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Julius Eckhard,a Sakura Schäfer-Namekia and Jin-Mann Wongb

aMathematical Institute, University of Oxford,

Woodstock Road, Oxford, OX2 6GG, U.K.
bKavli Institute for the Physics and Mathematics of the Universe (WPI),

University of Tokyo, Kashiwa, Chiba 277-8583, Japan

Abstract: M5-branes on an associative three-cycle M3 in a G2-holonomy manifold give

rise to a 3d N = 1 supersymmetric gauge theory, TN=1[M3]. We propose an N = 1

3d-3d correspondence, based on two observables of these theories: the Witten index and

the S3-partition function. The Witten index of a 3d N = 1 theory TN=1[M3] is shown to

be computed in terms of the partition function of a topological field theory, a super-BF-

model coupled to a spinorial hypermultiplet (BFH), on M3. The BFH-model localizes on

solutions to a generalized set of 3d Seiberg-Witten equations on M3. Evidence to support

this correspondence is provided in the abelian case, as well as in terms of a direct derivation

of the topological field theory by twisted dimensional reduction of the 6d (2, 0) theory. We

also consider a correspondence for the S3-partition function of the TN=1[M3] theories,

by determining the dimensional reduction of the M5-brane theory on S3. The resulting

topological theory is Chern-Simons-Dirac theory, for a gauge field and a twisted harmonic

spinor on M3, whose equations of motion are the generalized 3d Seiberg-Witten equations.

For generic G2-manifolds the theory reduces to real Chern-Simons theory, in which case we

conjecture that the S3-partition function of TN=1[M3] is given by the Witten-Reshetikhin-

Turaev invariant of M3.
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1 Introduction

Starting with the Alday-Gaiotto-Tachikawa (AGT) correspondence [1, 2], a series of

conjectures were put forward, relating d-dimensional N = 2 supersymmetric theories

TN=2[M6−d], labeled by (6 − d)-dimensional manifolds M6−d, and topological or confor-

mal theories in 6 − d dimensions on the manifold M6−d. Each of these correspondences is

established in terms of the agreement between observables, e.g. sphere partition functions

(or indices) of the supersymmetric theories and partition functions/correlation functions

of the topological/conformal theories on M6−d.

One way to motivate these conjectures is to consider M5-branes wrapped on M6−d with

a topological twist which preserves N = 2 supersymmetry in d dimensions. For d = 4 it was

shown that the sphere partition function of the class S theories TN=2[M2] [3] agree with

correlation functions of 2d Toda theory on the Riemann surface M2 [1, 2]. The so-called

3d-3d correspondence [4, 5] similarly relates the S3-partition function of 3d N = 2 theories

TN=2[M3] to the partition function of complex Chern-Simons theory on M3. Finally, for

d = 2 there is a correspondence for 2d (0, 2) theories labeled by four-manifolds M4. The

half-topologically twisted sphere partition function is conjectured to be computed by a

topological sigma-model into the monopole moduli space [6], whereas the Witten index is

identified with the Vafa-Witten (VW) [7] partition function of 4d N = 4 Super-Yang Mills

theory on M4 [8].

Much of the progress in establishing these conjectures relies on the computational ad-

vances that were made for sphere partition functions of N = 2 supersymmetric theories

thanks to localization techniques [9, 10] — for a recent review see [11]. For less supersym-

metry, many of these tools are not quite as well developed thus far. One may hope that

formulating similar correspondences for N = 1 theories could give further insight into their

structure. An initial step towards developing an N = 1 version of the AGT correspondence

has been made in [12], with the goal to relate the sphere partition function of the class Sk
theories [13, 14] to 2d conformal blocks.

