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1 Introduction

The operator product expansion in a conformal field theory implies that one can write a

four-point correlation function as a discrete sum of conformal blocks corresponding to the

physical operators of the theory:

〈O1(x1) · · ·O4(x4)〉 =
∑
∆,J

p∆,JG
∆i
∆,J(xi). (1.1)

The conformal block G∆i
∆,J(xi) gives the total contribution to their four-point function

coming from operators in a multiplet with a primary of dimension ∆ and spin J . The

superscript ∆i represents dependence on the dimensions of the four external operators Oi.

The coefficient p∆,J is a product of OPE coefficients, and the sum runs over the particular

set of operators that we have in a given theory.

It is sometimes useful to think about this expansion as arising from a more primitive

formula where we simply expand the four-point function in terms of a complete basis of

single-valued functions Ψ∆i
∆,J(xi).

1 These functions are sometimes called conformal partial

waves, and they are given by conformal blocks plus “shadow” blocks with ∆ → ∆̃ ≡ d−∆,

Ψ∆i
∆,J(xi) = K∆3,∆4

∆̃,J
G∆i

∆,J(xi) +K∆1,∆2

∆,J G∆i

∆̃,J
(xi). (1.2)

The K coefficients will be given in (A.6) below. A mathematically complete set of such

functions (in d > 1) consists of partial waves with integer spin and unphysical complex

dimensions, ∆ = d
2 + ir, where r is a nonnegative real number. These are often referred to

as the principal series representations.

In addition to being complete, the principal series wave functions are also orthogonal

in an appropriate sense. There is a conformally-invariant pairing between Ψ∆i
∆,J and Ψ∆̃i

∆̃′,J ′

where we simply multiply the functions and integrate over all four external points. We also

must divide by the volume of the conformal group SO(d+ 1, 1), since the resulting integral

is invariant under simultaneous conformal transformations of the four points. (In practice,

this means we must gauge fix and insert the appropriate Faddeev-Popov determinant.)

With respect to this pairing, we have the orthogonality relation,(
Ψ∆i

∆,J ,Ψ
∆̃i

∆̃′,J ′

)
≡
∫

ddx1 · · · ddx4

vol(SO(d+1, 1))
Ψ∆i

∆,J(xi)Ψ
∆̃i

∆̃′,J ′
(xi) = n∆,J 2πδ(r − r′)δJ,J ′ , (1.3)

where the normalization coefficient n∆,J will be given in (A.15) below. Here ∆ = d
2 + ir

and ∆̃′ = d
2 − ir

′ and we assume r, r′ ≥ 0.

Using this set of principal series wave functions, the four point function can be written

〈O1(x1) · · ·O4(x4)〉 =

∞∑
J=0

∫ d
2

+i∞

d
2

d∆

2πi

I∆,J

n∆,J
Ψ∆i

∆,J(xi) + (non-norm.) (1.4)

=
∞∑
J=0

∫ d
2

+i∞

d
2
−i∞

d∆

2πi

I∆,J

n∆,J
K∆3,∆4

∆̃,J
G∆i

∆,J(xi) + (non-norm.). (1.5)

1Such expansions can be thought of in terms of harmonic analysis on the conformal group SO(d+ 1, 1).

Harmonic analysis was first applied to conformal field theory in the 70’s [1–4]. Recently there has been

renewed interest in these methods [5–7], partly due to their role in the large-N solution of the SYK model [8].
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In the first line we introduced the coefficient function I∆,J , dividing by n∆,J for convenience.

This function I∆,J contains all of the theory-specific information in the four point function,

and it will be the focus of this paper. In the second line we inserted (1.2) and then

absorbed the second term by extending the region of integration of the first term. The

non-normalizable contributions will be discussed in appendix B.2.

We can now understand how to recover the OPE presentation in (1.1): we deform the

contour of integration over ∆ to the right, picking up poles along the real ∆ axis at the

locations of physical operators. The residues are proportional to p∆,J .

Often, we imagine using (1.1) and (1.4) to determine the four-point function in a case

where we know the OPE data or expansion coefficient I∆,J . However, for some applications,

it is useful to imagine applying the logic in reverse. Then we assume that the four-point

function (or some contribution to it) is given, and we want to evaluate the corresponding

OPE or coefficient function I∆,J . To do this we take the pairing of Ψ with the four-point

function. Using (1.3) and (1.4), we find an inversion formula2

I∆,J =
(
〈O1 · · ·O4〉,Ψ∆̃i

∆̃,J

)
=

∫
ddx1 · · · ddx4

vol(SO(d+1, 1))
〈O1 · · ·O4〉Ψ∆̃i

∆̃,J
(xi). (1.6)

In this formula, all four points are integrated over d-dimensional Euclidean space. By

partially gauge-fixing the SO(d+1, 1) symmetry, this can be reduced to an integral over

cross ratios.

We would like to emphasize that (1.6) is quite trivial, simply expressing the orthogo-

nality of the partial waves. Recently, a much more interesting formula for I∆,J has been

presented by Caron-Huot [9]. This involves an integral over two Lorentzian regions, with

an integrand given by a special type of conformal block multiplied by a double commutator,

either 〈[O1, O3][O2, O4]〉 or 〈[O1, O4][O2, O3]〉, depending on the region. This formula has

several advantages, such as the fact that it can be analytically continued in the spin J , and

that for real dimension and spin the integrand satisfies positivity conditions.

The purpose of this paper is to give an alternate derivation of Caron-Huot’s more

interesting formula. Our strategy is as follows. We start from the formula (1.6), and we

represent the Ψ function using the shadow representation, as an integral over a fifth point.

The formula for I∆,J is now a conformally-invariant integral over five points in Euclidean

space. The idea is to Wick-rotate and deform the contour of integration over these points.

We end up integrating over a subregion of Lorentzian spacetime such that e.g. x3 is in

the future of x1 and x2 is the future of x4, but all other relationships between points are

spacelike. After integrating out some of the coordinates using conformal symmetry, this

becomes Caron-Huot’s formula.

In slightly more detail, the specific Wick rotation is simplest to describe after making a

partial gauge fixing of SO(d+1, 1), where we set x1 = (1, 0, 0, · · · ), x2 = 0, and x5 =∞. We

then Wick-rotate the integral over the remaining points x3, x4. The integrand has branch

point singularities at locations where x3 or x4 become null separated from x1 or x2. We

deform the contour for each of x3, x4 to pick up the discontinuity across the corresponding

2We use the notation that Oi is always at position xi unless otherwise specified.
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branch cuts. For each of x3, x4, the discontinuity leads to a commutator between one of

O3, O4 and O1, O2. Deforming the contour in both variables (which is valid for J > 1) gives

double commutators of the type described above, integrated over a subset of the Lorentzian

space for x3, x4:

I∆,J = −ĈJ(1)

[∫
3>1,2>4

ddx3d
dx4

vol(SO(d−1))

〈[O4, O2][O1, O3]〉
|x34|J+2d−∆3−∆4−∆

(m · x34)Jθ(m · x34) (1.7)

+ (−1)J
∫

4>1,2>3

ddx3d
dx4

vol(SO(d−1))

〈[O3, O2][O1, O4]〉
|x34|J+2d−∆3−∆4−∆

(−m · x34)Jθ(−m · x34)

]
.

Here m is the null vector mµ = (1, 1, 0, . . . , 0), the second component is the time direction.

The notation i > j means that xi is in the future lightcone of xj . In the regions where

the θ step functions are nonzero, all pairs of points not indicated in the subscript to the

integral are spacelike separated. The ĈJ(1) constant is specified in footnote 5. The fact

that we have a natural analytic continuation in spin J (apart from the (−1)J factor) is

obvious already from (1.7).

As a final step, this integral can be simplified to Caron-Huot’s formula (an integral

over cross ratios only) by un-gauge-fixing this integral and re-gauge-fixing in a new gauge

that separates the integration variables into cross ratios and everything else. The integral

over everything else gives a multiple of a funny conformal block with “dimension” given

by J + d− 1 and “spin” given by ∆− d+ 1. Concretely,

I∆,J = α∆,J

[
(−1)J

∫ 1

0

∫ 1

0

dχdχ

(χχ)d
|χ− χ|d−2G∆̃i

J+d−1,∆−d+1(χ, χ)
〈[O3, O2][O1, O4]〉

T∆i
(1.8)

+

∫ 0

−∞

∫ 0

−∞

dχdχ

(χχ)d
|χ− χ|d−2Ĝ∆̃i

J+d−1,∆−d+1(χ, χ)
〈[O4, O2][O1, O3]〉

T∆i

]
.

In this expression, T∆i is a factor of external positions that we strip off to make the

four-point function depend only on the cross ratios, see (3.29). The α coefficient is given

in (3.42). This formula is precisely Caron-Huot’s inversion formula once we convert to his

c(J,∆) using

c(J,∆) =
I∆,J

n∆,J
K∆3,∆4

∆̃,J
. (1.9)

Note that this translation contains a factor of (−1)J .

In the rest of the paper we will spell out the details in this argument. Although each

step is simple, there are several steps involved. In two dimensions some of these can be

combined, and the presentation is significantly simpler. We will go through this case first.

We also present a separate derivation for the interesting case of dimension one, where

lightcone coordinates are not available but Caron-Huot’s formula does have a nontrivial

analog, which played a role in [8].

2 Two dimensions

In this section we will derive the Lorentzian OPE inversion formula for the special case of a

conformal field theory in two spacetime dimensions. We treat this case separately because

– 4 –
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some aspects are different (and simpler!) than the d > 2 case, which we will discuss in

the next section. To further simplify the analysis, we will specialize to the case where the

external dimensions are equal ∆1 = ∆2 = ∆3 = ∆4 = ∆O. We will study general ∆i when

we move to higher dimensions.

In two dimensions, the conformal group SL(2,R) × SL(2,R) has two independent

quadratic Casimirs, associated with the two SL(2,R) factors. Eigenfunctions of the

Casimirs are labeled by a pair of left and right weights (h, h), where the dimension is

∆ = h + h and the spin is J = |h − h|.3 The eigenfunctions are given by the shadow

representation

Ψ∆O

h,h
(zi, zi) =

1

|z12|2∆O |z34|2∆O
Ψh,h(zi, zi)

Ψh,h(zi, zi) =

∫
d2z5

(
z12

z15z25

)h( z12

z15z25

)h( z34

z35z45

)1−h( z34

z35z45

)1−h
. (2.1)

As usual in the shadow representation, Ψh,h is an eigenvector of the Casimirs because it is

a linear combination of products of three-point functions, each of which is an eigenvector of

the Casimirs. Note that the partial wave for the exchange of a symmetric traceless tensor

(STT) would be Ψh,h + Ψh,h, because STT representations are reducible in 2-dimensions

(when the spin J = |h − h| is nonzero). Thus, Ψh,h is not quite analogous to Ψ∆i
∆,J in

higher dimensions, which is associated to STTs. This point will be important later. Our

normalization of the two dimensional shadow integral also differs from what we will define

in higher dimensions by a factor of 2J .

The expansion of the four-point function in terms of Ψh,h can be written as

〈O1(z1) · · ·O4(z4)〉 =

∞∑
`=−∞

∫ ∞
0

dr

2π

Ih,h
nh,h

Ψ∆O

h,h
(zi) + (non-norm.), (2.2)

where h = 1+`+ir
2 and h = 1−`+ir

2 . The orthogonality relation for these eigenfunctions, in

the sense of (1.3) is [10](
Ψ∆O

h,h
,Ψ∆̃O

1−h′,1−h′
)

= nh,h 2πδ(r − r′)δ`,`′ , nh,h = − 2π3

(2h− 1)(2h− 1)
. (2.3)

To extract Ih,h, we must take an inner product between the four-point function 〈O1O2O3O4〉

and the partial wave Ψ∆̃O

1−h,1−h, where ∆̃O = 2−∆O. On the one hand, this is given by

Ih,h =

∫
d2z1 · · · d2z4

vol(SO(3, 1))
〈O1O2O3O4〉Ψ∆̃O

1−h,1−h(zi, zi) (2.4)

=

∫
d2χ

|χ|4−2∆O
〈O1(0)O2(χ)O3(1)O4(∞)〉Ψ1−h,1−h(0, χ, 1,∞), (2.5)

where in the second line we have chosen the gauge z1 = 0, z2 = χ, z3 = 1, z4 =∞ (and we

are only writing holomorphic coordinates for brevity). This integral in terms of cross-ratios

χ, χ is the usual Euclidean inversion formula.

3Note that h is not in general the complex conjugate of h.
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On the other hand, plugging in the shadow representation (2.1), we can write the

integral on the r.h.s. of (2.4) as

∫
d2z1 · · · d2z5

vol(SO(3, 1))

〈O1O2O3O4〉
|z12|4−2∆O |z34|4−2∆O

(
z12

z15z25

)1−h( z12

z15z25

)1−h( z34

z35z45

)h( z34

z35z45

)h
.

