx
µdxν − r2cdφ2. (2.1)

The fifth dimension, parameterized here by the coordinate −π ≤ φ ≤ π, is compact-

ified on an S1/Z2 orbifold of radius rc, and bounded on both sides by 4-dimensional flat

Minkowski branes. Following common naming conventions, we refer to the brane at φ = 0

as the UV- or Planck-brane, and the brane at |φ| = π as the IR- or TeV-brane. Here,

σ ≡ krc|φ|, where k ∼ O(MPl) is the curvature scale of the warped space, and ηµν is the

Minkowski metric in four dimensions. As discussed in [1], the gauge-gravity hierarchy may

be addressed in this framework if krc ≈ 11, with a natural 4-dimensional Higgs vev being

generated at the weak scale while keeping gravity at the Planck scale. For our numerical

analyses here we take krc = 11.27. It has been shown that the size of the extra dimension

can be stabilized at approximately this value without fine-tuning of parameters [22].

To incorporate fermionic fields in the bulk, we start in the simple scenario where

spontaneous symmetry breaking via the Higgs mechanism (and the corresponding mixing

of fermion Kaluza-Klein tower states) is neglected. Here, in the case of a bulk fermion field

(producing a left-handed chiral SM zero mode fermion), we have the action [23, 24]

SF =

∫
d4x

∫
rcdφ

√
G

{
VM
N

(
i

2
Ψ̄ΓN∂MΨ + h.c.

)
+ [2τ0/krc δ(φ)

+ 2τπ/krc δ(|φ| − π)]V µ
ν (iΨ̄Lγ

ν∂µΨL + h.c.) (2.2)

− sgn(φ) mfΨ
Ψ̄Ψ

}
.

Here, Roman indices denote summation over five dimensions (Greek indices indicate sum-

mation over the usual four), while
√
G =

√
det(GMN ) = e−4σ, VM

µ = eσδMµ , V 4
4 = −1, and

ΓN = (γν , iγ5). The bulk mass of Ψ is given by mfΨ
= kνf , where νf is a dimensionless

parameter that determines the location of the fermion fields in the bulk. Note that this

action includes generic brane-localized kinetic terms (BLKT’s) (i.e., represented by τ0 and

τπ), which may arise due to loop effects or as a consequence of a UV completion of the

theory for the left-handed, but not right-handed, fermion fields. This is by construction; in

order to produce a left-handed chiral zero-mode, the left-handed five-dimensional field is

required to be even under the orbifold’s Z2 symmetry, while the right-handed fields must
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be odd. Intuitively, we see that right-handed brane terms will be ineffective here: since

the right-handed fields are Z2-odd, their bulk wave functions vanish at |φ| = π and φ = 0,

so any additional terms on these branes should not have a significant effect on the physics.

Furthermore, as noted in [23, 24], if the odd fields lack brane terms at tree-level, they will

not be perturbatively generated.

We now introduce the following KK expansion for even (L) and odd (R) fermion fields,

ΨL,R =
∑
n

ψ
(n)
L,R(x)

e2σf
(n)
L,R(φ)
√
rc

. (2.3)

Here, ψ
(n)
L(R)(x) represents the left-(right-)handed 4-dimensional wave function for the nth

mode of the Kaluza-Klein (KK) tower, while f
(n)
L(R)(φ) represents this field’s wave function in

the five-dimensional bulk. The mass of the nth KK mode is then denoted by mn. Our goal,

as is standard in Kaluza-Klein treatments of extra dimensions, is to achieve an effective

4-dimensional theory with an action of the form

S4 =
∑
n

∫
d4x

[
ψ(n)i/∂ψ(n) −mnψ(n)ψ(n)

]
. (2.4)

To achieve canonically normalized kinetic terms, we require the following normalization

condition ∫ π

−π
dφeσ

[
f
(n)∗
L (φ)f

(m)
L (φ)(1 + ∆τπ ,τ0)

]
= δmn,∫ π

−π
dφeσ

[
f
(n)∗
R (φ)f

(m)
R (φ)

]
= δmn,

(2.5)

where we have defined the operator ∆τπ ,τ0 ≡ 2
krc

(τπδ(|φ|−π) + τ0δ(φ)), and δmn is just the

usual Kronecker delta symbol. In order to obtain the mass terms, we must have∫ π

−π
dφ
[
f
(m)∗
L (φ)(∂φf

(n)
R (φ) + rc sgn(φ)νkf

(n)
R (φ))

]
= rcmnδmn,∫ π

−π
dφ
[
f
(m)∗
R (φ)(∂φf

(n)
L (φ)− rc sgn(φ)νkf

(n)
L (φ))

]
= −rcmnδmn.

(2.6)

The kinetic and mass terms of eq. (2.4) imply the following equations of motion

(∂φ + rc sgn(φ)νk)f
(n)
R = rcmn(1 + ∆τπ ,τ0)f

(n)
L ,

(∂φ − rc sgn(φ)νk)f
(n)
L = rcmnf

(n)
R .

(2.7)

These equations of motion then yield the following solutions for f
(n)
L,R

f
(n)
L (φ) =

eσ/2

Nn
ζ 1

2
−ν(zn),

f
(n)
R (φ) =

− sgn(φ)eσ/2

Nn
ζ− 1

2
−ν(zn).

(2.8)

Here we define the function ζq(zn) as

ζq(zn) ≡ αnJq(zn) + βnYq(zn) (2.9)
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where Jq(x) and Yq(x) are the order-q Bessel functions of the first and second kind, respec-

tively. The variable zn ≡ mn
k e

σ is a function of φ and the mass of the KK mode described

by the index n, given by mn. The normalization constant Nn is given by∫ π

−π
dφ(1 + ∆τπ ,τ0)eσf

(n)
L (φ)f

(m)
L (φ) =

∫ π

−π
dφeσf

(n)
R (φ)f

(m)
R (φ) = δnm. (2.10)

Finally, the constants αn and βn in eq. (2.9) are given by boundary conditions on the UV-

brane (determined by integrating eqs. (2.7) over an infinitesimal interval of φ about φ = 0)

αn ≡ Y− 1
2
−ν(εxn) + τ0εxnY 1

2
−ν(εxn), (2.11)

βn ≡ −
[
J− 1

2
−ν(εxn) + τ0εxnJ 1

2
−ν(εxn)

]
.

Here, it is convenient to employ the value of zn evaluated at the TeV-brane (φ = π), i.e.,

xn. Then, zn evaluated at the UV-brane is given by εxn, where ε ≡ e−krcπ. To find the set

of allowed values of xn, and hence the masses of KK tower modes, we must find the roots

of the TeV-brane boundary condition equation

ζ− 1
2
−ν(xn)− τπxnζ 1

2
−ν(xn) = 0, (2.12)

with xn being the roots of this equation. The masses of the particles in the KK tower

are then mn = xnkε. It should also be noted that, in the absence of spontaneous sym-

metry breaking, the even field also possesses a massless zero-mode solution, given by the

(normalized) wave equation,

f
(0)
L (φ) =

(√
krc
2

1 + 2ν

(1 + (1 + 2ν)τπ)e(1+2ν)krcπ − (1− (1 + 2ν)τ0)

)
eνσ. (2.13)

In this work, we will determine which values of τπ, τ0, and ν are permitted based on

a set of physical conditions. First, all solutions of eq. (2.12) (i.e., the roots xn), which

yields the mass spectrum of the Kaluza-Klein tower, must be real. Otherwise, the theory

would predict the existence of phenomenologically unviable states (tachyons, for purely

imaginary solutions, or fermions with complex masses squared, for general complex solu-

tions). Secondly, we require the absence of so-called “ghost” states, which are states with

negative probability, as indicated by negative values for the square of the Kaluza-Klein

mode’s normalization. As is standard practice in the literature [19–21, 25, 26], we limit our

discussion of the existence of ghost states to the zero-mode f
(0)
L , which yields the condition

1 + 2ν

(1 + (1 + 2ν)τπ)ε−( 1
2
+ν) − (1− (1 + 2ν)τ0)ε

( 1
2
+ν)

> 0, (2.14)

to avoid ghosts.

3 Analysis

Having set up the basic machinery, and in particular established the conditions in eqs. (2.12)

and (2.14) to judge the physicality of a point in parameter space, we begin our analysis
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by addressing the specific case that frequently bedevils bulk fields in theories of extra

dimensions, namely the existence of tachyonic (purely imaginary) Kaluza-Klein masses [19].

In the following sections, we address the conditions under which tachyonic modes do not

appear while the no-ghost condition of eq. (2.14) is simultaneously satisfied. Later, we

demonstrate that in the absence of spontaneous symmetry breaking, Kaluza-Klein modes

can only appear with purely real or purely imaginary masses, indicating that our analysis

here, where ghosts and purely imaginary masses are avoided, produces a complete picture

of the allowable parameter space of the model.

3.1 Study of the boundary value equation

First, in an effort to simplify the algebra, we introduce a slightly more convenient fermion

localization parameter, η, by defining

η ≡ −
(

1

2
+ ν

)
. (3.1)

The no-ghost condition eq. (2.14) then becomes

|N0|2 ≡
−2η

(1− 2ητπ)εη − (1 + 2ητ0)ε−η
> 0. (3.2)

Meanwhile, the boundary value equation in eq. (2.12) evaluated on the imaginary line

becomes (where we have taken x → ix in eq. (2.12), implying that x in the expression

below is real)

J (η, τπ, ix)Y(η,−τ0, iεx)− Y(η, τπ, ix)J (η,−τ0, iεx) = 0,

J (η, τ, ix) ≡ Jη(ix)− ixτJ1+η(ix), (3.3)

Y(η, τ, ix) ≡ Yη(ix)− ixτY1+η(ix).

If this equation has a root at some ix, then, it denotes the existence of a KK mode with

a tachyonic mass proportional to this value of ix. The expression can be expanded in a

double power series using the identities,

Jη(ix) =

(
ix

2

)η ∞∑
k=0

(
x

2

)2k 1

k!Γ(1 + k + η)
, (3.4)

Yη(ix) = cot(ηπ)Jη(ix)− csc(ηπ)J−η(ix),

and then takes the general form (which we define as f(x))

f(x) ≡ 1

πη

∞∑
k=0

k∑
j=0

(
x

2

)2k ε2j

k!

