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1 Introduction and summary

Perturbative expansions in quantum mechanics/quantum field theories are in general

asymptotic expansions with zero radius of convergence. Typically, their coefficients grow

factorially. To know the information on physical observables at finite coupling, we thus

need a resummation method of asymptotic expansions. A systematic approach to construct

a complete trans-series expansion in general situation is a so-called resurgent analysis (For

reviews, see [1–3] for instance). The resurgence theory implies that the perturbative sector

and the non-perturbative sectors are not independent but interrelated to each other.

The Chern-Simons (CS) theory is an example of exactly solvable quantum field the-

ories [4] and its perturbative/non-perturbative aspects have been extensively studied last

three decades in various contexts of theoretical physics. Applications of the topological

theory include 3 dimensional quantum gravity [5], topological strings [6], 3 dimensional

superconformal field theories [7, 8] and mathematical physics [9].

It is a natural idea to apply the resurgence technique to the Chern-Simons theory

and see how the resurgence helps us to understand (or find) various aspects of Chern-

Simons theory [10, 11]. The resurgent analysis was also applied to supersymmetric CS

theories [12] (see also [13, 14]), based on Pestun’s localization [15]. Recently, a refinement

of a CS invariant was addressed in [16]. In this paper, we study another mysterious aspect

of CS theory, an S-duality [17] when the gauge group is complex SL(2). Although there are

already several hints on the S-duality from state-integral models for the complex CS theory,

3d/3d correspondence and etc, our resurgent analysis gives more direct evidence and more
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precise statement for it. Note that the similar hidden S-duality structure also appears in

the context of the so-called “Topological Strings/Spectral Theory” correspondence [18–21].

Let us briefly summarize our main statement in this paper. We find that the per-

turbative expansion around a saddle point corresponding to a particular flat connection,

A = Aconj defined in (2.4), is Borel summable, and its Borel resummation has the S-duality

property, while the resummations around the other saddle points do not. State-integral

models do not seem to provide its simple explanation.1 In 3d/3d correspondence [7, 8],

the S-duality is related to the manifest b ↔ 1/b symmetry of a curved background called

squashed 3-sphere S3
b [22] where b denotes a squashing parameter. Our analysis also pro-

vides supporting evidence for the conjecture in [23–25] (see also recent discussion in [26])

saying that only the flat connection Aconj on M contributes to the S3
b partition function of

the corresponding 3d theory T [M ] in (2.26).

The rest of the paper is organized as follows. In section 2, we introduce two SL(2) flat

connections, Ageom and Aconj, on hyperbolic 3-manifolds M and perturbative expansions

around them. As tools to compute the perturbative expansions, the volume conjecture

and state-integral models are reviewed. In section 3, we perform the Borel-Padé resumma-

tion of the perturbative expansions for two hyperbolic 3-manifolds, the figure-eight knot

complement and a closed 3-manifold called Thurston manifold, and check the S-duality of

the resummation of the perturbative expansion around Aconj. We also provide a heuristic

understanding of the S-duality by embedding the perturbative expansion to an unitary

complex CS theory where the symmetry is manifest in Lagrangian.

2 SL(2) Chern-Simons perturbation series on hyperbolic 3-manifolds

2.1 Perturbative invariants from complex Chern-Simons theory

We begin with the following formal path integral

Zpert(k;M) =

∫
[DA]e

ik
4π
CS[A;M ] . (2.1)

Here A is an SL(2) gauge field on a 3-manifold M and S[A;M ] is the Chern-Simons

functional

CS[A;M ] :=

∫
M

Tr

(
dA+

2

3
A3

)
. (2.2)

In perturbation theory, we need to choose a flat-connection Aα and let the formal pertur-

bative expansion in 1/k around it be

Zαpert(k) . (2.3)

For a hyperbolic 3-manifold M , there are two special SL(2,C) flat connections, Ageom and

Aconj, associated to the unique hyperbolic metric on M normalized as Rµν = −2gµν .

Ageom = ω + ie , Aconj = ω − ie . (2.4)

1Integrands in state-integral models have such an S-daul symmetry manifestly, but a choice of integration

contours may break it.
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Here ω and e are a spin-connection and a dreibein respectively constructed from the hy-

perbolic metric. Both of them can be considered as so(3)-valued 1-forms and they form

an sl(2)-valued 1-form. The hyperbolicity condition, Rµν = −2gµν , implies that both of

Ageom and Aconj are flat connections. One basic characteristic is that Ageom (Aconj) gives

the exponentially largest (smallest) classical contribution for real large k ∈ R+:

Im
(
CS[Ageom;M ]

)
≤ ImCS[Aα;M ] ≤ Im

(
CS[Aconj;M ]

)
, (2.5)

for any flat connection Aα. In particular, we have

Im
(
CS[Aconj;M ]

)
= − Im

(
CS[Ageom;M ]

)
= 2vol(M) . (2.6)

Here vol(M) is a topological invariant called hyperbolic volume defined as the volume

measured in the unique hyperbolic metric. For these isolated irreducible flat connections,

the perturbative expansion takes the following form [16]

Zαpert(k;M) = e
ik
4π
CS[Aα;M ]

∑
n≥0

aαn
kn

. (2.7)

The full perturbative partition function (2.1) is then given by a transseries expansion of

the form

Zpert(k;M) =
∑
α

nαZ
α
pert(k;M), (2.8)

where nα are called the transseries parameters. Explicit values of nα depend on how one

chooses an integration contour of (2.1). These values may jump discontinuously. This is

known as the Stokes phenomenon. See [16] for this issue.

The two perturbative expansions for α = geom or conj are especially related by

aconj
n = (−1)n(ageom

n )∗ . (2.9)

In principle, the formal perturbative expansion around a given flat connection can be

computed by summing up contributions from Feynman diagrams. For the computation,

we need to fix a gauge symmetry by introducing a metric on a 3-manifold. The final sum

should be independent on the choice due to the topological property of the theory but each

contribution might depend on the choice and the computation requires the full knowledge

on the spectrum of Laplacian on the 3-manifold with respect to the metric as for usual

quantum field theories. There are much simpler methods fully using topological property

of the Chern-Simons theory. In the subsequent sections, we review two approaches.