(2.6)

As mentioned in the introduction, it is useful to partially gauge fix (2.6) in a different way,

where we choose z1 = 1, z2 = 0, z5 =∞. This gives

Ih,h =

∫
d2z3d

2z4

|z34|4−2∆O
〈O1O2O3O4〉zh34z

h
34. (2.7)

Although (2.7) treats the operators less symmetrically than (2.5), it is natural from a

different point of view. We can think about the four-point function as a kernel that maps

functions of z3, z4 to functions of z1, z2, by integrating over z3, z4. By global conformal

invariance, this kernel commutes with the conformal Casimirs, so eigenfunctions of the

Casimirs (like zh34z
h
34) should also be eigenfunctions of the four-point function. We could

have taken (2.7) as our starting point for the definition of Ih,h. In this case, we could return

to the integral over cross-ratios (2.1) by making the change of variables

χ =
z34

(z3 − 1)z4
, (2.8)

and integrating over z4.

An important point is that (2.5) and (2.7) only make sense if the spin J is an inte-

ger, because otherwise the functions Ψ1−h,1−h and zh34z
h
34 would not be single-valued in

Euclidean signature.

2.1 Wick rotation and the double commutator

We will now derive a different formula for Ih,h by doing the integral over z3, z4 in (2.7) in

Lorentzian signature. To Wick rotate, we use the normal Feynman continuation so that

we take τ = (i+ ε)t. Then

|z|2 = x2 + τ2 = x2 − t2 + iε = uv + iε. (2.9)

Here we have defined u = x − t and v = x + t. With this iε prescription, the integral

over Lorentzian kinematics gives the same answer as the original Euclidean integral. Our

integral becomes

Ih,h = −1

4

∫
du3dv3du4dv4

(u34v34)2−∆O
〈O1O2O3O4〉uh34v

h
34, (2.10)

where the factor of −1
4 arises because d2z ≡ dτdx = i

2dudv.

It will be important to understand the locations of singularities in the complex u, v

planes. In two dimensions, singularities in the four-point function only occur when some

pair of external operators become null separated [11] (in higher dimensions other singular-

ities are possible, but they will not interfere with the analogous argument). Since we are

– 6 –
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v3

3~2

3~1 3~4

v4

4~2

4~1

4~3

Figure 1. The continuation of v3, v4 in the case where 0 < u3 < u4 < 1. We begin by integrating

both variables over the real axis. We deform the v3 contour in the lower half-plane to pick up

the discontinuity across the branch cut associated with the 3 ∼ 2 singularity, giving the [O3, O2]

commutator. We deform the v4 contour in the upper half-plane and pick up the [O4, O1] singularity.

fixing the locations of u1, v1 = 1, 1 and u2, v2 = 0, 0, singularities occur when one of the

following hold:

u3v3 + iε = 0, u4v4 + iε = 0, (1− u3)(1− v3) + iε = 0, (2.11)

(1− u4)(1− v4) + iε = 0, (u3 − u4)(v3 − v4) + iε = 0. (2.12)

Let us think about fixing u3, u4 and doing the integral over the v3, v4 variables. Suppose

that h = ∆+J
2 , h = ∆−J

2 with J positive. (If J is negative, we reverse the roles of u, v in the

following.) For sufficiently large J (see appendix D.2), the factor vh34 causes the integrand

to die at large v3, v4. Thus, we can deform the v3, v4 integrals away from the real axis

without worrying about contributions near infinity.

For each of the v variables there are three singularities. If all of the singularities in v3

or v4 are in the upper or lower half planes, then the integral will vanish. This happens if

u31, u32, u34 all have the same sign, or if u41, u42, u43 all have the same sign.

To get a nonvanishing result, we must have one singularity on one side of the axis

and two on the other side, for each of v3 and v4. This requires 0 < u3, u4 < 1. We can

then deform each of the v contours towards the half-plane with only one singularity. This

singularity is a branch point, and we can take the branch cut to lie just above or just below

the real axis. The v integrals then take the discontinuities across these branch cuts, which

are the same as the commutators of certain pairs of operators.

For example, when 0 < u3 < u4 < 1 (see figure 1), we deform the v3 contour towards the

lower half-plane around the singularity v32 = −iε/u32 to produce a commutator [O3, O2].

Similarly, we deform the v4 contour towards the upper half-plane around the singularity

v41 = −iε/u41 to produce [O1, O4]. In the other case 0 < u4 < u3 < 1, we obtain the

commutators [O4, O2][O1, O3]. The precise formula we find is

Ih,h = −(−1)J

4

∫
R1

du3dv3du4dv4

(u34v34)2−∆O
〈[O3, O2][O1, O4]〉uh43v

h
43

− 1

4

∫
R2

du3dv3du4dv4

(u34v34)2−∆O
〈[O4, O2][O1, O3]〉uh34v

h
34, (2.13)

– 7 –
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3

2
1

4

R

2=(0,0)
1=(1,1)

1

4

2
1

3

R2

v

u

Figure 2. We show typical configurations for points 3 and 4 within regions R1 and R2. The dotted

line is not fixed in place, it is only to emphasize that points 3 and 4 must be spacelike separated.

Time goes up.

where the two integration regions are defined by

R1 : v3 < 0, v4 > 1, 0 < u3 < u4 < 1,

R2 : v3 > 1, v4 < 0, 0 < u4 < u3 < 1. (2.14)

The factor of (−1)J comes from writing zh34z
h
34 → (−1)Juh43v

h
43. One way to summarize

the regions R1, R2 is that the operators in the commutators are timelike separated and all

other pairs are spacelike separated, see figure 2.

Note that after our contour deformation, the integrals above can be analytically con-

tinued in J . For example, the first integral is over a Lorentzian region where u43 and v43

are real and positive, so there is no issue with single-valuedness. The factor (−1)J means

that it is natural to analytically continue C(h, h) separately for even and odd J .

2.2 Rewriting in terms of cross-ratios

To make contact with Caron-Huot’s formula, we would like to use the fact that the four-

point function (and the commutators) depend only on the cross ratios. Given that u1 =

v1 = 1 and u2 = v2 = 0, these reduce to

χ =
u34

(u3 − 1)u4
, χ =

v34

(v3 − 1)v4
. (2.15)

We can solve these equations for u3, v3 and change variables in the integral, so that we

have an integral over u4, v4, χ, χ. Because the four-point function depends only on χ, χ,

we can then do the integral over u4, v4 explicitly, getting exprssions involving the SL(2,R)

conformal block

k2h(χ) ≡ χh2F1(h, h, 2h, χ), k̂2h(χ) ≡ (−χ)h2F1(h, h, 2h, χ). (2.16)

The final answer one finds is

Ih,h = −1

4

Γ(h)2

Γ(2h)

Γ(1−h)2

Γ(2−2h)

[
(−1)J

∫ 1

0

∫ 1

0

dχdχ

(χχ)2−∆O
〈[O3, O2][O1, O4]〉k2h(χ)k2(1−h)(χ)

+

∫ 0

−∞

∫ 0

−∞

dχdχ

(χχ)2−∆O
〈[O4, O2][O1, O3]〉k̂2h(χ)k̂2(1−h)(χ)

]
. (2.17)
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One can check that this formula agrees with [9] once we translate using (1.9) which for this

special case reads

c(J,∆) =
(−1)J

2π2

Γ(h)2

Γ(2h−1)

Γ(2−2h)

Γ(1−h)2
Ih,h. (2.18)

where J = h− h and ∆ = h+ h.

3 Higher dimensions

Our discussion in higher dimensions will mirror the one in two dimensions, but with some

new complications. Firstly, note that our two-dimensional derivation required a choice

that depended on the sign of h − h. However, the partial wave for a symmetric traceless

tensor (STT) contains two terms with the role of h and h swapped: Ψh,h + Ψh,h. If we

take an inner product of 〈O1O2O3O4〉 with a STT partial wave, we obtain (2.10) with

uh34v
h
34 replaced by uh34v

h
34 + uh34v

h
34. These two terms must be treated separately: for the

first term, we must deform the v contour for fixed u, and for the second term we must

deform the u contour for fixed v. In the previous section, we avoided this complication

by only discussing the “chiral half” of a partial wave. However, in higher dimensions, the

complication is unavoidable because operators transform as STTs. Our approach will be

to isolate an individual null direction (similarly to isolating one of the two terms above),

and perform the two-dimensional contour manipulation for that null direction.

The second complication is that in higher-dimensions, after Wick rotation to

Lorentzian signature and performing a contour manipulation to obtain the double-

commutator, the separation of variables into cross-ratios and non-cross-ratios (as in (2.15))

is more difficult. To do this, we will un-isolate the null directions by integrating over them.

The result can then be re-interpreted as a gauge-fixed five-point integral, this time in

Lorentzian signature. Choosing a different gauge, we obtain an integral over cross ratios

that reproduces Caron-Huot’s formula.

To summarize, the logical outline of our derivation is as follows:

1. Set up the inner product between the four-point function and a partial wave Ψ∆i
∆,J as

an integral over five Euclidean points, with x5 being the point we integrate over in

the shadow representation of Ψ.

2. Choose the gauge x1 = (1, 0, . . . , 0), x2 = (0, . . . , 0), x5 =∞.

3. Isolate a single null direction (using a particular representation of Gegenbauer poly-

nomials discussed below), and Wick rotate to Lorentzian signature.

4. Perform the two-dimensional contour deformation from section 2.1 to obtain a double

commutator and an integral over a restricted Lorentzian region.

5. Integrate over null directions.

6. Un-gauge-fix the integral and then re-gauge-fix in a different gauge that separates

the integration variables into cross-ratios plus non-cross-ratio degrees of freedom.
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7. Evaluate the integral over non-cross-ratio degrees of freedom in the limit of small

cross-ratios. This fixes the integral for all values of the cross ratios because we know

it has to give an eigenfunction of the conformal Casimir.

3.1 Initial setup and gauge fixing

With these preliminaries out of the way, our first task is to write the inner product between

the partial wave and our four-point function as a conformally-invariant integral over five

points. The fifth point arises from the shadow representation of the partial wave, which in

general dimensions has the form:

Ψ∆i
∆,J(xi) =

∫
ddx5〈O1O2O

µ1···µJ
5 〉〈Õ5,µ1···µJO3O4〉. (3.1)

Here the three-point functions are given by e.g.4

〈O1O2O
µ1···µJ
5 〉= Zµ1 · · ·ZµJ −traces

|x12|∆1+∆2−∆|x15|∆1+∆−∆2 |x25|∆2+∆−∆1
, Zµ≡ |x15||x25|

|x12|

(
xµ15

x2
15

− x
µ
25

x2
25

)
.

(3.2)

This leads to the explicit formula for the partial wave

Ψ∆i
∆,J(xi) =

∫
ddx5

1

|x12|∆1+∆2−∆|x15|∆1+∆−∆2 |x25|∆2+∆−∆1

× 1

|x34|∆3+∆4−∆̃|x35|∆3+∆̃−∆4 |x45|∆4+∆̃−∆3

ĈJ(η), (3.3)

where we have defined the conformal invariant

η =
|x15||x25|
|x12|

|x35||x45|
|x34|

(
~x15

x2
15

− ~x25

x2
25

)
·
(
~x35

x2
35

− ~x45

x2
45

)
, (3.4)

and we wrote the sum over polarizations in terms of a Gegenbauer polynomial5 using

|n|J |m|J ĈJ
(
n ·m
|n||m|

)
= (nµ1 · · ·nµJ − traces)(mµ1 · · ·mµJ − traces). (3.5)

Note that ĈJ(x) is normalized so that the coefficient of xJ is one.

The Euclidean inversion formula (1.6) is an inner product between our four-point

function and the partial wave Ψ∆̃i

∆̃,J
where we replace all operators by their shadows ∆̃ =

d−∆. Using the shadow representation of this partial wave, (1.6) becomes

I∆,J =

∫
ddx1 · · · ddx5

vol(SO(d+1, 1))
〈O1O2O3O4〉〈Õ1Õ2Õ

µ1···µJ
5 〉〈O5,µ1···µJ Õ3Õ4〉. (3.6)

4When we write a two- or three-point function, we mean a conformally-invariant structure with the

given quantum numbers (with a simple normalization that we specify). In particular, three-point functions

don’t include OPE coefficients. By contrast, the four-point function 〈O1O2O3O4〉 can be thought of as a

physical correlation function in some theory.

5We define ĈJ(x) ≡ Γ(J+1)Γ( d−2
2

)

2JΓ(J+ d−2
2

)
C
d/2−1
J (x) where C

d/2−1
J (x) ≡ Γ(J+d−2)

Γ(J+1)Γ(d−2) 2F1(−J, J+d−2, d−1
2
, 1−x

2
).
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This is a conformally-invariant integral. As in the two-dimensional case, it will be helpful

to partially fix the gauge for the conformal group by setting x5 =∞, x1 = (1, 0, . . . , 0) and

x2 = (0, . . . , 0). We can define vol(SO(d+ 1, 1)) so that gauge-fixing three points to 0, 1,∞
gives a Faddeev-Popov determinant of 1. The above formula then becomes

I∆,J =

∫
ddx3d

dx4

vol(SO(d−1))

〈O1O2O3O4〉
|x34|2d−∆3−∆4−∆

ĈJ

(
x34 · x12

|x34||x12|

)
, (3.7)

where SO(d−1) is the stabilizer group of three fixed points. Our convention for the measure

on SO(n) is that a 2π-rotation should have length 2π. This gives

vol(SO(n)) = vol(Sn−1)vol(SO(n−1)). (3.8)

3.2 Isolating a null direction

We cannot perform our contour manipulation with (3.7) because for large J , the Gegen-

bauer polynomial ĈJ

(
x34·x12
|x34||x12|

)
grows in every null direction. Instead, we would like to

find an integrand that does not grow along some null direction.