(
k

j

)[
εη(1 + 2(k − j − η)τπ)(1− 2jτ0)Γ(1− η)Γ(1 + η)

Γ(1 + k − j − η)Γ(1 + j + η)

− ε−η(1− 2(j − η)τ0)(1 + 2(k − j)τπ)Γ(1− η)Γ(1 + η)

Γ(1 + k − j + η)Γ(1 + j − η)

]
= 0. (3.5)

We now assume that x is not hierarchically large (i.e., x � ε−1). This is motivated

by the fact that the RS model is assumed to be a low-energy approximation of some UV-

complete theory, and hence subject to an ultraviolet cutoff. Otherwise, a hierarchically

– 6 –



J
H
E
P
0
7
(
2
0
1
8
)
1
1
7

large tachyonic root would appear, corresponding to a KK mode with a tachyonic mass

near the 4-dimensional Planck scale, jeopardizing the model’s validity. In fact, for practical

purposes the ultraviolet cutoff must be substantially below the 4-dimensional Planck scale;

as noted in [1], the UV cutoff for these theories should be reasonably close to the scale

kε, to avoid fine tuning in loop corrections to the weak scale that the Randall-Sundrum

model is specifically constructed to prevent. Taking x � ε−1, we see that many terms

that are suppressed by powers of ε2x2 or higher in f(x) in eq. (3.5) can be dropped (which

corresponds to neglecting all but the j = 0 term of the expansion), leading to the following

power series expression for the tachyonic root equation

f(x) ≈ 1

πη

∞∑
k=0

(
x

2

)2k 1

k!

[
εη(1 + 2(k − η)τπ)Γ(1− η)

Γ(1 + k − η)

−ε
−η(1 + 2ητ0)(1 + 2kτπ)Γ(1 + η)

Γ(1 + k + η)

]
= 0. (3.6)

For all practical purposes, except for the special case when τ0 = −1/(2η) and η &
0.1 (which shall be treated separately below), this expansion is sufficient to establish the

existence or absence of non-hierarchically-large tachyonic roots for the fermionic KK modes.

Interestingly, we note that the x0 term in f(x) is equal to −2/|N0|2, with |N0|2 given by

eq. (3.2). Since |N0|2 must be positive to avoid ghosts, we see that for any physically valid

point in parameter space, the x0 term in eq. (3.6) is correspondingly negative. So, to avoid

ghosts, we see that f(0) < 0. Now, we consider the possibility that f(x) > 0 at some x > 0

(because f(x) is even in x, this may be assumed without loss of generality). If there are

no ghost states, we then know that f(0) < 0. So, by the intermediate value theorem, there

must exist a point 0 < y < x such that f(y) = 0, satisfying eq. (3.6) and indicating the

existence of a tachyonic KK mode. If for some set of values of η, τπ, and τ0 there exists a

real x such that f(x) > 0, then this particular set of η, τπ, and τ0 values are unphysical:

if ghost states are avoided by satisfying eq. (3.2), then there must exist a tachyonic root

given by the solution to eq. (3.6), while if eq. (3.2) is not satisfied, the point is physically

disallowed due to the existence of ghost states. Thus, in order to avoid both tachyonic

roots and ghost states, one must always have

f(x) =
1

πη

∞∑
k=0

(
x

2

)2k 1

k!

[
εη(1 + 2(k − η)τπ)Γ(1− η)

Γ(1 + k − η)

−ε
−η(1 + 2ητ0)(1 + 2kτπ)Γ(1 + η)

Γ(1 + k + η)

]
< 0 (3.7)

for all real and non-hierarchically large x. For the sake of definiteness, we define “non-

hierarchically large” as being below some cut-off, which we denote as xmax. As we shall

later see, the boundaries of the allowed parameter space are only weakly dependent on

xmax, so that a specific choice for the value of xmax is not overly consequential for our final

results. In our analysis below, we will examine this equation region by region, covering the

RS parameter space.
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In our analysis, it shall at times be useful to have an approximate form of the boundary

value equation for large, but not hierarchically large, x (i.e., 1 � x � ε−1). To find this

expression, we employ the asymptotic form of the modified Bessel function of the first kind,

Iη(x) ≡ iηJη(x)

Iη(x) ≈ ex√
2πx

∞∑
k=0

Γ
(
1
2 + k + η

)
Γ
(
1
2 + k − η

)
k!Γ

(
1
2 + η

)
Γ
(
1
2 − η

) (
1

2x

)k
. (3.8)

Here, terms proportional to e−x have been dropped, rendering this expression only valid

for large x. This expansion yields the following recasting of eq. (3.7)

f(x) ≈ ex

ηπ3/2
√

2x

[(
εx

2

)η
Γ(1−η)−(1+2ητ0)

(
εx

2

)−η
Γ(1+η)

]

×
∞∑
k=0

(
1

2x

)k[Γ
(
1
2+k−η

)
Γ
(
1
2+k+η

)
k!Γ

(
1
2−η

)
Γ
(
1
2+η

) +
xτπΓ

(
−1

2+k−η
)

Γ
(
3
2+k+η

)
k!Γ

(
−1

2−η
)

Γ
(
3
2+η

) ]
< 0. (3.9)

We will now examine each section of the parameter space, one-by-one.

3.2 Fermions near the TeV-brane (η . −0.1)

Having rewritten our boundary value equation, we now address the case where the fermion

is localized “close” to the TeV-brane (η is large and negative), far enough from η = 0 so

that the ε−η terms can be safely ignored relative to the εη terms in eq. (3.6). In practice,

a numerical investigation indicates that the condition for this approximation to be valid is

roughly η . −0.1. In this case, ε−η . 0.02, so that a ∼ 4 × 10−4 level suppression of the

ε−η terms occurs relative to the εη terms. Assuming natural (magnitude < 50) values for

τ0 and τπ, this leads to at most a ∼ 1% discrepancy between the value of f(x) with the

ε−η terms dropped versus being included. The condition to avoid tachyons then becomes

(noting that η < 0 here)

f̃(x)|TeV ≡ (ηπ)f(x)|TeV ≈
∞∑
k=0

(
x

2

)2k 1

k!

[
εη(1 + 2(k − η)τπ)Γ(1− η)

Γ(1 + k − η)

]
> 0. (3.10)

Here, we have defined f̃(x) as f(x) multiplied by the (negative) value ηπ, in order to avoid

sign confusion later on. Meanwhile, the condition to avoid ghost states simplifies to

1− 2ητπ > 0. (3.11)

First, we consider the case τπ ≥ 0. Recalling that η < 0, we see that the no-ghost

condition eq. (3.11) is automatically satisfied. We now note that, when η < 0, both 1− η
and 1 + k − η (for some natural number k) are positive, and as a result, the quantity

Γ(1 − η)/Γ(1 + k − η) is also positive. Meanwhile, since 1 − 2ητπ > 0 and kτπ is also

positive, we observe that the coefficient of each (x/2)2k term in f̃(x) is also positive. Thus

we conclude that eq. (3.10) is always satisfied in this regime when τπ ≥ 0, indicating that

this region of parameter space avoids both tachyons and ghosts, and is hence physically

allowed.
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Now, we consider the opposite case where τπ < 0. As was found in the case where

τπ ≥ 0, the ratio Γ(1− η)/Γ(1 + k− η) remains positive. However, as k gets large, the kτπ
term in the coefficients of eq. (3.10) will dominate the numerator, and since τπ < 0, this

results in the existence of an infinite series of negative terms in eq. (3.10) (i.e., all terms

after some minimum index k). Because the infinite series of negative terms is proportional

to large powers of x, eq. (3.10) must eventually become negative at large x, since these

higher-order terms will dominate the expansion in that regime. This leads to a violation of

the condition to simultaneously avoid tachyons and/or ghosts, physically disallowing this

region of parameter space.

In the region where τπ < 0, there also exists a single special case that requires individul

attention, namely, when τπ = 1/(2η). In this scenario, instead of eq. (3.10), the general

condition eq. (3.7) becomes

− (1 + 2ητ0)ε
−η +

∞∑
k=1

(x
2

)2k 1

k!

εηkΓ(1− η)

ηΓ(1 + k − η)
> 0, (3.12)

where we have substituted the value τπ = 1/(2η) into our expression for f̃(x), and noted

that, because the x0 term in the above expansion has no part proportional to εη, we cannot

omit the part proportional to ε−η. Meanwhile, because the εη contribution in eq. (3.2) (the

condition to avoid ghosts), is equal to 0, we obtain a different no-ghost condition from that

of eq. (3.11), namely

1 + 2ητ0 < 0. (3.13)

Even under these new conditions, however, we see that all higher-order (x2 or higher) terms

in eq. (3.12) are negative, because η < 0 and, as before, Γ(1 − η) and Γ(1 + k − η) are

positive. So, even if the x0 term of eq. (3.12) is positive, satisfying the no-ghost condition,

all subsequent terms in this expansion must be negative, eventually forcing eq. (3.12) to be

violated at some x. In this special case, as for the general region τπ < 0, then, tachyonic

roots and ghost states cannot be simultaneously avoided.

In summary, we find that when η . −0.1, which indicates that a fermion is localized

close to the TeV-brane, the general condition required to prevent the existence of tachyons

and ghost states is τπ ≥ 0.

3.3 Fermions near the UV-brane (η & 0.1)

Having dealt with the case where fermions are localized close to the TeV-brane, we now

address the opposite extreme, in which fermions reside close to the UV-brane, now given

by the corresponding condition η & 0.1. Notably, results derived here are also applicable

to bulk graviton fields, where their tachyonic spectra are given by eq. (3.3) when η = 1,

and the fermion brane terms are replaced by their graviton counterparts.2 There are two

scenarios to consider here, one in which (1+2ητ0) = 0 and one in which (1+2ητ0) 6= 0. We

shall address the latter case first, since it is simpler, and then move on to the specialized

region where (1 + 2ητ0) = 0.

2For a detailed discussion of brane-localized terms for graviton fields in the RS model, we refer the reader

to [20].
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3.3.1 The case (1 + 2ητ0) 6= 0

Assuming (1 + 2ητ0) 6= 0, eq. (3.7) reduces in the UV-brane localized limit to

∞∑
k=0

(
x

2

)2k 1

k!

[
ε−η(1 + 2ητ0)(1 + 2kτπ)Γ(1 + η)

Γ(1 + k + η)

]
> 0, (3.14)

while the no-ghost condition eq. (3.2) becomes

1 + 2ητ0 > 0. (3.15)

Note that since η > 0, the quantity Γ(1 + η)/Γ(1 + k + η) > 0 for any natural number

k. Furthermore, eq. (3.15) then requires that (1 + 2ητ0)Γ(1 + η)/Γ(1 + k + η) be positive.

