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Abstract: The Bogomolnyi-Prasad-Sommerfield (BPS) baby Skyrme model coupled to

gravity is considered. We show that in an asymptotically flat space-time the model still

possesses the BPS property, i.e., admits a BPS reduction to first order Bogomolnyi equa-

tions, which guarantees that the corresponding proper energy is a linear function of the

topological charge. We also find the mass-radius relation as well as the maximal mass and

radius. All these results are obtained in an analytical manner, which implies the complete

solvability of this selfgravitating matter system.

If a cosmological constant is added, then the BPS property is lost. In de Sitter (dS )

space-time both extremal and non-extremal solutions are found, where the former corre-

spond to finite positive pressure solutions of the flat space-time model. For the asymptotic

anti-de Sitter (AdS ) case, extremal solutions do not exist as there are no negative pressure

BPS baby Skyrmions in flat space-time. Non-extremal solutions with AdS asymptotics do

exist and may be constructed numerically. The impact of the negative cosmological con-

stant on the mass-radius relation is studied. We also found two potentials for which exact

multi-soliton solutions in the external AdS space can be obtained. Finally, we elaborate on

the implications of these findings for certain three-dimensional models of holographic QCD.

Keywords: Field Theories in Lower Dimensions, Solitons Monopoles and Instantons,

Holography and quark-gluon plasmas, Integrable Field Theories

ArXiv ePrint: 1802.07278

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP07(2018)097

mailto:adam@fpaxp1.usc.es
mailto:trom@th.if.uj.edu.pl
mailto:mateusz.wachla@ifj.edu.pl
mailto:andwereszczynski@gmail.com
https://arxiv.org/abs/1802.07278
https://doi.org/10.1007/JHEP07(2018)097


J
H
E
P
0
7
(
2
0
1
8
)
0
9
7

Contents

1 Introduction 1

2 The BPS baby Skyrme model with gravity 3

3 Asymptotically flat metric 5

3.1 BPS property 5

3.2 Linear observables 9

3.3 Nonlinear observables and mass-radius relation 11

3.4 Examples 15

3.4.1 The old baby potential 15

3.4.2 The new baby potential 17

3.4.3 The old baby potential squared 18

4 Cosmological constant Λ > 0 19

4.1 Constant pressure (extremal) solutions 19

4.2 No-backreaction approximation 21

4.3 Fully gravitating system 23

5 Asymptotic AdS space-time 24

5.1 Non-existence of extremal solutions 24

5.2 No-backreaction approximation 25

5.2.1 The old baby potential Uπ 25

5.2.2 The old baby potential squared U = 4U2
π 27

5.3 Fully gravitating system 28

6 Summary 32

1 Introduction

Solitons are localised finite-energy solutions of certain nonlinear field theories with a broad

range of applications in high-energy physics, condensed matter physics, or even in fields

like optical fibers. In several respects, solitons behave like particles. If they show up as

solutions in an effective field theory (EFT) at low energies, then, frequently they may be

interpreted as effective particles or quasiparticles in this effective low-energy description.

One very interesting and, at the same time, quite nontrivial generalisation of solitonic field

theories is their coupling to gravity, i.e., their embedding into general relativity. Depending

on the context, the resulting self-gravitating soliton solutions may be interpreted as fully

relativistic self-gravitating (quasi-) particles, as stars (boson stars, Skyrme stars, neutron
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stars, etc.) or as hairy black holes. For certain choices of the solitonic matter field the-

ory, the gravitating soliton solutions may be interpreted as the weakly interacting gravity

dual of a certain matter configuration in a strongly interacting dual QFT according to

the holographic principle, shedding some light on nonperturbative properties of strongly

interacting theories like QCD. Soliton models are complicated nonlinear field theories and

solutions can, in general, only be found by numerical methods. The addition of gravity

obviously does not simplify matters, so exact, analytical results for self-gravitating solitons

may be found only in rare occasions. It is one of the main purposes of this publication to

present one such rare occasion.

One assumption which may simplify a field theory is to consider it in lower space-time

dimensions. Field theories supporting solitons in (2 + 1) dimensions, for example, may

serve as toy models for their (3 + 1) dimensional counterparts where many ideas can be

tested, leading to a deeper understanding of the higher dimensional theory.

In particular, for the Skyrme model [1, 2], which is a viable candidate for an effective

theory of the strong interaction at low energy, a lower dimensional version called the baby

Skyrme model [3, 4] exists and has been widely investigated. It is given by the following

Lagrange density

L =
c2

2
(∂µ~φ)2 − c4

4

(
~φν × ~φρ

)2
− c0U(~φ) (1.1)

where c2, c4, c0 are positive coupling constants and ~φ = (φ1, φ2, φ3) is an iso-vector field

with unit length, i.e., ~φ ∈ S2. The potential U is assumed to have a discrete set of vacua,

therefore static configurations can be classified by the degree of the map deg [~φ] ∈ π2(S2),

which is a lower dimensional version of the baryon charge assigned to Skyrmions. The

model consists of three terms: i) a term quadratic in derivatives, the so-called O(3) σ-

model part, ii) a term quartic in derivatives, the so-called baby Skyrme part and iii) a

contribution with no derivatives, that is, the potential U . It is worth to notice that two

of them, the quartic term and the potential, are obligatory from the point of view of the

Derrick theorem. The σ-model term is not obligatory for the existence of solitons. It is,

however, important for the behaviour of the theory close to the vacuum, determining the

interactions of widely separated solitons and standing behind the complicated structure of

multi-solitons [5–11] (chains, shells, crystals etc.). A related observation is that the baby

Skyrme model can be written as a sum of two separate BPS models: the O(3) σ-model

Lσ =
c2

2
(∂µ~φ)2 (1.2)

and the BPS baby Skyrme model [12–14]

LbBPS = −c4

4

(
~φν × ~φρ

)2
− c0U(~φ). (1.3)

Both models have exact solutions, for any value of the topological charge, which solve

the pertinent Bogomolny equations and, therefore, saturate the corresponding topological

bounds. Hence, the full baby Skyrme model can be viewed as a certain point in parameter

space {c0, c2, c4} with two distinguished limits — the BPS models [15]. As a consequence,

properties of baby Skyrmions in a given model (given values of the coupling constants) can
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be interpreted as resulting from a competition between these two BPS limits. In any case,

understanding these two limiting models provides a solid starting point for an analytical

treatment of the full model.

Recently, the baby Skyrme model in AdS space has been used as a toy model of

holographic QCD [16] (see also [17–19]) in the spirit of the Sakai-Sugimoto framework [20]

(for recent results on holographic/AdS Skyrmions we refer to [21–25]). While the reduction

from 4+1 to 2+1 dimensions may appear rather drastic, it seems that certain qualitative

properties of holographic QCD can be studied in this set-up. In its simplest version, this

just means putting the baby Skyrme model in an AdS background. Because of this relation,

properties of gravitating baby Skyrmions may teach us something about phases of dense

nuclear matter (in particular baryonic popcorn [26] or dyonic salt [27]). Specifically, it has

been observed that in an AdS background a kind of popcorn phase transitions exists [17].

In general, Skyrme like solitonic matter coupled to gravity forms a highly nonlinear

system. Since higher charge solitons usually possess only discrete symmetries, no dimen-

sional reduction beyond the charge one sector is possible, and full 3D or 4D numerics is

required. This is a rather complicated task even if gravity is taken into account as a given

background.

In the present work, we study gravitating BPS baby Skyrmions, both in the asymptot-

ically flat as well as dS and AdS space-times, where back-reaction of the matter on gravity

is fully taken into account. The investigation is not only motivated by the expectation

that a more analytical treatment may be possible. One should remember that purely O(3)

σ-model solitons in the asymptotic AdS space-time do not exist [28]. The existence of baby

Skyrmions in AdS space-time is, therefore, due to the BPS part of the full baby Skyrme

model. As a consequence, the analysis of the BPS baby Skyrme model can provide us with

an analytical understanding of properties of baby Skyrmions in anti-de Sitter space-time,

which is of relevance for the holographic toy models mentioned above.

The outline of the paper is as follows. In the next section we define the BPS baby

Skyrme model coupled to gravity. In section 3 we analyze it for an asymptotically flat

metric, establishing its complete solvability and its BPS nature in the full gravitating

theory. We prove that all observables can be expressed via S2 target space integrals whose

values are determined without the knowledge of a local form of the solution. Sections 4

and 5 are devoted to de-Sitter and anti-de Sitter space-time, respectively. In particular, in

section 5 we show that there are no extremal (constant pressure) solutions in the asymptotic

AdS case. Two exact solutions in the AdS background are also given. This is supplemented

by numerical analysis of the full gravitating model, leading to some relevant implications

for the existence of multi-solitons (bound states) for negative values of the cosmological

constant. The last section contains our conclusions.