Consider the following representation of the Gegenbauer polynomial:

|x|J ĈJ
(
x0

|x|

)
=

ĈJ(1)

vol(Sd−2)

∫
Sd−2

dd−2ê (n · x)J , (3.9)

where ê is a unit vector in d − 1 dimensions, the integral is over the d − 2 sphere, and

n = (1, iê) is a null vector. Because n is null, the right-hand side is a harmonic polynomial

of degree J in x (and thus it transforms as a traceless symmetric tensor of spin J). It

is a function of x0 and |x| alone because it involves an average over transverse rotations.

These conditions uniquely specify the Gegenbauer polynomial up to some constant, which

we have fixed out front.6

Plugging (3.9) into (3.7) gives

I∆,J =
ĈJ(1)

vol(Sd−2)

∫
ddx3d

dx4

vol(SO(d−1))

∫
Sd−2

dê
〈O1O2O3O4〉

|x34|J+2d−∆3−∆4−∆
(x0

34 + iê · ~x34)J . (3.11)

In this formula, we are averaging over rotations that fix x12. However, the four-point

function is invariant under such rotations, so the answer is given by fixing ê to a unit vector

of our choice and multiplying by vol(Sd−2). For example, let us choose ê = (0, 1, 0, . . . , 0),

giving

I∆,J = ĈJ(1)

∫
ddx3d

dx4

vol(SO(d−1))

〈O1O2O3O4〉
|x34|J+2d−∆3−∆4−∆

(x0
34 + ix1

34)J . (3.12)

Equation (3.12) is now completely analogous to (2.7) in the 2d case.

6One way to understand why the (d−2)-dimensional integral (3.9) gives a natural object in d-dimensions

is as follows. After Wick rotating x0 → ix0 and redefining n→ −in (note that this is not the Wick rotation

we do in section 3.4), the integral (3.9) becomes a manifestly SO(d − 1, 1)-invariant integral over the

projective null-cone in d-dimensions:

|x|J |y|2−d−J ĈJ
(
x · y
|x||y|

)
∝ 1

vol(R+)

∫
ddn δ(n2)θ(n0)(n · x)J(n · y)2−d−J , (3.10)

where y = (1, 0, . . . , 0). Integrals of exactly the same type in (d+2)-dimensions appeared in [12], where

they are helpful for understanding the shadow representation of conformal blocks.
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3.3 A shortcut (optional)

A simpler way to arrive at (3.12) is to think of the four-point function as a kernel taking

functions of x3,4 to functions of x1,2 by integration over x3,4. As discussed in the 2d case,

this kernel commutes with the conformal Casimirs, and hence they can be simultaneously

diagonalized. Consider the eigenvector 〈Õ3Õ4O5〉 where O5 has dimension ∆ and spin J .

Let the eigenvalue of the four-point function be k∆,J ,

k∆,J〈O1O2O
µ1···µJ
5 〉 =

∫
ddx3d

dx4〈O1O2O3O4〉〈Õ3Õ4O
µ1···µJ
5 〉. (3.13)

We can relate k∆,J to I∆,J by taking an inner product of both sides with the shadow

three-point function 〈Õ1Õ2Õ5〉,

k∆,J

∫
dx1dx2dx5

vol(SO(d+1, 1))
〈O1O2O

µ1···µJ
5 〉〈Õ1Õ2Õ5,µ1···µJ 〉

=

∫
dx1 · · · dx5

vol(SO(d+1, 1))
〈O1O2O3O4〉〈Õ1Õ2Õ5,µ1···µJ 〉〈O

µ1···µJ
5 Õ3Õ4〉

= I∆,J . (3.14)

The constant on the left-hand side can be computed by gauge fixing x1 = 0, x2 = e, x5 =∞
for some unit vector e,∫

dx1dx2dx5

vol(SO(d+1, 1))
〈O1O2O

µ1···µJ
5 〉〈Õ1Õ2Õ5,µ1···µJ 〉

=
1

vol(SO(d−1))
〈O1(0)O2(e)Oµ1···µJ

5 (∞)〉〈Õ1(0)Õ2(e)Õ5,µ1···µJ (∞)〉

=
ĈJ(1)

vol(SO(d−1))
. (3.15)

Thus

k∆,J
ĈJ(1)

vol(SO(d−1))
= I∆,J . (3.16)

Now we can set x5 =∞, x1 = (1, 0, . . . , 0) and x2 = (0, . . . , 0) in (3.13) and contract with

a null vector n = (1, i, 0, . . . , 0), to obtain (3.12).

This approach avoids the special formula (3.9) and makes it immediately clear why only

one null direction matters. On the other hand, the discussion in section 3.2 shows us how

to go back from (3.12) to the more symmetrical five-point integral (3.6): we must average

over null-directions and then un-gauge-fix the five-point integral. A similar procedure will

be useful in Lorentzian signature in the next section.

3.4 Wick rotation and the double commutator

We now return to the derivation. The next step is to Wick rotate the integral (3.12)

by setting x1 = it. Note that we are Wick-rotating the second coordinate in the list

(x0, x1, x2, · · · ). The integral is then

I∆,J = −ĈJ(1)

∫
ddx3d

dx4

vol(SO(d−1))

〈O1O2O3O4〉

(x2
34)

J+2d−∆3−∆4−∆
2

uJ34. (3.17)
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where u = x0 + ix1 = x0 − t. The ddx measures are now assumed to be in Lorentzian

signature ddx = dx0dtdx2 · · · dxd−1, and we have an overall minus sign from two Wick

rotations dx1 = idt. The Feynman iε is understood in the denominator.

One can now follow the same contour deformation strategy that we discussed in

the two-dimensional case. The extra spatial coordinates affect the locations of the

singularities, but not the half-plane that they lie in, so the contour deformation argument

is the same: the v3 or v4 contours can be deformed to give zero unless 0 < u3, u4 < 1. The

two cases u3 < u4 and u4 < u3 have to be treated separately, and as before each reduces

to a double-commutator, but now integrated within the past and future d-dimensional

lightcones of points 1 and 2. Introducing a null vector mµ = (1, 1, 0, . . . , 0) so that

m · x = u, the answer can be written as

I∆,J =−ĈJ(1)

[
(−1)J

∫
4>1,2>3

ddx3d
dx4

vol(SO(d−1))

〈[O3,O2][O1,O4]〉
|x34|J+2d−∆3−∆4−∆

(−m ·x34)Jθ(−m ·x34)

+

∫
3>1,2>4

ddx3d
dx4

vol(SO(d−1))

〈[O4,O2][O1,O3]〉
|x34|J+2d−∆3−∆4−∆

(m ·x34)Jθ(m ·x34)

]
, (3.18)

where i > j in the subscript of the integral means that xi is confined to the future lightcone

of xj . Note that the first and second lines are related to each other by a factor of (−1)J

and interchanging 3 ↔ 4. Because the interval x34 is now constrained to be spacelike, we

have safely replaced (x2
34)1/2 → |x34|. In appendix D.2 we give a more careful justification

of the contour deformation, concluding as in [9] that it is valid if J > 1, so (3.18) should

be understood as correct for J ≥ 2.

If we substitute an individual block (or partial wave) in the 12 → 34 channel into the

double commutator, the result vanishes. We can understand this by thinking about the

shadow representation

Ψ ∼
∫
ddx5〈O1O2O5〉〈Õ5O3O4〉, (3.19)

where we Wick rotate x5 to Lorentzian signature. A nonzero commutator [O3, O2] requires

a singularity when O3 and O2 are lightlike separated. Although the integrand has no such

singularities, the integral can have a singularity coming from the regime where x5 is light-

like separated from x2 and x3. However, generically x5 cannot be simultaneously lightlike

separated from O2O3 and O1O4. This is possible for special configurations of O1 · · ·O4,

but the singularities associated with such configurations can be avoided when comput-

ing discontinuities. Hence, the double commutator [O2, O3][O1, O4] vanishes in (3.19). A

nonzero contribution to (3.18) only comes about because of an infinite sum over blocks,

which produces new singularities.

3.5 Averaging over null directions

From this point forward in the derivation, the goal is to reduce (3.18) to an integral over

cross ratios. A first step is to average over our arbitrary choice of a null vector. We can do

this by applying a transformation g ∈ SO(d−2, 1) to our vector m, where g acts trivially

on m0 and as a Lorentz transformation on the remaining (d−1) components.
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Averaging g over SO(d−2, 1) in e.g. the second line in (3.18) becomes7

−ĈJ(1)

vol(SO(d−2, 1))

∫
3>1,2>4

ddx3d
dx4

vol(SO(d−1))

〈[O4, O2][O1, O3]〉
|x34|J+2d−∆3−∆4−∆

∫
SO(d−2,1)
dg(gm · x34)Jθ(gm · x34).

(3.20)

This expression looks ill-defined, since the volume of SO(d − 2, 1) is infinite. However,

after integrating over g, the integrand of the x3, x4 integral is SO(d − 2, 1)-invariant, and

therefore divergent in a way that cancels this factor. If we like, dividing by vol(SO(d−2, 1))

can be implemented by gauge-fixing the integral over x3, x4.

The integral over g in (3.20) will give some solution to the Gegenbauer differential

equation, but it will no longer be a polynomial. To find out what function we get, we can

use a SO(d−2, 1) transformation to set x34 = x = (x0, x1, 0, . . . , 0) (with x1 < x0 so that x

is spacelike) and evaluate

∫
SO(d−2,1)
dg(gm ·x)Jθ(gm ·x) = vol(SO(d−2))vol(Sd−3)

∫ arccoshx
0

x1

0
dβ (sinhβ)d−3 (x0−x1 coshβ

)J
= vol(SO(d−2))|x|JBJ

(
x0

|x|

)
. (3.21)

The function BJ(y) can be determined exactly;8 however the only property that we will

need is that for large y it behaves as

BJ(y) ∼ π
d−2

2 Γ(J + 1)

2JΓ(J + d
2)

y2−d−J |y| � 1. (3.23)

This is easy to see from the integral in (3.21), taking x1 close to x0 so that |x| is small,

and doing the integral for small β.

Using (3.21), our formula (3.18) can therefore be written as

I∆,J = − ĈJ(1)

vol(Sd−2)

[
(−1)J

∫
4>1,2>3

ddx3d
dx4

vol(SO(d−2, 1))

〈[O3, O2][O1, O4]〉
|x34|2d−∆3−∆4−∆

BJ(−η)

+

∫
3>1,2>4

ddx3d
dx4

vol(SO(d−2, 1))

〈[O4, O2][O1, O3]〉
|x34|2d−∆3−∆4−∆

BJ(η)

]
. (3.24)

Here η = x12·x34
|x12||x34| . Note that for the configuration in the first line η < 0 and for the

configuration in the second line, η > 0, so in both cases the argument of BJ is positive.

7When we write an indefinite orthogonal group SO(p, q), we always mean the connected component of

the identity in that group.
8After changing variables to z = cosh β, the integral becomes a standard hypergeometric integral. A

form that makes the large y behavior and the branch cut between −1 and 1 obvious can be given after

making a couple of quadratic transformations of the resulting hypergeometric function:

BJ(y) ≡ π
d−2
2 Γ(J+1)

2JΓ(J+ d
2
)

(1 + y)2−d−J
2F1

(
J +

d−1

2
, J + d− 2, 2J + d− 1,

2

1 + y

)
. (3.22)

Also, note that in d = 3 dimensions, BJ(y) is a Legendre Q-function.
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3.6 Changing gauge

At this point, we would like to separate the integration variables x3, x4 into two cross ratios

χ, χ and everything else, and then do the integral over everything else once and for all.

In practice, it is convenient to do this by recognizing (3.24) as a gauge-fixed version of a

conformally-invariant integral over five points, and then fixing the gauge in a different way

where the cross ratios are manifest.

In this section, we will work with the contribution to I∆,J on the first line in (3.24),

adding in the second line at the end. The un-gauge fixed version of this contribution is

I∆,J ⊃ −
ĈJ(1)

vol(Sd−2)
(−1)J

∫
4>1,2>3

ddx1 · · · ddx5

vol(SO(d, 2))

〈[O3, O2][O1, O4]〉
|x12|∆̃1+∆̃2−∆̃|x15|∆̃1+∆̃−∆̃2 |x25|∆̃2+∆̃−∆̃1

× BJ(−η)

|x34|∆̃3+∆̃4−∆|x35|∆̃3+∆−∆̃4 |x45|∆̃4+∆−∆̃3

. (3.25)

Here the integral is over configurations such that, apart from the two timelike relations

described in the subscript of the integral, all pairs of points are spacelike separated. In this

expression, η is defined as in (3.4), with a dot product taken in Lorentzian signature.