Thus, the sign of the kth term in the power series of eq. (3.14) is determined by the sign of

(1+2kτπ). If τπ ≥ 0, this will then result in every term of the power series having a positive

coefficient, automatically satisfying the tachyon-free condition of eq. (3.14). However, if

τπ < 0, then for some sufficiently large k, 1 + 2kτπ becomes negative and remains negative

for all subsequent terms in the expansion. As a result, the tachyon-free condition eq. (3.14)

will eventually be violated, indicating the existence of a tachyonic root. So, in the case

where 1 + 2ητ0 6= 0, the conditions required to avoid tachyons and ghost states are simply

τπ ≥ 0 and 1 + 2ητ0 > 0.

Notably, while our treatment here is based on the Kaluza-Klein decomposition of a bulk

fermion field, the resultant expressions for the bulk profile of the massless zero-mode and

the boundary value equation for Kaluza-Klein states apply equally well to bulk gravition

fields, as long as the localization parameter η is set to 1, and the fermion brane-localized

kinetic terms τπ and τ0 are substituted for corresponding brane-localized curvature terms

δπ and δ0 (these are defined analogously to the fermion brane-localized kinetic terms, with

the only exception being that they are coefficients of 4-dimensional scalar curvature terms,

rather than 4-dimensional fermion kinetic terms) [20]. The restrictions on the parameter

space for gravitons are then trivially derived by setting η = 1 and substituting δ0,π for τ0,π
in eqs. (3.14) and (3.15). However, as noted in [20, 25], the existence of the radion field

for bulk gravitons requires that, to avoid radion ghost states, the parameter δπ must also

follow the bound δπ ≤ 1. While it has been noted that Higgs-radion mixing may relax

this bound somewhat [25], a full exploration of this bound goes beyond the scope of this

analysis, so we restrict our discussion to quoting the 0 ≤ δπ ≤ 1 result.

3.3.2 The case (1 + 2ητ0) = 0

The case where 1 + 2ητ0 = 0 and η & 0.1 is a small, but non-trivial, region of parameter

space, where the analysis is complex enough to merit separate treatment. It should be

noted that this “line” in the τ0–η plane is technically an approximation of an extremely

narrow band in this plane, corresponding to where the term proportional to (1 + 2ητ0)

in eq. (3.5), which is normally dominant for UV-brane localized fermions, becomes small

enough to be subordinate to other terms. However, in the η region we consider here, even

where this band is thickest (at η ≈ 0.1, where the subdominant εη term in eq. (3.5) is least

suppressed compared to the εη term), the ε−η term in eq. (3.5) only becomes subordinate
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to other terms in the expansion if |1 + 2ητ0| . O(10−3). Given how narrow the region

of 1 + 2ητ0 values must be in order to invalidate our analysis in the previous section, we

restrict our discussion here to the line 1+2ητ0 = 0. Notably, the contributors to the power

series in eq. (3.5) proportional to ε−η are now suppressed by at least O(ε2). Taking the

leading-order non-trivial terms for both the εη and ε−η contributions in eq. (3.5) leads to

the following condition to avoid tachyonic states (where τ0 = − 1
2η has been employed)

g(x) ≡
∞∑
k=0

(
x

2

)2k εη

k!

[
(1 + 2(k − η)τπ)Γ(1− η)

Γ(1 + k − η)

− ε2(1−η)k(1 + 2(k − 1)τπ)Γ(1 + η)

η(1− η)Γ(k + η)

]
< 0. (3.16)

In the same limit, to avoid ghosts, we must also require

1− 2ητπ < 0→ τπ >
1

2η
> 0. (3.17)

We first consider the region where η is far enough below unity that the ε2(1−η) term

in eq. (3.16) may be safely ignored, and in keeping with our procedures elsewhere in this

analysis, this region is taken to be approximately η . 0.9. Then, eq. (3.16) reduces to

the form

g(x) ≈
∞∑
k=0

(
x

2

)2k εη

k!

[
(1 + 2(k − η)τπ)Γ(1− η)

Γ(1 + k − η)

]
< 0. (3.18)

Here, to avoid ghost states, τπ > 1
2η > 0 as above, so that 1 − 2ητπ is negative. As k

grows large, the kτπ term in the expression 1 + 2(k − η)τπ will come to dominate the

numerator, and since τπ > 0, this term will have a positive value. In addition, because

we are considering the region η < 1, both Γ(1 − η) > 0 and Γ(1 + k − η) > 0. Therefore,

starting at some initial k0, g(x) will have an infinite number of x2k terms with positive

coefficients. At large x, these terms will eventually force g(x) to become positive, violating

the condition in eq. (3.16). Hence, when (1 + 2ητ0) = 0, the region 0.1 . η . 0.9 is

physically disallowed.

Next, we consider the region η & 1.1, at which point the ε2(1−η) terms in g(x) dominate

the other pieces of the expansion. This reduces eq. (3.16) to the form

g(x) ≈ εη(1− 2ητπ) +

∞∑
k=1

(
x

2

)2k (−1)ε2−η

(k − 1)!

(1 + 2(k − 1)τπ)Γ(1 + η)

η(1− η)Γ(k + η)
< 0. (3.19)

As k gets large, the dominant part of the coefficient of the
(
x
2

)2k
term becomes

−ε2−η

(k − 1)!

2kτπΓ(1 + η)

η(1− η)Γ(k + η)
. (3.20)

Now, recall that in order to avoid ghosts, τπ > 0. Since we are working in a region where

η > 1, so that the factor 1 − η < 0, a brief inspection shows that the coefficients for the

(x/2)2k terms are all positive in the limit of large k. This spawns an infinite number of
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high-order terms in eq. (3.19) which contribute positively to the value of g(x), implying

that g(x) will eventually become positive and generate a tachyonic root. Therefore, in the

region η & 1.1, we again cannot simultaneously avoid tachyonic roots and ghosts.

Finally we consider the remaining region 0.9 . η . 1.1, where we see that we can no

longer neglect terms suppressed by either εη or ε2−η. Keeping these terms, the condition to

avoid tachyons is given by eq. (3.16). In this case, it is well within the realm of possibility

that the limit of g(x) as x → ∞ is negative, meaning that unlike the other η values we

have examined above, this region cannot be easily dismissed as yielding tachyonic roots. In

particular, we can consider the subregion of this piece of parameter space where 1− η < 0.

It can be shown that eventually the kτπΓ(1−η)/Γ(1+k−η) term dominates this expansion

for sufficiently large k. In this case, because −0.1 . 1− η < 0 (which in turn implies that

Γ(1− η) < 0) and τπ > 0, naively we observe that the eventual behavior of the expansion

should trend towards negative infinity in this regime. To determine if this naive analysis

is correct, we probe this small region of parameter space numerically. In practice, we are

most interested in the potential existence of positive values of g(x) below a reasonable

cutoff (past which we assume the existence of a tachyonic root to be an artifact of the RS

model being a low energy effective theory). We take this cutoff to be xmax = 500.

To more easily numerically examine g(x), we turn to its power series expression.

Naively, truncating any power series where |x| > 1 would appear to be unwise, since

higher-order terms in x will generally contribute more to the value of the expansion than

their lower-order counterparts. However, this is predicated on the assumption that the

coefficients of higher-order terms in x are of comparable magnitude to those of lower-order

terms, which is not the case here for g(x). To see this clearly, we define the quantities Ak
and Bk such that

Ak ≡
εη(1 + 2(k − η)τπ)Γ(1− η)

k!Γ(1 + k − η)
, (3.21)

Bk ≡
ε2−η(1 + 2(k − 1)τπ)Γ(1 + η)

η(1− η)k!Γ(k + η)
.

Next we define the functions a(x) and b(x) as

a(x) ≡
∞∑
k=0

Ak

(
x

2

)2k

, (3.22)

b(x) ≡
∞∑
k=0

Bk

(
x

2

)2k

,

so that one may then rewrite eq. (3.16) as g(x) = a(x)+b(x). Now, to validate the accuracy

of truncating the series expansion of g(x), we must determine whether or not for some x

there exists a value k0 such that, for any k ≥ k0, the term Ak
(
x
2

)2k
is larger in magnitude

than the term Ak+1(x/2)2(k+1) in a(x), and correspondingly for the expansion terms in b(x).

If this is the case, then it is reasonable to truncate the series for g(x) comfortably past k0, so

that the terms of the series omitted by truncation are all numerically insignificant. We are

specifically concerned with terms where k is large (namely, where the terms proportional

– 12 –



J
H
E
P
0
7
(
2
0
1
8
)
1
1
7

to kτπ in Ak and Bk dominate the values of these terms), if only because it is a simple

enough matter to include the finite number of terms in the power expansion of g(x) where

k is not large. In the limit where k is large, Ak and Bk become

Ak ≈
εη(2kτπ)Γ(1− η)

k!Γ(1 + k − η)
, (3.23)

Bk ≈
ε2−η(2kτπ)Γ(1 + η)

η(1− η)k!Γ(k + η)
.

Taking ratios of successive terms of a(x) and b(x) then yields(
x
2

)2(k+1)
Ak+1(

x
2

)2k
Ak

=

(
x

2

)2 1

k(1 + k − η)
≈
(
x

2

)2 1

k2
, (3.24)

(
x
2

)2(k+1)
Bk+1(

x
2

)2k
Bk

=

(
x

2

)2 1

k(k + η)
≈
(
x

2

)2 1

k2
.

Thus, we see that for x2

4 . k2 (i.e., x . 2k), the ratio of the
(
x
2

)2(k+1)
term to the

(
x
2

)2k
term in either a(x) or b(x) will be less than unity. This indicates that past a certain k value,

higher-order terms in these functions will contribute less to the expansion than lower-order

terms. We thus conclude that as long as we select a cutoff value for k large enough so

that we can anticipate any higher-order terms in a(x) and b(x) will contribute negligibly

at our cutoff xmax, then g(x) = a(x) + b(x) can be well approximated even when the sum

in eq. (3.16) is truncated.

For our numerical analysis (using Mathematica [27]), we truncate the series at kmax =

500 (not to be confused with xmax), neglecting the terms proportional to x2(501) and higher.