2.2 From su(2) knot/3-manifold invariants

One simple way of computing the perturbative invariant is to use an asymptotic limit

of su(2) knot/3-manifold invariants called colored Jones polynomial/Witten-Turaev-

Rashetikin invariants (WRT) [4, 27–29] assuming the volume conjecture [9, 30–33].

– 3 –
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Volume conjecture. In an asymptotic limit N ∈ Z→∞,

1

N3/2

JN
(
q = exp

(
2πi
N

)
;K
)

JN
(
q = exp

(
2πi
N

)
; (unknot)

) ∼ Zgeom
pert (k = N ;M = S3\K) , (2.10)

for a hyperbolic knot K in S3. Similarly, in an asymptotic limit N ∈ 2Z + 1→∞,

τ
SO(3)
N (M) ∼ Zgeom

pert (k = N ;M) , (2.11)

for a hyperbolic closed 3-manifold M . Here ∼ means both sides have the same asymptotic

expansion in 1/N , and JN (q;K) is a quantum knot invariant called colored Jones polyno-

mial of a knot K and τ
SO(3)
N (M) is an SO(3) version of WRT invariant. For example,

JN (q;K = unknot) =
qN/2 − q−N/2

q1/2 − q−1/2
, (2.12)

JN (q;K = 41) =
qN/2 − q−N/2

q1/2 − q−1/2

N−1∑
j=0

j∏
i=1

(
q(N−i)/2 − q−(N−i)/2)(q(N+i)/2 − q−(N+i)/2

)
.

Here 41 denotes the figure-eight knot, the simplest hyperbolic knot. For a closed 3-manifold

M = (S3\K)p obtained by taking Dehn surgery along a knot K with slope p ∈ Z, the SO(3)

WRT invariant is given as following formula

τ
SO(3)
N (M) =

2

N
eπi
(

3+r2

r
+ r−3

4

)(N−1∑
r=1

sin2

(
2rπ

N

)(
−e

πi
N

)−p(N2−1)
JN

(
q = e

2πi
N ;K

))
.

(2.13)

2.3 From SL(2) state-integral models

Another simple approach is to use state-integral models based on ideal triangulation and

Dehn filling representation of 3-manifolds. Decomposing a 3-manifold into basic building

blocks, ideal tetrahedra and solid-torus, the SL(2) CS partition functin can be computed

by gluing the wave-functions on them. As a topological field theory, the phase spaces

associated to the boundaries of basic building blocks are finite dimensional non-compact

symplectic varieties and the wave functions depend on the finite number of continuous

position variables and the gluing of the wave functions is realized as an integration over

the boundary variables. We refer to [23, 34–37] for state-integral models for knot com-

plements based on its ideal triangulation and its extension [25, 33] to closed 3-manifolds

by incorporating Dehn filling operation. We give explicit expressions for the state-integral

model for two simple hyperbolic 3-manifolds, the figure-eight knot complement and a closed

hyperbolic 3-manifold called Thurston manifold.

Figure-eight knot complement. For M = (figure-eight knot complement) = S3\41,

the state-integral model is given by [35, 38]

Z(k;M = S3\41)(u) = e−
u2+(2iπ+~)u

2~

∫ √
kdz

2π

Ψ~(z − u)

Ψ~(−z)
e
zu
~ , (2.14)

– 4 –
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where

~ :=
2πi

k
. (2.15)

The 3-manifold has a torus boundary and there is a conventional canonical choice for basis

of the boundary 1-cycles called meridian (µ) and longitude (λ).

∂M = T2 , H1(∂M,Z) = Z× Z = {pµ+ qλ : p, q ∈ Z} , (2.16)

and the u parametrizes the fixed boundary SL(2) holonomy around the meridian cycle

P exp

∮
merdian

A ∼

(
eu/2 1

0 e−u/2

)
, (2.17)

and the state-integral is invariant under the Weyl-symmetry, u ↔ −u. Here ∼ denote

the equivalence relation by SL(2) conjugation. The function Ψ~(z) is related to the non-

compact quantum dilogarithm Φb(z), defined in (A.3), by

Ψ~(z) := Φb

( z

2πb

)
, ~ =

2πi

k
= 2πib2. (2.18)

This function has the following interesting S-duality

Ψ~(z) = Ψ− 4π2

~

(
2πiz

~

)
. (2.19)

We will discuss some basic properties of the quantum dilogarithm in appendix A. Using

the semiclassical expansion of Φb(z) (see (A.8)), we have

log Ψ~(z) =
∑
n≥0

~n−1Bn(1/2)

n!
Li2−n(−ez), ~→ 0. (2.20)

where Bn(x) is the n-th Bernoulli polynomial. Note that Bn(1/2) is vanishing for all odd

n. The state-integral is then written in the following form

Z
(
k;M = S3\41

)
(u) =

∫ √
kdz

2π
exp

(∑
n≥0

~n−1Wn(z, u;S3\41)

)
, (2.21)

where the leading classical part is

W0(z, u;S3\41) = −1

2
u2 + iπu+ zu+ Li2(−ez−u)− Li2(−e−z) . (2.22)

At u = 0, there are two saddle points, zgeom and zconj

zgeom = −2πi

3
, zconj =

2πi

3
. (2.23)

Expanding the integrand in (2.21) around these saddle points, one obtains the following

perturbative expansions:

Zgeom
pert (k;S3\41)(u = 0) =

e
kV
2π

31/4

(
1 +

11π

36
√

3k
+

697π2

7776k2
+ . . .

)
,

Zconj
pert (k;S3\41)(u = 0) =

e−
kV
2π

31/4

(
1− 11π

36
√

3k
+

697π2

7776k2
− . . .

)
.