2 The BPS baby Skyrme model with gravity

The coupling of the BPS Skyrme model with gravity is provided by promoting the metric

in the action to a dynamical variable (for convenience, we change the notation for the

coupling constants c4, c0 to a new one closely related to the (3 + 1) dimensional BPS
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Skyrme action [29, 30]), Stot = SEH + SbBPS, where SEH is the Einstein-Hilbert (EH)

action in 2+1 dimensions with a cosmological constant, and

SbBPS =

∫
d3x|g| 12

(
−λ2π2|g|−1gαβBαBβ − µ2U

)
. (2.1)

Here

Bµ =
1

8π
εµνρ~φ ·

(
~φν × ~φρ

)
(2.2)

is the topological current, where we use the same expression as in flat space for convenience

(such that ∂µBµ ≡ 0 continues to hold, and Bµ is a contravariant rank-one tensor density

rather than a contravariant vector). Further, gαβ is the metric tensor (we use the mostly-

minus sign convention) and g ≡ detgαβ . Then the Einstein equations are

Gαβ − Λgαβ =
κ2

2
Tαβ (2.3)

where Gµν is the Einstein tensor and Λ the cosmological constant. Moreover, κ2 = 16πG

where G is the gravitational constant in (2 + 1) dimensions. The energy-momentum tensor

is defined in the canonical way

Tαβ =
−2

|g|
δSbBPS

δgαβ
= 2λ2π2|g|−1BαBβ −

(
λ2π4|g|−1gµνBµBν − µ2U

)
gαβ (2.4)

which for the BPS baby Skyrme model leads to the perfect fluid tensor

Tαβ = (p+ ρ)uαuβ − pgαβ (2.5)

where the energy density and pressure are

ρ = λ2π2|g|−1gµνBµBν + µ2U (2.6)

p = λ2π2|g|−1gµνBµBν − µ2U (2.7)

while the four velocity is

uα =
Bα√

gµνBµBν
. (2.8)

In the present paper we investigate static, axially symmetric matter. Then, only the

temporal part of the topological current has a nonzero value, while Bi ≡ 0. This assumption

is compatible with a static metric ds2 = g00(~x)dt2 + gij(~x)dxidxj , which leads to

T 00 = ρg00, T ij = −pgij . (2.9)

Further we assume that the energy density and pressure are functions of a radial coordinate

r only, which is compatible with the following standard ansatz for the metric

ds2 = A(r)dt2 −B(r)dr2 − r2dϕ2. (2.10)

Here r is the geometric (or Schwarzschild-like) radius (such that spatial circles with radius r

have a circumference of 2πr). The nonzero components of the Einstein tensor Gµν now read

G00 =
1

2r

AB′

B2
, G11 =

1

2r

A′

A
, G22 = −r

2

4

(
A′

A

B′

B2
+

1

B

(
A′2

A2
− 2A′′

A

))
(2.11)
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where the prime denotes differentiation with respect to the radial coordinate. Finally, we

arrive at the following set of ordinary differential equations

B′

B
= rB(κ2ρ+ 2Λ) (2.12)

A′

A
= rB(κ2p− 2Λ) (2.13)

A′

A

B′

B2
+

1

B

(
A′2

A2
− 2A′′

A

)
= −2(κ2p− 2Λ) (2.14)

where for the sake of generality we include the cosmological constant Λ, where

ρ =
λ2π2

Br2
B0B0 + µ2U (2.15)

and

p =
λ2π2

Br2
B0B0 − µ2U . (2.16)

The S2 valued matter field can be expressed by a complex scalar via stereographic pro-

jection. As a consequence, this model possesses some similarity with a (2+1) dimensional

boson star built out of a complex field [31–34]. However, in our case solitonic solutions

exist also in the purely static limit.

3 Asymptotically flat metric

3.1 BPS property

We begin our analysis with the Λ = 0 case. Then the field equations are

B′

B
= κ2rBρ (3.1)

A′

A
= κ2rBp (3.2)

A′

A

B′

B2
+

1

B

(
A′2

A2
− 2A′′

A

)
= −2κ2p. (3.3)

The last two equations are solved for

p = 0, A = 1, (3.4)

(in general, A = const., but A = 1 may always be achieved by a constant rescaling of

the time coordinate), that is, by the requirement that the matter field obeys a local zero

pressure condition. In flat space, all acceptable solutions are of this type and, further, the

zero pressure condition is equivalent to the fact that the solutions are of the BPS type,

following from a Bogomolnyi equation. We will demonstrate that both facts continue to

hold for the self-gravitating system. Assuming this for the moment, we conclude that the

coupling to gravity does not change the BPS property of this particular matter theory.

Observe that this is exactly what happens with the O(3) σ-model after coupling to gravity.
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Indeed, in asymptotically flat space O(3) σ-model solitons do exist and they are solutions to

a pertinent Bogomolny equation, which is just a zero pressure equation [35] (see also [36] and

recent works [37, 38]). This should be contrasted with the (3 + 1) dimensional counterpart

(the BPS Skyrme model) where, after coupling to gravity, the BPS property is lost [39–41].

One should also remark that our gravitating matter falls into the framework of (2 + 1)

dimensional gravitating fluids as presented in [42]. At a first glance, as p = 0 everywhere,

it seems a trivial case. However, this is true only if one assumes an algebraic equation of

state, e.g., of the linear or polytropic form (for other algebraic EoS see [43]). Here, for

the BPS baby Skyrme model, the local equation of state describes a non-barotropic fluid

and, therefore, does not have an algebraic form. Specifically, zero pressure can correspond

to a nontrivial energy and particle distribution. Furthermore, the fact that we get a local

zero pressure solution circumvents an observation that for vanishing cosmological constant

a gravitating fluid represents a cosmological solution and there is no surface of vanishing

pressure [42].

In a first step, let us construct those solutions which obey p = 0. Remember that we

assume axial symmetry for the Skyrme field such that ρ and p are functions of r only. It is

useful to express the Skyrme field ~φ by a complex scalar using the standard stereographic

projection

~φ =
1

1 + |u|2
(
u+ ū,−i(u− ū), 1− |u|2

)
(3.5)

then the axially symmetric ansatz reads

u = f(r)einϕ. (3.6)

This results in

B0 =
1

8π
εij~φ · (~φi × ~φj) =

1

2πi
εij

uiūj
(1 + |u|2)2

= −n
π

ff ′

(1 + f2)2
. (3.7)

If the profile function f obeys the proper boundary conditions

f(r = 0) =∞, f(R) = 0 (3.8)

then the configuration has topological charge n. Here, R is the geometric radius of the

soliton which can be finite (compactons [44–49]) or infinite (usually infinitely extended

solitons). In flat space, the importance of this geometrical radius is related to the fact that

it defines a geometrical volume which is, at the same time, the proper thermodynamical

volume. The resulting expressions for ρ and p are

ρ =
λ2n2

Br2

f2f ′2

(1 + f2)4
+ µ2U(f), p =

λ2n2

Br2

f2f ′2

(1 + f2)4
− µ2U(f) (3.9)

and only depend on r, as announced.

Assuming p = 0 (and, consequently, A = 1), there remain two more equations which

have to be solved,

B′

B
= κ2rBρ, (3.10)

ρ = 2µ2U , (3.11)
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where the second one is just the zero pressure condition. For our ansatz, it reads explicitly

λ2n2

Br2

f2f ′2

(1 + f2)4
= µ2U(f). (3.12)

This equation may be transformed into the form of the flat space BPS equation by a

suitable change of the radial variable. In a first step, we introduce the proper radius %

defined by

d% =
√

Bdr ⇒ %(r) =

∫ r

0
dr′
√

B(r′) (3.13)

which leads to the metric

ds2 = Ã(%)dt2 − d%2 − C̃(%)dϕ2 (3.14)

and directly measures radial distances. In flat space, it is useful to introduce the “quadratic”

coordinate z = (1/2)r2. In our case, the correct generalisation which makes the factor B

disappear from eq. (3.12) is

dz =
√

Brdr = rd% ⇒ z =

∫ r

0
dr′r′

√
B(r′). (3.15)

For a geometrical understanding, observe that in the corresponding proper volume element

dzdϕ = d% rdϕ, d% measures proper lengths in the radial direction, whereas rdϕ measures

proper lengths in the angular direction.

In the new variable z, eq. (3.12) reads (fz ≡ (d/dz)f)

λ2n2 f2f2
z

(1 + f2)4
= µ2U(f), (3.16)

that is, the usual Bogomolny equation for the BPS baby Skyrme model without gravity [12].

In the last step, we simplify this Bogomolny equation, introducing a new target space

variable

h = 1− 1

1 + f2
. (3.17)

Then,
λ2n2

4
h2
z − µ2U(h) = 0, (3.18)

and the boundary conditions for h are

h(z = 0) = 1, h(z = z0) = 0, hz(z = z0) = 0. (3.19)

Here, z0 = z(R) =
∫ R

0 r′d%, where R is the geometric radius of the solution. Topologically

nontrivial solutions of this equation for several classes of potentials have been studied

in [12].

Finally, we rewrite the equation for the metric function B (3.1) in the new variable

z as
B′

rB2
= κ2ρ(r) ⇒ Bz

B3/2
= κ2ρ(z) ⇒ d

dz
B−1/2 = −1

2
κ2ρ(z). (3.20)
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This is easily solved with the following condition

B(z = 0) = 1 (3.21)

i.e., the flat metric at the origin. Let us remark that in (2 + 1) dimensions there is no

local definition of mass and, therefore, no unique choice of the value of the metric at the

origin. Our choice is motivated by the requirement that there is no conical singularity of

the spatial metric at the origin [31]. Hence,

B−1/2(z) = 1− 1

2
κ2

∫ z

0
ρ(z′)dz′. (3.22)

As the metric function B has to be non-singular, we get a restriction

1

2
κ2

∫ z0

0
ρ(z)dz = κ2µ2

∫ z0

0
U(h(z))dz < 1 (3.23)

which for fixed, given values of the coupling constants leads to a condition on the topological

charge.

We still have to show that all acceptable solutions must obey p ≡ 0 and that the zero

pressure solutions are, at the same time, BPS solutions also in the self-gravitating theory.