The goal of this paper is to develop an N = 1 version of the 3d-3d correspondence,

motivating it from first principles by starting with the 6d (2, 0) theory. As is well-known the

TN=2[M3] are obtained by wrapping M5-branes on special Lagrangian (sLag) three-cycles
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in Calabi-Yau three-folds. To retain N = 1 in 3d, we will show that the natural setup for

TN=1[M3] is to realize M3 as an associative three-cycle in a G2-holonomy manifold.1

A priori we do not know what the topological theories are, which would complement the

3d N = 1 theories in such a 3d-3d correspondence. To determine these, it is useful to recall

the approach applied in the N = 2 setting: the topological theory, whose partition function

computes the sphere partition function of the TN=2[M6−d] theories can be determined

from the sphere reduction of the 6d (2, 0) in an N = 2 preserving conformal supergravity

background [6, 15, 16]. We will employ this approach in the following to determine the

topological theories, which compute the following two observables of TN=1[M3]: the T 3-

partition function, i.e. Witten index, and the S3-partition function.

For 3d N = 1 the Witten index [17] is a well explored observable, much more so

than the S3-partition function. For this reason we will focus much of our attention on

this observable and provide non-trivial checks of the proposed correspondence. We will

derive the ‘dual’ topological theory by considering the 6d (2, 0) theory first on T 3, which

gives 3d N = 8 SYM, which we then topologically twist along M3, while preserving two

topological supercharges. This twist corresponds to the embedding of M3 as an associative

cycle in a G2-manifold. In summary, the theory, whose partition function computes the

Witten index of the TN=1[M3] will be shown to be a supersymmetric BF-theory coupled

to a spinorial hypermultiplet (BFH), which is a section of the normal bundle NM3 of M3

inside the G2-manifold.

We should at this point elaborate briefly on the geometry of associative three-cycles

in G2-holonomy manifolds [18, 19], which will play an important role in the behavior of

the Witten index. The normal bundle of an associative three-cycle is NM3 = S ⊗ V ,

where S is the spin bundle and V an SU(2)-bundle, in particular sections of the normal

bundle are twisted harmonic spinors on M3, satisfying a twisted Dirac equation. On an

odd-dimensional manifold the Dirac operator has vanishing index, which implies that the

dimension of the kernel (infinitesimal deformations) equals that of its co-kernel (obstruc-

tions to these deformations), however the index does not reveal any information about the

non-triviality of each of these spaces. For non-generic choices of G2-structure, there can

be twisted harmonic spinors, which are accompanied with non-trivial obstructions of the

deformations, which they parametrize. This fact will reflect itself in the discontinuity/wall-

crossing of the Witten index of TN=1[M3].

The 3d-3d correspondence that we propose for N = 1 results in an identification of

the partition function of the BFH-model on M3 with the Witten index of TN=1[M3]. To

compute the partition function of the BFH-model, we show that its action is minimized on

solutions to a non-abelian generalization of the 3d Seiberg-Witten (gSW) equations. These

differ from the standard SW equations in that the spinor transforms in the adjoint of a

gauge group G as well as under an additional SU(2)-bundle V (that appears in the normal

bundle of the associative cycle). The partition function of the BFH-model is computed by

1G2-holonomy manifolds have two sets of supersymmetric, i.e. calibrated cycles: associative three-cycles

calibrated with the G2-three-form Φ and co-associative four-cycles, calibrated with ?Φ. M5-branes wrapping

co-associative four-cycles results in the VW twist along the four-manifold, i.e. 4d-2d duality studied in [6, 8].
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the Euler characteristic of the moduli space MgSW of solutions to the gSW equations.2 In

particular for gauge group G = U(1) we derive the partition function explicitly and match

it with the index of TN=1[M3,U(1)].

We find that already in the abelian case the index is discontinuous under metric de-

formations, and jumps depending on the existence of twisted harmonic spinors. The fact

that the partition function of the BFH-model is only topological up to wall-crossing can, as

noted earlier, be traced back to the deformation theory of associative three-cycles within

G2-manifolds. At the location of the walls the normal deformations, appearing in the

gSW equations, are obstructed. This means thatMgSW can become singular and its Euler

characteristic can jump.