(2.24)
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where V is the hyperbolic volume of the knot complement:

V = vol(S3\41) = 2 Im[Li2(eπi/3)] = 2.02988 . . . . (2.25)

The state-integral can be interpreted as a squashed 3-sphere partition function of a 3d

N = 2 gauge theory T [S3\41] associated to the knot complement upon a proper choice

of integral contour. In this identification, the formal SL(2) CS level k is related to the

squashing parameter b by the relation k = b−2. Following [8], we define

T [M ] := 3d theory obtained from a twisted compacitification

of 6d A1 (2,0) theory on a hyperbolic 3-manifold M .
(2.26)

According to [8],2

T [S3\41] = (u(1)0 gauge theory coupled to two chiral multiplets of charge +1) . (2.27)

The subscript in u(1)0 denotes the CS level for the gauge u(1) symmetry. The theory

has SU(2)Φ × U(1)J symmetry where the SU(2) rotates two chiral fields and U(1)J is the

topological symmetry whose conserved charge is the monopole flux of the gauge U(1). It

is argued that the symmetry is enhanced to SU(3) at the IR fixed point [40–43]. To find

a contour of the state-integral relevant to the gauge theory, let us first briefly summarize

the localization on S3
b [22] in our notation.

• a free chiral Φ of R-charge ∆ and charge q under a u(1) symmetry:

exp

(
− iπ

2

(
qσ − i(b+ b−1)

2
(1−∆)

)2
)

Ψ~

(
− 2πqbσ +

(
πi+

~
2

)
(1−∆)

)
,

• gauging the u(1):

∫
R
dσ ,

• CS term for the u(1) with level k: exp(−iπkσ2) .

• Fayet-Iliopoulos (FI) term for the u(1) with parameter ζ: exp(−2iπζσ)

(2.28)

Here σ is a real scalar in a vector multiplet coupled to the u(1) symmetry. Applying the

localization formulae,

(partition function for T [S3\41] on S3
b )

=

∫
R
dσΨ~

(
−2πb

(
σ +

ζ1

2

)
+

(
πi+

~
2

)
(1−∆1)

)
Ψ~

(
−2πb

(
σ − ζ1

2

)
+

(
πi+

~
2

)
(1−∆2)

)
× exp

(
− iπ

2

(
σ +

ζ1

2
− i(b+ b−1)(1−∆1)2

)
− iπ

2

(
σ − ζ1

2
− i(b+ b−1)(1−∆2)2

))
× exp

(
− 2iπζ2σ

)
.

(2.29)

2As pointed out in [39], the 3d theory see only irreducible flat-connections on M as R2 × S1 vacua. So,

the theory should be considered as an effective theory living on the irreducible component of vacua [40].
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Here ∆1 and ∆2 are the R-charge choices for two chiral multiplets. ζ1 is the real mass for

a Cartan u(1) of the SU(2) flavor symmetry and the ζ2 is the FI parameter, which can be

considered as the real mass for the u(1)J symmetry. This expression is equivalent to the

state-integral (2.14) when we choose

∆1 = ∆2 =
1

3
, ζ2 =

3

2
ζ1 , (2.30)

with the following change of variables

ζ1 = − u

2πb
, z = −2πb

(
σ +

ζ1

2

)
+

2πi

3
(1 + b2) . (2.31)

Since the σ and ζi are real variables, the relation tell us that the state-integral model can

be interpreted as S3
b partition function of T [S3\41] when integrated over following contour

ΓS3\41
= R +

2πi

3
(1 + b2) . (2.32)

Note that the saddle point zconj in (2.23) asymptotically touch the contour in the limit

b → 0. This may imply that the squashed 3-sphere partition function of T [S3\41] is

asymptotically equal to Zconj
pert [S3\41] in the b → 0 limit. In this case, as a side remark,

the geometric R-charge choice3 coincides with the conformal R-charge at infrared (IR)

fixed point and the state-integral at u = 0 gives the S3
b partition function of the IR

superconformal field theory.

Thurston manifold. Let (S3\41)p be a closed 3-manifold obtained by Dehn surgery

along figure-eight knot with integral slope p.

(S3\41)p :=
[
(S3\41)

⋃
(D2 × S1)

]
/ ∼ , where we identify(

pµ+ λ ∈ H1(∂(S3\41),Z)
)
∼
(
contractible boundary S1 ⊂ ∂(D2 × S1)

) (2.33)

The state-integral model for the closed 3-manifold is [25]

Z
(
k;M= (S3\41)p

)
=

∫ √
kdu

π
exp

(
pu2

4~

)
sinh

(u
2

)
sinh

(
πiu

~

)
Z(k;M = S3\41)(u) ,

=

∫
kdzdu

2π2
exp

(
(p− 2)u2 − (4πi+2~)u+ 4zu

4~

)
sinh

(u
2

)
sinh

(
πiu

~

)
Ψ~(z−u)

Ψ~(−z)
.

(2.34)

When p = −5, the 3-manifold (S3\41)p=−5 is called the Thurston manifold, which is known

to be the second smallest hyperbolic 3-manifold with

vol
(
(S3\41)p=−5

)
= 0.981369 . . . . (2.35)

3Geometric R-charge choice means a R-charge choice under which the S3
b partition function of the gauge

theory T [M ] can be made to to be identical to the SL(2) CS state-integral model Z(k;M) upon a proper

choice of integration contour.

– 7 –



J
H
E
P
0
7
(
2
0
1
8
)
0
5
3

In this case, there are two saddle points (zconj± , uconj±) corresponding to the flat connection

Aconj

(zconj+ , uconj+) = (−0.929172 + 1.90501i,−0.721568− 1.15121i) ,

(zconj− , uconj−) = (1.59632 + 2.79266i, 0.721568 + 1.15121i) .
(2.36)

Two saddle points are related by the Weyl-reflection of SL(2) and the perturbative expan-

sions around two saddle points are identical to all order

Z
conj+
pert

(
k; (S3\41)p=−5

)
= Z

conj−
pert

(
k; (S3\41)p=−5

)
= (−0.0512672− 0.350846i) exp

(
k(−0.981369 + 1.52067i)

2π

)
×
(

1 +
−0.0975308 + 0.0782969i

k
+
−0.364363 + 0.236171i

k2
+ . . .