For this we observe that when inserting B′/B from eq. (3.1) and A′/A from eq. (3.2) into

eq. (3.3), we get

p′ = −κ
2

2
rp(ρ+ p)B (3.24)

or, in the variable z,

pz = −κ
2

2
p(ρ+ p)

√
B. (3.25)

For an acceptable soliton solution, both p and ρ have to approach the vacuum p = 0,

ρ = 0, either for some finite z = z0 (compacton) or in the limit z →∞ (infinitely extended

soliton). Further, the metric function B must be nonsingular at z = z0. First we consider

the case of finite z0, where p = ρ = 0 for z ≥ z0 (compactons). For z ≥ z0 the Skyrme field

takes its vacuum value, and it follows trivially that all derivatives of p at z = z0 are zero in

the limit from above. But eq. (3.25) and its z-derivatives imply that pz(z0) and all higher

derivatives of p at z0 are zero also in the limit from below, i.e., limz↗z0(d/dz)np(z) = 0. It

follows that p ≡ 0 also for z ≤ z0. In other words, p is a (trivial) smooth function in the

whole interval 0 ≤ z < ∞, in contrast to ρ or the Skyrmion profile function f(z), which

are continuous but not smooth at z = z0.

For infinitely extended solitons, the argument is different. In the limit z → ∞, the

metric function B should approach a nonzero constant. Assuming this, eq. (3.25) does

allow for formal nonzero solutions for p(z) where the leading large z behaviour of both p

and ρ is like z−1.1 But this behaviour leads to infinite proper energy and infinite action

and is, therefore, not acceptable. We conclude that the only acceptable solution is p ≡ 0.

We remark that this result is exactly reproduced by our numerical calculations. The

1It is not clear whether these formal solutions can be solutions to the full system of equations (3.1)–(3.3).

We do not investigate this question here, because it is not relevant for our argument.
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“non-extremal solutions” (solutions with a non-constant pressure) for nonzero cosmological

constant, Λ 6= 0, always smoothly approach zero pressure solutions in the limit Λ → 0.

That zero pressure solutions are, at the same time, BPS solutions may be shown as

follows. First of all, for p = 0 (and, therefore, A = 1) the EH action does not contribute

to the field equations. For the ansatz (2.10) for the metric the curvature scalar R is

R =
−rBA′2 − 2A2B′ + A(−rA′B′ + 2B(A′ + rA′′))

2rA2B2
(3.26)

which for A = 1 simplifies to

R = − B′

rB2
. (3.27)

The EH action

SEH = κ−2

∫
d3x
√
|g|R = −κ−2

∫
dtdϕrdr

√
B

B′

rB2

= −2πT

κ2

∫
dr

B′

B
3
2

=
πT

κ2
(B−

1
2 (∞)−B−

1
2 (0)) (3.28)

is, therefore, a pure boundary term and does not contribute to the field equations. Here, T

is the time interval over which we integrate. The matter action SbBPS, on the other hand,

may be brought to the flat space form by the coordinate transformation from r to z,

SbBPS = −2πT

∫
dz

(
λ2n2 f2f2

z

(1 + f2)4
+ µ2U(f)

)
(3.29)

and the known results for the flat space BPS baby Skyrme model apply. Indeed, the

resulting BPS equation is

λn
ffz

(1 + f2)2
= ±µ

√
U (3.30)

and squaring this equation directly gives the zero pressure equation (3.16), see [12] for

details.

3.2 Linear observables

There are two quantities which may characterise these gravitating solitons in a geometric

way, namely, its proper mass and volume. Both observables can be computed in the

model without finding a particular matter solution. What is needed is just the Bogomolny

equation. Let us start with the proper mass, which is the volume integral of the proper

energy density

M =

∫
d2x|g| 12 ρ(~x) = 2π

∫ ∞
0

drr
√

B

(
λ2n2

Br2

f2f ′2

(1 + f2)4
+ µ2U(f)

)
(3.31)

where we used the fact that A = 1 and the ϕ independence of the energy density. Note,

that it differs from the asymptotic or ADM mass. In fact, the proper mass is just the

non-gravitational part of the total (ADM) mass. Now, using the variables h and z,

M = 2π

∫ ∞
0

dz

(
λ2n2

4
h2
z + µ2U(h)

)
= 2πλµ|n|

∫ ∞
0

dz|hz|
√
U (3.32)
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where the Bogomolny equation (3.18) has been applied. This can be written as a target

space (solution independent) expression [50]

M = 2πλµ|n|
∫ 1

0
dh
√
U(f) = 2πλµ|n|〈

√
U〉S2 (3.33)

where 〈
√
U〉S2 is the S2 target space average (here volS2 is the area two-form on S2)

〈
√
U〉S2 ≡

∫
S2 volS2

√
U∫

S2 volS2
= 2

∫ ∞
0

df
f
√
U(f)

(1 + f2)2
=

∫ 1

0
dh
√
U(h). (3.34)

Hence, our condition (3.23) can be written as

κ2

2

M

2π
=

1

2
κ2λµ|n|〈

√
U〉S2 < 1 (3.35)

or

|n| < 1

κ2λµ

2

〈
√
U〉S2

. (3.36)

Note that the mass is still proportional to the topological charge and, therefore, the model

is a true BPS model even after the coupling with gravity. This fact differs from the (3 + 1)

dimensional counterpart, i.e., the BPS Skyrme model, where gravity destroys the BPS

property. As we have seen, the maximal topological charge nmax of the soliton is derived

from the maximal mass condition. Hence,

nmax =
1

κ2λµ

2

〈
√
U〉S2

, Mmax =
4π

κ2
. (3.37)

In a similar fashion, we can compute the geometric proper volume (more precisely,

area; but we shall continue to use the generic notion of “volume”)

V =

∫
d2x

√
g(2) = 2π

∫ R

0
drr
√

B = 2π

∫ z0

0
dz (3.38)

(g(2) ≡ det gij) where R is the compacton radius. From the BPS equation in the z coordi-

nate we find that (we take the minus sign)

dz = −nλ
2µ

dh√
U

(3.39)

and

V = 2π

∫ z0

0
dz = π

λ

µ
|n|
∫ 1

0

dh√
U

= π
λ

µ
|n|
〈

1√
U

〉
S2

(3.40)

Finally, we get a linear relation between the proper mass and proper volume

M = 2µ2 〈U1/2〉S2
〈U−1/2〉S2

V =
4π

κ2

V

V max
, (3.41)

where the maximal proper volume is

V max =
4π

κ2

〈U−1/2〉S2
〈U1/2〉S2

. (3.42)
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Note that, as expected for a BPS theory, the proper mass as well as the volume are linear

functions of the topological charge, with the coefficients given by target space averages of

functions of the potential (3.33), (3.40). Like in flat space, higher n solitons, therefore,

behave like a collection of n non-interacting n = 1 solitons with n times the (proper) mass

and n times the (proper) volume of the n = 1 soliton. At variance with the flat space case,

however, different solitons lead to different space-time geometries. Concretely, constant

time slices approach conical spaces for large r, where the deficit angle grows with growing

topological charge n, implying again the existence of a maximum allowed charge nmax.2

It should be underlined that the geometric volume is finite only if the model, i.e., the

potential, leads to compact solitons [50]. This requires that close to the vacuum at h = 0 the

potential behaves as U ∼ ha with a < 2. For other types of potentials gravitating solitons

can perfectly exist but they are infinitely extended objects. This requires another definition

of the volume (radius). For example, one can use the mean square radius. However, the

corresponding volume lacks uniqueness and a thermodynamical interpretation.

We remark that the compacton nature of the gravitating solitons is inherited from the

underlying non-gravitating theory (for examples of compact boson stars see [51, 52]).

3.3 Nonlinear observables and mass-radius relation

The expressions (target space integrals) for proper mass and volume are identical to the

non-gravity case. Hence, the obtained exact formulas follow simply from previous works.

In the case with gravity, however, we will find that also the geometric radius R as well as

the total (asymptotic) mass can be found without the knowledge of a particular solution,

i.e., expressed entirely by means of target space integrals.

The ADM (total or asymptotic) mass MADM in (2 + 1) dimensions is defined by an

asymptotic (constant) component of a metric function [32, 33, 53]. For our choice of the

metric the definition is

1

B(r)
= 1− 2m(r) and MADM =

4π

κ2
lim
r→∞

m(r) (3.43)

or

MADM =
4π

2κ2

(
1− lim

r→∞

1

B(r)

)
(3.44)

However, using eq. (3.22) we get that

lim
r→∞

B−1 =

(
1− 1

2
κ2

∫ z0

0
ρ(z)dz

)2

=

(
1− κ2

4π
M

)2

. (3.45)

2It is plausible to conjecture that the behaviour found here continues to hold also for non-axially sym-

metric Skyrme fields. That is to say, for a zero cosmological constant only zero pressure solutions exist, the

EH action does not contribute to zero pressure solutions, and the matter field equations may be brought

to the flat space form by a coordinate transformation. As a result, a general solution of charge n would

be given by an arbitrary distribution of non-interacting lower charge solitons with total charge n, and each

such solution produces its own space-time geometry. Further, the asymptotic behaviour of the metric (the

deficit angle) does not depend on the details of the solution but only on the topological charge. Testing this

conjecture, however, requires to solve the full static Einstein equations without any symmetry reduction,

which is beyond the scope of the present paper.
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Thus finally,

MADM = M

(
1− κ2

8π
M

)
= M

(
1− 1

2

M

Mmax

)
(3.46)

or, after using the exact expression for the proper mass,

MADM = 2πλµ|n|〈
√
U〉S2

(
1− 1

4
κ2µλ|n|〈

√
U〉S2

)
. (3.47)

The total mass is not a linear function of the topological charge. Owing to the gravita-

tional interaction, it receives a negative correction which is quadratic in the topological

charge. One should remember that there could emerge an instability due to the attractive

gravitational interaction which means that for sufficiently large topological charge the total

mass decreases with |n|. Hence, we impose that

dMADM

dn
> 0 ⇒ n < n∗ ≡ 2

κ2µλ〈
√
U〉S2

or M < Mmax. (3.48)