A second less-explored observable for 3d N = 1 theories is the S3-partition function

(for a discussion of this observable for SCFTs see [20]). Whereas the N = 2 3d-3d cor-

respondence is studied for the S3-partition function, and many computational results are

available thanks to localization methods [21] (and see [11] for a recent review), the situ-

ation for N = 1 is much less explored. In particular localization will not be applicable

for computing the sphere partition functions with 3d N = 1 supersymmetry. Here we will

nevertheless determine what the ‘dual’ topological field theory is, whose partition function

on M3 would provide a conjecture for the S3-partition function of TN=1[M3]. To do so, we

determine the conformal supergravity background similar to [6, 15, 16] and perform the

reduction of the 6d (2, 0) theory on a three-sphere, first to 5d SYM and then on an S2 to

3d, whilst preserving N = 1 supersymmetry. The resulting topological theory is shown to

be real Chern-Simons gauge theory on M3 coupled to a twisted harmonic spinor φ, i.e. a

Chern-Simons-Dirac theory whose equations of motion are the generalized Seiberg-Witten

equations (for a review see [22]). For generic associatives in G2-manifolds there will be

no twisted harmonic spinors, and the theory reduces to real Chern-Simons theory. In this

case the topological partition function is given in terms of the Witten-Reshetikhin-Turaev

invariant [23, 24], which we conclude must compute the S3-partition function of TN=1[M3].

The most interesting physical application arises when viewing the M5-branes as domain

walls in the 4d N = 1 theory obtained by M-theory on the G2-holonomy manifold. For Lens

spaces this case has been studied in [25] and we will connect these results, when discussing

concrete examples. This may in particular be of interest in recent constructions of new

G2-holonomy manifolds in [26–28] and singular limits thereof [29] that realize non-abelian

gauge groups.

Finally, we should remark that in the case that there is a non-trivial IR fixed point, the

M5-branes on associatives have a holographic dual description in terms of AdS4-solutions,

where M3 is a hyperbolic three-manifold [30]. This means the metric has constant sectional

curvature −1, and by Schur’s lemma the metric is Einstein. Examples of such associatives

exist in the Bryant-Salamon G2-manifolds [31], which are the total space of the spin bundle

over M3, with M3 of constant sectional curvature ±1. For metrics on M3 with negative

scalar curvature the associatives can indeed have obstructions, which are determined by

zero modes of the Dirac operator. It would be interesting to explore this from a holographic

point of view.

2The analog for N = 2 is the moduli space of complex flat connections.
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The plan of the paper is as follows: section 2 serves as an overview and summary

of background material, starting with a concise statement of the proposed N = 1 3d-

3d correspondence in section 2.1. In section 2.2 we provide some background on G2-

holonomy manifolds, calibrated cycles and their deformation theory. We conclude this

section with a discussion of 3d Seiberg-Witten equations and the non-abelian generalization

that we encounter. In section 3 we derive the abelian theory TN=1[M3,U(1)] and its

Witten index. The generalization to non-abelian gauge groups is discussed in section 4 by

either considering a specialization of the three-manifold to Lens spaces, or by considering

a reduction to 5d SYM and subsequently a derivation of the circle-reduction of TN=1[M3]

to a 2d sigma-model into the moduli space of generalized 3d Seiberg-Witten equations. In

section 5 we derive the topological field theory side of the 3d-3d correspondence in the case

of the Witten index, and provide several checks. In section 6 we determine the topological

theory whose partition function computes the S3-partition function of the 3d N = 1 theory.

We conclude in section 7 with a discussion and outlook. Various appendices summarize

our notation and provide further computational details.

2 Overview and background

2.1 An N = 1 3d-3d correspondence

Consider 6d (2, 0) theory with gauge group G on a three-manifold M3. Depending on the

topological twist, the resulting 3d theory after compactification along M3, can preserve

either N = 2 or N = 1 supersymmetry. We denote the Lorentz and R-symmetry of the

6d theory by SO(1, 5)L × Sp(4)R. With the space-time decomposition R1,2 ×M3, the two

twists are realized as follows:

SO(1, 5)L → SO(1, 2)L × SO(3)M

Sp(4)R →


SU(2)R ×U(1)R 3d N = 2; M3 = sLag in CY3

SU(2)r × SU(2)` 3d N = 1; M3 = Associative in G2 .