Based on the suppression of terms in g(x), this should be more than sufficient to faithfully

approximate the value of g(x) for any x < xmax = 500, given that according to our

preceding analysis, all terms with k > 250 should contribute progressively less to the value

of g(x) than each term with lower k within this region of x. Our numerical analysis finds

positive maxima for eq. (3.16) when x < 500 for all points in the parameter space where

τπ < 50 and 0.9 < η < 1.1. Thus, we that find the region where η ≈ 1 is also disallowed.

Hence, the entire region where τ0 = −1/(2η) is disallowed for fermions localized near the

UV-brane.

In summary then, the only allowed region of parameter space for UV-brane localized

fermions is τπ ≥ 0 and τ0 > −1/(2η). This also implies that for gravitons, the allowed

parameter space for the brane-localized curvature terms δπ and δ0 (localized on the IR- and

UV-brane, respectively) based on our physicality conditions is 0 ≤ δπ ≤ 1 and δ0 > −1
2 ,

where the bound δπ ≤ 1 is required to avoid ghost states for the radion field, which does

not exist for UV-localized fermions.

3.4 The region −0.1 . η . 0.1

Since ε ∼ O(10−16) is such a small parameter, a treatment of the potential existence of

tachyons and ghost-like states in the simple η → 0 limit is insufficient to explore the full
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range of results where η is too small to ignore either the εη or ε−η terms in eq. (3.7). As a

result, we must instead consider the somewhat larger region where −0.1 . η . 0.1, where

our prior practice of neglecting either the εη or ε−η terms is no longer valid. In the limit

where η is non-vanishing, but close to zero, eq. (3.7) becomes

f(x) ≡
∞∑
k=0

(
x

2

)2kCk
k!
≡ 1

πη

∞∑
k=0

(
x

2

)2k 1

k!

[
εη(1 + 2(k − η)τπ)Γ(1− η)

Γ(1 + k − η)

− ε−η(1 + 2ητ0)(1 + 2kτπ)Γ(1 + η)

Γ(1 + k + η)

]
< 0, (3.25)

while the corresponding condition eq. (3.2) to avoid ghosts is now

1

η
(1 + 2ητ0) >

1

η
(1− 2ητπ)ε2η. (3.26)

This region includes an η value of particular interest, namely, η = 0. In this case, the

fermion bulk wave functions and resulting spectrum become precisely equivalent to those

of a bulk gauge field (for a discussion of RS bulk gauge fields, see, for example, [21, 28, 29]),

rendering the constraints we derive in this region relevant to analyses involving bulk gauge

fields with BLKT’s. This holds even in the absence of any such terms for bulk fermions.

As before, we now address the various regions of parameter space under which these

equations are satisfied for different values of τπ.

3.4.1 The case τπ ≥ 0

We first consider the case where τπ ≥ 0. Here we demonstrate that in this regime, the

expression f(x) in eq. (3.25) is positive (violating the condition for the simultaneous absence

of ghosts and tachyons) for some x below an arbitrary cutoff xmax if and only if f(xmax) >

0. Hence, if f(xmax) is negative, then f(x) is also negative for all x below xmax. To prove

this lemma, first we note that if f(xmax) > 0, then continuity of f(x) requires that for

some range of x immediately below xmax, f(x) is positive as well. However, the converse

statement, that if f(x) > 0 for some x < xmax, then f(xmax) will be positive, is less trivial.

We first note that a necessary condition for f(x) to be positive at some value of x is that

at least one coefficient Ck in the expansion of eq. (3.25) be non-negative. Otherwise, all

terms would be negative, and it would be impossible to violate the condition in eq. (3.25).

We then show that if some Ck0 ≥ 0 for some value of k0, then Ck > 0 for all k > k0.

We prove this lemma by contradiction, namely, by demonstrating that for some natural

number k0, it is impossible for both the conditions Ck0 ≥ 0 and Ck0+1 ≤ 0 to be satisfied.

First, we note that the coefficient Ck0 in eq. (3.25) is non-negative provided that

εη(1 + 2(k0 − η)τπ)Γ(1− η)

ηΓ(1 + k0 − η)
≥ ε−η(1 + 2ητ0)(1 + 2k0τπ)Γ(1 + η)

ηΓ(1 + k0 + η)
. (3.27)

If, however, Ck0+1 ≤ 0, we see that

εη(1 + 2(k0 + 1− η)τπ)Γ(1− η)

η(1 + k0 − η)Γ(1 + k0 − η)
≤ ε−η(1 + 2ητ0)(1 + 2(k0 + 1)τπ)Γ(1 + η)

η(1 + k0 + η)Γ(1 + k0 + η)
. (3.28)
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These two equations may be rewritten (taking advantage of the fact that τπ ≥ 0 so that

1 + 2k0τπ > 0) as

ε−2η

η
(1 + 2ητ0) ≤

(1 + 2(k0 − η)τπ)Γ(1− η)Γ(1 + k0 + η)

η(1 + 2k0τπ)Γ(1 + η)Γ(1 + k0 − η)
, (3.29)

ε−2η

η
(1 + 2ητ0) ≥

(1 + 2(k0 + 1− η)τπ)(1 + k0 + η)Γ(1− η)Γ(1 + k0 + η)

η(1 + 2(k0 + 1)τπ)(1 + k0 − η)Γ(1 + η)Γ(1 + k0 − η)
.

These two conditions constrain ε−2η(1 + 2ητ0) to a particular range, and for this range to

have finite measure, the right side of the upper expression in eq. (3.29) must be greater than

or equal to the right side of the lower expression. Setting the former expression greater

than or equal to the latter, and dividing out the gamma functions from both sides,3 we

arrive at the condition

(1 + 2(k0 + 1− η)τπ)(1 + k0 + η)

η(1 + 2(k0 + 1)τπ)(1 + k0 − η)
≤ (1 + 2(k0 − η)τπ)

η(1 + 2k0τπ)
. (3.30)

This can now be further reduced to a quadratic inequality in τπ, given by

(1 + k0 − η)(1 + 2k0)τ
2
π + (1 + 2k0 − η)τπ +

1

2
≤ 0, (3.31)

with a discriminant η2− 1− 2k0. Notably, when |η| < 1, as is the case in the region we are

considering, this discriminant can never be positive, because k is a non-negative integer

and therefore 1 + 2k ≥ 1. Meanwhile, for the same reason, the coefficient of τ2π , namely

(1 + k− η)(1 + 2k), is positive. Thus, we see that there is no region in the parameter space

we are considering where this quadratic inequality in τπ can be satisfied. This further

implies that there is no region in this space in which there can exist k0 such that Ck0 ≥ 0

and Ck0+1 ≤ 0. By repeatedly applying this lemma, we observe that if Ck0 ≥ 0 for some

k0, then Ck > 0 for all k > k0. Using this result, we see that if f(x) > 0 at some x, it has a

finite number (possibly zero) of lower-order (in x) terms that have non-positive coefficients,

followed by an infinite number of higher-order terms with positive coefficients.

Having proved the above lemma, we can now return to our original goal, namely,

demonstrating that f(x) > 0 for some x < xmax if and only if f(xmax) > 0. After showing

that if f(xmax) > 0, then there exists an x < xmax such that f(x) > 0, our sole remaining

task is to demonstrate the converse. We accomplish this by using our previously derived

lemma on the expansion coefficients Ck. To begin, we consider the scenario where f(x) > 0

for some x < xmax. So, f(x) may be written as

f(x) =
n−1∑
k=0

(
x

2

)2kCk
k!

+
∞∑
j=n

(
x

2

)2jCj
j!

> 0, (3.32)

where here, all Ck ≤ 0, and all Cj > 0, due to our previously proven statement that if any

coefficient Ck0 is non-negative, then Ck > 0 holds for all k > k0. So, the expansion of f(x)

3Note that, since |η| < 1 here, these functions may be divided out of any inequality without modifying

that inequality’s direction.
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contains exactly n terms with non-positive coefficients, followed by an infinite number of

terms that all have positive coefficients.4 Now, observe that

x

2
f ′(x) =

x

2

df(x)

dx
=

n−1∑
k=1

(
x

2

)2k kCk
k!

+

∞∑
j=n

(
x

2

)2j jCj
j!
. (3.33)

We note that because each Ck ≤ 0, for each k < n, and each Cj > 0, for each j ≥ n, it

follows that

x

2

df(x)

dx
> n

n−1∑
k=1

(
x

2

)2kCk
k!

+ n

∞∑
j=n

(
x

2

)2jCj
j!

= n(f(x)− C0). (3.34)

We then have two scenarios to consider. If n > 0, then because the first n terms in the

expansion of f(x) are non-positive, C0 ≤ 0, so that we find that (x/2)f ′(x) > nf(x) > 0,

since by construction we have assumed f(x) > 0. The other scenario, n = 0, implies that

eq. (3.34) automatically stipulates that (x/2)f ′(x) > 0. In all cases, f(x) has a positive

derivative if f(x) > 0, indicating that this function is always increasing wherever f(x) > 0.

Therefore, if f(x) > 0, then f(xmax) > f(x) > 0 for any x < xmax. Hence, in the region

where τπ ≥ 0, the tachyon-free condition eq. (3.25) is violated for some x < xmax if and

only if f(xmax) > 0.

With this proof in hand, we can now find the region of parameter space that avoids

ghosts and tachyons solely by probing the points in parameter space where f(xmax) > 0,

where xmax is the cutoff past which we consider tachyonic roots hierarchically large and

therefore unphysical artifacts. To probe f(x) at xmax, we use the asymptotic expansion

given in eq. (3.9). Keeping only terms proportional to x or x0 (all other terms are suppressed

by at least x−1) in this expansion, we derive an approximate expression for f(xmax) given by

f(xmax) ≈
exmax

(
1− τπ

(
3
8 + η + 1

2η
2
)

+ xmaxτπ
)

ηπ3/2
√

2xmax

×
[(

εxmax

2

)η
Γ(1− η)−

(
εxmax

2

)−η
Γ(1 + η)(1 + 2ητ0)

]
< 0. (3.35)

Using the fact that the xmaxτπ term, which is positive because both xmax and τπ are

positive, dominates the sign of the expression in the first line of eq. (3.35), we arrive at a

condition on τ0 that assures the entire expression f(xmax) remains positive, namely,

τ0 >
1

2η

[(
εxmax

2

)2ηΓ(1− η)

Γ(1 + η)
− 1

]
. (3.36)

Note that as η increases from 0 to ∼ 0.1, at which point the ε2η term is highly suppressed

relative to the ε0 term, this bound approaches τ0 > −1/(2η), the previously obtained

constraint for UV-brane localized fermion fields. If instead, η decreases so that the fermions

are localized near the TeV-brane, the lower bound in eq. (3.36) becomes a negative number

4Notably, in the event that n = 0 (so that all terms in f(x) are positive), the above formula must be

modified slightly: the first sum, from k = 0 to k = n− 1, will be dropped entirely in this case.
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Figure 1. Lower bound on the parameter τ0 to avoid both ghosts and tachyonic roots below xmax,

for xmax = 500 (red), 1000 (blue), or 10000 (green).

scaled by ε2η, which in this regime should be large. This is consistent with the lack of

constraints on τ0 in the TeV-brane localization scenario (i.e., if the only constraint on τ0 is

that it must be greater than some very large negative value, then for practical purposes it

has no constraints). It should also be noted that the bound in eq. (3.36) is finite as η → 0

(i.e., in the case of bulk gauge fields); in this limit the bound becomes

τ0 > γ + log

(
εxmax

2

)
, (3.37)

where here, γ denotes Euler’s constant.