Thus, the instability condition is exactly the same as the former nmax condition (3.37). As

a consequence, the maximal total mass is

Mmax
ADM = MADM(Mmax) =

1

2
Mmax (3.49)

which is one-half of the maximal proper mass. Note also that both, maximal total as well

as proper mass, do not depend on a particular form of the potential. It is also worth

observing that the total mass can be found as the following integral

MADM = 2π

∫ ∞
0

drrρ(r). (3.50)

Indeed,

2π

∫ ∞
0

drrρ(r) = (3.51)

= 2π

∫ z0

0
dzB−1/2(z)

(
λ2n2

4
h2
z + µ2U(h)

)
(3.52)

= −2πµλ|n|
∫ z0

0
dzB−1/2(z)hz

√
U (3.53)

= −2πµλ|n|
∫ z0

0
dzhz

√
U
(

1− 1

2
κ2

∫ z

0
ρ(z′)dz′

)
(3.54)

= 2πµλ|n|
∫ 1

0
dh
√
U
(

1− κ2

2
λµ|n|

∫ 1

h

√
Udh′

)
(3.55)

(3.56)

where we used the Bogomolny equation and equation (3.22). Thus,

MADM = 2πλµ|n|〈
√
U〉S2 − πκ2µ2λ2n2

∫ 1

0
dh

(√
U(h)

∫ 1

h

√
U(h′)dh′

)
(3.57)
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where n < nmax. However, the double integral can be simplified to the following form∫ 1

0
dh

(√
U(h)

∫ 1

h

√
U(h′)dh′

)
=

1

2
〈
√
U〉2S2 (3.58)

and we arrive at the above definition of the total mass.

We remark that in (2+1) dimensional gravity (especially with a negative cosmological

constant) another mass definition is frequently used. However, it is just ADM mass minus

a constant. Therefore, it is obviously computable in the same fashion as the ADM mass.

There is another interesting quantity often considered for topological solitons. Namely, the

binding energy which measures, for example, how strong two charge one solitons are bound

into a single charge two object. We define the excess energy (that is, minus the binding

energy)

∆MADM = MADM(n = 2)− 2MADM(n = 1). (3.59)

Using formula (3.47) we find that

∆MADM = −κ2λ2µ2π〈
√
U〉2S2 . (3.60)

The expression is always negative. Owing to the attractive gravitational interaction, the

ADM mass of the charge two soliton is smaller than two charge one baby Skyrmions. The

binding energy obviously vanishes in the no-backreaction limit. Similarly, one can obtain

the relative excess energy δ2 = ∆MADM/(2MADM(n = 1)). Note that the value as well

as the sign of the binding energy is rather sensitive to a particular choice of the mass

definition.

Finally, the geometric radius can be computed as (we use (3.39) which allows to change

any integral over the base space for an integral over the target space)

R2 =
λ

µ
|n|
∫ 1

0

dh√
U

(
1− κ2

2
λµ|n|

∫ 1

h

√
Udh′

)
(3.61)

or

R2 =
λ

µ
|n|
(〈

1√
U

〉
S2
− 1

2
κ2µλ|n|

∫ 1

0

1√
U(h)

∫ 1

h

√
U(h′)dh′

)
. (3.62)

Again, due to the gravitational interaction the radius gets a contribution which is quadratic

in the topological charge. The maximal radius occurs for

nR max =
1

κ2µλ

〈
1√
U

〉
S2

(∫ 1

0

1√
U(h)

∫ 1

h

√
U(h′)dh′

)−1

(3.63)

and reads

R2
max =

λ

µ

nR max

2

〈
1√
U

〉
S2

=
1

2κ2µ2

〈
1√
U

〉2

S2

(∫ 1

0

1√
U(h)

∫ 1

h

√
U(h′)dh′

)−1

(3.64)

It is a rather amazing feature of this gravitating matter theory that all observables can

be found in closed form without solving the underlying equations (without knowledge of a
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Figure 1. Left: schematic ADM mass-volume (radius squared) curves for the BPS baby Skyrme

model for Ω < 2 (red), Ω = 2 (black) and Ω > 2 (blue). Right: corresponding M -R curves.

local solution). Furthermore, we can use the exact formulas for the total mass and radius to

get, after eliminating the topological charge n, a general (uniformized) mass-radius curve.

In a parametric way, where x = |n|/nmax ∈ [0, 1], it reads
κ2MADM

2π = x (2− x)

κ2µ2R2

2 = A
〈
√
U〉2

S2
x

(
〈U1/2〉S2〈U−1/2〉S2

A − x
) (3.65)

where we introduced the constant

A ≡
∫ 1

0

1√
U(h)

∫ 1

h

√
U(h′)dh′ (3.66)

which together with 〈
√
U〉S2 , 〈1/

√
U〉S2 defines a particular shape of the mass-radius curve.

Note that the qualitative shape of the mass-radius curve depends on the following ratio

Ω ≡
〈U1/2〉S2

〈
U−1/2

〉
S2

A (3.67)

It is especially clearly visible for the mass-volume (radius squared) curve. Indeed, if Ω < 2

we get a mass-volume curve which turns back at a certain Rmax. For Ω = 2 the curve is

just a straight line. Finally, for Ω > 2 the curve gets flattened for large radii and the Rmax

point coincides with Mmax, both occurring for n = nmax. This is schematically shown in

figure 1, left panel. Note that in the plot the units depend on a particular choice of the

potential and, therefore, the slope of the curve is not properly visible. In the right panel

we show the corresponding M -R curves.

Note that in the Ω = 2 case the relation between the ADM mass and radius is exactly

the same as the relation between the proper mass and the proper radius (3.41). The only

difference is that the maximal ADM mass is half of the maximal proper mass. Similarly,

these curves are identical to the mass-radius relation in the no gravity limit (κ = 0) which,

of course, continue up to arbitrarily high masses (topological charges).
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In general, one can prove that Ω ≥ 1 whenever all integrals entering the definition

of Ω exist, which means that the mass-radius curve is well defined for any potential with

compact solitons. That is, R > 0 for any n ≤ nmax.

One can also easily verify that for the maximally stiff matter i.e., for the constant

potential U(h) = U0Θ(h) (where Θ is the Heaviside step function and U0 a number) we

get Ω = 2. Furthermore, for many typical, and physically well motivated, one vacuum

potentials (for example U = U0h
a, a ∈ [0, 2)) we find Ω < 2. However, it is possible to

construct a potential with Ω > 2. For instance one may consider U = (h + 1/2)−1Θ(h)

which leads to Ω = 4. Nonetheless, taking into account the rather unusual form of such

a potential, we can conclude that models with Ω < 2 seem to be more plausible from a

physical point of view.

For potentials with Ω < 2, the strength of the bending towards the left can be measured

by the difference between Rmax and R(nmax)

κ2µ2

2
(Rmax −R(nmax)) =

1

Ω

〈U−1/2〉S2
〈U1/2〉S2

(
Ω

2
− 1

)2

(3.68)

or simply by the radius at nmax

κ2µ2

2
Rnmax =

〈U−1/2〉S2
〈U1/2〉S2

(
1− 1

Ω

)
(3.69)

At the end, we comment that any deformation of this qualitative picture may be used

as a signature of a departure from the Einstein gravity.

3.4 Examples

3.4.1 The old baby potential

As an example, we consider the so-called old baby potential

Uπ =
1

8
(1− φ3) =

h

4
. (3.70)

This is the most known and most used potential in physical applications of the baby Skyrme

model, with multi-soliton configurations forming chains. First of all, for this potential

〈
√
U〉S2 =

1

3
,

〈
1√
U

〉
S2

= 4 and A = 1. (3.71)

Thus,

M =
2π

3
µλ|n|, V = 4π

λ

µ
|n|. (3.72)

Now we consider the BPS equation in the new coordinate z

λ2n2h′2z = µ2h (3.73)

which leads to the following compacton solution (remember V = 2πz0)

h =


(

1− z
z0

)2
z ≤ z0 = 2λn

µ

0 z ≥ z0.
(3.74)
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From this exact matter solution we can find the metric function, again in the z variable, as

B−1/2(z) = 1− κ2µ2z0

12
+
κ2µ2z0

12

(
1− z

z0

)3

(3.75)

This gives the following condition

1 >
κ2µ2z0

4 · 3 ⇒ |n| < nmax =
6

κ2µλ
(3.76)

which obviously agrees with the general formula. Furthermore, the explicit metric solutions

allow us to find an exact relation between the z and r variables∫ z

0

dz′√
B(z′)

=

∫ r

0
r′dr′ =

r2

2
(3.77)

i.e.,
r2

2
=

(
1− κ2µ2z0

12

)
z − κ2µ2z2

0

4 · 12

(
1− z

z0

)4

+
κ2µ2z2

0

4 · 12
(3.78)

Then, the radius is

R2

2
=

(
1− κ2µ2z0

16

)
z0 ⇒ R2 = 4

λ

µ
|n|
(

1− 1

8
κ2λµ|n|

)
= 4

λ

µ
|n|
(

1− 3

4

|n|
nmax

)
(3.79)

This agrees with the general formula (3.61), as it should. Similarly, we can compute the

total mass of the gravitating axially symmetric soliton

MADM =
2π

3
λµ|n|

(
1− 1

12
κ2µλ|n|

)
=

2π

3
λµ|n|

(
1− 1

2

|n|
nmax

)
. (3.80)

Now we derive an exact relation between the radius and the total mass of the gravitating

baby Skyrmion given by the parametric set of equations (3.79), (3.80). As previously

mentioned it corresponds to the Ω < 2 type. Specifically, Ω = 4/3. The maximal total

mass obviously occurs for |n| = nmax and is one-half of the maximal proper mass. On the

other hand, the maximal radius is found for |n| = 2
3n

max

Rmax =
2
√

2

κµ
. (3.81)

As we see in figure 2, the resulting curve is very similar to the one found in the (3 + 1)

dimensional BPS Skyrme model [39, 40]. It also resembles the curve in the usual Skyrme

model [54, 55]. The end point is when MADM = Mmax
ADM, above which the gravitating

solitonic solution develops a singularity.