(2.1)

Twisting the underlined R-symmetry groups with the local Lorentz group SO(3)M of M3,

results in two types of supersymmetric 3d theories: the N = 2 case has been studied exten-

sively in the standard 3d-3d correspondence [4, 5] and the twist is realized geometrically

in terms of embedding M3 as a special Lagrangian (sLag) cycle in a Calabi-Yau three-fold.

The correspondence states the equivalence between the S3-partition function ZS3 of the

N = 2 theories TN=2[M3], and the complex Chern-Simons partition function on M3

ZCSC,G(M3) = ZS3(TN=2[M3, G]) , (2.2)

for general gauge group G. This correspondence is by now not only supported by compu-

tational evidence in terms of examples of S3-partition functions, but in [15] the complex

Chern-Simons theory was derived by a dimensional reduction of the 6d (2, 0) theory on the

three-sphere, coupled to a suitable conformal supergravity background.

– 4 –
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Figure 1. The setup for the N = 1 3d-3d correspondence is the 6d (2, 0) theory on M3 × T 3.

The topologically twisted reduction along M3 preserves 3d N = 1 and geometrically corresponds to

an embedding of M3 as an associative three-cycle in a G2-holonomy manifold. The correspondence

states that the Witten index of the resulting theory TN=1[M3] can alternatively be computed from

the partition function on M3 of a topological twist of the T 3-reduction of the 6d theory, a BF-theory

coupled to a spinorial hypermultiplet (BFH).

The twist in (2.1) that preserves N = 1 in 3d will be the subject of this paper and we

denote the corresponding 3d theories by TN=1[M3].3 Geometrically this twist is realized

by embedding M3 as an associative three-cycle (i.e. calibrated and thus supersymmetric

cycle) in a G2-holonomy manifold. Note that the unbroken SU(2)` is not an R-symmetry in

agreement with N = 1 supersymmetry. Instead it becomes manifest as a flavour symmetry

associated to the normal bundle of M3 discussed in section 2.2. The observable we consider

first is the T 3-partition function, or Witten index [17]. We determine the 3d topological

field theory, whose partition function on M3 will be conjectured to compute the Witten

index of the TN=1[M3] theory: first we dimensionally reduce the 6d (2, 0) theory on T 3

to 3d N = 8 SYM, which is then topologically twisted along M3 to preserve two scalar

supercharges. This results in a super-BF-model coupled to a Hypermultiplet, denoted by

BFH-model in the following, and we propose the following identification of observables

ZBFH(M3) = IT 3 (TN=1[M3]) , (2.3)

where Z denotes the partition function of the BFH-model on M3 and IT 3 is the Witten

index or T 3-partition function of the TN=1[M3] theory — see figure 1.

The partition function of the BFH-model is computed in terms of the Euler charac-

teristic of the moduli space of solutions to the BPS equations. These take the form of a

generalized set of 3d Seiberg-Witten equations on M3 for the pair (φαα̂, A)

(gSWM3
) :

( /Dφ)αα̂ = 0

εabcF
bc − i

2
[φαα̂, (σa)

α
βφ

βα̂] = 0 .
(2.4)

Here φαα̂ is a section of the normal bundle of the associative cycle, i.e. a section of the

spin bundle twisted with an SU(2)-bundle V , and A is a gauge connection for the gauge

group U(N), with F = dA + [A,A]. Furthermore, /D is the twisted Dirac operator of the

covariant derivative D, with respect to the gauge connection A, the SU(2)-connection A

3We will usually consider gauge group G = U(N), and in case of ambiguity specify G by TN=1[M3, G].

– 5 –
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on V , and the spin connection on M3. The left hand side of the correspondence in (2.3)

can therefore be computed in terms of

ZBFH(M3) = χ
(
MgSWM3

)
, (2.5)

where χ denotes the Euler characteristic andMgSWM3
is the moduli space of solutions to the

generalized Seiberg-Witten equations (2.4). The solutions to the gSW equations depend

on the metric of the associative three-cycle, induced by the ambient G2-metric, which

determines the number of twisted harmonic spinors φ on M3, i.e. solutions to ( /Dφ)αα̂ = 0.