The variables x1 · · ·x5 should be understood as coordinates on the conformal comple-

tion of Minkowski space, i.e. the Lorentzian cylinder Sd−1 × R. If we partially gauge-fix

by fixing the location of x5, then the condition that all other points should be spacelike

separated from x5 forces x1 · · ·x4 to be in a single Minkowski diamond of the cylinder. In

the natural Minkowski space coordinates on this patch, x5 is at∞. If, in these coordinates,

we further gauge-fix so that x1 = (1, 0, . . . , 0) and x2 = 0, then we recover the second line

of (3.24).

Instead of picking the gauge that takes us back to (3.24), we will pick a different gauge

where we fix x1 · · ·x4 to locations determined by the cross ratios, and then integrate over

the location of the fifth point, subject to the constraint that it should be spacelike separated

from the others. More precisely, we choose the points x1 · · ·x4 to be located in a 2d plane

and located as in figure 3. The standard conformal cross ratios for this configuration are

χ =
4ρ

(1 + ρ)2
, χ =

4ρ

(1 + ρ)2
. (3.26)

The advantage of this gauge choice is that we have now cleanly separated the cross ratio

degrees of freedom from the other integration variables. The non-cross ratio variables are

simply the location of x5.

3.7 Evaluating the integral for small cross ratios

We would like to do the integral over x5:

H∆,J(xi) ≡
∫

spacelike
ddx5

1

|x12|∆̃1+∆̃2−∆̃|x15|∆̃1+∆̃−∆̃2 |x25|∆̃2+∆̃−∆̃1

× BJ(−η)

|x34|∆̃3+∆̃4−∆|x35|∆̃3+∆−∆̃4 |x45|∆̃4+∆−∆̃3

. (3.27)
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1

2

3

Figure 3. The configuration of points that we choose, with (u, v) coordinates indicated. The grey

region is spacelike separated from the four points. The 2d slice shown is the plane where the four

points are located. As we move the slice outwards in the transverse directions away from this plane,

the inner and outer grey regions grow and eventually merge, see figure 4.

Here, we assume that x1, . . . , x4 are configured as in figure 3, and x5 ranges over all points

on the cylinder that are spacelike separated from these four points.

By the usual logic of shadow integrals (together with the fact that being spacelike

separated from all four other points is a conformally covariant notion), this integral is

conformally covariant with weights ∆̃1, . . . , ∆̃4 for the four external points. Let us strip off

some factors with the same external weights to obtain a function of conformal cross ratios

χ, χ alone:

H∆,J(xi) = T ∆̃i(xi)H∆,J(χ, χ) =
1

|x12|2d|x34|2d
1

T∆i(xi)
H∆,J(χ, χ), (3.28)

where we distinguish H∆,J(xi) and H∆,J(χ, χ) by their arguments, and

T∆i(xi) ≡
1

|x12|∆1+∆2 |x34|∆3+∆4

(
|x14|
|x24|

)∆2−∆1
(
|x14|
|x13|

)∆3−∆4

. (3.29)

Note that we take the absolute value of all the intervals |xij | = |(x2
ij)|1/2, even though

x14 is timelike. This is because H∆,J(xi) is manifestly real when ∆i,∆, J are real, and we

would like H∆,J(χ, χ) to inherit this property.

The integrand in (3.27) is an eigenfunction of the two-particle quadratic and quartic

conformal Casimirs (with eigenvalues determined by ∆, J) acting on either 1 + 2 or 3 + 4.

Thus, H∆,J(χ, χ) will have the same property. Solutions to these Casimir equations are

determined by their behavior for small values of the cross ratios. So we can pin down

H∆,J(χ, χ) exactly by evaluating it for small χ, χ. In our ρ, ρ coordinates, we can reach

this regime by taking ρ� 1 and ρ� 1, so that9

χ ≈ 4ρ, χ ≈ 4

ρ
. (3.30)

For these small values of the cross ratios, it turns out to be straightforward to evaluate the

x5 integral. The integral is dominated by a region where the transverse separation of x5

9Note that this corresponds to starting with the standard Euclidean configuration described in [13, 14]

with ρ = ρ, and then applying a large Lorentzian relative boost between the points 1, 2 and 3, 4. This

highly boosted configuration of cross-ratios played an important role in the recent causality-based proof of

the ANEC [15].
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Figure 4. The region of integration for x5 is the exterior of the lightcones of the four operators.

In the limit of small cross-ratios, the integral is dominated by the region inside the black-outlined

box. The width of the box in the transverse directions is large enough to detect the curvature of

the lightcones, but small enough not to detect their full geometry.

from the plane of the other four points is small enough that the lightcones of the four exter-

nal operators can be approximated as simpler shapes. This region is illustrated in figure 4.

We will describe x5 by coordinates u, v in the plane of the other four points, and a

radius r in the transverse directions. To organize the integral for small values of the cross

ratios, it is helpful to introduce a small parameter ε� 1, where we take ρ ∼ ε and ρ ∼ ε−1

with some fixed product ρρ. The important region of the integral comes from u, v of order

one and r of order 1/
√
ε. As we will see, in this region one can show that −η is large, of

order 1/ε. To summarize, we have

ρ,
1

ρ
,−η, r2 ∼ 1

ε
, u, v ∼ 1. (3.31)

These scalings allow us to simplify the integral considerably. Since −η is large, we can

approximate BJ(−η) using (3.23). Also, for small ε, the quantity η < 0 is determined by

a simplified formula that follows from expanding (3.4):

4η2 ≈ ρ

ρ

(
1
ρ + r2

)2(
1−v
ρ + r2

)(
1+v
ρ + r2

) (ρ+ r2)2

(ρ(1− u) + r2)(ρ(1 + u) + r2)
. (3.32)

The rest of the integrand can also be simplified, by keeping only the terms of order 1/
√
ε in

the distances |xij |. For example, |x15| ≈ (ρ(1 +u) + r2)1/2. After making these approxima-

tions, the u and v dependence of the integrand factorizes, as does the region of integration.

For example, the v integral is of the form∫ 1+ρr2

−1−ρr2

dv(1− v + ρr2)a(1 + v + ρr2)b = (2 + 2ρr2)1+a+bΓ(1 + a)Γ(1 + b)

Γ(2 + a+ b)
. (3.33)
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Note that in general, the region of integration is not factorized in u and v, since the bound-

aries of the light cones at finite transverse separation are curved in the u, v plane. However,

the transverse separations r ∼ 1/
√
ε are small enough that the edges of the “inner” region

remain straight in the u, v plane, although with a separation that depends on r.

After doing the u, v integrals, the final integral over r can be done by changing variables

to y = ρr2 and using

(ρρ)
∆̃−1

2

∫ ∞
0

dyy
d−4

2 (ρρ+ y)1−∆̃(1 + y)1−∆ =
Γ(d2−1)2

Γ(d−2)
2F1

(
∆̃−1,∆−1,

d−1

2
,

1−x
2

)
,

(3.34)

where x = 1
2(
√
ρρ+ 1√

ρρ
) and as always ∆̃ = d−∆.

Collecting factors of ρ and ρ and translating to cross ratios, one finds that for χ, χ� 1,

H∆,J(χ, χ) ≈ (const.) (χχ)
J+d−1

2 2F1

(
∆̃−1,∆−1,

d−1

2
,

1−x
2

)
, (3.35)

where x = 1
2(
√
χ/χ +

√
χ/χ). More precisely, we have this behavior plus multiplicative

corrections that are analytic at χ = χ = 0. This behavior determines our solution to the

Casimir equations. It takes the form similar to that of a standard conformal block, but

with “dimension” equal to J + d− 1 and “spin” equal to 1− ∆̃ = ∆− d+ 1.

It is useful to report the constant of proportionality by giving the behavior for χ �
χ� 1, where the hypergeometric function simplifies. We find

H∆,J(χ, χ) ≈ a∆,J (χχ)
J+d−1

2

(
χ

χ

)−∆−d+1
2

(3.36)

a∆,J ≡
1

2
(2π)d−2 Γ(J + 1)

Γ(J + d
2)

Γ(∆− d
2)

Γ(∆− 1)

Γ(∆12+J+∆
2 )Γ(∆21+J+∆

2 )Γ(∆34+J+∆̃
2 )Γ(∆43+J+∆̃

2 )

Γ(J + ∆)Γ(J + d−∆)
,

where ∆ij ≡ ∆i −∆j . Comparing to (A.11), this determines

H∆,J(χ, χ) = a∆,JG
∆̃i
J+d−1,∆−d+1(χ, χ). (3.37)

3.8 Writing in terms of cross ratios

As a final step, we can now write the formula for I∆,J as an integral over cross ratios only.

The result of the last section is that

I∆,J ⊃ −
ĈJ(1)

vol(Sd−2)
(−1)J

∫
4>1,2>3

ddx1 · · · ddx4

vol(SO(d, 2))
〈[O3, O2][O1, O4]〉H∆,J(xi) (3.38)

= − ĈJ(1)

vol(Sd−2)
(−1)J

∫
4>1,2>3

ddx1 · · · ddx4

vol(SO(d, 2))

1

|x12|2d|x34|2d
〈[O3, O2][O1, O4]〉

T∆i(xi)
H∆,J(χ, χ),

where H∆,J is the particular solution to the conformal Casimir equation (3.37).

Let us now gauge fix this integral in the configuration of figure 3. Parameterizing

everything in terms of χ = 4ρ
(1+ρ)2 and χ = 4ρ

(1+ρ)2 , the gauge-fixed measure becomes∫
ddxi

vol(SO(d, 2))

1

|x12|2d|x34|2d
→ 1

2vol(SO(d−2))

∫ 1

0

∫ 1

0

1

2

dχdχ

(χχ)d

∣∣∣∣χ− χ2

∣∣∣∣d−2

. (3.39)
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Let us make some comments about this result. The quantities inside the integral come

from a Faddeev-Popov determinant.10 The factor vol(SO(d−2)) is the volume of the

group of transverse rotations. The extra factor of 1
2 is because of an additional discrete

symmetry that relates two configurations in our integration range. Specifically, there

exists an element of the identity component of SO(d, 2) that exchanges ρ ↔ 1/ρ, or

equivalently χ↔ χ. In the plane of the four points, we can achieve this with an inversion

followed by a dilatation and boost

(u, v) 7→
(
ρ

v
,

1

ρu

)
. (3.40)

In two dimensions, an inversion is not continuously connected to the identity. However,

in higher dimensions, we can accompany it with a reflection in a transverse direction to

obtain something continuously connected to the identity. (Different choices of reflection

are related by conjugating by the transverse rotation group SO(d−2).) Hence, to avoid

double-counting configurations modulo gauge transformations in (3.39), we must divide

by 2. We could alternatively restrict the integration region to χ ≤ χ or χ ≤ χ.

We can now write a final expression for I∆,J , as

I∆,J = α∆,J

[
(−1)J

∫ 1

0

∫ 1

0

dχdχ

(χχ)d
|χ− χ|d−2G∆̃i

J+d−1,∆−d+1(χ, χ)
〈[O3, O2][O1, O4]〉

T∆i
(3.41)

+

∫ 0

−∞

∫ 0

−∞

dχdχ

(χχ)d
|χ− χ|d−2Ĝ∆̃i

J+d−1,∆−d+1(χ, χ)
〈[O4, O2][O1, O3]〉

T∆i

]
.

In writing this expression we have also added back in the contribution from the second

line of (3.24). The function Ĝ∆,J is defined as the conformal block normalized so that

for negative cross ratios satisfying |χ| � |χ| � 1 we have the behavior (−χ)
∆−J

2 (−χ)
∆+J

2 .

Note that this differs by a phase from the continuation of G∆,J to negative values of χ, χ.