For numerical purposes, we should also acknowledge the possible dependence of the

bound on τ0 on the specific choice of the cutoff, xmax. We see that in the region of interest,

namely −0.1 . η . 0.1, the constraint on τ0 is only weakly dependent on the specific

value of xmax; at worst, it is proportional to x±0.2max , due to the x2η dependence depicted in

eq. (3.36) (when η = 0, the bound depends logarithmically on xmax). As a result, we see

that a wide range of xmax values produce essentially identical constraints. Numerically,

we find the results shown in figure 1 for the lower bound on τ0 as a function of η, for

xmax = 500, 1000, and 10000, to demonstrate the weak dependence of the boundaries on

specific choices for xmax.

3.4.2 The case τπ < 0

We next consider the opposite situation, where τπ < 0. First, we explore the large-x

behavior of f(x) in an attempt to eliminate some of this parameter space, based on the
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asymptotic expansion given in eq. (3.35). If a solution f(xmax) > 0 exists, then, by the

same arguments given in the prior section, f(x) > 0 for some x < xmax.

For τπ < 0, it is possible that the sign of the term
(
1−

(
3
8 + η + 1

2η
2
)
τπ + xτπ

)
in

eq. (3.35) is either positive or negative. However, in practice, for an O(102) or greater

value for the cutoff xmax, τπ would need simultaneously to be of order O(10−2), or smaller,

in order for 1 + xτπ > 0, which would be fine-tuned. Given that a natural value for the

parameter τπ is ∼ O(1 − 10) [21], we find it unreasonable for τπ to be small enough in

magnitude to maintain 1 + xτπ > 0 for practical scenarios. Similarly, we do not explore

the scenario where 1−
(
3
8 + η + 1

2η
2
)
τπ + xmaxτπ = 0; because xmax is an arbitrary cutoff

parameter, any slight change in xmax will eliminate this possibility. As a result, we will

only consider the case where 1 −
(
3
8 + η + 1

2η
2
)
τπ + xτπ < 0, which yields the following

condition on τ0 (employing the requirement that f(xmax) < 0 and the no-ghost condition)

(1− 2ητπ)ε2η − 1

2η
< τ0 <

1

2η

[(
εxmax

2

)2ηΓ(1− η)

Γ(1 + η)
− 1

]
. (3.38)

Notably, the above condition also places a constraint on τπ. We can rewrite this condition as

ε2η − 1

2η
− ε2ητπ <

1

2η

[(
εxmax

2

)2ηΓ(1− η)

Γ(1 + η)
− 1

]
, (3.39)

and solving this inequality for τπ, we obtain

τπ >
1

2η

[
1−

(
xmax

2

)2ηΓ(1− η)

Γ(1 + η)

]
. (3.40)

The above lower bound on τπ is negative for all −0.1 . η . 0.1 with a large cutoff xmax,

so we still have a sizeable region of parameter space to probe for physical validity. To

do so, we perform a numerical analysis. Using Mathematica [27], a maximum of f(x) in

the region where 0 < x < xmax is numerically determined at all points in this parameter

space with natural brane terms (|τπ| < 50 and |τ0| < 50). To render the exploration of this

parameter space tractable, the Taylor series expansion of eq. (3.25) is truncated at large

k and maximized, rather than attempting to maximize the exact function. Because of the

overall (k!)−2 suppression of each (x/2)2k term in this expansion, we find that keeping

the first 500 terms of the Taylor series expansion is more than sufficient to estimate the

value of f(x) for x < xmax = 500 with negligible error. Naively, the factor Ck will only

dominate the lower-order terms when x > 2k, so even for xmax = 500, the first 500 terms

of the expansion are adequate for numerical purposes, just as in the case discussed in

section 3.3.2 for UV-brane localized fermion fields. Searching for a region where all these

conditions are satisfied produces a null set, indicating that the region τπ < 0 is disallowed

by the existence of either ghost states or tachyonic Kaluza-Klein modes.

Summarizing, we find that the only region for a fermion field with localization close to

η = 0 that simultaneously avoids ghost states and tachyonic Kaluza-Klein modes is given

by the conditions

τπ ≥ 0, (3.41)
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and

τ0 >
1

2η

[(
εxmax

2

)2ηΓ(1− η)

Γ(1 + η)
− 1

]
. (3.42)

The latter, more difficult to visualize bound is depicted in figure 1.

3.5 Analysis: the boundary value equation with complex masses

Thus far in this analysis, we have only addressed the possible existence of purely imaginary

roots of eq. (3.6). However, in section 2 we asserted that the existence of any complex roots

of eq. (3.6) would result in a phenomenologically unacceptable theory. We now address

the possibility of general complex roots, and demonstrate that even if roots take on both

real and imaginary non-zero parts, they will not result in any corresponding Kaluza-Klein

particles in the 4-dimensional effective action. To begin, we note that a well-defined Kaluza-

Klein state must be normalizable according to eq. (2.10). This normalization condition is

required in order to generate the equations of motion for the Kaluza-Klein states; for more

detail see, e.g., ref. [9]. Using the definition of the bulk profiles fL,R, we see that the

normalization condition of a given Kaluza-Klein mode may be written in terms of the

combination of Bessel functions ζ 1
2
−ν(zn) as

1

|Nn|2

∫ π

−π
dφe2σζ 1

2
−ν

(mn

k
eσ
)
ζ 1

2
−ν

(
m∗n
k
eσ
)

(1 + ∆τπ ,τ0) = 1. (3.43)

Above, we have used the fact that ν is real, so that ζ∗1
2
−ν(z) = ζ 1

2
−ν(z∗).5 We have also

again used the notation, ∆τπ ,τ0 ≡ 2
krc

(τπδ(|φ|−π) + τ0δ(φ)). Evaluating the above integral

produces the result

2

|Nn|2krcε2

[
x∗nζ− 1

2
−ν(x∗n)ζ 1

2
−ν(xn)− xnζ− 1

2
−ν(xn)ζ 1

2
−ν(x∗n)

(xn)2 − (x∗n)2
+ τπζ 1

2
−ν(x∗n)ζ 1

2
−ν(xn)

−
εx∗nζ− 1

2
−ν(εx∗n)ζ 1

2
−ν(εxn)− εxnζ− 1

2
−ν(εxn)ζ 1

2
−ν(εx∗n)

(xn)2 − (x∗n)2
+ ε2τ0ζ 1

2
−ν(εx∗n)ζ 1

2
−ν(εxn)

]
= 1.

(3.44)

If xn is either purely real or purely imaginary, then the expression in the denominator

(xn)2 − (x∗n)2 becomes zero, and a limit must be taken to recover a meaningful expression

(for both purely real and purely imaginary xn, taking this limit yields a finite result for

the above integral). However, if xn contains both real and imaginary parts, the above

expression may be studied without the need to take any non-trivial limits. In this case, we

may determine the normalization Nn simply by inserting the standard boundary conditions

below into eq. (3.44)

ζ− 1
2
−ν(xn) = xnτπζ 1

2
−ν(xn), (3.45)

ζ− 1
2
−ν(εxn) = −εxnτ0ζ 1

2
−ν(εxn),

5Recall that for the Bessel functions Jη and Yη, (Jη(z))∗ = Jη∗(z∗) and (Yη(z))∗ = Yη∗(z∗), for any z

not equal to a negative real number, and for all η.
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which yields the following expression

2

|Nn|2krcε2

[(
(x∗n)2 − (xn)2

(xn)2 − (x∗n)2

)
τπζ 1

2
−ν(x∗n)ζ 1

2
−ν(xn) + τπζ 1

2
−ν(x∗n)ζ 1

2
−ν(xn)

−
(

(xn)2 − (x∗n)2

(xn)2 − (x∗n)2

)
ε2τ0ζ 1

2
−ν(x∗n)ζ 1

2
−ν(xn) + ε2τ0ζ 1

2
−ν(εx∗n)ζ 1

2
−ν(εxn)

]
= 0.

(3.46)

Thus, the bulk wave functions of a complex-mass fermionic Kaluza-Klein mode will be

“orthogonal to themselves”, implying that these wave functions are unphysical, i.e., im-

possible to normalize. As a result, we find that even if roots of eq. (3.6) with nonzero

real and imaginary parts exist, they will not, in fact, produce normalizable Kaluza-Klein

states. Furthermore, we see that these bulk fields would vanish from the Lagrangian after

integration over φ. Thus, we find that the only possible physical particles arising in the

case of fermion fields with generic BLKT’s will have either purely real or purely imaginary

masses.

4 Presence of spontaneous symmetry breaking

Thus far, we have adopted the simplifying assumption that the fermion fields we consider

are not subject to any form of spontaneous symmetry breaking (SSB). However, except

for the possibility of neutrinos, all fermion fields in the Standard Model acquire mass via

the conventional Higgs mechanism. In the Randall-Sundrum framework, the Higgs field

is generally localized on the TeV-brane, in order to effect a hierarchy between the weak

scale (set by the 4-dimensional Higgs vev) and the Planck scale. In this section, we discuss

the effects of adding SSB as a perturbation, and demonstrate that it is unlikely to alter

the conclusions we have arrived at above. In particular, we probe the possibility of SSB

eliminating through the Higgs mechanism the tachyons or ghost states that are present in

the theory; given the fact that the majority of parameter space for this model is eliminated

by our analysis above in the absence of SSB, this question is of no small importance. In

particular, we shall demonstrate that in most regions of parameter space, the modifications

to the constraints on brane terms and localizations required to prevent ghost states for the

lowest-lying KK tower modes (corresponding to the SM particles) in the absence of SSB

will be very small. Further, we will show that rather than helping to eliminate a tachyonic

root that might arise in the case without SSB, the presence of the Higgs mechanism will

to first approximation merely move an existing tachyonic root along the imaginary line,

and to higher order (at best) move it slightly into the general complex plane. In short, if a

point in parameter space is disallowed in a theory without the Higgs mechanism, we shall

demonstrate that it is very likely still disallowed when the Higgs vev is introduced.