As a consequence of this we find that under deformations of the metric the Witten index

for the abelian theory IT 3(TN=1[M3,U(1)]) can jump, depending on whether there are

such spinors.

To substantiate the conjectured correspondence (2.3), several checks are performed in

the course of this paper:

1. In the abelian case, the theory TN=1[M3,U(1)] and its Witten index can be computed

explicitly by dimensional reduction of the 6d abelian (2, 0) tensor multiplet. On the

topological field theory side the BPS equations decouple into flat U(1)-connections

and twisted harmonic spinors, and the partition function can be computed to ver-

ify (2.3).

2. For non-abelian theories, we specialize the three-cycle M3 to a Lens space L(p, q)

with the standard metric (which does not admit twisted harmonic spinors). The

theory TN=1[L(p, q),U(N)] was determined in [25] and its index is known. Due to

the absence of twisted harmonic spinors, the solutions to the gSW equations reduce

to flat connections, and (2.3) can again be checked explicitly.

Note that for 3d N = 2 theories on compact three-manifolds,4 obtained from the 6d

(2, 0) theory on special Lagrangian three-manifolds inside a Calabi-Yau three-fold, it was

argued in [34] that the vacua of TN=2[M3, G] on S1×R2 are in one-to-one correspondence

with complex flat G-connections on M3

#vacua(TN=2[M3, G]) = flat GC-connections on M3 . (2.6)

The complex flat connections arise from the gauge field coupling to sections of the normal

bundle of the special Lagrangian three-cycle given by the cotangent bundle. In the present

case, we obtain the generalized Seiberg-Witten equations (2.4), which couple sections φαα̂

of the normal bundle of the associative cycle to real connections on M3. If M3 does not

admit any twisted harmonic spinors, i.e. d /D(M3, g) = 0, the solutions to gSWM3,G are real

flat G-connections, and the N = 1 correspondence equates vacua of TN=1[M3, G] with real

flat G-connections on M3, i.e.

d /D(M3, g) = 0 : #vacua(TN=1[M3, G]) = flat GR-connections on M3 . (2.7)

4The requirement of M3 to be compact is necessary for the theory to have finitely many vacua [8]. In

the non-compact case the T 3 observable is difficult to compute due to the presence of many fermionic zero

modes and has only been computed for non-flat metrics on T 3, which preserve less supersymmetry [32, 33].

– 6 –
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Figure 2. The setup for the N = 1 3d-3d correspondence is the 6d (2, 0) theory on M3 × S3.

The topologically twisted reduction along M3 preserves 3d N = 1 and geometrically corresponds to

an embedding of M3 as an associative three-cycle in a G2-holonomy manifold. In this variant the

S3-partition function of TN=1[M3] can alternatively be computed from the partition function of real

Chern-Simons gauge theory on M3 coupled to a twisted harmonic spinor, i.e. Chern-Simons-Dirac

theory. In the case when there no twisted harmonic spinors, the theory reduces to real Chern-Simons

theory and the partition function is given by the Witten-Reshetikhin-Turaev (WRT) invariant.

In the next subsections we will first give a lightning summary of the geometry of asso-

ciative three-cycles in G2-holonomy manifolds. Secondly, we discuss generalizations of

Seiberg-Witten equations and put the equations that we find in (2.4) into context. To

our knowledge this generalization has not been proposed thus far and we contrast them to

known generalizations of the SW equations.

Before turning to this, we also summarize our findings with regards to another, less

explored observable, the S3-partition function of TN=1[M3]. Very little is known about

this observable in 3d N = 1 theories. We will nevertheless propose a variant of the 3d-

3d correspondence for this observable, by determining the topological field theory, whose

partition function computes the S3-partition function of the N = 1 theory. The strategy

is again to start with the 6d (2, 0) theory and dimensionally reduce on S3 in a suitable

conformal supergravity background — the setup is shown in figure 2. We find that the

topological theory is a Chern-Simons-Dirac (CS-Dirac) theory, i.e. real Chern-Simons gauge

theory at level 1 coupled to a twisted harmonic spinor φ, whose equations of motion are

precisely the generalized Seiberg-Witten equations (2.4). We discuss the generalization to

higher level as well, which correspond to the partition function on the Lens space L(p, 1).