The constant out front is

α∆,J = −
a∆,J

2d
ĈJ(1)

vol(SO(d−1))
, (3.42)

where a∆,J is defined in (3.36). In order to compare to Caron-Huot, we should use (1.9)

to convert from the inner product I∆,J between the four-point function and a partial wave

to the coefficient c(J,∆) in the partial wave expansion of the four-point function. The

equation for c(J,∆) is then the same as (3.41), but with the constant out front replaced by

α∆,J

n∆,J
K∆3,∆4

∆̃,J
= −(−1)J

Γ
(
J+∆+∆12

2

)
Γ
(
J+∆−∆12

2

)
Γ
(
J+∆+∆34

2

)
Γ
(
J+∆−∆34

2

)
16π2Γ(J + ∆− 1)Γ(J + ∆)

. (3.43)

We can relate the double commutator to Caron-Huot’s “double discontinuity” dDisc by

defining a stripped four-point function as

〈O1O2O3O4〉 =
1

(x2
12)

∆1+∆2
2 (x2

34)
∆3+∆4

2

(
x2

14

x2
24

)∆2−∆1
2

(
x2

14

x2
13

)∆3−∆4
2

g(χ, χ). (3.44)

10To be consistent with our convention that gauge-fixing three points to 0, 1,∞ should give determinant

1, we must additionally divide by the determinant associated with that gauge fixing.
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Applying the appropriate iε prescriptions in the configuration of figure 3, we find

〈[O3, O2][O1, O4]〉
T∆i

= −2 cos(π
∆2 −∆1 + ∆3 −∆4

2
) g(χ, χ) + eiπ

∆2−∆1+∆3−∆4
2 g	(χ, χ)

+ e−iπ
∆2−∆1+∆3−∆4

2 g�(χ, χ)

≡ −2 dDisc[g(χ, χ)], (3.45)

where g	 or g� indicates we should take χ around 1 in the direction shown, leaving

χ held fixed. Note that the minus sign in this formula is because our convention for

operator ordering is the one natural for the standard quantization of the theory in a global

Minkowski time, not Rindler time. Similarly,

〈[O4, O2][O1, O3]〉
T∆i

= −2 cos

(
π

∆2 −∆1 + ∆4 −∆3

2

)
g(χ, χ) + eiπ

∆3−∆4+∆2−∆1
2 g�(χ, χ)

+ e−iπ
∆3−∆4+∆2−∆1

2 g	(χ, χ), (3.46)

where now g	 or g� indicates we should take χ around −∞ in the direction shown, leaving

χ held fixed.

Finally, note that the formula in [9] contains the block G∆i
J+d−1,∆−d+1(χ, χ) with un-

tilded external dimensions ∆i, and also some additional factors in the measure. In our

formula, these come from the identity [16]

G∆̃i
J+d−1,∆−d+1(χ, χ) = ((1− χ)(1− χ))

∆2−∆1+∆3−∆4
2 G∆i

J+d−1,∆−d+1(χ). (3.47)

With this understanding, and using (3.43), we find that (3.41) agrees precisely with the

formula in [9].11

4 One dimension

There is a one-dimensional analog of Caron-Huot’s formula, although it is less powerful

than in higher dimensions. In one dimension, the complete set of partial waves includes a

discrete series, in addition to the principal continuous series. All wave functions are related

by analytic continuation in ∆, so the same function I∆ describes the inner product of both

principal series and discrete series states with the four-point correlator. This function has

poles for positive Re(∆) that correspond to physical operators of the theory.

The formula we can derive is for a different function Ĩ∆ that agrees with I∆ for the

discrete series of integer ∆, but has the additional property that it is analytic (without

poles) for Re(∆) > 1. These properties seems somewhat arbitrary, but there is a good

reason for the existence of such a function. As described in [8], when one continues to the

Regge limit in a one dimensional SL(2,R) invariant theory, the discrete states give growing

contributions that naively form a divergent series. If, before continuing to the Regge limit,

we write this sum as an integral over a contour that consists of small circles around the

discrete states at positive integer ∆, and if we use Ĩ∆ instead of I∆ in this expression,

11We have reversed the subscripts on G∆,J relative to [9].
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then we can pull the contour to the left towards a region with bounded Regge behavior.

The absence of poles in Ĩ∆ allows us to do this continuation without picking up growing

contributions that would spoil boundedness in the Regge limit.

In one dimension we do not have light-cone coordinates. However, because the confor-

mal blocks are simple, it is easy enough to derive the formula directly in cross ratio space.12

In one dimension the global conformal group is SL(2,R), and a four-point function depends

on a single cross ratio. The wave functions are given by the shadow representation13

Ψ∆O
∆,J(τi) =

1

|τ12|2∆O |τ34|2∆O
Ψ∆,J(χ)

Ψ∆,0(χ) =

∫
dτ5

(
|τ12|
|τ15||τ25|

)∆( |τ34|
|τ35||τ45|

)1−∆

(4.1)

Ψ∆,1(χ) =

∫
dτ5

(
|τ12|
|τ15||τ25|

)∆( |τ34|
|τ35||τ45|

)1−∆

sgn(τ12τ15τ25τ34τ35τ45).

The functions Ψ∆,J on the second two lines depend only on the cross ratio χ = τ12τ34
τ13τ24

. The

“spin” J takes two possible values, 0 and 1, and to get a complete basis of functions of χ, we

have to consider both. The functions with J = 0 are symmetric under the transformation

χ→ χ/(χ− 1), and the functions with J = 1 are antisymmetric. The reason that we refer

to J as spin is that these expressions are actually the analytic continuation in dimension

from the higher dimensional shadow integrals (3.3). In one dimension η reduces to the

product of sgn factors in Ψ∆,1, so we can understand this factor as Ĉ1(η) = η. The fact

that we don’t have other functions is also consistent with the higher dimensional formulas,

since when d = 1 and we consider a value of J ≥ 2, we have ĈJ(±1) = 0.

The complete set of partial waves corresponds to the principal series ∆ = 1
2 + ir in

addition to the even positive integers for Ψ∆,0 and the odd positive integers for Ψ∆,1. We

will be concerned only with the discrete series here. By evaluating the shadow integrals

for integer ∆, one finds a uniform expression for these discrete states as14

Ψn(χ) = 2
Γ(n)2

Γ(2n)
k2n(χ), −∞ < χ < 1,

Ψn(χ) =
Γ(n)2

Γ(2n)
[k2n(χ+ iε) + k2n(χ− iε)] , 1 < χ <∞. (4.2)

In this section we will continue to use the notation for the SL(2,R) block

k2h(χ) ≡ χh2F1(h, h, 2h, χ), k̂2h(χ) ≡ (−χ)h2F1(h, h, 2h, χ). (4.3)

12We assume time-reversal symmetry, so that the four-point function is a function of the cross ratio only.

Without time-reversal symmetry, there is an additional discrete invariant. For the shadow representation

without the assumption of time-reversal symmetry, see [17].
13As in our d = 2 discussion in section 2, and as in the usual SYK model, we will slightly simplify this

discussion by assuming that the four external operators have the same dimension ∆O.
14This form of Ψn(χ) for χ < 1 was obtained in [8]. (It arises from eqs. (3.65), (3.66) of that paper by

setting h equal to an integer n.) The result for χ > 1 then follows from the matching conditions described

in [8] between the χ < 1 and χ > 1 wavefunctions. Those wavefunctions behave near χ = 1 as a+b log |1−χ|,
and the matching conditions say that the coefficients a and b are equal on the two sides. The following

derivation will depend only on the fact that the same function k2n(χ) appears in both lines of eqs. (4.2),

not on any further properties of this function.
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The notation Ψn is defined for positive integer n = 1, 2, . . . . For even integer n it is equal

to Ψn,0 and for odd integer n it is equal to Ψn,1.

The inner product of these wave functions with the four-point function is defined as

In =

∫ ∞
−∞

dχ

χ2
g(χ)Ψn(χ), g(χ) ≡ 〈O1O2O3O4〉

〈O1O2〉〈O3O4〉
, (4.4)

where g(χ) is the stripped four-point function. It is piecewise analytic, consisting of three

different analytic functions in the regions −∞ < χ < 0, 0 < χ < 1 and 1 < χ <∞. In the

region 1 < χ < ∞, we insert (4.2) and then deform the two terms in opposite half-planes

to the region −∞ < χ < 1. We then find

In =
Γ(n)2

Γ(2n)

∫ 1

−∞

dχ

χ2
k2n(χ)dDisc[g(χ)]. (4.5)

Here dDisc(χ) is defined as

dDisc[g(χ)] = 2g(χ)− gx(χ)− g
x

(χ), (4.6)

where gx and g
x

are defined by starting with g(χ) in the region χ > 1 and continuing

either below or above the real axis to the final value of χ < 1.

So far our manipulations are valid for integer n, but we can now continue in n. We

have to take care with defining the continuation of χn for negative χ. To define this we

first write it as (−χ)n(−1)n. Noting that n is even for the discrete states corresponding

to J = 0 and odd for the states corresponding to J = 1, we can write the sign factor as

(−1)J . Then

Ĩ∆,J =
Γ(n)2

Γ(2n)

[
(−1)J

∫ 0

−∞

dχ

χ2
k̂2∆(χ)dDisc[g(χ)] +

∫ 1

0

dχ

χ2
k2∆(χ)dDisc[g(χ)]

]
. (4.7)

To summarize, we are making two claims about this function. First, it is analytic in ∆

without poles for real part of ∆ > 1. This is obvious because boundedness in the Regge

limit implies that dDisc[g(χ)] is bounded by a constant for small χ, and then Re(∆) > 1

is enough to ensure that the integral converges. Second, for even integer values of ∆ (for

J = 0) and odd integer values of ∆ (for J = 1), this agrees with I∆,J . This was the content

of the above argument.

5 Discussion

CFT four-point functions are bounded in the Regge limit [18]. Just as in the case of ampli-

tudes, nice Regge behavior requires a delicate balance between partial waves. Indeed, an in-

dividual conformal block with spin J grows like e(J−1)t in the Regge limit, where t is a boost

parameter [19]. Thus, if we modified the coefficient of a single block with spin J > 1, we

would completely destroy boundedness in the Regge limit. Caron-Huot’s formula captures

the delicate balance between partial waves by showing that for J > 1 they fit together into

an analytic function of spin with nice properties. This justifies the methods of “conformal
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Regge theory” [20, 21]. It also removes the ambiguities associated with asymptotic series

in large-spin perturbation theory [22–30], leading to a finite expansion with no need for

resummation.15 Positivity of the double-commutator in the Lorentzian inversion formula

also makes it easy to prove bounds on CFT data like Nachtmann’s theorem [22, 31, 32].

In this work, we have given a new derivation of Caron-Huot’s formula. An advantage of

our approach is that analyticity in spin is almost immediate. After performing the contour

deformation in (3.18), it is clear that I∆,J is an analytic function of spin. In addition, the

derivation in [9] relied on a surprising identity between analytic continuations of conformal

blocks, which we have essentially proved using explicit integral representations for the

blocks.

Although we have not focused on this perspective, our inspiration came from thinking

about the Regge limit in the SYK model. There, a special relationship between the standard

kernel (which is essentially k∆,J discussed in section 3.3 for the case of mean field theory)

and a “retarded kernel” (first used in [33]) made it possible to analyze the Regge limit [8, 10].

(A special case of the computation in section 2 of the present paper can be found in ap-

pendix D of [10].) What we have done in this paper is to show that this relationship holds

in general conformal field theories, not just mean field theory. To make this slightly more

explicit, one views the full four-point function of the CFT as a kernel similar to the ladder

kernel in SYK. The quantity I∆,J is related to the eigenvalues of this kernel, as discussed in

section 3.3. The analog of the retarded kernel from SYK is essentially the double commuta-

tor. The fact that the eigenvalues of these kernels are the same is the content of this paper.

We hope that our derivation points the way to generalizations for external operators

with spin and perhaps higher-point functions. A method for deriving Lorentzian inversion

formulas for correlators with external spins was recently given in [34]. The main idea is to

integrate by parts with conformally-covariant differential operators to reduce the inversion

formula to the scalar case. However, it should be possible to derive a more direct formula,

perhaps by combining our derivation with the methods of [35]. A spinning Lorentzian

inversion formula would be helpful, for example, for studying correlators of stress-tensors.16

The simplest operators to describe in large-spin perturbation theory are “double-twist”

families [22, 23].17 An inversion formula for higher-point functions could make it easier to

study multi-twist operators. It is also interesting to ask whether CFT data can be extended

to analytic functions of other Dynkin indices of SO(d) besides J , which become important

in higher-point functions.

15To compute the large-spin expansion, one applies the Lorentzian inversion formula to the four-point

function in an expansion around the double-lightcone limit χ, 1 − χ � 1. Reaching the double-lightcone

limit from an OPE channel requires summing infinite families of conformal blocks with bounded twist, using

e.g. the techniques of [28, 29].
16Particularly in holographic theories where the double-commutator kills the contribution of t-channel

double-trace states at orders 1/N0 and 1/N2.
17“Double-twist” is equivalent to double-trace in large-N theories.

– 23 –



J
H
E
P
0
7
(
2
0
1
8
)
0
8
5

Acknowledgments

We thank Simon Caron-Huot, Abhijit Gadde, Denis Karateev, Petr Kravchuk, Eric Perl-

mutter, and Shu-Heng Shao for discussions. DS is supported by Simons Foundation grant

385600. DSD is supported by Simons Foundation grant 488657. EW is supported in part

by NSF Grant PHY-1606531.

A Details on the partial waves

A.1 Relation to conformal blocks

The partial wave Ψ∆i
∆,J(xi) is a sum of two solutions to the conformal Casimir equation

with simple behavior near x12 = 0: a conformal block G∆i
∆,J(x) and a shadow block

G∆i

∆̃,J
(x) [4, 36]. For completeness, we will describe the exact expression and also com-

pute the normalization factor n∆,J . In the OPE limit x12 → 0, the first term G∆i
∆,J(x)

behaves how we would expect from naively taking x12 → 0 in (3.1) inside the integrand.