As these (3 + 1) dimensional gravitating Skyrmions are used to model neutron stars,

this implies that our simplified (2 + 1) dimensional theory can serve as a toy model where

several nontrivial features of general neutron star solutions can be studied analytically.

Some of these features are, e.g., the existence of a maximal mass beyond which the solution

becomes singular, or the fact that for a sufficiently large mass the corresponding radius

starts to diminish, or the exact calculation of the difference between nongravitating (proper)

and total (ADM) mass. In view of our results, some of these properties can be analytically

understood and estimated by the value of Ω or by formulas (3.68) and (3.69) and, therefore,

can be directly related to particular target space integrals of the potential.
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Figure 2. Asymptotic mass-radius curve for the BPS baby Skyrmions with the old baby potential

Uπ in the asymptotically flat space-time.

3.4.2 The new baby potential

Another frequently used potential is the so-called new baby potential

U =
1

4
h(1− h) (3.82)

which has two minima at h = 0 and h = 1. The resulting BPS baby Skyrmions have ring

like shapes with zero energy density at the origin. One can easily find that

〈
√
U〉S2 =

π

16
,

〈
1√
U

〉
S2

= 2π and A =
π2

16
(3.83)

which means that Ω = 2. Quite surprisingly, we find that this potential gives qualitatively

the same mass-radius curve as the maximally stiff, Heaviside theta potential. Of course, the

slope of the M -R2 curve can be different, as it depends of the ratio 〈U−1/2〉S2/(〈U1/2〉S2Ω)

and the dimensional parameters µ and κ. However, multiplying the potential by a suitable

numerical constant (which does not change Ω) we can make that even the slopes coincide

and the curves are exactly identical.

In fact, there are infinitely many potentials leading to the Ω = 2 curve. One can

show that all potentials which are invariant under the h→ 1− h transformation have this

property. The proof is as follows. We start with the definition of A and introduce the

transformation h→ 1− h

A =

∫ 1

0

dh√
U(h)

∫ 1

h

√
U(h′)dh′ =

∫ 1

0

dh√
U(h)

∫ h

0

√
U(h′)dh′ (3.84)

where the last step follows from the invariance U(h) = U(1− h). Hence,

〈U1/2〉S2〈U−1/2〉S2 =

∫ 1

0

dh√
U(h)

∫ 1

0

√
U(h′)dh′ (3.85)

=

∫ 1

0

dh√
U(h)

(∫ h

0

√
U(h′)dh′ +

∫ 1

h

√
U(h′)dh′

)
= 2A (3.86)
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This result shows that the relation between the shape of the potential and the mass-

radius curve is more involved than one might expect. As a consequence, this makes the

so-called inverse problem, i.e., the reconstruction of the equation of state from the M -

R curve, questionable. As we found, there can be quite many potentials (and therefore

different equations of state) providing the same shape of the M -R curve. Furthermore,

we proved that it is not just the shape of the potential which encodes the form of the

mass-radius curve, but also its symmetries.

3.4.3 The old baby potential squared

In the third example we consider the old baby potential squared

U = 4U2
π =

h2

4
. (3.87)

In contrast to the previous examples it supports infinitely extended, exponentially-like

localised topological solitons

h(z) = e
− µz
λ|n| . (3.88)

This potential leads to the following averages

〈
√
U〉S2 =

1

4
,

〈
1√
U

〉
S2

=∞. (3.89)

Therefore, the ADM mass is

MADM =
π

4
µλ|n|

(
1− 1

16
κ2µλ|n|

)
(3.90)

with n < nmax = 8
κ2λµ

, while the geometric radius is of course infinite. To circumvent

this problem we compute the usual mean square radius. This requires a knowledge of the

metric function

B−1/2(z) = 1− κ2λµ|n|
8

(
1− e−

2µz
λ|n|
)

(3.91)

which is regular for n < nmax. Hence, the radial coordinate r reads

r2

2
=

∫ z

0
B−1/2(z′)dz′ =

(
1− κ2λµ|n|

8

)
z +

κ2λ2n2

16

(
1− e−

2µz
λ|n|
)

(3.92)

Now we can compute the mean square radius as

R̄2 =
2π
∫∞

0 rdrr2ρ(r)

2π
∫∞

0 rdrρ(r)
=

2π

MADM

∫ ∞
0

rdrr2ρ(r) (3.93)

=
4π

MADM

∫ ∞
0

dz

(
B−1/2(z)ρ(z)

∫ z

0
dz′B−1/2(z′)

)
(3.94)

And finally

R̄2 = 4
λ

µ
|n|1−

5
32κ

2λµ|n|
(
1− 1

24κ
2λµ|n|

)
1− 1

16κ
2λµ|n| (3.95)
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Figure 3. Asymptotic mass-radius curve for the BPS baby Skyrmions with the old baby potential

squared U = 4U2
π in the asymptotically flat space-time.

or using x = |n|/nmax

R̄2 =
32

κ2µ2
x

1− 5x
4

(
1− x

3

)
1− x

2

(3.96)

which is a finite function on the unit segment. The corresponding ADM mass-radius curve

is plotted in figure 3. As in the previous example with compact solitons, the curve is of

the Ω < 2 type. It bends left for the topological charge close enough to nmax, which again

coincides with the typical (3 + 1) dimensional behaviour.

4 Cosmological constant Λ > 0

4.1 Constant pressure (extremal) solutions

Now we want to consider the BPS baby Skyrme model coupled with gravity in the presence

of a positive cosmological constant. One can observe that equations (2.12), (2.13), (2.14)

with Λ > 0 possesses a formal solution

A = 1 (4.1)

κ2p− 2Λ = 0 ⇒ p =
2Λ

κ2
> 0 (4.2)

which is nothing else but a non-zero pressure condition for the baby Skyrme matter. It

represents a direct counterpart of the flat space zero-pressure (Bogomolny) equation. Using

the axially symmetric ansatz, the non-zero pressure condition gives

λ2n2

Br2

f2f ′2

(1 + f2)4
− µ2U(f) =

2Λ

κ2
(4.3)

which again can be cast into the non-gravity form using the variable z (3.15)

λ2n2 f2f2
z

(1 + f2)4
− µ2U(f) =

2Λ

κ2
(4.4)

or with the target space variable h (3.17)

λ2n2

4
h2
z − µ2U(h) =

2Λ

κ2
. (4.5)
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This type of equation has been analyzed in connection with BPS Skyrmions under external

positive pressure [56], which here is provided by the cosmological constant

pexternal =
2Λ

κ2
. (4.6)

It is known that this equation does support topological solitons for any value of the pressure

(Λ > 0). However, these solitons are compactons i.e., with the vacuum approached at a

finite distance (for any potential) and with a non-zero pressure at the boundary. It means

that the corresponding solutions cannot be smoothly joined with the vacuum. Hence, such

gravitating BPS baby Skyrmions make sense only if they fully cover de Sitter space-time,

i.e., the size (volume) of the space is identical to the size R of the baby Skyrmion. This

gives a bound on the radial coordinate of de Sitter space-time r ∈ [0, rmax], where rmax = R.

Equivalently, the metric should develop a singularity at the baby Skyrmion boundary.

To see this, we have to solve the matter equation exactly. First we observe that from

eq. (4.5) (again the minus sign is chosen)

− dz =
λ|n|

2

dh√
µ2U(h) + 2Λ

κ2

(4.7)

Hence,

V = 2πz0 = π
λ

µ
|n|
∫ 1

0

dh√
U(h) + 2Λ

κ2µ2

= π
λ

µ
|n|
〈

1√
U(h) + 2Λ

κ2µ2

〉
S2

(4.8)

The proper mass of the soliton can be also found in a geometric way. Namely,

M =

∫
d2x|g| 12 ρ(~x) = 2π

∫
dz

(
λ2n2

4
h2
z + µ2U(h)

)
= 2π

∫
dz

(
2µ2U +

2Λ

κ2

)
(4.9)

where the last step follows from (4.5). Using now (4.7) we get

M = 2πλµ|n|
∫ 1

0

U + Λ
κ2µ2√

U + 2Λ
κ2µ2

dh = 2πλµ|n|
〈
U + Λ

κ2µ2√
U + 2Λ

κ2µ2

〉
S2

. (4.10)

Having solved the matter equation, we can consider the remaining equation for the metric

function B. It is also exactly solvable in the z variable

B−1/2(z) = 1− κ2

2

∫ z

0
ρ(h(z′))dz′ − Λz. (4.11)

Now, our condition on this metric function differs from the flat space-time case. We require

that the metric develops a singularity (horizon) at the boundary of the compact BPS baby

Skyrmion, i.e., the soliton exists on the whole allowed space. This gives

κ2

2

∫ z0

0
ρ(h(z′))dz′ + Λz0 = 1 (4.12)

which can be expressed by the global quantities as

κ2M

4π
+

ΛV

2π
= 1 (4.13)
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This leads to a relation between the topological charge of the soliton, the parameters of

the model and the value of the cosmological constant,

1

|n| =
κ2

2
λµ

〈
U + Λ

κ2µ2√
U + 2Λ

κ2µ2

〉
S2

+
Λ

2

λ

µ

〈
1√

U(h) + 2Λ
κ2µ2

〉
S2

. (4.14)

This formula is completely solution independent (except for the topological charge). The

meaning of this relation is the following: if all parameters and the topological charge obey

this formula, then the resulting gravitating soliton in the theory with positive cosmological

constant is a constant pressure soliton given by the pertinent constant pressure generali-

sation of the BPS (zero pressure) equation. If the relation is not obeyed, then a solitonic

solution may exist, however, it cannot be of the constant pressure (generalised BPS) type.