To begin, we must introduce a set of Yukawa couplings into the theory. The simplest

fermion action with Yukawa couplings necessarily involves two bulk fermion fields, denoted

here by Q and q, that in the absence of SSB will produce a left-handed zero-mode and a

right-handed zero-mode, respectively. The Higgs mechanism then mixes these fields and

produces a single massive fermionic field out of the two chiral zero-mode states, as well
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as altering the spectrum of the members of both KK towers. This action may be written,

analogously to eq. (2.2) as

SF =

∫
d4x

∫
rcdφ

√
G

{
VM
N

(
i

2
QΓN∂MQ+

i

2
qΓN∂Mq + h.c.

)
+ [2τ0/krc δ(φ) + 2τπ/krc δ(|φ| − π)]V µ

ν (iQLγ
ν∂µQL + iqRγ

ν∂µqR + h.c.)

− sgn(φ)k(νQQq − νqqq) (4.1)

− 2

krc
δ(|φ| − π)eσ

v√
2

[QLY qR + qRY
∗QL]

}
.

Here, v denotes the 4-dimensional Higgs vacuum expectation value, v ∼ 246 GeV. Fol-

lowing [7], the Yukawa coupling Y is taken to be O(1), and of arbitrary complex phase.

Note that here, we assume for simplicity that both Q and q have identical BLKT’s τπ and

τ0. Given that brane terms must likely be all approximately the same order of magnitude

∼ O(1–10) to be natural, it is not unreasonable to expect that the general case of both

fields having independent brane terms will be qualitatively similar to the case where the

brane terms are universal.

As in the case without SSB, we want a 4-dimensional action of the form,

∑
n

∫
d4x

[
f̄ (n)i/∂f (n) −mnf̄

(n)f (n)
]
. (4.2)

Here, we note that the summation extending over the Kaluza-Klein modes is defined dif-

ferently in this scenario than it is for a single fermion bulk field. In the absence of SSB, a

single bulk field would have a massless Z2-even zero-mode, and an infinite tower of pairs

of Kaluza-Klein fermion fields, one Z2-even and the other Z2-odd. In the presence of SSB,

however, the Yukawa term in the action mixes the two bulk fermion fields. The result

is that the index n extends over twice as many KK tower modes, all of which are now

admixtures of Z2-even and Z2-odd bulk wave functions (in particular, the left-handed KK

modes f
(n)
L will be mixtures of the Q field’s Z2-even modes and q field’s Z2-odd modes,

while the right handed modes f
(n)
R will be mixtures of the Q field’s Z2-odd modes and

q field’s Z2-even modes). While it is reasonable to think of all of these states as simple

perturbations of the separate KK towers for the Q and q fields, in general it is difficult to

associate a given mode here to a perturbation of a corresponding mode in the absence of

the Higgs mechanism. As a result, we adopt the simplistic index n, understanding that the

summation now extends over the expanded set of mixed states.

To begin, we perform Kaluza-Klein decompositions on Q and q in a similar fashion

as given in eq. (2.3). As noted above, the Q field’s Z2-even modes are left-handed, while

its Z2-odd modes are right-handed, while the q field’s modes have the opposite chirality.

Following the notation of [7], we refer to Z2-even bulk profiles for the nth mode of the Q(q)

fields as C
(Q(q))
n (φ), and the corresponding Z2-odd bulk profiles as S

(Q(q))
n (φ). Including
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this notation in our Kaluza-Klein decomposition yields the following expansions

QL =
∑
n

e2σ
√
rc
C(Q)
n (φ)f

(n)
L (x), QR =

∑
n

e2σ
√
rc
S(Q)
n (φ)f

(n)
R (x), (4.3)

qL =
∑
n

e2σ
√
rc
S(q)
n (φ)f

(n)
L (x), qR =

∑
n

e2σ
√
rc
C(q)
n (φ)f

(n)
R (x).

Inserting these expansions in the action given by eq. (4.1) yields the following conditions for

canonically normalized kinetic terms in the effective 4-dimensional action (compare with

eq. (2.5)) ∫ π

−π
dφeσ

[
C(Q)∗
m (φ)C(Q)

n (φ)(1 + ∆τπ ,τ0) + S(q)∗
m (φ)S(q)

n (φ)
]

= δmn, (4.4)∫ π

−π
dφeσ

[
C(q)∗
m (φ)C(q)

n (φ)(1 + ∆τπ ,τ0) + S(Q)∗
m (φ)S(Q)

n (φ)
]

= δmn.

In order to produce the mass term of eq. (4.2), we require, in analogy to eq. (2.7), that the

bulk wave functions satisfy the equations of motion(
1

rc
∂φ + sgn(φ)νQk

)
S(Q)
n = mn(1 + ∆τπ ,τ0)eσC(Q)

n − eσδ(|φ| − π)

√
2vY

krc
C(q)
n ,(

1

rc
∂φ − sgn(φ)νQk

)
C(Q)
n = −mne

σS(Q)
n , (4.5)(

1

rc
∂φ + sgn(φ)νqk

)
S(q)
n = −mn(1 + ∆τπ ,τ0)eσC(q)

n + eσδ(|φ| − π)

√
2vY ∗

krc
C(Q)
n ,(

1

rc
∂φ − sgn(φ)νqk

)
C(q)
n = mne

σS(q)
n .

Notably, with the exception of the additional boundary terms proportional to the Higgs

vev v, which only appear on the brane and therefore affect only boundary conditions, the

differential equations for the Q and q fields are identical to eq. (2.7). So, in analogy with

the case neglecting SSB, the general solutions of these equations of motion are

C(Q)
n (φ) =

eσ/2

NQ
n

ζ1+ηQ(zn), S(Q)
n (φ) =

− sgn(φ)eσ/2

NQ
n

ζηQ(zn), (4.6)

C(q)
n (φ) =

eσ/2

N q
n
ζ1+ηq(zn), S(q)

n (φ) =
sgn(φ)eσ/2

N q
n

ζηq(zn),

where ηQ,q is defined in analogy to our treatment of the case without SSB (i.e., ηQ,q ≡
−1

2 − νQ,q), while the ζ functions are defined by eq. (2.9). Note that since the UV-brane

(φ = 0) boundary conditions in this setup are equivalent to those in the absence of the

Higgs, the constants αn and βn in the definition of ζ1+ηq(zn) are still given by eq. (2.11).

Inserting these expressions for the bulk profiles into eq. (4.4) yields the following coupled
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expressions for NQ
n and N q

n

1 =

∫ π

−π
dφ

{
e2σ

|NQ
n |2

(1 + ∆τπ ,τ0)|ζ1+ηQ(zn)|2 +
e2σ

|N q
n|2
|ζηq(zn)|2

}
, (4.7)

1 =

∫ π

−π
dφ

{
e2σ

|N q
n|2

(1 + ∆τπ ,τ0)|ζ1+ηq(zn)|2 +
e2σ

|NQ
n |2
|ζηQ(zn)|2

}
.

The introduction of the additional SSB terms on the TeV-brane results in significant

modifications to the TeV-brane boundary conditions, which govern the spectrum of states

in the effective four-dimensional theory. The TeV-brane boundary conditions now become

(compare with eq. (2.12))

ζηq(xn)− xnτπζ1+ηq(xn) = − vY ∗√
2MKK

(
N q
n

NQ
n

)
ζ1+ηQ(xn), (4.8)

ζηQ(xn)− xnτπζ1+ηQ(xn) = − vY√
2MKK

(
NQ
n

N q
n

)
ζ1+ηq(xn).

N
Q(q)
n refers to the normalization of the Q (q) wave function, selected to produce an action

of the form of eq. (4.2). It is interesting to note that ζ1+ηq,Q(xn) approaches 0 as xn becomes

very large; as a result, while the addition of SSB can have a significant effect on low-lying

KK modes (in particular, the massless chiral zero-modes become massive SM fermions),

the more massive tower states should be significantly less affected by SSB. Multiplying

the top and bottom equations in (4.8) together, one arrives at an equation for the mass

spectrum that eliminates any dependence on the normalization factors NQ
n and N q

n,

[ζηq(xn)− xnτπζ1+ηq(xn)][ζηQ(xn)− xnτπζ1+ηQ ] =
v2|Y |2

2M2
KK

ζ1+ηQ(xn)ζ1+ηq(xn). (4.9)

Armed with these equations, then, it is in principle possible, as in the case without SSB,

to derive the wave functions and masses of the entire KK tower with the full inclusion of

the effects of SSB. In the following sections we explore the effects of SSB on points in the

parameter space that, in the absence of these effects, are disallowed by the existence of

tachyonic KK modes or ghost states.

4.1 Ghost states in the presence of SSB

Using the framework discussed above, we now derive the conditions for avoiding ghost

states equivalent to those discussed in the previous case without SSB; namely, in what

cases are the normalizations of the lowest-lying KK mode ghost-like (that is, |NQ
0 |2 < 0

or |N q
0 |2 < 0). Restricting our analysis to the perturbative regime, where v2/M2

KK � 1

is assumed (which corresponds to physical expectations), we begin by determining the

location of the root in eq. (4.9). Expanding eq. (4.9) to the lowest order in x2, we arrive

at the following result for the lowest-lying root

x20 =
m2

0

M2
KK

[
1+

1

4

m2
0

M2
KK

(
1

ηq

(
1−ε

−2ηq(1 + 2ηqτ0)

1 + ηq

)
+

1

ηQ

(
1−

ε−2ηQ(1 + 2ηQτ0)

1 + ηQ

))]
. (4.10)
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Here, m2
0 is given by the expression

m2
0 ≡

v2|Y |2

2

(
4ηQηq

[(1− 2ηQτπ)− ε−2ηQ(1 + 2ηQτ0)][(1− 2ηqτπ)− ε−2ηq(1 + 2ηqτ0)]

)
.