)
.

(2.37)

The Zconj
pert

(
k; (S3\41)p=−5

)
is the sum of contributions from two saddle points

Zconj
pert

(
k; (S3\41)p=−5

)
= Z

conj+
pert

(
k; (S3\41)p=−5

)
+ Z

conj−
pert

(
k; (S3\41)p=−5

)
= 2Z

conj+
pert

(
k; (S3\41)p=−5

) (2.38)

Interestingly, there is a simper integral expression which reproduce the same perturbative

expansion [41]. Let

Z̃
(
k; (S3\41)p=−5

)
=

√
ik

2π2

∫
dz exp

(
−(2πi+ ~)2

8~
+

(2πi+ ~)z

~
− 3z2

2~

)
Ψ~(z) . (2.39)

One saddle point for the integral is

zconj = −0.061412 + 1.8063142i . (2.40)

One can check that the perturbative expansion of Z̃ around the saddle point gives the

same perturbative expansion with Zconj
pert

(
k; (S3\41)p=−5

)
. With a proper choice of integral

contour, the state-integral Z̃ can be interpreted as the partition function of a 3d gauge

theory T [Thurston] on a squashed 3-sphere. The theory T [Thurston] is field theorectically

described as [41]

T [Thurston] = u(1)−7/2 coupled to a chiral Φ . (2.41)

From a localization, we have

(partition function for T [Thurston] on S3
b )

=

∫
R
dσ exp

(
− iπ

2

(
σ− i(b+ b−1)

2
(1−∆)

)2

+
7

2
πiσ2

)
Ψ~

(
− 2πbσ +

(
πi+

~
2

)
(1−∆)

)
(2.42)
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Replacing the integration variable σ by z := −2πbσ+ (πi+ ~
2)(1−∆), the integral become∫

R+πi(1+b2)(1−∆)

dz

(2πb)
exp

(
−7(1−∆)2(2πi+ ~)2

16~
+

7(1−∆)(2πi+ ~)z

4~
− 3z2

2~

)
Ψ~(z)

(2.43)

Choosing ∆ = 3
7 , the integral become identical to the state-integral Z̃ modulo following

factor
√

2× exp
(
iπ(b2 + b−2)Q1 + iπQ2

)
, Q1, Q2 ∈ Q . (2.44)

Except the factor
√

2, the remaining factor is purely phase factor which can be removed

by a local counterterm and thus negligible. The factor
√

2 may come from a topological

degree of freedom coupled to the system. Modulo the contribution from topological degree

of freedom, the Z̃ is S3
b -partition function of the T [Thurston] theory when integrated over

following contour

ΓThurston = R +
4πi

7
(1 + b2) . (2.45)

Note that 4π
7 = 1.7952... So the contour ΓThurston is very close to the saddle point in (2.40)

in the limit b→ 0 and can be smoothly deformed to touch the saddle point. In this case, the

geometric R-charge choice (∆ = 3
7) is different from the IR conformal R-charge determined

by F-maximization [44].

3 Resumming perturbative CS invariants and S-duality

3.1 Borel resummation method

Here we discuss the resummation for the perturbative expansions (2.24) and (2.37) (or (2.7)

more generally). The important fact is that all of these perturbative expansions are diver-

gent series. Therefore one needs a resummation method to get a finite value for given k.

The standard way to do so is the Borel summation method. We briefly review it at the

beginning in this section.

Let us consider a formal perturbative series of the form

f(k) =
∞∑
n=0

fn
kn
, k →∞. (3.1)

We assume that the perturbative coefficient fn factorially diverges in n → ∞. Therefore

this perturbative expansion is a formal divergent series. The Borel transform of this series

expansion is defined by

Bf(ζ) :=
∞∑
n=0

fn
n!
ζn . (3.2)

Note that this infinite sum is now convergent. We can analytically continue it to the

complex ζ-plane except for its singularities. We then define the Borel sum by the Laplace

transform:

Sf(k) := k

∫ ∞
0

dζ e−kζBf(ζ) . (3.3)

– 9 –
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The asymptotic expansion of this Borel sum reproduces the original divergent series (3.1).

The Borel sum gives a meaning of the formal divergent series. If there are no singularities

on the integration contour (i.e., on the positive real axis), the Laplace transform in the

Borel sum is well-defined. In this case, f(k) is called Borel summable. However, we often

encounter the situation that the integrand has singularities on ζ ∈ R+. This case is called

non Borel summable. In the non Borel summable case, we deform the integration contour,

and define a new deformed Borel sum by

Sθf(k) := k

∫ ∞eiθ
0

dζ e−kζBf(ζ) , (3.4)

where θ is chosen to avoid the singularities. In our case, it is sufficient to consider the

case where θ is very close to 0 in order to avoid singularities on the positive real axis. We

denote it as

S±f(k) = Sθ=±εf(k), ε > 0 , (3.5)

where ε is a small constant. Unless the contour hits a singularity, the Laplace intergal

does not depend on ε. If the Borel transform has singularities on the positive real axis, the

deformed Borel sums S±f(k) do not agree with each other:

S+f(k) 6= S−f(k) . (3.6)

The discontinuity of the Borel sums is called the Stokes phenomenon.

In practical computations, we know only the first several values of fn. If we have fn
up to n = 2nmax, then the Borel transform (3.2) is truncated at n = 2nmax:

Bf(ζ)→
2nmax∑
n=0

fn
n!
ζn . (3.7)

This finite sum still gives a good approximation of Bf(ζ) inside the convergence circle. To

perform the Borel resummation, however, we have to integrate it along the whole positive

real axis. This means that we need the information on Bf(ζ) outside the convergence

circle. To resolve this problem, the Padé approximant is often used. We replace the finite

sum of the Borel sum by its “diagonal” Padé approximant4

2nmax∑
n=0

fn
n!
ζn → Pnmax(ζ)

Qnmax(ζ)
. (3.8)

where Pnmax(ζ) and Qnmax(ζ) are degree-nmax polynomials. Then, we can extrapolate the

Padé approximant outside the convergence circle. The Padé approximant also tells us

the (approximate) singularity structure of the Borel transform. This numerically powerful

procedure is often called the Borel-Padé resummation.