This leads us to conjecture that the sphere partition function of TN=1[M3, G] is computed

by the M3-partition function of this CS-Dirac theory

ZS3 (TN=1[M3, G]) = ZCSR−Dirac,G(M3) . (2.8)

As we will discuss, generically in G2-manifolds associatives will not have twisted harmonic

spinors in which case the right hand side simply reduces to the partition function of real

CS-theory on M3, which computes the Witten-Reshetikhin-Turaev (WRT) invariant

d /D(M3, g) = 0 : ZS3 (TN=1[M3, G]) = WRT(M3) . (2.9)

We will also argue that this correspondence can be further generalized by replacing the

S3 by a Lens space L(p, 1). The reduction on the Lens space yields Chern-Simons-Dirac

– 7 –
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theory at level p. Thus, we furthermore propose

ZL(p,1) (TN=1[M3, G]) = ZCSDp,G(M3) . (2.10)

This variant of the 3d-3d correspondence will be derived in section 6.

2.2 G2-holonomy, associatives and deformation theory

This section gives a brief review of manifolds with holonomy group G2 and calibrated,

so-called associative, three-cycles, that play a key role in this paper. For more in depth

reviews on these geometries in mathematics and string theory see [19, 35]. A G2-holonomy

manifold is a pair (X7,Φ), where X7 is an oriented manifold of real dimension seven and

Φ is a harmonic three-form, the G2-form. This manifold admits a metric gΦ, constructed

from Φ, with reduced holonomy group G2 ⊂ SO(7). Key to the present discussion are

calibrated or supersymmetric cycles. Associative three-cycles M3 are calibrated by Φ,5 i.e.

vol(M3) = Φ|M3 , (2.11)

and their properties including deformation theory have been discussed in [18, 36]. Let us

fix a G2-holonomy manifold (X7,Φ) and an associative submanifold M3. The cotangent

space of X7 can be identified with ImH ⊕ H containing elements (u, v). On M3, we now

identify u as a one-form and v as a section of the conormal bundle. In this language the

G2-form is

Φ = − 1

3!
u0 ∧ u0 ∧ u0 −

1

2
Reu0 ∧ v̄0 ∧ v0 , (2.12)

for some initial element (u0, v0). The space of deformations, which leave the structure

invariant can be described by an SO(4)-action on ImH ⊕ H. Note that SO(4) appears

naturally as it is the largest group that does not mix u and v, which is necessary to

preserve the associative. We can write SO(4) ∼= SU(2)M × SU(2)V 3 (g, h), so that g

acts as the rotations on M3. To recover the usual transformation of one-forms we expect

u0 → gu0ḡ = u under the group action, where ḡ = g−1. In order for Φ to transform as

a three-form (i.e. in the same way as u) the group action on v0 is v0 7→ hv0ḡ = v. From

these transformations one can deduce that the structure of the normal bundle consists of

two parts. The group action v → vḡ identifies v as transforming in the 2 of SU(2)M , and

similarly also in the 2 of SU(2)V . From these two transformations of v one finds that the

normal bundle of M3 is

NM3 = S⊗ V , (2.13)

where S is the spinor bundle of M3 and V is the principle bundle associated to SU(2)V .

The space of linear deformations is given by sections of the normal bundle, i.e. the

kernel of /D, the twisted Dirac operator on M3 coupled to the SU(2)-bundle V . We denote

its dimension by

d /D(M3, g) = dim ker /D . (2.14)

Note that d /D(M3, g) depends on the metric g [37]. An example of an associative that

admits twisted harmonic spinors, given by an associative T 3 inside T 7, was discussed

5There are also co-associative four-cycles, which are calibrated by ?Φ.
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Figure 3. The variation of an associative three-cycle M(b) inside a G2-manifold, with G2-form

Φ(a). The variation is shown with respect to the parameter a under the constraint b2 = a, required

for M(b) to be an associative.