(4.11)

Notably, m2
0 is precisely the mass arising from the Yukawa coupling that the particle formed

from the two individual chiral zero-modes (with a bulk profile of eq. (2.13)) of Q and q

would have, in the absence of any mixing with additional KK tower modes. It is also

notable that m2
0 is proportional to the product of the normalizations of both of these zero

modes. Hence, we see a connection between the no-ghost condition of the case where

SSB is neglected, given by eq. (3.2), and the restriction on the allowable parameter space

of the case with SSB: if either one of Q
(0)
L or q

(0)
R fails to satisfy eq. (3.2), then m2

0 < 0.

Since m2
0 is proportional to the Yukawa-induced mass squared of the lowest-lying KK mode

up to O
(

m2
0

M2
KK

)
corrections, this would indicate that this lowest-lying mode, rather than

serving its purpose as a massive SM fermion, would then be a particle of some imaginary

(tachyonic) mass. Naturally, this is phenomenologically unacceptable. The one exception

to this conclusion, however, would be the scenario where both the Q
(0)
L and q

(0)
R states would

be ghost-like in the absence of the Higgs mechanism. In this case, m2
0 would be positive,

and so naive analysis would suggest a physical mass for the lowest-lying KK mode when

SSB is applied. Hence, the scenario where either the Q or q field possesses a ghost-like

zero-mode when SSB is neglected, but the other does not, is easily dismissed as unphysical.

However, the scenario where both Q and q produce ghost-like zero modes when the Higgs

field is ignored still produces a positive m2
0, and hence requires further inspection.

To continue exploring the conditions under which ghost-like states are produced in

the presence of SSB, we consider the normalization condition of eq. (4.7). Performing

the integration for some real mn yields (after applying the UV-brane boundary condition

ζηQ,q(εxn) = −εxnτ0ζ1+ηQ,q(εxn))

1

|NQ
n |2

[x2n(1 + 2τπ)ζ21+ηQ(xn)− 2xn(1 + ηQ)ζηQ(xn)ζ1+ηQ(xn) + x2nζ
2
ηQ

(xn)

−ε2x2n(1 + 2ηQτ0 + ε2x2nτ
2
0 )ζ21+ηQ(εxn)]

+
1

|N q
n|2

[x2nζ
2
1+ηq(xn)− 2xnηqζηq(xn)ζ1+ηq(xn) + x2nζ

2
ηq(xn)

−ε2x2n(1 + 2ηqτ0 + ε2x2nτ
2
0 )ζ21+ηq(εxn)] = krcε

2x2n.

(4.12)

We may now address the normalization of the lowest-lying mode by expanding this expres-

sion around x0 ≈ 0. Up to O(x20), eq. (4.12) may be approximated as

π2krcε
2x20|N

Q
0 |

2 ≈ 4
[(1 + 2ηQτ0)− (1− 2ηQτπ)ε2ηQ ]

ηQ

+ 2x20

[
ε2ηQ

(1− ηQ)ηQ
+

2τπε
2ηQ

(1 + ηQ)ηQ
−

(1 + 2τπ)(1 + 2ηQτ0)

(1 + ηQ)ηQ

]

+
|NQ

0 |2

|N q
0 |2

x20

[
ε2ηq

(1− ηq)η2q
− 2(1 + 2ηqτ0)

η2q
+
ε−2ηq(1 + 2ηqτ0)

2

(1 + ηq)η2q

]
.

(4.13)

– 24 –



J
H
E
P
0
7
(
2
0
1
8
)
1
1
7

From this, we arrive at an expression for the ratio of the normalizations |NQ|2/|N q|2, using

eq. (4.8). Specifically, by dividing the bottom expression in eq. (4.8) by the conjugate of

the top expression, we arrive at the following leading order expression

|NQ|2

|N q|2
=

(ζηQ(x0)− x0τπζ1+ηQ(x0))ζ1+ηQ(x0)

(ζηq(x0)− x0τπζ1+ηq(x0))ζ1+ηq(x0)
(4.14)

≈ ηq
ηQ

[(1 + 2ηQτ0)− ε2ηQ(1− 2ηQτπ)]

[(1 + 2ηqτ0)− ε2ηq(1− 2ηqτπ)]
+O(x20).

Note that because the only term proportional to this ratio in eq. (4.13) is already propor-

tional to x20, we only need to keep the x00 term above for our purposes. Finally, we insert

the expression for x20 given in eq. (4.10) (dropping the higher order terms of O(v4/M4
KK))

to arrive at the following expression for our normalization condition

krcε
2x2|NQ|2 ≈ 4

π2
1

λQ

{
1 +

v2|Y |2

2M2
KK

ε2(ηQ+ηq)λQλq

[
λQρQ + λqξq

]}
, (4.15)

where we have defined

λQ,q ≡
ηQ,q

[(1 + 2ηQτ0)− (1− 2ηQ,qτπ)ε2ηQ,q ]
,

ρQ ≡
(

2ε2ηQ

(1− ηQ)ηQ
+

4τπε
2ηQ

ηQ
−

2(1 + 2τπ)(1 + 2ηQτ0)

(1 + ηQ)ηQ

)
, (4.16)

ξq ≡
(

ε2ηq

(1− ηq)η2q
− 2(1 + 2ηqτ0)

η2q
+
ε−2ηq(1 + 2ηqτ0)

2

(1 + ηq)η2q

)
.

In a similar fashion, an analogous expression may be derived for |N q|2, with the only dif-

ference being the interchange of the Q and q sub- and superscripts in the above expression.

Notably, if the O(v2/M2
KK) corrections are neglected, both |NQ|2 and |N q|2 will yield neg-

ative norm squared values only when the condition of eq. (3.2) is violated for a specific

fermionic field (i.e., a violation for Q will yield a ghost-like Q state, and a violation for q will

yield a ghost-like q state). A detailed inspection of this correction term’s behavior through-

out the full parameter space is beyond the scope of this paper, but several observations can

be made. Notably, if ηQ is allowed to be large and positive enough to render the ε2ηQ terms

insignificant (for consistency with our prior analysis of the case without SSB, this may be

assumed to be approximately at ηQ & 0.1), the leading correction terms for the normaliza-

tion factors become suppressed by ε2ηQ . This suggests that in order to make these correction

terms large enough to flip the sign of the normalization, v2/M2
KK would likely have to be

extremely large, directly counter to our assumption that v2/M2
KK � 1. The other limit, in

which both fermions are localized near the TeV-brane (and hence ηQ,q . −0.1), presents

more interesting behavior. In this case, the magnitude of the v2/M2
KK correction term may

be essentially arbitrarily increased by tuning τπ and ηQ,q such that 1− 2ηQ,qτπ ≈ 0. In the

event of Q and q both violating the previous condition for avoiding ghosts, eq. (3.2), this

in fact results in a negative proportional correction to both |NQ|2 and |N q|2 of arbitrary

magnitude, suggesting that it is in fact possible, in principle, in carefully tuned regions of
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parameter space for a model to lack ghosts when spontaneous symmetry breaking effects

are included, while possessing them in the absence of SSB. However, in practice, tuning

(1−2ηQ,qτπ) ≈ 0 also arbitrarily increases the value of x20 (from eq. (4.10)), which runs the

risk of rendering the perturbative approximation for the normalization invalid. Further-

more, the O(v2/M2
KK) correction terms to x20 that were dropped in eq. (4.15) would also be

arbitrarily increased, rendering the results in this region that employed any perturbative

calculations suspect. In fact, a cursory examination of the general case given in eq. (4.15)

suggests a similar conclusion for the entire parameter space: the only method to increase

the correction terms to |NQ,q|2 arbitrarily, as would be necessary to alter their sign, would

require a degree of tuning to achieve (1 + 2ηQ,qτ0) − (1 − 2ηQ,qτπ)ε2ηQ ≈ 0, which will in

turn result in an arbitrary increase in the value of x20, and this value of x20 may deviate

significantly from the O(v2/M2
KK) approximation employed in eq. (4.15). As a result, we

close our discussion on the possibility of rendering states that violate eq. (3.2) phenomeno-

logically viable via the presence of spontaneous symmetry breaking; we find that at best it

only may be possible in finely tuned regions of parameter space, and these regions rapidly

fall out of the range of validity of the perturbative approximation employed here.

4.2 Tachyonic roots in the presence of SSB

Having explored the scenario where the effects of SSB may eliminate the presence of ghosts

in the RS model, we now move on to addressing the effect of SSB on tachyonic roots

that appear in our analysis without SSB. First, we note that the existence of spontaneous

symmetry breaking should not make a given root of eq. (4.9) disappear altogether; as we

have noted in previous sections, the expressions for ζ employed here are well-approximated

by a truncated polynomial series, where we use the identities

ζη(x) =
1

ηπ

∞∑
k=0

(
x

2

)2k (−1)k

k!

[
Γ(1− η)εη

Γ(1 + k − η)
− (1 + 2ητ0)Γ(1 + η)ε−η

Γ(1 + k + η)

]
, (4.17)

ζ1+η(x) =
−2

ηπx

∞∑
k=0

(
x

2

)2k (−1)k

k!

[
(k − η)Γ(1− η)εη

Γ(1 + k − η)
− k(1 + 2ητ0)Γ(1 + η)ε−η

Γ(1 + k + η)

]
.

Inserting these expressions into eq. (4.9), the product ζ1+ηQ(x)ζ1+ηq(x) introduces a single

x−2 term into eq. (4.9) when v 6= 0 which is not present when v = 0. By applying

the fundamental theorem of algebra to truncated versions of the series expressions for

ζη(x) and ζ1+η(x), we expect that eq. (4.9) should have two additional roots when v 6= 0

(corresponding to ± of the mass of the SM particle in the model), in comparison to the

case with v = 0. We note that this is only true when counting the multiplicities of roots

of the equations, e.g., if a given value of x is a double root of eq. (4.9) when v = 0, we

can expect this root to be split into two when v 6= 0. This will be discussed in greater

detail below. As noted in section 4.1, to lowest order in v2/M2
KK, the roots corresponding

to the SM particle will be real whenever the non-SSB no-ghost condition (eq. (3.2)) is

satisfied for both the Q and q fields. As we have already determined that scenarios where

these conditions are violated are unlikely to produce physical models, the possibility of the

additional roots introduced by SSB being tachyonic or complex will not be addressed further
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here. Therefore, the problem of determining if SSB can “save” a region of parameter space

that is disallowed in its absence can be reduced to determining how the existing tachyonic

roots of eq. (4.9) are modified when v 6= 0. If imaginary roots can be rendered real, then

the presence of SSB will open new regions of allowed parameter space.