4Of course, one can also consider the “non-diagonal” Padé approximant of the form Pl(ζ)/Qm(ζ) (l 6= m).

However, experience tells us that the diagonal Padé approximant is usually the best one.
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3.2 Figure-eight knot complement

Let us start with the case of the figure-eight knot complement. Note that this case has been

studied in [16] briefly, but we find that there are a few small mistakes in their analysis.

We re-analyze it here in much more detail. As a consequence, we arrive at a different

conclusion from theirs.

We want to perform the Borel(-Padé) resummation for the perturbative expan-

sion (2.24). As we will see just below, the perturbative expansion Zconj
pert (k) turns out

to be Borel summable, and we find that its Borel resummation recovers the S-duality for

k ↔ 1/k. On the other hand, the Borel resummation of Zgeom
pert (k) does not.

Resumming the perturbative series. As in (2.24), the perturbative expansions in the

state-integral (2.14) at u = 0 are given by

Zgeom
pert (k) =

e
k
2π
V

31/4

∞∑
n=0

ageom
n

kn
, Zconj

pert (k) =
e−

k
2π
V

31/4

∞∑
n=0

aconj
n

kn
, (3.9)

where V = vol(S3\41) = 2 Im[Li2(eπi/3)]. Since the all the coefficients ageom
n and aconj

n are

real, we have the very simple relation (recall (2.9))

aconj
n = (−1)nageom

n . (3.10)

In spite of this simple relation, their resummations have quite different properties.

Following the method in [16], we computed the exact values of aconj
n up to n = 240.

The first observation is that Zconj
pert (k) is an alternating sum, while Zgeom

pert (k) is a non-

alternating one. This implies that Zconj
pert (k) is Borel summable, while Zgeom

pert (k) is not. To

check this in detail, we analyze the singularities for the Borel-Padé transform5 BZconj
pert (ζ) ≈

Pnmax(ζ)/Qnmax(ζ). In figure 1, we show the pole structure of the denominator Qnmax(ζ)

of the Padé approximant for nmax = 100 and nmax = 120. These figures strongly suggest

that the Borel transform BZconj
pert (ζ) has no singularities on the positive real axis. Using the

relation (3.10), one easily finds the relation

BZgeom
pert (ζ) = BZconj

pert (−ζ) . (3.11)

Since BZconj
pert (ζ) has singularities on the negative real axis,6 we conclude that Zgeom

pert (k) is

not Borel summable.

Let us proceed to the Borel resummation. What we actually do is the Borel-Padé

resummation for 2nmax = 240:

SZconj
pert (k) ≈ e−

k
2π
V

31/4
k

∫ ∞
0

dζ e−kζ
P120(ζ)

Q120(ζ)
(3.12)

5Here the Borel transforms BZgeom, conj
pert (ζ) are defined by

BZαpert(ζ) =
∞∑
n=0

aαn
n!
ζn, α = geom or conj .

6BZconj
pert (ζ) also seems to have singularities at ζ = ±2πi. These are not important in our analysis.
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Figure 1. The pole structure of Qnmax(ζ) for nmax = 100 (left) and for nmax = 120 (right) in the

figure-eight knot complements. Some of poles depend on nmax, and they should not be the true

singularities of BZconj
pert (ζ). In the current case, we can conclude that BZconj

pert (ζ) does not have any

singularities on the positive real axis but has on the negative real axis and on the imaginary axis.

For a given value of k, we can evaluate the Borel-Padé resummation by this equation. For

example, the value at k = 1 reads

SZconj
pert (k = 1) ≈ 0.379567579522536528565367 . . . . (3.13)

We compare this value with the direct evaluation of the state-integral (2.14) along the

contour in (2.32). For u = 0 and k = 1, we can deform the integration contour to the real

axis, and the exact value of the state-integral was evaluated in [45]

Z(k = 1;M = S3\41)(u = 0) =
1√
3

(
e
V
2π − e−

V
2π

)
= 0.3795675795225365285665625 . . . .

(3.14)

We find agreement with 22-digit accuracy.7

More interestingly, we observe that the Borel resummation SZconj
pert (k) has the S-duality

relation:

SZconj
pert (k) = SZconj

pert (1/k). (3.15)

In fact, we show explicit values of SZconj
pert (k) and SZconj

pert (1/k) for various k’s in table 1. We

also confirmed that all these values are in good agreement with the direct evaluation of the

state-integral (2.14) for the contour (2.32).

The integrand of the original state-integral (2.14) possesses this symmetry manifestly,

but the perturbative expansion in k →∞, of course, makes this symmetry invisible. After

the Borel resummation, the symmetry is precisely restored! We emphasize that to perform

the Borel resummation, we use only the perturbative data in k → ∞. Nevertheless the

resummation “knows” the information in the opposite regime k → 0. This fact is surprising

and unexpected. In fact, the authors in [16] did not expect this property.

7In [16], the authors conclude that the Borel resummation of Zconj
pert (k) does not reproduce the exact value

of the state-integral. This conflicts our conclusion here. The discrepancy comes from the exponential factor

in (3.9). In [16], the exponential factor in Zconj
pert (k) is e

kV
2π . It is however obvious that the exponential factor in

Zconj
pert (k) must be e−

kV
2π because Zconj

pert (k) is exponentially small in the semiclassical limit k →∞. This factor

is crucially important to reproduce the exact result for finite k as well as the S-duality restoration below.
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k SZconj
pert (k) SZconj

pert (1/k)
√

2 0.36542977253384313898 0.36542977253384313647√
3 0.34450281834049000808 0.34450281834048996022

2 0.32447273598566357884 0.32447273598566448145√
5 0.30627488542944963878 0.30627488542946706198√
6 0.28987450153633354513 0.28987450153646160882

Table 1. The S-duality restoration for the Borel-Padé resummation of Zconj
pert (k).