in [38]. Although over a three-manifold every SU(2)-bundle is trivial, i.e. it admits a trivial

connection, this does not imply that we can simply set the connection A on V to zero,

as the connection relevant here is the one determined by the embedding of the associative

cycle into the G2-manifold. The connection is therefore fixed, and not necessarily equal to

the trivial connection. In the examples studied by Bryant-Salamon [31], the G2-holonomy

manifolds are constructed as the total space of the spin bundle over a constant sectional

curvature three-manifold, so that A = 0. In fact, whenever A = 0 there are three distinct

cases depending on the scalar curvature R:

1. R > 0: for positive curvature there are no harmonic spinors, i.e. d /D(M3, g) = 0 [39],

which implies that the associative three-cycle is rigid.

2. R = 0: the associative cycle is T 3 and the harmonic spinors coincide with the parallel

spinors.

3. R < 0: in this case the associative three-cycle can have non-trivial linear deformations

depending on the induced metric on M3. It was shown in [40] that in dimensions d =

3 mod 4 every closed spin manifold (in particular all closed orientable three-manifolds

admit spin structures), with a given fixed spin structure, admits a Riemannian metric

with d /D(M3, g) ≥ 1. However, this metric need not coincide with the metric induced

on the associative by the Ricci flat metric on the ambient G2-manifold.

The index of the Dirac operator vanishes on a closed three-manifold, so that its ob-

struction space is of the same dimension as the deformation space [18, 38]. This implies

that the virtual dimension of the moduli space of associative deformations is always zero.

It is believed [19, 38] that for generic M3 there is no obstruction space, so there are also

no linear deformations and d /D(M3, g) = 0. This structure is generically preserved under

small deformations of the metric, or equivalently the G2-form Φ. However for non-generic

G2-manifolds, the obstruction and deformation spaces can be non-trivial.

An example for how deformations can lead to obstructed associative cycles was given

in [41]. Consider families of G2-manifolds (X7,Φ(a)) ≡ X(a) and embeddings f(b) : Y →
X(a), where Y is some three-manifold, that vary smoothly with independent parameters
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a, b ∈ R. It was argued in [41] that one can choose the embeddings such that the M3(b) ≡
f(b)(Y ) are associative inside X(a) for a = b2. Since they are embeddings of the same

three-manifold Y all the M3(b) are in the same homology class. This setup is depicted in

figure 3. Let us look at the linear deformation space of the associative M3(b) inside X(b2),

i.e. consider b → b + ε and expand to linear order in ε. Consequently, M3(b + ε) is an

associative inside X(b2 + 2bε+O(ε2)). For b 6= 0 this variation does not describe a linear

deformation of the associative inside a fixed G2-manifold, as the latter changes. However,

for b = 0 it implies that the M3(ε) describe a family of associatives inside X(0) (to leading

order), so M3(0) has a non-zero linear deformation space, d /D(M3, g) = 1. Clearly, this logic

breaks down at higher order in ε so the deformations are obstructed. Throughout this paper

we will discuss variations of associative three-cycles M3(b) in a fixed homology class and

retain a description after wall-crossing, which occurs at the points where d /D(M3, g) 6= 0.

2.3 Generalized Seiberg-Witten equations

The topological field theories that will play a role in the 3d-3d correspondence for both

T 3- and S3-partition functions, are closely related to a set of generalized Seiberg-Witten

equations on the three-manifold M3

( /Dφ)αα̂ = 0

εabcF
bc − i

2
[φαα̂, (σa)

α
βφ

βα̂] = 0 .
(2.15)

Here φαα̂ is a section of the normal bundle of the three-cycle M3 in the G2-manifold

NM3 = S ⊗ V and thus a ‘bispinor’ with respect to the SU(2)M and SU(2)V . Both the

gauge connection A and φ are in the adjoint of the gauge group G, which we take to be

U(N), with N > 1.6 The Dirac operator acting on the spinor φ is covariantized to the

twisted Dirac operator, including a connection on V

D = ∇+A+ A , (2.16)

where ∇ is the covariant derivative with respect to the spin connection on M3.