Again, we will work in the regime where the SSB terms in eq. (4.9) represent a small

perturbation, and we first determine the lowest-order (in v2/M2
KK) correction to the lo-

cation of a root, x0, of eq. (4.9) when v = 0. To begin, we expand eq. (4.9) about x0,

assuming (without loss of generality) that x0 would correspond to a KK tower mode of the

Q, rather than q, field in the absence of SSB. Noting that ζηQ(x0) = x0τπζ1+ηQ(x0), this

yields

(x′0 − x0)

[
d

dx
ZηQ(x)

∣∣∣∣
x=x0

]
[Zηq(x0)]

≈ v2|Y |2

2M2
KK

(
ζ1+ηQ(x0)ζ1+ηq(x0) + (x′0 − x0)

d

dx
(ζ1+ηQ(x)ζ1+ηq(x))

∣∣∣∣
x=x0

)
. (4.18)

Here, we refer to the perturbed position of the root in the presence of SSB as x′0, and we

have defined

Zη(x) ≡ ζη(x)− xτπζ1+η(x). (4.19)

Eq. (4.18) can be solved for the shift in the root, (x′0 − x0), and yields the result

(x′0−x0) ≈
v2|Y |2

2M2
KK

 ζ1+ηQ(x0)ζ1+ηq(x0)

Zηq(x0)
d
dxZηQ(x)

∣∣
x=x0

− v2|Y |2
2M2

KK

d
dx(ζ1+ηQ(x)ζ1+ηq(x))

∣∣
x=x0

 . (4.20)

To help shed some light on the implications of the lowest-order correction to x0, we now

employ the power series identities in eq. (4.17). These expressions in turn prove illuminating

for the complex phases of ζη(x), ζ1+η(x), and their derivatives when x is purely imaginary

or purely real. Since the gamma functions, exponentials, and factorials that appear in

the expressions for ζη(x) and ζ1+η(x) in eq. (4.17) are real, any complex phase of these

functions must arise from a complex phase of x itself. If x is purely imaginary, then, any

even power of x will be real, while any odd power of x will be imaginary. Therefore, ζη(x)

is real for purely imaginary x, because ζη(x) contains only even powers of x, while ζ1+η(x)

is imaginary for purely imaginary x, because it contains only odd powers of x. The same

logic can easily be applied to the expression Zη(x) = ζη(x)− xτπζ1+η(x): since it contains

only even powers of x, it is real when x is imaginary.

Expanding this argument to include the derivatives of these ζ functions when x is

imaginary is straightforward, since each derivative with respect to x turns a term with an

odd power of x into one with an even power, and vice versa. Thus, d
dx(ζη(x)−xτπζ1+η(x))

has only odd powers of x, and is hence imaginary when x is imaginary, while d
dxζ1+η(x)

has only even powers of x, and is therefore real when x is imaginary.

Using these results, it is straightforward to demonstrate that for an imaginary x0 (the

result of a tachyonic root existing in the Q-field KK tower), the right-hand side of eq. (4.20)
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consists of a real quantity divided by an imaginary quantity. Hence, to lowest order, we

see the correction to a tachyonic root is purely imaginary. In the regime where eq. (4.20)

represents a valid approximation of eq. (4.9) near x0 then, it is therefore unrealistic to

expect that a tachyonic root will be eliminated by SSB: any tachyonic root should merely

be shifted slightly (by an O(v2/M2
KK) correction) along the imaginary axis.

While this conclusion suggests that tachyons cannot be eliminated by SSB in a large

region of parameter space, some care must be taken before we can dismiss this possibility

out of hand. Notably, eq. (4.20) predicts a small O(v2/M2
KK) correction to the root equation

only when ζηq(x0) − x0τπζ1+ηq(x0) 6= 0, or more accurately, when ζηq(x0) − x0τπζ1+ηq(x0)
is larger in magnitude than the v2/M2

KK suppressed term in the denominator. However, a

significant region in parameter space will not satisfy these conditions; if, e.g., ηq ≈ ηQ, then

ζηq(x0) − x0τπζ1+ηq(x0) ≈ 0 whenever ζηQ(x0)− x0τπζ1+ηQ(x0) ≈ 0. If the predicted shift

in the root from eq. (4.20) is no longer a small correction, then the perturbative method

employed is obviously invalid. To address the region of parameter space where this can

occur, we need to extend our analysis to second order in the difference (x′0 − x0).
For simplicity, we shall explicitly display the second-order calculation of (x′0 − x0) in

the scenario where terms proportional to ζηq,Q(x0)− x0τπζ1+ηq,Q(x0) are very close to zero

and may be safely ignored. Qualitatively, we expect that when this condition does not

hold, the parameter space will rapidly approach the regime where eq. (4.20) is valid, which

has already been addressed above. Expanding eq. (4.9) to second order in (x′0 − x0), then,

yields a quadratic formula which can be solved for (x′0−x0). The result yields two solutions

for (x′0 − x0), which are given up to O(v2/M2
KK) by

(x′0 − x0) ≈
(
v2|Y |2

2M2
KK

α± v|Y |√
2MKK

√
βγ

)
1

γ
, (4.21)

where

α ≡ 1

2

d

dx
(ζ1+ηQ(x)ζ1+ηq(x))

∣∣∣∣
x=x0

,

β ≡
√
ζ1+ηQ(x0)ζ1+ηq(x0), (4.22)

γ ≡ d

dx
(ζηQ(x)− xτπζ1+ηQ(x))

∣∣∣∣
x=x0

d

dx
(ζηq(x)− xτπζ1+ηq(x))

∣∣∣∣
x=x0

.

In the case of an imaginary x0, α in eq. (4.21) takes on an imaginary value, while γ, as

the product of two imaginary quantities, will be real. Thus, the first term on the right-

hand side of eq. (4.21), [v2|Y |2/(2M2
KK)](α/γ), is purely imaginary. The second term,

[v|Y |/(
√

2MKK)](
√
βγ/γ) has a complex phase governed by the term in the square root

(γ, as noted before, is real). Because it is the product of four imaginary numbers, βγ

is necessarily real. However, whether or not this yields a real or imaginary correction is

dependent on the sign of βγ. In practice, it appears that
√
βγ is more likely to be real.

For example, in the event that ηQ ≈ ηq, we see that βγ is the product of two squares

of imaginary quantities. Since any imaginary number squared is negative, this implies

that βγ is the product of two negative numbers, and is therefore positive. However, we
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remind the reader that the second-order correction is still highly suppressed (in this case

the real part of the correction is suppressed by ∼ v/MKK, while the imaginary correction

is suppressed by v2/M2
KK), even when the approximation in eq. (4.20) breaks down. Given

that the tachyonic roots we have found are generally of O(1) (in units of i), this makes it

exceedingly unlikely that any perturbative correction could convert a tachyonic root into

a real root; it will either be shifted along the imaginary axis or slightly rotated into the

complex plane.

5 Summary

In this paper, we have closely examined the parameter space of the RS model with bulk

fields for the unphysical regions which contain ghost and/or tachyon states. In general,

we have found that the TeV-brane localized kinetic term, τπ, must be non-negative, i.e.,

τπ ≥ 0, in order for the theory to be physical. By separating the problem into three distinct

regions, we have then found further restrictions, summarized below (it should be noted

that for highly TeV-brane localized fermions, i.e., the region where η . −0.1, the above

restriction on τπ is the only restriction to render the model physical). For −0.1 . η . 0.1

(close to gauge-like localization)

τ0 >
1

2η

[(
εxmax

2

)2ηΓ(1− η)

Γ(1 + η)
− 1

]
. (5.1)

Note that for η = 0 (gauge bosons), this condition reduces to:

τ0 > γ + log(ε) + log
(xmax

2

)
. (5.2)

For η & 0.1 (highly UV-brane localized fermions)

τ0 > −
1

2η
. (5.3)

Note that for η = 1 (bulk gravitons), the conditions become

τπ ≤ 1 (5.4)

and

τ0 > −
1

2
, (5.5)

where the upper bound τπ ≤ 1 is required to avoid radion ghost states. Notably, the

conditions for η ≈ 0 will, as η moves toward −1 or 1, flow into the conditions for highly

TeV-brane or UV-brane localized fermions, respectively. As a result, one can safely employ

the conditions eq. (5.1) and τπ ≥ 0 as universal conditions for avoiding ghosts and tachyons,

as long as |η| < 1.

We combine our results in figure 2 where we show the allowed parameter space of τ0
and η for all τπ ≥ 0, |τ0| < 50, and |η| < 2. Here, the shaded region in the figure represents

the physically allowable region of parameter space, assuming a cutoff of xmax = 500. Note
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Figure 2. Region of parameter space which is free of both tachyonic modes and ghosts for xmax =

500, τπ ≥ 0. The blue region indicates physically allowable points in parameter space, while the

unshaded region contains either tachyonic KK modes or ghost-like particles.

that the restrictions on τ0 depend only weakly on xmax, excluding a slightly larger region

as xmax increases, but since this dependence is so weak (it is only manifest near η = 0, and

is proportional to x2ηmax for small η), other choices of xmax result in qualitatively similar

allowed regions. Furthermore, note that the universal restriction on τπ is simply τπ ≥ 0.

Finally, we have established that these constraints are reasonably robust against the

introduction of SSB via the Higgs mechanism, indicating that these bounds also function

as good approximations even when fermionic fields are granted mass via this mechanism.

Notably, the introduction of SSB should introduce only small perturbations in the con-

ditions to avoid ghost states and tachyons; in other words, the presence of SSB does not

change the allowed regions of parameter space.

Overall, the restrictions on the RS parameter space derived above have far-reaching

consequences for the future of RS model building. Notably, negative IR brane terms,

featured in a number of analyses, e.g., [20, 21, 30], are entirely disallowed by the existence

of tachyonic KK modes. Furthermore, the restrictions on the allowed parameter space for

brane-localized kinetic terms, particularly in the gauge boson sector, limit their ability to

ameliorate constraints on models arising from precison electroweak measurements, lending

credence to the necessity for a bulk custodial symmetry (such as that discussed in [15]) to

preserve these quantities in models with bulk SM fields in the warped extra dimension.
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