In this limit, G∆i
∆,J(x) comes from the regime of the integral where x5 does not probe

the neighborhood near x1,2, so that the OPE is valid. To compute its coefficient, we can

take x12 → 0 in the integrand first and then perform the resulting integral. (Similarly, to

compute the second term, we can take x34 → 0 before integrating.)

Expanding in small x12, we have

〈O1(x1)O2(x2)Oµ1···µJ (x5)〉 ∼ |x12|∆−∆1−∆2−Jxν1
12 · · ·x

νJ
12 〈Oν1···νJ (x1)Oµ1···µJ (x5)〉, (A.1)

where

〈Oν1···νJ (x1)Oµ1···µJ (x5)〉 =
Iµ1

(ν1
(x15) · · · IµJνJ )(x15)− traces

|x15|2∆
,

Iµν (x) = δµν −
2xνx

µ

x2
. (A.2)

Applying this result inside the integrand (3.1), we find

Ψ∆i
∆,J(xi)⊃|x12|∆−∆1−∆2−Jxν1

12 · · ·x
νJ
12

∫
ddx5〈Oν1···νJ (x1)Oµ1···µJ (x5)〉〈Õµ1···µJ (x5)O3O4〉+ . . .

=S∆3,∆4

∆̃,J
|x12|∆−∆1−∆2−Jxν1

12 · · ·x
νJ
12 〈Oν1···νJ (x1)O3O4〉+ . . . . (A.3)

Here, “. . . ” represents subleading terms in the x12 → 0 limit, and “⊃” means that we are

studying one of the two terms in Ψ∆i
∆,J(xi). The integral on the first line takes the form

of a “shadow transform,” where we integrate a two-point function against a three-point

function. By conformal invariance, such an integral must be proportional to a three-point

function,∫
dy〈Õν1···νJ (x)Õµ1···µJ (y)〉〈Oµ1···µJ (y)O1O2〉 = S∆1,∆2

∆,J 〈Õν1···νJ (x)O1O2〉, (A.4)
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where [4, 36]18

S∆1,∆2

∆,J =
π
d
2 Γ(∆− d

2)Γ(∆ + J − 1)Γ( ∆̃+∆1−∆2+J
2 )Γ( ∆̃+∆2−∆1+J

2 )

Γ(∆− 1)Γ(d−∆ + J)Γ(∆+∆1−∆2+J
2 )Γ(∆+∆2−∆1+J

2 )
. (A.5)

So we conclude that the partial wave includes the term

Ψ∆i
∆,J(xi) ⊃ K∆3,∆4

∆̃,J
G∆i

∆,J(xi), where K∆3,∆4

∆̃,J
≡ (−1

2
)JS∆3,∆4

∆̃,J
, (A.6)

and we have chosen to normalize the conformal block so that

G∆i
∆,J(0, x, e,∞) ∼ (−2)J |x|∆−∆1−∆2−Jxν1

12 · · ·x
νJ
12 〈Oν1···νJ (0)O3(e)O4(∞)〉+ . . .

= |x|∆−∆1−∆22J ĈJ

(
x · e
|x|

)
+ . . . , (A.7)

where e is a unit vector. Performing a similar analysis for x34 → 0, to obtain the coefficient

of the shadow block, we find the final expression

Ψ∆i
∆,J(xi) = K∆3,∆4

∆̃,J
G∆i

∆,J(xi) +K∆1,∆2

∆,J G∆i

∆̃,J
(xi). (A.8)

We use this expression in several places in this paper. A useful fact that follows from this

expression is that

Ψ∆i

∆̃,J
=
K∆3,∆4

∆,J

K∆1,∆2

∆,J

Ψ∆i
∆,J . (A.9)

It is conventional to define functions of cross-ratios χ, χ alone by stripping off some

factors with the same scaling weights as the operators O1, . . . , O4,

G∆i
∆,J(xi) =

1

(x2
12)

∆1+∆2
2 (x2

34)
∆3+∆4

2

(
x2

14

x2
24

)∆2−∆1
2

(
x2

14

x2
13

)∆3−∆4
2

G∆i
∆,J(χ, χ). (A.10)

(The function of cross-ratios G∆i
∆,J(χ, χ) actually only depends on the differences ∆1 −∆2

and ∆3 −∆4.) The limit χ� χ� 1 is of particular interest. In this limit, the function of

cross ratios becomes

G∆i
∆,J(χ, χ) ∼ (χχ)

∆
2

(
χ

χ

)−J
2

, (χ� χ� 1). (A.11)

A.2 Normalization

Finally, let us determine the normalization factor n∆,J . This computation was done in

appendix A of [9], but we include it here for completeness. Consider the inner product

(Ψ∆i
∆,J ,Ψ

∆̃i

∆̃′,J ′
) =

∫
ddx1 · · · ddx4

vol(SO(d+1, 1))
Ψ∆i

∆,J(xi)Ψ
∆̃i

∆̃′,J ′
(xi)

=

∫
ddx

vol(SO(d−1))
Ψ∆i

∆,J(0, x, e,∞)Ψ∆̃i

∆̃′,J ′
(0, x, e,∞). (A.12)

18The shadow coefficients SO1O2
O are simple to compute using “weight-shifting operators” [34, 37].
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where ∆ = d
2 + is and ∆′ = d

2 + is′ with s, s′ ≥ 0. The result should be proportional to

δ(s− s′), which can only come from a singularity near x = 0. One such singularity comes

from the term

(Ψ∆i
∆,J ,Ψ

∆̃i

∆̃′,J ′
)⊃

K∆3,∆4

∆̃,J
K∆̃3,∆̃4

∆′,J ′

vol(SO(d−1))

∫
ddxG∆i

∆,J(0,x,e,∞)G∆̃i

∆̃′,J ′
(0,x,e,∞)

=
K∆3,∆4

∆̃,J
K∆̃3,∆̃4

∆′,J ′ 22J

vol(SO(d−1))

∫
ddx|x|∆−∆′−dĈJ

(
x ·e
|x|

)
ĈJ ′

(
x ·e
|x|

)
+ . . . (A.13)

=
K∆3,∆4

∆̃,J
K∆̃3,∆̃4

∆,J vol(Sd−2)

vol(SO(d−1))

(2J+d−2)πΓ(J+1)Γ(J+d−2)

2d−2Γ(J+ d
2)2

πδ(s−s′)δJJ ′+ . . .

where “. . . ” represents nonsingular contributions away from x = 0 that must drop out in

the final result. The product

K∆3,∆4

∆̃,J
K∆̃3∆̃4

∆,J =
1

22J

πdΓ(∆− d
2)Γ(∆̃− d

2)

(∆ + J − 1)(∆̃ + J − 1)Γ(∆− 1)Γ(∆̃− 1)
. (A.14)

is independent of ∆3 and ∆4. An equal contribution comes from the term G∆i

∆̃,J
G∆̃i

∆′,J ,

giving an additional factor of 2. Overall, we have

n∆,J =
K∆3,∆4

∆̃,J
K∆̃3∆̃4

∆,J vol(Sd−2)

vol(SO(d−1))

(2J + d− 2)πΓ(J + 1)Γ(J + d− 2)

2d−2Γ(J + d
2)2

. (A.15)

A.3 Completeness

In this section we will discuss the completeness of the partial waves. A first step is to

describe the inner product, since this defines orthogonality and also establishes the Hilbert

space of square-integrable functions in which we are trying to prove completeness. In the

main text of the paper we did not discuss an inner product exactly, but we did discuss

a closely related bilinear pairing (1.3), which after gauge-fixing to cross-ratios (as will be

convenient in this appendix) reduces to(
Ψ∆̃i

∆̃′,J ′
,Ψ∆i

∆,J

)
=

1

2vol(SO(d−2))

∫
d2χ

|χ|2d
|Im(χ)|d−2Ψ∆̃i

∆̃′,J ′
(χ, χ)Ψ∆i

∆,J(χ, χ). (A.16)

(The factor of 1/2 is because we are letting Im(χ) be both positive and negative.) We

would like to interpret this pairing as an inner product.

External dimensions in the principal series. We will start by discussing the unphys-

ical case where the external dimensions are in the principal series, ∆i = d
2 + iri. We will

come back to the physical case of real external dimensions below. If the internal dimension

∆ is also in the principal series, then the above is actually a complex inner product(
Ψ∆̃i

∆̃′,J ′
,Ψ∆i

∆,J

)
=
〈

Ψ∆i
∆′,J ′ ,Ψ

∆i
∆,J

〉
,

〈F,G〉 ≡ 1

2vol(SO(d−2))

∫
d2χ

|χ|2d
|Im(χ)|d−2F (χ, χ)G(χ, χ). (A.17)
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Here we are simply using that if a dimension ∆ is in the principal series, then d−∆ is the

same thing as the complex conjugate of ∆, i.e. ∆̃ = ∆.

We will now argue that the partial waves with integer J and internal dimension ∆ in the

principal series with r > 0 are complete for the Hilbert space defined by this inner product,

and with the restriction of symmetry under χ↔ χ. The argument is based on the idea that

the normalizable eigenfunctions of commuting Hermitian operators should be complete. In

our case we can consider the operators to be the quadratic and quartic Casimir differential

operators. These operators are Hermitian with respect to the inner product (A.17). For

fixed eigenvalues of the two Casimirs, there are eight linearly independent solutions. The

requirement that the functions be single valued around χ = 0 and χ = 1 and symmetric

under χ ↔ χ reduces us to a single solution, which is the partial wave Ψ∆,J , with ∆, J

related to the eigenvalues of the two Casimirs, and J constrained to be an integer.

Finding a complete set of functions then reduces to the problem of finding the full set

of values ∆, J such that the corresponding partial wave is square-integrable. When the

external dimensions are in the principal series, the only constraint comes from imposing

normalizability at χ = 0. In order for a function to be (continuum) normalizable with

respect to (A.17), it must vanish at least as fast as |χ|d/2. Now, for small |χ|, the partial

waves have two terms with the behavior (ignoring the angular dependence)

Ψ∆i
∆,J ∼ K

∆3,∆4

∆̃,J
|χ|∆ +K∆1,∆2

∆,J |χ|d−∆. (A.18)

In order for both of these to be continuum normalizable, we need ∆ = d
2 + ir for some real

r. It follows from (A.9) that the partial waves with r < 0 are proportional to the partial

waves with r > 0, so we can restrict r to be positive. This set of wave functions constitutes

the principal series, and they lead to the continuum that we integrated over in (1.4).

In addition, there could be special values of ∆ with Re(∆) > d
2 such that the coeffi-

cient of the |χ|d−∆ term divided by the coefficient of the |χ|∆ term vanishes, leading to a

normalizable function. In one dimension this does indeed occur, and the complete set of

conformal partial waves includes a discrete set as well as the continuum [8]. However, in

higher dimensions it does not occur, so the continuum by itself is a complete set. This is

established by Theorem 10.5 of [4] in an abstract way. Here we will show it by analyzing the

coefficients explicitly. For simplicity, we assume the spacetime dimension d to be generic.

We will be able to describe any integer dimension d ≥ 2 by taking a limit of generic d.

Isolating the factors that can lead to zeros for Re(∆) > d
2 , we have

K∆1,∆2

∆,J

K∆3,∆4

∆̃,J

∝ 1

Γ(d−∆ + J)Γ(d2 −∆)(d−∆− 1)J
. (A.19)

Zeros occur at

∆∗ = d+ J + n, ∆∗ =
d

2
+ n, (A.20)

for n ≥ 0. However, we don’t immediately obtain a normalizable state because G∆i
d−∆,J

has compensating poles at exactly these locations. Specifically, its pole structure is given
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by [38, 39]

G∆i
d−∆,J ∼ −

∞∑
n=0

c1(n+ 1)

∆− (d+ J + n)
G∆i

1−J,J+n+1

−
∞∑
n=1

c2(n)

∆−
(
d
2 + n

)G∆i
d
2

+n,J

−
J∑
n=1

c3(n)

∆− (J + n+ 1)
G∆i
J+d−1,J−n. (A.21)

The coefficients c1(n + 1), c2(n), c3(n) are given in [38].19 The poles corresponding to

∆∗ = d + J + n have residues proportional to the non-normalizable block G1−J,J+n+1, so

they do not give rise to normalizable states. The poles corresponding to ∆∗ = d
2 + n have

normalizable residues G d
2

+n,J . However, in this case the coefficient function c2(n) is such

that this residue exactly cancels the block G∆i
∆,J :

lim
∆→ d

2
+n

(
G∆i

∆,J +
K∆1,∆2

∆,J

K∆3,∆4

d−∆,J

G∆i
d−∆,J

)
= 0. (A.22)

In other words, our candidate normalizable state vanishes.20 This conclusion holds for all

d > 1. When d = 1, the coefficient c1(n+ 1) vanishes, allowing discrete states of the type

∆∗ = d+ J + n to exist.