Next, let us discuss the Borel resummation of Zgeom
pert (k). As we have already seen,

Zgeom
pert (k) is not Borel summable. Therefore we have to consider the deformed Borel resum-

mations (3.5). In the actual computation, we use the Borel-Padé resummations:

S±Zgeom
pert (k) ≈ e

k
2π
V

31/4
k

∫ ∞e±iε
0

dζ e−kζ
P120(−ζ)

Q120(−ζ)
(3.16)

where the Padé approximant is the same function appearing in Zconj
pert (k). These Borel

resummations turn out to be complex-valued. For example, the values at k = 1 are

given by

S±Zgeom
pert (1) ≈ 1.0526393020± 0.5693505539i . (3.17)

Moreover, we observe that the Borel resummations S±Zgeom
pert (k) do not have the S-dual

symmetry:

S±Zgeom
pert (k) 6= S±Zgeom

pert (1/k) . (3.18)

For instance, for k =
√

2, we have

S±Zgeom
pert (

√
2) ≈ 1.358610063± 0.548144707i ,

S±Zgeom
pert (1/

√
2) ≈ 0.7999826621± 0.5481068265i .

(3.19)

We show the k-dependence of the real and imaginary parts of S+Z
geom
pert (k) in figure 2.

Though S±Zgeom
pert (k) do not have the S-dual relation totally, their imaginary part seems to

have it. This is because the imaginary part is precisely related to the Borel sum SZconj
pert (k).

In fact, the standard resurgent analysis (see [2] for instance) tells us that the difference of

S±Zgeom
pert (k) is given by

S+Z
geom
pert (k)− S−Zgeom

pert (k) = S · SZconj
pert (k) , (3.20)

where S is called a Stokes constant. As we will see below, in our case we have S = 3i.

Large order behavior. Finally, we discuss the large order behavior of the perturbative

expansion. From the resurgent analysis, the large order behavior of Zconj
pert (k) provides the

information on the other saddle Zgeom
pert (k). More precisely, as in [16], we expect the large

order behavior

aconj
n =

S

2πi

(n− 1)!

An

[
1 +

ageom
1 A

n− 1
+

ageom
2 A2

(n− 1)(n− 2)
+ · · ·

]
, n→∞ . (3.21)
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Figure 2. The real part of S+Zgeom
pert (k) does not recover the S-duality, while the imaginary part

does.

Since we have aconj
n up to n = 240, we can extract the information on A, S and ageom

n very

precisely from this formula.

To know A, we look at a relation

naconj
n

aconj
n+1

= A+O(n−2), n→∞ . (3.22)

To accelerate the convergence of this sequence, we use the Richardson transform. For the

analysis of the large order behavior by using the Richardson transform, see [46]. Let us

define the m-th Richardson transform of a given sequence fn by

Rm[fn] :=
m∑
k=0

(−1)k+m(n+ k)m

k!(m− k)!
fn+k. (3.23)

If the sequence fn behaves as

fn = C[1 +O(n−1)], n→∞, (3.24)

then the Richardson transform of fn behaves as

Rm[fn] = C[1 +O(n−m−1)], n→∞. (3.25)

Therefore the convergence speed is improved.

In the current case, we apply the 80th Richardson transform8 to the sequence

naconj
n /aconj

n+1, and find the convergent value

R80[159aconj
159 /a

conj
160 ] = −0.646131894438901 . . . . (3.26)

As found in [16], the exact value of A is given by the difference of the actions of the two

saddles Ageom and Aconj,

A = −V
π

= −0.646131894438901 . . . . (3.27)

8To compute the m-th Richardson transform of fn, we need the higher elements fn+1, . . . , fn+m. If we

have fn up to n = Nmax, we can perform the m-th Richardson transform up to n′ = Nmax −m. We choose

m as good convergence as possible.
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We find remarkable agreement with |A − R80[159aconj
159 /a

conj
160 ]| ∼ O(10−98). This A is also

related to a singularity on the Borel transform BZconj
pert (ζ). The closest singularity of the

Padé approximant of BZconj
pert (ζ) on the negative real axis from the origin9 is

ζ ≈ −0.6462, (3.28)

which is indeed in agreement with A.

Once the exact value of A is known, we can extract S by

bn := 2π
Anaconj

n

(n− 1)!
= S/i+O(n−1), n→∞ . (3.29)

Using the Richardson transform of bn again, we find

R80[b160] = 3 +O(10−97). (3.30)

This strongly suggest that the exact value of S is

S = 3i. (3.31)

Note that our obtained value is different from the one in [16]. The value in [16] is S[GMP] ≈
7.51989i.10 The evidence of our result here is that the discontinuity (3.20) holds only for

S = 3i.

Repeating this way, one can confirm the large order relation (3.21) with very high

numerical accuracy.

3.3 Thurston manifold

Borel resummation. In this case, the perturbative expansions of the state-

integral (2.34) (or (2.39)) take the forms

Zconj
pert (k) = e−

kA
2π N

∞∑
n=0

aconj
n

kn
,

Zgeom
pert (k) = e

kA∗
2π N ∗

∞∑
n=0

ageom
n

kn
,

(3.32)

where aconj
0 = ageom

0 = 1 and

A ≈ 0.981369− 1.52067i, N ≈ −0.102535 + 0.701692i. (3.33)

Recall that we have the relation (2.9). Also, we can compute the perturbative expansion of

the state-integral (2.39) around the saddle (2.40). As mentioned before, the result coincides

with Zconj
pert (k):

Z̃pert(k) = e−
kA
2π N

∞∑
n=0

aconj
n

kn
, (3.34)

9In the right of figure 1, one can see a pole on the negative real axis at ζ ≈ −0.27. This pole however

does not appear in the left figure, and is considered to be a “false” singularity.
10This numerical value is very likely S[GMP] = 3

√
2πi. The factor

√
2π comes from the Gaussian integral

normalization. We thank M. Mariño for this point.
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Figure 3. The pole structure of Qnmax
(ζ) in the Thurston manifold (3.35) for nmax = 40 (left) and

for nmax = 50 (right).