Let us remark that such an extremal solution exists also for the pure quartic model

without any potential term U = 0. Then,

V =
π√
2

λκ√
Λ
|n|, M =

√
2π
λ
√

Λ

κ
|n| (4.15)

with the extremal condition

|n| =
√

2

λ
√

Λκ
(4.16)

It is simply the dS pressure which counterbalances the repulsion due to the four deriva-

tive term.

4.2 No-backreaction approximation

For a nonzero cosmological constant, the argument excluding the existence of “non-

extremal” self-gravitating solutions (solutions where the pressure is not constant) does

not hold, and such solutions may exist. To attack the problem of their existence, we

change the metric to a more convenient form

ds2 = e−2δ(r)a(r)dt2 − 1

a(r)
dr2 − r2dϕ2. (4.17)

Then, we get

a′ = −κ2r

(
ρ+

2Λ

κ2

)
= −κ2r

(
aλ2n2

4r2
h′2 + µ2U +

2Λ

κ2

)
(4.18)

δ′ = −κ
2r

2a
(ρ+ p) = −κ

2r

2a

(
2aλ2n2

4r2
h′2
)

= −κ
2λ2n2

4r
h′2 (4.19)

0 = ∂r

(
1

r
e−δah′

)
− 2µ2

λ2n2
re−δUh. (4.20)

First of all, this set can be simplified if we introduce y = r2/2

ay = −κ2

(
aλ2n2

4
h2
y + µ2U +

2Λ

κ2

)
(4.21)

δy = −κ
2λ2n2

4
h2
y (4.22)

0 = ∂y

(
e−δahy

)
− 2µ2

λ2n2
e−δUh. (4.23)
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Next, the second equation can be used to get rid of the function δ from the last equation

e−δ∂y (ahy)− e−δδyahy −
2µ2

λ2n2
e−δUh = 0 (4.24)

i.e.,

∂y (ahy) +
κ2λ2n2

4
h3
ya−

2µ2

λ2n2
Uh = 0. (4.25)

Then,

0 = ahyy + ayhy +
κ2λ2n2

4
h3
ya−

2µ2

λ2n2
Uh

= ahyy − κ2

(
aλ2n2

4
h2
y + µ2U +

2Λ

κ2

)
hy +

κ2λ2n2

4
h3
ya−

2µ2

λ2n2
Uh

= ahyy − κ2

(
µ2U +

2Λ

κ2

)
hy −

2µ2

λ2n2
Uh. (4.26)

Here we begin with the no-backreaction approximation, which means that κ = 0. Then,

the field equations are solved by

a = 1− 2Λy, δ = 0 (4.27)

where the radial coordinate y ∈
[
0, 1

2Λ

]
. Hence, we are left only with the second order

matter equation

∂y ((1− 2Λy)hy)−
2µ2

λ2n2
Uh = 0. (4.28)

This equation cannot be integrated to a Bogomolnyi type equation. However, we can solve

it exactly for the old baby potential (3.70). Indeed, we get

∂y ((1− 2Λy)hy)−
µ2

2λ2n2
= 0. (4.29)

Thus,

(1− 2Λy)hy = αy + C0, α ≡ µ2

2λ2n2
(4.30)

that is

hy =
C0 + αy

1− 2Λy
. (4.31)

Hence, a general solution is

h = A− α

2Λ
y − 1

2Λ

( α
2Λ

+ C0

)
ln(1− 2Λy) (4.32)

where one has to remember that y ≤ 1
2Λ . After imposing the boundary conditions

h(y = 0) = 1, h(y = Y ) = 0, hy(y = Y ) = 0 (4.33)

we find

h = 1− α

(2Λ)2
[2Λy + (1− 2ΛY ) ln(1− 2Λy)] (4.34)
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where the size of the compact soliton Y obeys

4Λ2

α
= (1− 2ΛY ) ln(1− 2ΛY ) + 2ΛY (4.35)

After eliminating α, we get the following form of the solution parametrised by its size Y

h = 1− 2Λy + (1− 2ΛY ) ln(1− 2Λy)

2ΛY + (1− 2ΛY ) ln(1− 2ΛY )
(4.36)

where y ∈ [0, Y ]. As the size of the soliton cannot exceed the size of the space-time we

get a condition on the parameters of the model and the topological charge of the solution.

Namely, the right hand side of (4.35) is a positive function bounded by 1 for Y = 1/(2Λ).

Hence, 4Λ2 < α i.e.,

|n| ≤ µ

2
√

2λΛ
. (4.37)

This is the maximal charge of the axially symmetric solution which exists for a given Λ in

the no-backreaction approximation. The total energy of such a configuration is

E =
π

8

µ2

2Λ

[
2 + 4ΛY − (2ΛY )2

2ΛY + (1− 2ΛY ) ln(1− 2ΛY )

]
. (4.38)

Note that one can get the limiting no-backreaction solution which occupies the whole

dS space-time, i.e., when Y = 1/(2Λ). It is simply given by

h = 1− 2Λy, y ≤ 1

2Λ
(4.39)

and |n| = µ

2
√

2λΛ
. In contrast to the other solutions, this solution does not obey the

boundary condition hy(Y ) = 0 because hy(y = 1/(2Λ)) = −2Λ 6= 0. Therefore, there

is a strong qualitative difference between the smooth solutions (4.36) and the limiting

solution (4.39), which resembles a first order phase transition.

Finally, when the parameters do not obey condition (4.37), there are no topologically

non-trivial solutions at all. This differs for example from the BPS baby Skyrme model on

a two dimensional sphere, where for sufficiently large topological charge compact solitons

(obeying a Bogomony equation) are replaced by solutions fully covering the (compact)

base space which do not obey the Bogomolny equation but still solve the second-order field

equation. There is a qualitative change of the type of solution, but baby Skyrmions do

exist for any topological charge. Here, in the dS background case, solutions cannot exist

beyond a maximal topological charge.

4.3 Fully gravitating system

Here we want to find non-extremal solutions in the full gravitating system, for which the

local pressure is no longer constant. As an example, we consider the old baby potential.

In figure 4 we show the profile function h for the charge one solution and different

values of the gravitational constant κ2. The model parameters are chosen as Λ = 0.01

and µ = λ = 1. We begin with a vanishing gravitational constant, which is just the

above considered no-backreaction approximation, and get a compacton in the de Sitter
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Figure 4. Profile function of charge one BPS baby Skyrmions for the the baby potential Uπ with

µ = λ = 1 and Λ = 1, for different values of the gravitational constant: κ2 = 0, κ2 = 3, κ2 = 5 and

κ2 = 5.89 which is the extremal limit — lines: red, yellow, green and blue respectively.

background. The values of the constants obey condition (4.37) and a charge one solution

does exist. It is given by formula (4.36) with the compacton size Y = 1.987, which perfectly

agrees with our numerics. The size of the de Sitter space time is 1/(2Λ) = 50. Hence, the

compacton is much smaller that the allowed space.

Once we take a non-zero κ then we can study the impact of matter on space-time. An

overall effect is that increasing κ leads to a shrinking of the compacton. At the same time,

the size of the de-Sitter space-time also decreases, but we still find a compacton with a

smooth (differentiable) approach to the vacuum. However, this approach occurs in a more

and more rapid fashion as the compacton starts to feel the reduced size of the space-time.

At some point the size of the space-time reaches the size of the compacton. This happens

approximately for κ2 = 5.8, which clearly coincides with the extremal solution which occurs

for κ2 = 5.889.

5 Asymptotic AdS space-time

5.1 Non-existence of extremal solutions

Let us now turn to the asymptotic AdS space-time, which is probably the most interesting

and physically important case, owing to its relation to holographic toy models of dense

nuclear matter/QCD. As we remarked in the Introduction, there is a (2 + 1) dimensional

analogue of the Sakai-Sugimoto holographic description of baryons which, in its simplest

set-up, is given by the baby Skyrme model on an AdS background. However, since the

O(3) σ-model part of the full action does not support topological solitons for negative cos-

mological constant, it is the BPS part (quartic term plus the potential) which must trigger

such baby Skyrmions. Therefore, an understanding of the properties of baby Skyrmions

in the BPS Skyrme model on AdS space is the first step in an analytical understanding

of properties of dense baryonic matter in a holographic approach, at least in its simplified

(2 + 1) dimensional version.
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We consider equations (2.12), (2.13), (2.14) with Λ < 0. Similarly as in the de Sitter

case, there is a solution

A = 1 (5.1)

κ2p− 2Λ = 0. (5.2)

After insertion of the axially symmetric ansatz, the non-zero pressure condition gives

λ2n2

Br2

f2f ′2

(1 + f2)4
− µ2U(f) =

2Λ

κ2
(5.3)

which once again can be brought to a non-gravity form using the variable z, (3.15)

λ2n2 f2f2
z

(1 + f2)4
− µ2U(f) =

2Λ

κ2
. (5.4)

Unfortunately, there is no topologically nontrivial solutions of this equation for negative

Λ. Indeed, it is not possible for the function f to reach the the vacuum value f = 0.

At this point the potential U vanishes, and the left hand side takes a nonnegative value.

However, it has to be equal to 2Λ/κ2 which is a negative constant. Hence, f cannot reach

the vacuum.