So we have established that for d > 1, the principal series wave functions are a complete

set of functions symmetric under χ↔ χ. The precise completeness relation

∞∑
J=0

∫ d/2+i∞

d/2

d∆

2πi

Ψ∆i
∆,J(χ,χ)Ψ

∆i

∆,J(χ′,χ′)

n∆,J
=

vol(SO(d−2))|χ|2d

|Im(χ)|d−2

(
δ(2)(χ−χ′)+δ(2)(χ−χ′)

)
(A.23)

is fixed by taking an inner product with Ψ∆i
∆′,J ′ and using the orthogonality relation (1.3).

Real external dimensions. We now move to the physically relevant case where the

external dimensions are real. There are two approaches we can take. The first approach is

to rewrite the completeness relation for the case of principal series external dimensions as

∞∑
J=0

∫ d/2+i∞

d/2

d∆

2πi

Ψ∆i
∆,J(χ,χ)Ψ∆̃i

∆̃,J
(χ′,χ′)

n∆,J
=

vol(SO(d−2))|χ|2d

|Im(χ)|d−2

(
δ(2)(χ−χ′)+δ(2)(χ−χ′)

)
,

(A.24)

19More precisely, the coefficients in [38] are correct for a different normalization of the blocks than we use

here, G
(here)
∆,J = (−1)J4∆ Γ( d−2

2
)Γ(J+d−2)

Γ(d−2)Γ(J+ d−2
2

)
G

(there)
∆,J . This implies c2(k)(here) = 4−2kc2(k)(there) and somewhat

more complicated factors of proportionality for c1, c3.
20Incidentally, we can turn the logic around: demanding the absence of discrete states (A.22) gives a

way to determine the coefficient c2(n), and the cancellation of poles described in the next section gives a

method to determine c1(n), c3(n). These coefficients are somewhat complicated to compute using other

methods [38, 39].
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where as always ∆̃ ≡ d − ∆. We can then analytically continue the l.h.s. in ∆i. In fact,

it is convenient to separate the “block” and “shadow” terms in the first partial wave and

then include the shadow term by extending the range of integration over the block term.

This leads to an equivalent form

∞∑
J=0

∫ d/2+i∞

d/2−i∞

d∆

2πi
G∆i

∆,J(χ, χ)
K∆3,∆4

∆̃,J

n∆,J
Ψ∆̃i

∆̃,J
(χ′, χ′)

=
vol(SO(d−2))|χ|2d

|Im(χ)|d−2

(
δ(2)(χ− χ′) + δ(2)(χ− χ′)

)
. (A.25)

We can now integrate both sides against the four point function as a function of χ′, χ′, in-

cluding a measure factor |Im(χ′)|d−2/|χ′|2d. This immediately gives the second line of (1.4).

The only subtlety here is that as we continue in the external dimensions, poles in the

integrand may cross the contour of integration for ∆. The term that can have poles is

the term with the G∆ from the remaining partial wave. The coefficient of this term is

proportional to K∆3,∆4

∆̃,J
K∆1,∆2

∆̃,J
, which includes the factors

Γ

(
∆ + ∆12 + J

2

)
Γ

(
∆−∆12 + J

2

)
Γ

(
∆ + ∆34 + J

2

)
Γ

(
∆−∆34 + J

2

)
. (A.26)

When the external dimensions are in the principal series, all poles in this expression are to

the left of the contour of integration, but as we continue to real external dimensions with

large differences, some poles may cross the line ∆ = d
2 + iR. Our analytic continuation

prescription instructs us to deform the contour so that the poles do not actually cross it,

in other words so that the poles effectively remain to the left of the contour. This has the

following important implication. We expect the function c(J,∆) = I∆,JK
∆3,∆4

∆̃,J
/n∆,J to

also inherit the singularities of these gamma functions. When we proceed to deform the

contour in (1.4) to the right to obtain the OPE, we should not pick up this set of poles.

So far we have discussed the case of real external dimensions by analytically continuing

the completeness relation from the case where the external dimensions are in the principal

series. An alternative approach is to argue directly for a completeness relation in this case.

The first step is to write the bilinear pairing as an inner product, which we can accomplish

for real external dimensions by writing(
Ψ∆̃i

∆̃′,J ′
,Ψ∆i

∆,J

)
=
〈

Ψ∆i
∆′,J ′ ,Ψ

∆i
∆,J

〉
2
, (A.27)

〈F,G〉2 ≡
1

2vol(SO(d−2))

∫
d2χ

|χ|2d
|Im(χ)|d−2|1− χ|−∆12+∆34F (χ, χ)G(χ, χ).

Note the extra factor in the measure, which came from using (3.47). For small ∆12,∆34,

the Casimir operators are self-adjoint with respect to this inner product. However, for

large ∆12 and/or ∆34, the partial waves stop being normalizable, and also the Casimir

operators stop being self-adjoint, because of divergences at χ = 1 and/or χ = ∞. It is

possible that in this case the inner product can simply be modified by defining the integrals

by subtracting divergences near χ = 1 and χ =∞.

– 29 –



J
H
E
P
0
7
(
2
0
1
8
)
0
8
5

In this way of thinking about the completeness relation, the contour prescription de-

scribed above gets interpreted as including the contribution from a finite number of nor-

malizable discrete states. These discrete states are present if the external dimensions are

sufficiently different from each other. They are diagnosed by zeros in the expression

K∆1,∆2

∆,J

K∆3,∆4

∆̃,J

∝ 1

Γ(∆+∆12+J
2 )Γ(∆−∆12+J

2 )Γ(∆+∆34+J
2 )Γ(∆−∆34+J

2 )
. (A.28)

for Re(∆) > d
2 . These are precisely the locations where we encounter poles in the fac-

tor (A.26). We expect that the contour that avoids the poles as described in the previous

treatment can be understood as a contour that includes the principal series and also circles

around the discrete states at the locations of the poles.

B Subtleties in the Euclidean formula

B.1 Spurious poles in the continuation off the principal series

In order to recover the OPE from the integral over the principal series, one deforms the

contour over ∆ in the direction of larger Re(∆). In the process, we pick up the poles

representing operators in the OPE. However (in addition to the subtlety described in A.3),

we also pick up two sets of spurious poles: one set from poles in the conformal blocks, and

another set from poles in the coefficient function. The fact that these could cancel each

other was pointed out in [9, 20, 21]. Here we show that the cancellation indeed happens in

general, extending an argument from [10]. This may have been implicit in [3].

The first set of poles is due to the fact that the conformal block G∆i
∆,J has a set of

poles ∆ = J + d − 1 − k for k = 1, . . . , J , with residues given by c3(k)G∆i
J+d−1,J−k, where

c3(k) is defined in [38] (up to the convention difference for conformal blocks described in

footnote 19). The contribution to the four-point function from these poles is

−
∞∑
J=1

J∑
k=1

IJ+d−1−k,J
nJ+d−1−k,J

K∆3,∆4

1+k−J,Jc3(k)G∆i
J+d−1,J−k(xi) (B.1)

= −
∞∑
J=0

∞∑
k=1

IJ+d−1,J+k

nJ+d−1,J+k
K∆3,∆4

1−J,J+kc3(k)G∆i
J+k+d−1,J(xi), (B.2)

where in the second line we reindexed the summation so that J on the second line is

the same as J − k on the first line, note that this substitution should be made for the

J-dependence in c3(k) as well.

The second set of poles comes from the factor Γ(d−∆ + J − 1) in K∆3,∆4

d−∆,J , which has

poles at ∆ = J + k+ d− 1. The pole at k = 0 is canceled by a pole in the factor n∆,J , but

for k = 1, 2, . . . ,∞ we have poles in K∆i
∆,J/n∆,J . The residue of Γ(d−∆ + J − 1) = Γ(−k)

at integer k is (−1)k+1/Γ(k + 1), and we find the contribution from such poles to the

four-point function is

−
∞∑
J=0

∞∑
k=1

(−1)k+1

Γ(k + 1)

IJ+k+d−1,J

nJ+k+d−1,J

K∆3,∆4

1−k−J,J
Γ(−k)

G∆i
J+k+d−1,J(xi). (B.3)

– 30 –



J
H
E
P
0
7
(
2
0
1
8
)
0
8
5

Because we have the same set of conformal blocks appearing in (B.2) and (B.3), there is the

possibility that they cancel. For this to actually happen, we need to find a universal rela-

tionship between the theory-dependent factors IJ+d−1,J+k and IJ+k+d−1,J . The necessary

relationship follows from an identity between partial waves

Ψ∆̃i
1−J,J+k = 2−k

Γ(J − k + d− 2)Γ(J + d−2
2 )

Γ(J + d− 2)Γ(J − k + d−2
2 )

Γ(1−k−∆12
2 )Γ(1+k+∆34

2 )

Γ(1+k−∆12
2 )Γ(1−k+∆34

2 )
Ψ∆̃i

1−k−J,J , (B.4)

which holds for k = 1, 2, . . . . This can be established (working with generic d and external

dimensions), using the formulas in [38]. The conformal block in the “shadow” term in the

l.h.s. is proportional to a pole, but the expression is finite because the pole is cancelled by

a zero in the coefficient K. Similarly, the “block” term on the r.h.s. is proportional to a

pole that is similarly cancelled. After taking these poles into account, one finds that both

of the naively different partial waves actually contain the same two blocks: G∆̃i
1−J,J+k and

G∆̃i
J+d+k−1,J , with specific coefficients so that the above holds.

Now, from the definition (1.6), this relation between the wave functions implies the

equation where we replace the wave function on the l.h.s. of (B.4) with IJ+d−1,J+k and the

one on the r.h.s. with IJ+k+d−1,J . One can then check that this is precisely what is needed

to make sure that (B.2) and (B.3) indeed cancel, once we evaluate the other factors of K

and n using the explicit formulas in appendix A.

B.2 Non-normalizable contributions to the four-point function

Near χ = 0. The functions Ψ∆,J with ∆ in the principal series gives a complete basis of

normalizable functions, but the four-point function of a CFT is actually never normalizable

in the relevant sense, which requires the function to decay faster than |χ|d/2 for small cross

ratios. In particular, the identity operator and scalar operators with ∆ ≤ d
2 (if there are

any) give non-normalizable contributions. So, to make sense of the manipulations in this

paper, we should subtract these contributions from the four-point function, and then apply

the discussion to the normalizable remainder.

A subtlety in this is that to preserve single-valuedness of the four-point function, we

need to subtract the full partial wave (block + shadow block) corresponding to the low-

dimension scalar operators, not just the conformal block. Since these subtractions involve

scalar operators only, they do not spoil the good behavior of the four-point function in the

Regge limit. And, in fact, they drop out altogether once we take the double commutator

(by our discussion in section 3.4). This means that when we use the Lorentzian inversion

formula, we do not need to explicitly subtract any contributions for low dimension operators

in the χ→ 0 channel.

To recover the full four-point function, we will have to add back the partial waves that

we subtracted, in addition to the integral over the principal series in (1.4). The “block”

parts of these partial waves contain the contributions from physical operators with ∆ < d/2

that we expect. However, an apparent puzzle is that they also contain shadow contributions

that generically should not be present in the theory. The resolution is that if I∆,J is defined

with the subtraction procedure described here, then it must contain a pole at the location

– 31 –



J
H
E
P
0
7
(
2
0
1
8
)
0
8
5

of the shadow operator. When we shift the contour off the principal series to recover the

OPE, we will then get a contribution proportional to the shadow block. This must cancel

the explicit shadow part of the partial wave that we add at the end. This can be checked

explicitly for the four-point function corresponding to mean field theory.

Near χ = 1 or χ = ∞. In addition, the four-point function may fail to be normalizable

near χ = χ = 1 or χ = χ = ∞. For example if all external operators are identical, then

from the contribution from the identity operator in the O2O3 OPE we get a contribution to

the stripped four-point function proportional to |1−χ|−2∆O . If ∆O >
d
2 then the four-point

function will not be normalizable. In this case, we define I∆,J by simply subtracting the

divergences, for example by removing a small ball of radius ε around the point χ = χ = 1,

doing the integral for fixed ε and subtracting power divergences in ε. This will lead to a

well-defined expression for I∆,J . However because the four-point function we are trying to

represent is not normalizable, when we try to go back to the four-point function using (1.4),

the integral over the principal series of I∆,J may not converge. The correct prescription is

to simply ignore this, and recover the OPE by shifting the contour without worrying about

convergence of the principal series integral at ∆ = d
2±i∞. This prescription can be justified

by showing that it works for the mean field theory correlation function | χ1−χ |
2∆O and then

subtracting and adding the mean field theory answer to the physical four-point function.

This situation is very analogous to the fourier transform
∫
dxeipx|x|−a for a > 1. We

can define the integral by analytic continuation in a or equivalently by removing an interval

of size ε around the origin and subtracting divergences. We find a multiple of |p|a−1. When

we try to reverse this and compute
∫
dpe−ipx|p|a−1, the integral is not convergent for large

p, but we get the right answer by nevertheless shifting the contour either into the right or

left half-plane of p, depending on the sign of x, and doing a convergent integral along the

branch cut.