In the following, we mainly focus on the resummation of Z̃pert(k). From the state-integral

expression (2.39), we computed the numerical values of aconj
n up to n = 100. Using these

data, we show in figure 3 the singularities of the Padé approximant of the Borel transform

BZ̃pert(ζ) =
∞∑
n=0

aconj
n

n!
ζn . (3.35)

It is very likely that Z̃pert(k) is Borel summable. It is observed that the closest singularity

from the origin is located at

ζ ≈ −0.1563 + 0.5846i. (3.36)

The real part is in agreement with that of the action: Re[A/(2π)] = 0.1561897 . . . .

We perform the Borel-Padé resummation11 by

SZ̃pert(k) ≈ e−
kA
2π N k

∫ ∞
0

dζ e−kζ
P50(ζ)

Q50(ζ)
. (3.37)

For k = 1, we get

SZ̃pert(1) ≈ −0.2898929700 + 0.4325462447i. (3.38)

This result is compared with the numerical evaluation of the state-integral (2.39). We

evaluate it along ΓThurston in (2.45). Then, we find

Z̃(1) ≈ −0.2898929693 + 0.4325462442i. (3.39)

We also confirm the S-duality restoration in the Borel resummation, as shown in table 2.

In the case of the Thurston manifold, the perturbative expansion Zgeom
pert (k) is also Borel

summable. We again observe that the Borel resummation of Zgeom
pert (k) does not reproduce

the S-dual relation. For k =
√

2, we have

SZgeom
pert (

√
2) ≈ 0.0932017344− 0.8386515714i,

SZgeom
pert (1/

√
2) ≈ −0.1378028444− 0.6725116917i.

(3.40)

11In the computation, we keep all the numerical values sufficiently high precision.
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k SZ̃pert(k) SZ̃pert(1/k)
√

2 −0.2972319065 + 0.4156327694i −0.2972319477 + 0.4156327825i√
3 −0.3072974784 + 0.3896472188i −0.3072978009 + 0.3896472596i

2 −0.3159358614 + 0.3636643427i −0.3159370863 + 0.3636643208i√
5 −0.3228283893 + 0.3390695105i −0.3228315994 + 0.3390690679i√
6 −0.3281614035 + 0.3160611133i −0.3281681342 + 0.3160594714i

Table 2. The S-duality restoration for the Thurston manifold.

Large order behavior. Let us proceed to the large order behavior. As in (3.21), we

assume the large order behavior of the form

aconj
n =

S

2πi

(n− 1)!

An

[
1 +

b1A

n− 1
+

b2A
2

(n− 1)(n− 2)
+ · · ·

]
, n→∞. (3.41)

Using the first 100 coefficients, we find the numerical values

A ≈ −0.1561897001 + 0.5841922570i,

S ≈ 0.1683579878− 0.0246012135i,

b1 ≈ 0.6626248474i, b2 ≈ −0.8896638449.

(3.42)

All of these values are stable in the 17th Richardson transform at least up to this digit.

One can see that the value of A coincides with the closest singularity (3.36), as in the

figure-eight knot complement. Our analysis implies that b1 seems purely imaginary and

that b2 seems real. So far, it is unclear to us the relation between this large order behavior

and the saddle-point approximation in the state-integral (2.39) (or (2.34)). This is not a

main purpose in this paper. It would be interesting to explore it in more detail.

3.4 Physical reasoning of the S-duality

In the previous subsection, we saw that the perturbative expansion around the saddle

corresponding to the flat connection A = Aconj is Borel summable and that its Borel

resummation has the S-duality. We also observed that the perturbation around Ageom is

not Borel summable for the figure eight knot complement, but Borel summable for the

Thurston manifold.

In general, there does not seem a simple criteria to say whether the perturbation

around a given flat connection Aα is Borel summable or not. Nevertheless, we can say

that for the particular connection Aconj, the perturbative expansion Zconj
pert is always Borel

summable. The reason is as follows. If Zconj
pert is not Borel summable, then it has to receive

“non-perturbative” corrections, which must be exponentially small corrections to Zconj
pert , to

cancel the ambiguity of the Borel sum. However, the inequality (2.5) shows that there are

no saddles, whose exponentiated classical actions are smaller than that for Aconj:

e−
k
4π

Im[CS[Aconj;M ]] < e−
k
4π

Im[CS[Aα;M ]] < e−
k
4π

Im[CS[Ageom;M ]]. (3.43)
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This means that Zconj
pert does not receive any non-perturbative corrections, and we conclude

that Zconj
pert must be Borel summable. Our conjecture here is that the Borel resummation

SZconj
pert has the S-dual symmetric structure in k ↔ 1/k. In this sense, the flat connection

Aconj is very special. Note that the same consideration does not tell anything about the

Borel summability for Zgeom
pert .

The emergence of the S-duality after the Borel resummation of Zconj
pert is somewhat

surprising since there is no such a symmetry in the path integral (2.1). One heuristic

explanation of this surprise is the following. First, notice that the integrand in (2.1)

is not unitary for complex gauge field A and the path-integral makes sense only at the

perturbative level. As will be explained below, there is a unitary SL(2) CS theory whose

partition function has the same asymptotic expansion as (2.1) in a certain limit of coupling

in the theory. So the unitary theory can be considered as a non-perturbative completion

of the formal perturbative CS partition function in (2.1). Further, the unitary complex

CS theory has an S-duality as a manifest symmetry. The Borel resummation implies the

existence of the non-perturbative completion and it gives the exact answer for the unitary

complex CS theory that has the S-duality symmetry.