Of course, this means that topological solutions cannot be of this simple form which

results in the observation that the BPS property of the gravitating BPS baby Skyrme

model is lost when a nonzero negative cosmological constant is added. Whether there are

gravitating solitons obeying a more complicated matter equation is a different question.

5.2 No-backreaction approximation

It is interesting that, although the model loses completely its BPS property, it is solvable in

an AdS background for two potentials which are widely considered in physical applications

of the baby Skyrme model.

5.2.1 The old baby potential Uπ
The first analytically solvable example is, again, provided by the old baby potential (3.70).

Then, we can adopt the previously found solution in de Sitter space, taking Λ < 0

h = 1− 2Λy + (1− 2ΛY ) ln(1− 2Λy)

2ΛY + (1− 2ΛY ) ln(1− 2ΛY )
(5.5)

where the size of the compact soliton Y reads

(−2Λ)2

α
= (1− 2ΛY ) ln(1− 2ΛY ) + 2ΛY (5.6)

Now y ∈ [0,∞] and there is no restriction on Y and, therefore, no bounds on the topological

charge. Equivalently, the right hand side of (5.6) is a monotonously growing function of

−2ΛY from 0 to infinity. This solution leads to the following energy expression

E =
π

8

µ2

2|Λ|

[
−2 + 4|Λ|Y +

(2ΛY )2

−2|Λ|Y + (1 + 2|Λ|Y ) ln(1 + 2|Λ|Y )

]
. (5.7)
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An important question is whether multi-soliton solutions are stable against decay into

smaller charge constituents. First, we consider a small cosmological constant limit where
Λ2

α � 1. This means that the cosmological constant is much smaller than the inverse of

the characteristic length scale of the BPS baby Skyrmion, Λ � µ
λ . Then the size of the

soliton is

Y =
1

|Λ|

(
2
λ|Λ|
µ
|n|+ 4

3

λ2Λ2

µ2
n2

)
+ o(Λ2α−1) (5.8)

while the energy is

E =
µ2

|Λ|

(
2π

3

λ|Λ|
µ
|n|+ 2π

9

λ2Λ2

µ2
n2

)
+ o(Λ2α−1), (5.9)

where the first terms are, of course, the size and energy in asymptotically flat space Λ = 0.

Then,

E(n = 2)− 2E(n = 1) = 2
2π

9
λ2|Λ|+ o(Λ2α−1) > 0 (5.10)

and the charge two axially symmetric soliton is heavier than two charge one solitons. The

same happens in the large cosmological constant limit Λ2

α � 1, that is Λ � µ
λ . It means

that the left hand side of (5.6) tends to infinity. The same must happen for the quantity

−2ΛY . Hence,
8λ2Λ2

µ2
n2 ≈ 2|Λ|Y ln(2|Λ|Y ) (5.11)

This implies that the size Y grows more than linearly (almost quadratically) with 2
√

2λ|Λ|
µ |n|.

Now, the energy

E ≈ π

4
µ2Y (5.12)

also grows more than linearly with 2
√

2λ|Λ|
µ |n|. Consequently, it grows more than linearly

with the topological charge. This again implies that E(n = 2)− 2E(n = 1) > 0.

The message we can learn from this result is that the energy of the charge two soliton

is bigger that twice the energy of the charge one soliton. However, this does not necessary

mean that our exact axially symmetric solutions are unstable towards decay into two

charge one compact constituents. This is related to the fact that AdS space-time is not

translationally invariant. In other words, moving a soliton from the point r = 0 to an

arbitrary position in AdS requires an additional amount of energy. In fact, the impact of

AdS space-time on solitons can be modeled by putting solitons in flat space with an external

position dependent potential which generates a force (pressure) moving the soliton towards

the origin.

Hence, at this stage of our investigations we may conclude that we found multi-soliton

solutions which resemble the liquid phase previously found in the flat space. Here, however,

all volume preserving diffeomorphism symmetries of the static solutions are lost, because of

the nature of the background space-time. It is an interesting question whether there exist

other phases consisting of identifiable charge one substructures (e.g. a crystal or gaseous

phase), corresponding to the gaseous phase of the flat space model. To answer this question

and to figure out which phase provides the lower energy state, however, requires full two

dimensional computations, which are beyond the scope of this paper.
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5.2.2 The old baby potential squared U = 4U2
π

Now we turn our attention to the old baby potential squared (3.87). Then, we get

∂y ((1− 2Λy)hy)−
µ2

λ2n2
h = 0 (5.13)

It is convenient to introduce a new variable z = 1− 2Λy. Now,

∂z (zhz)− β2h = 0 ⇒ zhzz + hz − β2h = 0 (5.14)

where

β2 =
µ2

4λ2Λ2n2
. (5.15)

This equation has a general solution given by the modified Bessel functions

h(z) = c1I0(2β
√
z) + c2K0(2β

√
z) (5.16)

or

h(y) = c1I0(2β
√

1− 2Λy) + c2K0(2β
√

1− 2Λy). (5.17)

Imposing the boundary conditions h(0) = 1 and h(∞) = 0 we find the exact solution

h(y) =
1

K0 (2β)
K0

(
2β
√

1− 2Λy
)
. (5.18)

Now, the energy reads

E = 2π

∫ ∞
0

dy

(
(1− 2Λy)

λ2n2

4
h2
y +

µ2

4
h2

)
. (5.19)

Inserting our solution we get

E =
π

4

µ2

−Λ

(
K2(2β)

K0(2β)
− 1

)
(5.20)

where we used that K ′0(z) = −K1(z) and∫
xK2

0 (x)dx =
1

2
x2(K2

0 (x)−K2
1 (x)) and

∫
xK2

1 (x)dx =
1

2
x2(K2

1 (x)−K0(x)K2(x)).

In the limit of vanishing cosmological constant we get the energy in flat space-time E =
π
2µλ|n|. One can also show that

E(n = 2)− 2E(n = 1) =
π

4
µλ b

(
K2(b/2)

K0(b/2)
− 2

K2(b)

K0(b)
+ 1

)
> 0 (5.21)

where

b = n2β =
µ

−λΛ
. (5.22)

This means that the axially symmetric charge n = 2 solution is heavier than twice the

axially symmetric charge one solution, for any values of the parameters.

It is worth noticing that the excess of energy (5.21) goes to 0 for b→∞. As expected,

it corresponds to the flat space-time limit Λ→ 0.
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Figure 5. Charge one BPS baby Skyrmions for the baby potential squared U = 2U2
π with µ = λ = 1

and Λ = −1 for different values of gravity constant (κ2 = 0, κ2 = 1, κ2 = 3 and maximal κ2 = 4.985

— lines: blue, red, yellow and green respectively). Left panel: matter profile function h. Right

panel: metric function a.

5.3 Fully gravitating system

Finally, we solve the gravitating BPS baby Skyrme model numerically with the assumption

of the axial symmetry (4.21), (4.26). For concreteness we analyse two potentials for which

we have analytical solutions in κ = 0 limit, i.e., the old baby and the old baby squared.

In figure 5 we plot charge one solitonic solutions for the old baby potential squared

U = 2U2
π . Here we choose for the matter coupling constants the values µ = λ = 1, while

Λ = −1. Then, we vary the gravity coupling constant κ2. For κ2 → 0, the solution

smoothly tends to the no-backreaction approximation. On the other hand, for growing κ2,

the matter field is squeezed while the metric function a slowly changes its character —

from a monotonously increasing function to a function which possesses a local minimum.

Of course, asymptotically a → a∞ = 2y. The maximal value of the gravity constant

is κ2 = 4.985. Above this value, there are no topologically nontrivial solutions as it is

impossible for the profile function h to reach its vacuum value h = 0.

In figure 6 we also show the profile function of the charge one BPS baby Skyrmions

for the old baby potential, for different κ. The size of the compacton gets smaller with

growing gravity coupling constant, until it reaches the maximum value κ2 = 3.65 beyond

which no topological solution exists.

In figure 7 we present the profile function of the baby Skyrmion as well as the metric

function a for the old baby and old baby potential squared with µ = λ = κ = 1 while

we change Λ. The impact of Λ on the profile function is twofold. In the region near the

origin, where most of the mass is concentrated, increasing the cosmological constant leads

to a more rapid decrease of h. In the asymptotic region, where the solution approaches

the vacuum, we observe the opposite behavior. The profile function decreases slower for

bigger Λ, which is clearly related to the negative pressure-like behaviour of the negative

cosmological constant.

Although the higher charge axially symmetric solutions probably are not the true

energy minimisers, we use them to get some intuition about the impact of the cosmological

constant on the ADM mass-radius curve. Concretely, we plot this curve for the old baby
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Figure 6. Profile function of charge one BPS baby Skyrmions for the baby potential Uπ with

µ = λ = 1 and Λ = −1 for different values of gravity constant: κ2 = 0, κ2 = 1, κ2 = 2 and maximal

κ2 = 3.65 — lines: blue, red, yellow and green respectively.
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Figure 7. Profile function h (upper) and metric function a (lower) of charge one BPS baby

Skyrmions for Uπ (left) and 2U2
π (right) with κ = 1 and for different Λ.

potential which, as we know, supports compactons. Hence, the geometric volume (radius)

is a well defined quantity. We chose parameters λ = µ = 1 and κ2 = 0.1 such that in

the Λ = 0 limit n < nmax = 60. We find that Rmax and Mmax increase for increasing

|Λ|, see figure 8. Qualitatively, the role of the cosmological constant is clear. It acts

as negative pressure i.e., an additional repulsive interaction which counterbalances the

gravitational attraction. Therefore, for a given value of the topological charge, we find less

compressed (gravitationally squeezed) matter with bigger radius. Furthermore, solutions

exist for higher masses as the negative Λ has an opposite effect on the appearance of the
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Figure 8. The mass-radius curve for the old baby potential with λ = µ = 1 and κ2 = 0.1, for

different Λ.
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Figure 9. The maximal value of topological charge soliton for the old baby potential with λ = µ = 1

and κ2 = 0.1, for different Λ.

singularity of the metric than the matter density. Qualitatively, with increasing |Λ| the

mass-radius curve has a tendency to approach the analytical relation found for κ = 0 (5.7)

— dashed line in the plot. Of course, in this limit there is no upper limit on the mass

(radius) and the curve continues to infinity. Although the maximal ADM mass grow with

|Λ|, the maximal topological charge of the baby Skyrmion decreases, as is shown in figure 9.