C A different way of obtaining BJ(η)

In this appendix we will describe a second way of passing from the Gegenbauer polynomial

CJ(η) to the better-behaved function BJ(η). In other words, we will give an alternate route

from (3.7) to (3.24). The method discussed in this section is more closely related to the

usual treatment of the functions CJ(η) and BJ(η) when studying amplitudes, see e.g. [40].

We begin by further gauge-fixing the expression for I∆,J in (3.7) by setting

x3 = (x, τ, y, 0, . . . ), x4 = (x′, τ ′, y, 0, . . . ). (C.1)

Note that we take the third coordinates of x3 and x4 to be equal. The Faddeev-Popov

determinant for this gauge-fixing is proportional to 1
4 |y|

d−3|τ − τ ′|d−2, so we obtain

I∆,J =

∫ ∞
−∞

dxdx′dτdτ ′dy

4vol(SO(d−3))

|y|d−3|τ − τ ′|d−2

|x34|2d−∆3−∆4−∆
〈O1O2O3O4〉ĈJ (η) , (C.2)

where η reduces in this gauge to η = (x− x′)/|x34|. At this point, we would like to Wick-

rotate in τ, τ ′. However, if we try to do this with the integrand in its current form, we will
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have two problems. One problem is that the argument of the Gegenbauer polynomial will

become large in places, and ĈJ grows for large arguments. The second problem is that in

odd dimensions the integrand isn’t analytic to begin with, because of the factor |τ −τ ′|d−2.

We can avoid both of these problems as follows. Let’s begin by considering the function

BJ(η), defined in (3.22). This is a solution to the same Gegenbauer differential equation as

ĈJ , but it is not a polynomial. Instead, as is clear from (3.22), it has a branch cut running

between η = ±1. A useful fact is that when we consider −1 < η < 1, we have

ĈJ(η) = id−2 Ĉ(1)

vol(Sd−2)

[
BJ(η + iε) + (−1)dBJ(η − iε)

]
. (C.3)

When d = 3, this is equivalent to the well-known relationship between Legendre P and Q

functions. In general, it can be derived from the integral representations (3.9), (3.21):

ĈJ(η) =
ĈJ(1)

vol(Sd−2)
vol(Sd−3)

∫ π

0
dθ sind−3 θ

(x+ iτ cos θ)J

(x2 + τ2)J/2
, η =

x

(x2 + τ2)1/2
, (C.4)

BJ(η) = vol(Sd−3)

∫ arccosh(x/t)

0
dβ sinhd−3 β

(x− t coshβ)J

(x2 − t2)J/2
, η =

x

(x2 − t2)1/2
. (C.5)

To get an integral expression for BJ(η + iε) with −1 < η < 1, we rotate t in the lower

half-plane to t → −iτ . To get BJ(η − iε), we rotate in the upper half-plane to t → iτ .

Now, in order to show (C.3), the idea is to break up the integral over θ in (C.4) as∫ π

0
dθ =

∫ π
2
−iarcsinh(x/τ)

0
dθ +

∫ π

π
2
−iarcsinh(x/τ)

dθ. (C.6)

In the first term we make the change of variables θ = iβ, and in the second term we

make the change of variables θ = π + iβ. These terms then become exactly the integral

representations of the two BJ functions on the r.h.s. of (C.3), with the continuations just

described.

Now, in the integral (C.1), the argument of the ĈJ function ranges between minus one

and one. If we change the argument slightly, so that

η =
x− x′√

(x−x′)2 + (τ−τ ′)2
→ x− x′ + iε sgn(τ ′ − τ)√

(x−x′)2 + (τ−τ ′)2
(C.7)

then the argument will circle around the interval −1 < η < 1. For positive τ ′−τ we will be

above the cut, and for negative τ ′− τ we will be below it. This means that if we make the

replacement (C.7) we can also replace ĈJ(η) → [2id−2ĈJ(1)/vol(Sd−2)]BJ(η)sgn(τ ′ − τ)d

and we will get the same answer. The nonanalytic factor of the sgn function is needed

because of the (−1)d in (C.3). Happily, this factor combines with a factor from the measure

to give an analytic integrand. In other words, we have justified the replacement

|τ − τ ′|d−2ĈJ(η)→ 2id−2ĈJ(1)

vol(Sd−2)
(τ ′ − τ)d−2BJ(η), (C.8)

where η is understood with the iε prescription in (C.7). Note that at this point we are still

in Euclidean signature, the iε is simply to guide our integral around the branch cut of the

BJ function.
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-1 1

η η

(a) before Wick rotation (b) after Wick rotation

-1 1

η

(c) after contour deformation

Figure 5. (a) after the replacement (C.7), the contour for η circles the branch cut of the BJ

function. The arrows indicate the direction in which the contour passes the branch points at

η = ±1 as we increase τ − τ ′. After Wick rotation we end up deforming the contour as in (b). The

dashed parts of the contour are on the second sheet. Note that the arcs at infinity are shown at

finite radius for clarity. The arrows indicate the direction in which the contour passes the branch

points as we increase v − v′, with u − u′ fixed. Finally, when we deform the contour over v, v′ we

pull the dashed portions of the contour on the second sheet back through the cut to the first sheet,

giving the contour in (c). We further drop the arcs at infinity, so that we have just the integrals

along the real axes, picking up discontinuities across branch cuts from the four point function.

We now have an analytic integrand, and the BJ function is decaying at large argument,

so at this point we can Wick-rotate in τ, τ ′. Most of this follows closely the discussion in

the main text of the paper. However, there is one potential subtlety. After Wick-rotation,

we would like to deform the v, v′ contours in either the upper or lower half-planes as in

figure 1 to get the double-commutator expression. The BJ function has branch points at

η = ±1, and a possible concern is that these singularities might lie in the half-plane we

are trying to deform through. In fact, this does not happen, the branch point singularity

is always in the half-plane that we are not deforming in. This is explained by the arrows

in figure 5, which show the direction the contour passes around the branch points. Let’s

consider the case u − u′ > 0. Then as we vary v − v′ we approach the branch point at

η = 1, but we pass around it in a clockwise manner as v − v′ increases. This implies that

the singularity is in the lower half-plane for v − v′, and we are free to deform this variable

in the upper half-plane, as we did in the main text. The argument when u− u′ is negative

is similar; the contour passes by the branch point at η = −1 in a counterclockwise manner,

which means the singularity is in the upper half-plane for v − v′.
Finally, after the Wick rotation and contour deformation, there are two regions that we

integrate over, as in figure 2 (but with curved boundaries for nonzero transverse separation

y). In the region where we deform the contours to get 〈[O4, O2][O3, O1]〉, we have t− t′ > 0

and η > 0, and so id−2(τ ′−τ)d−2 = |t− t′|d−2. In the region where we close the contours to

get 〈[O3, O2][O4, O1]〉, we have t− t′ < 0, and η < 0, so id−2(τ ′ − τ)d−2 = (−1)d|t− t′|d−2.

Using BJ(−x) = (−1)d+JBJ(x) we can write

id−2(τ ′ − τ)d−2BJ(η) = (−1)J |t− t′|d−2BJ(−η). (C.9)

The expression in these two regions can now be recognized as gauge-fixed versions of the

two terms in (3.24), for which the determinant is proportional to 1
2 |y|

d−3|t− t′|d−2. We can

therefore proceed from that point in the main derivation, having skipped there from (3.7).
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D Subtleties in the Lorentzian formula

D.1 No extra singularities during the v contour deformation

In sections 2.1 and 3.4 we used a contour deformation in the null coordinates v3, v4 to

go from an integral over all of Lorentzian space to an integral of the double commutator

over a region defined by lightcones. This argument would be spoiled if we encounter

singularities in the four-point function as we make this contour deformation (other than

the singularities at null separation of external points that give the double commutator

itself). In general, four-point functions can indeed have additional singularities. These

come from Landau-like diagrams [11], somewhat similar to the Landau diagrams that

generate singularities in scattering amplitudes [41–43]. In this section we will argue that

our contour manipulations are still safe.

The argument is as follows. For complex values of v, we can formally write

O(v) = O(vR + ivI) = evIPvO(vR)e−vIPv , (D.1)

where Pv ≤ 0 is the non-positive operator generating translations in the v direction. In

general, (D.1) is not well defined, since one or the other of the exponential factors will be

unbounded. However, if vI > 0 so that we are in the upper half-plane, then (D.1) makes

sense acting on the vacuum, O(v)|0〉 because e−vIPv gives one acting on the vacuum, and

the evIPv operator is bounded for vI ≥ 0. Also, in vacuum correlation functions in which

O(v) is ordered first (rightmost) in the list of operators, we can give the operator an iε

prescription with respect to a timelike direction, further replacing O(v) → e−εHO(v)eεH .

After doing this, one can show that the correlation function will be analytic in the upper

half plane for v. Similarly, correlation functions in which O(v) is ordered last (leftmost)

will be analytic in the lower half-plane.

Now one simply has to check that for the continuations used in sections 2.1 and 3.4, the

correlation function can be written with an operator ordering consistent with the half-plane

in which we deform v. Which half-plane we want to use for e.g. the v4 coordinate depended

on the relative ordering of the u coordinates. Up to discrete symmetries, there are two

cases to consider. First, suppose that u4 is the largest of the u coordinates. Then x4 is

either spacelike or in the past of the other points, so we can write the correlation function

with O4 ordered first, next to the vacuum, and we have analyticity in the upper half v4

plane. And, indeed, in this situation our argument required us to deform v4 in the upper

half plane in order to get zero for the integral. The other case to consider is when u4 < u1

but u4 is larger than u2, u3. Then in the region of the v4 integral such that x4 is spacelike

or to the past of x1, we can again write the correlator with O4 ordered first, and deform

in the upper half plane, but in the region of the v4 integral where x4 is in the future of x1

we cannot. This precisely allows the contour deformation that we followed (see the right

panel of figure 1), where we leave the contour where it is for v4 large enough that x4 is in

the future of x1, but we deform the contour in the upper half plane for smaller values of v4.
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D.2 The requirement that J > 1

We should also check that the contributions near infinity can be dropped after doing the

Wick rotation. The discussion in section 3.4 is less convenient for addressing this question,

since the integral after Wick rotation is only conditionally convergent: we have to do the v

integral before the u integral. Instead we will use the perspective in appendix C where we

pass to the BJ(η) function before Wick rotation. The important question is whether we

can drop the parts of the integral corresponding to the arcs near infinity in figure 5. These

regions correspond to parts of the integral where x3 and x4 are almost null separated from

each other and η diverges. The thing in our favor is that for large spin, BJ(η) is a rapidly

decreasing at large η, providing convergence. The question is how large is large enough? We

expect to find at most a power law singularity in the integrand, which has equal strength

when approaching from any direction. This means that we can drop the arcs at infinity if

the integral along the real axis (i.e. we keep after dropping the arcs) is convergent.

What this means is that our manipulations are justified if our final formula is conver-

gent separately for each of the terms that appear in the double commutator. We should

check that this is the case assuming the dimension ∆ is in the principal series ∆ = d
2 + ir,

so that the original Euclidean inversion formula (1.6) makes sense. It is convenient to as-

sess the convergence using the formula expressed in terms of cross ratios, e.g. (3.41). The

dangerous region (corresponding to x3 and x4 almost null separated) is small χ, χ. If we

take both to zero simultaneously, χ ∼ χ, then H∆,J(χ, χ) is proportional to χJ+d−1. The

correlation function (for any of the orderings) divided by T∆i is bounded by a constant in

this limit [18, 44], so from the behavior of the measure we conclude that to have conver-

gence we need J > 1. Another limit to consider is small χ with χ fixed. In this light-cone

limit, after subtracting the contribution from the identity, the correlation vanishes as χτ/2

where τ ≥ d−2
2 is the smallest twist of the theory. Combining with the measure and the

block H∆,J for ∆ in the principal series, we again find that J > 1 is sufficient.

What this means is that the formula (3.41) gives the same answer as the Euclidean

formula for I∆,J for all spins J = 2, 3, . . . . However, for J = 0, 1 the formula could diverge

or give an answer that differs from the correct Euclidean expression. A small subtlety here

is that the above statements may not commute with the 1/N expansion. In the Regge

limit, the 1/N2 term in the four point function can grow. The chaos bound implies that

the above manipulations would still be valid for J > 2. At higher orders in the 1/N2

expansion we expect further restrictions on J . However, if we study the exact finite N

correlator rather than its 1/N2 expansion, the only requirement is that J > 1.

We can understand the fact that the formula only applies to J > 1 in another way. One

can add partial waves to the four point function with J = 0, 1 without spoiling boundedness

in the Regge limit. However, the double commutator of such partial waves vanishes, so

they will make no contribution to our Lorentzian formula for I∆,J . This means that this

formula does not in general correctly capture the contributions with J = 0, 1.

Note that as we continue ∆ off the principal series the integral will not in general be

convergent. This doesn’t indicate a failure of our continuation argument, it only means

that the continuation of I∆,J in ∆ has poles. These poles represent the physical operators

of the theory, as described in the Introduction.
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