Let us explain the unitary complex CS theory in more detail. The complex SL(2) CS

theory depends on two CS levels, K and σ, whose action is given by

K + σ

8π
CS[A;M ] +

K − σ
8π

CS[Ã;M ] (3.44)

For the invariance under the large gauge transformation, K should be an integer:

K ∈ Z . (3.45)

For the unitarity of the theory, σ is either real or purely imaginary.

σ ∈ R or σ ∈ iR . (3.46)

In [47], it is conjectured that if we choose

K = 1 , σ =
1− b2

1 + b2
, (3.47)

then the asymptotic expansion of the partition function of the complex SL(2) CS theory

in a singular limit b → 0 is equivalent to the formal perturbative expansion in (2.1) with

identification k = b−2. So, the SL(2) CS theory with K = 1 can be considered as a

non-perturbative completion of the formal path integral in (2.1). After the substitution

in (3.47), the action (3.44) becomes

1

4π(1 + b2)
CS[A;M ] +

1

4π(1 + b−2)
CS[Ã;M ] , (3.48)

which has the following S-duality,

(b, A) ↔ (b−1, Ã) . (3.49)
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In the limit b→ 0, the second term in (3.48) vanishes and the action reduced to a CS action

only with A with a quantum parameter ~ = 2πi(1 + b2). The resulting action is equivalent

to the action in (2.1) except for k = b−2 is replaced by (1 + b2)−1. In a quantization of CS

theory, the relevant quantum parameter is q := e~ instead of ~ and the difference between

two actions disappears. This is an heuristic derivation of the conjecture in [47].
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A Quantum dilogarithms

In this appendix, we briefly summarize some basic properties of quantum dilogarithms that

we need in the main text.

Compact quantum dilogarithm. First, we define the compact quantum diloga-

rithm by

φq(X) := (X; q)∞ =

∞∏
n=0

(1−Xqn) = exp

[
−
∞∑
k=1

Xk

k(1− qk)

]
(|q| < 1) . (A.1)

For q = e~, this function has the following semiclassical expansion:

log φq(X) =

∞∑
n=0

Bn
n!

Li2−n(X)~n−1 , (A.2)

where Bn is the n-th Bernoulli number. Of course, in the classical limit ~→ 0, log φq(X)

reduces to the classical dilogarithm.

Non-compact quantum dilogarithm. We also define the non-compact (or Faddeev’s)

quantum dilogarithm by

Φb(z) := exp

[∫
R+iε

dt

t

e−2itz

4 sinh(bt) sinh(b−1t)

]
. (A.3)

By this definition, it is obvious to see that the function has an important symmetry

Φb(z) = Φb−1(z) . (A.4)

For b = 1, the function reduces to the classical (di)logarithm:

Φb=1(z) = exp

[
iz log(1− e2πz) +

i

2π
Li2(e2πz)

]
. (A.5)
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Note that compared to the compact quantum dilogarithm, the non-compact one is well-

defined even for |q| = 1. For |q| < 1, it is constructed by two copies of the compact quantum

dilogarithm:

Φb(z) =
φq(−q1/2e2πbz)

φq̃−1(−q̃−1/2e2πz/b)
= exp

[ ∞∑
k=1

(−1)ke2πkbz

k(qk/2 − q−k/2)
+
∞∑
k=1

(−1)ke2πkz/b

k(q̃k/2 − q̃−k/2)

]
, (A.6)

where

q := e2πib2 , q̃ := e2πi/b2 . (A.7)

As in the compact case, we can expand Φb(z) around ~ = 2πib2 = 0,

log Φb(z) =
∞∑
n=0

B2n(1/2)

(2n)!
Li2−2n(−e2πbz)~2n−1, ~→ 0, (A.8)

where Bn(x) is the Bernoulli polynomial. Note that the compact function φq(−q1/2e2πbz)

also has the same semiclassical expansion:

log φq(−q1/2e2πbz) =

∞∑
n=0

B2n(1/2)

(2n)!
Li2−2n(−e2πbz)~2n−1, ~→ 0. (A.9)

This is a consequence of the relation (A.6). At the semiclassical level, we cannot distinguish

the non-compact function Φb(z) from the compact one φq(−q1/2e2πbz). However, one should

keep in mind that the equations (A.8) and (A.9) mean the equalities in the asymptotic sense

in ~→ 0. We know, of course, Φb(z) 6= φq(−q1/2e2πbz) for finite ~.

Resummation. As shown in [48], the semiclassical expansion on the right hand side

in (A.8) or (A.9) is resummed exactly. The resummed function turns out to reproduce the

non-compact quantum dilogarithm, not the compact one. Let us denote the semiclassical

expansion as

Lb(z) :=

∞∑
n=0

B2n(1/2)

(2n)!
Li2−2n(−e2πbz)(2πib2)2n−1 . (A.10)

The basic idea for the resummation is to use the following identity

B2n(1/2) = (−1)n4n

∫ ∞
0

dx
x2n−1

e2πx + 1
, n ≥ 1. (A.11)

Plugging it into (A.10) and exchanging the sum and the integral, we get

Lresum
b (z) =

Li2(−e2πbz)

2πib2
− i
∫ ∞

0

dx

e2πx + 1
log

(
1 + e2πbz−2πb2x

1 + e2πbz+2πb2x

)
. (A.12)

This is further rewritten as a simpler form

Lresum
b (z) =

i

2π

∫ ∞
−∞

dt

et + 1
log(1 + e2πbz+b2t) . (A.13)
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Surprisingly, this resummation recovers the symmetry for b↔ b−1:

Lresum
b (z) = Lresum

b−1 (z). (A.14)

We stress that this symmetry restoration is far from obvious in the integral representa-

tion (A.12) or (A.13). We have checked it numerically. Finally, one can also numerically

confirm that this resummation reproduces the original non-compact quantum dilogarithm:

log Φb(z) = Lresum
b (z) =

i

2π

∫ ∞
−∞

dt

et + 1
log(1 + e2πbz+b2t). (A.15)
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