Next, for the old baby potential with the same choice of the parameters µ = λ = 1

and κ2 = 0.1 we plot the relative excess energy

δ2 =
MADM(n = 2)

2MADM(n = 1)
− 1 (5.23)

as a function of the cosmological constant — see figure 10. It should be underlined that

this is not just minus the relative binding energy. This quantity does not take into account

the fact that a translation of a compacton in AdS space changes its energy. Hence, a set of

two charge one compactons, sufficiently separated to form a non-overlapping pair, do not

have an energy equal to twice the charge one energy. Therefore, a positive energy excess
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Figure 10. The relative excess energy for the old baby potential for different values of Λ. Here

λ = µ = 1 and κ2 = 0.1.

Figure 11. Regions of positive and negative excess energy δ2 in the Λ-κ2 plane. The green region

close to the upper left corner corresponds to parameter values where a n = 2 soliton solution does

not exist, i.e., nmax = 1. Here λ = µ = 1.

does not necessary imply the instability of a self-gravitating multi-soliton solution. On the

other hand, if this quantity is negative we know that the charge two solution is stable. As

we remember, in the asymptotically flat space-time (Λ = 0) this quantity is always (for

any κ) negative, while in the no-backreaction limit (κ = 0) in the AdS space-time it is

always positive (for any |Λ|). This suggests that there can be a transition from negative

to positive (relative) excess energy while κ and Λ are changed. This is exactly what we

find in figure 10. In particular, the critical value for the cosmological constant for which

the binding energy changes its sign reads Λ = −0.017. A general behavior is that bigger

|Λ| moves δ2 towards bigger (positive) values. Hence, if we start with Λ = 0 and a chosen

value of the gravity coupling κ, the excess energy is negative. Then, if we increase |Λ|, it

linearly grows to δ2 = 0. Above this value of the modulus of the cosmological constant

the excess energy is always positive. Finally, in figure 11 we scan for positive and negative

excess energies δ2 in the Λ-κ2 plane.
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Figure 12. The relative excess energies for the allowed values of the topological charge for the old

baby potential for different values of Λ. Here λ = µ = 1 and κ2 = 0.1.

This pattern can be studied in a more elaborated way if we compute the relative excess

energy for any allowed topological charge

δn =
MADM(n)

nMADM(1)
− 1 (5.24)

In figure 12 we show our numerical findings. For Λ = 0 all solitons have negative excess

energy and higher charge Skyrmions are more tightly bound than the lighter ones. This

is clearly explained by our results for the asymptotically flat space-time. In this case, the

excess energy of a charge n solution is simply a linear function of the topological charge

δn = −1

2

κ2λµ〈
√
U〉S2

1− 1
4κ

2µλ〈
√
U〉S2

|n|. (5.25)

Once we add a negative Λ then the excess energy is less and less negative. However, as in the

Λ = 0 case the excess energy is proportional to the topological charge, the lightest solitons

are affected first. Indeed, for small negative Λ we observe that the first few solitons have

positive excess energy while heavier baby Skyrmions still possess negative excess energy.

The number of multi-solitons with negative excess energy decreases with growing |Λ|. For

sufficiently large |Λ| all solitons have positive excess energy.

Finally, we plot nmax as a function of Λ and κ2 in figure 13.

6 Summary

In the present paper, we investigated the baby BPS Skyrme model after coupling with

gravity in (2 + 1) dimensions. From the point of view of the energy-momentum tensor,

this skyrmionic matter system still describes a perfect fluid, where each potential provides

a particular (non-barotropic) equation of state.

For the asymptotically flat metric, we found that the model still exhibits the BPS

property. As a result, there are solitonic solutions obeying a Bogomolnyi equation, i.e., a

local zero-pressure equation, for arbitrary values of the winding number. After a change
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Figure 13. nmax as a function of Λ and κ2, for 1 ≤ n ≤ 15. In the blue region, nmax = 1.

The continuous black line separates positive and negative energy excess for charge n solitons. Here

λ = µ = 1.

of the radial coordinate, this Bogomolnyi equation exactly coincides with the Bogomolnyi

equation of the BPS baby Skyrme model without gravity. As a result, the proper (non-

gravitational) mass of the solutions is a linear function of the topological charge, with

the coefficient determined by a target space integral. Analogously, the proper geometrical

volume (for compactons) is a linear function of the topological charge. A generic impact

of gravity is visible in the appearance of a maximal mass, corresponding to a maximal

topological charge, allowed for gravitating BPS baby Skyrmions. Furthermore, we found

exact formulas for the total mass and radius. Both get negative contributions due to the

gravitational interaction which are quadratic in the topological charge. We observed that

the mass instability happens exactly at the maximal mass point. Finally, we obtained

an exact total (asymptotic) mass-radius curve which qualitatively agrees with its higher

dimensional counterpart. We want to underline that all results are obtained in a completely

analytical manner, which implies the exact solvability of this gravitating system. Note that,

although it is perfectly possible to compute the local form of solutions, all quantities are

expressed via target space integrals of functions of the potential. Especially, the shape of

the mass-radius curve is analytically related to a ratio between target space integrals of the

potential (with compact solutions). Therefore we completely characterise the mass-radius

curve (or more generally properties of “toy neutron stars”) by properties of the underlying

matter theory, that is, a particular form of the potential (”toy nuclear matter”). Quite

interestingly, there can be (infinitely) many distinct potentials which give exactly the same

mass-radius curve. Such a degeneracy puts some doubts on the so-called inverse problem,

i.e., the reconstruction of the equation of state (which corresponds to a potential in the

language of the effective Skyrme theory) from the M -R curve.

Some of these findings resemble the situation of the gravitating O(3) σ-model in the

asymptotically flat space-time (although here we have infinitely many models defined by

different potentials). Therefore, the full gravitating baby Skyrme model can still be under-

stood as a sum of two separate BPS parts — each with its own Bogomolnyi equation and

topological bound.
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Let us remark that the preservation of the BPS property in the model after its coupling

to gravity most likely implies the existence of an N = 2 supersymmetric extension of the

BPS baby Skyrme model [57–60] also with gravity included.

The model gets more complicated once a non-zero cosmological constant is added. In

the case of positive Λ (de Sitter space-time) one can distinguish two different, extremal and

non-extremal, types of solutions. The extremal solution is a local constant pressure solution

and, thus, closely related to the non-gravitating model. In fact, after a suitable change

of the radial coordinate one can cast the matter equation in the form of the Bogomolnyi

equation in flat space-time, generalised for constant non-zero external pressure, where now

the role of the external pressure is played by the cosmological constant. Again, the mass

and volume of the baby Skyrmions can be found in an exact way. Such a solution is well-

defined only if it covers the whole allowed space. Equivalently, one can say that the metric

must possess a singularity at the boundary of the extremal baby Skyrmion. This leads to

a relation between the parameters of the model and the topological charge. This relation

was obtained in a closed form for any model (any potential).

When the parameters of the model do not obey this relation, we can still have non-

extremal solutions. Now, the pressure changes inside the solitons, and the solutions lose

any similarity with the non-gravity case.

There are no extremal solutions for the asymptotically anti-de Sitter space-time. Such

solutions are forbidden, as there are no constant negative pressure solutions in the non-

gravity case with non-zero topological charge. Again, gravitating solitons lose any similarity

with the original flat space-time BPS baby Skyrmions.

Interestingly enough, there are two analytically solvable cases where analytical axially

symmetric multi-solitons in the external AdS space-time can be found. It includes the

model with the old baby potential, leading to compact solutions. The axially symmetric

higher charge solutions correspond to a liquid phase where individual charge one solitons

get completely dissolved. In (asymptotically) flat space, there exists a second, gaseous

phase of non-overlapping charge one solitons. It is an interesting question whether such a

second phase continues to exist in AdS space, and, in the affirmative case, which phase has

lower energy. Here we made a first step towards answering this question by computing the

excess energy, which is the difference between the mass of the charge two axially symmetric

solution and twice the energy of the charge one axially symmetric solution. Note that this

does not take into account the additional energy coming from the fact that a state of

two separated compactons in AdS space-time requires to move the solitons away from the

origin. This excess energy is positive for external AdS that is when κ = 0 and decreases

to negative values while κ grows. Obviously, if it becomes negative then the fluid phase

is the true energy minimum configuration. On the other hand, to study the implications

of a positive excess energy for the existence and stability of different phases requires full

two-dimensional numerical calculations. However, even if higher charge solitons are not

completely destabilised by positive excess energies, these positive excess energies still may

reduce total binding energies and, thereby, provide an explanation of why holographic

baby Skyrmions in an AdS background in the full baby Skyrme model have small binding

energies [16].
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Looking from a wider perspective, we can conclude that there is an intimate relation

between the non-gravitating BPS baby Skyrmions in flat space-time without (with) pres-

sure and properties of their gravitating counterparts in an asymptotically flat (curved)

space-time.
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