The above equations are non-abelian generalizations of the well-known 3d SW equa-

tions. Let us briefly recapitulate their origin and then contrast other generalizations to the

one we encounter here (2.15). The 4d Seiberg-Witten or monopole equations [42–44] consist

of a U(1) gauge field A coupled to a positive chirality spinor Φ and its complex conjugate

F+
ij −

i

2
Φ†ΓijΦ = 0 , /DAΦ = 0 , (2.17)

where F+ is the self-dual part of the field strength F = dA and /DA is the Dirac operator in

the presence of the gauge field. The moduli space associated to these equations was shown

by Witten to define a topological invariant, the Seiberg-Witten invariant, related to Don-

aldson invariants of four-manifolds [45]. A generalization incorporating multiple spinors

transforming under an SU(n) flavour symmetry has recently been studied in the context of

6For the abelian theory we obtain flat connections.
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M5-branes reduced on coassociative four-cycles [46]. The reduction of the 4d equations on a

circle yield the abelian 3d Seiberg-Witten equations, supplemented by equations involving

the gauge field along the circle direction [47].

The equations in (2.15) are a generalization of the Seiberg-Witten equations in three

dimensions to non-abelian gauge symmetry, and to spinors that are also sections of the

SU(2)V -bundle. To our knowledge these equations have not appeared as a generalization of

the SW equations thus far. Various other generalizations of the Seiberg-Witten equations,

which have an overlap with (2.15), have however arisen in the study of G2-manifolds and

G2-instantons, which we briefly summarize below.

A generalization of the 3d abelian Seiberg-Witten equations to incorporating n spinors

Ψ transforming under an SU(n)-bundle, was recently considered in the context of counting

G2-instantons in [48]

F = ΨΨ∗ − 1

2
|Ψ|2 , /DA⊗BΨ = 0 , (2.18)

where the Dirac operator is twisted by the connection B of the SU(n)-bundle. We note

that these equations can also be obtained via dimensional reduction of the 4d abelian

equations discussed in [46]. The virtual dimension of the moduli space associated to (2.18),

given by the difference of the dimension of the space of deformations and obstructions, is

zero [38], however the count of solutions is not necessarily independent of the metric on

the three-manifold. This is an intrinsic property of the moduli space of twisted harmonic

spinors, which are the zero modes of /DA⊗B. Consequently, the solutions to (2.15), which

correspond to a non-abelian generalization of (2.18) in the case of n = 2, are also expected

to be metric-dependent.

The abelian 3d Seiberg-Witten equations with n = 2 have appeared in relation to

deformations of associative three-cycles in manifolds with (not necessarily torsion-free) G2-

structure in [49–51], where the twisted harmonic spinor condition of [18] is supplemented

with an additional Seiberg-Witten-like equation, which couples a U(1) gauge field to sec-

tions of the normal bundle (2.13), in order to make the space of deformations compact and

zero-dimensional. In the context of G2-strings, a non-abelian version was shown to arise

as the equations of motion of the world-volume theory of topological 3-branes wrapped

on an associative three-cycle in a G2-manifold [52]. In this context the spinor φαα̂ arises

exactly from considering the normal modes of the associative, and the equations derived

there, have some resemblance to (2.15). It would be interesting to understand the precise

relation between these two setups.

3 TN=1[M3,U(1)]

We now turn to deriving the 3d N = 1 theory TN=1[M3,U(1)] from a topological twist of

the 6d N = (2, 0) theory, which geometrically corresponds to a single M5-brane wrapped

on an associative three-cycle M3 in a G2-holonomy manifold. We reduce the equations of

motion of the 6d abelian tensor multiplet to the ones of the 3d theory TN=1[M3,U(1)], and

compute the Witten index for this theory for general M3.

– 11 –
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3.1 Topological twist for associative three-cycles

We consider the 6d N = (2, 0) theory on

R1,2 ×M3 , (3.1)

where M3 is an associative three-cycle in a G2-holonomy manifold. The local model for

this configuration is the total space of the normal bundle (2.13). The relevant topological

twist was first discussed in [53]. We will here determine the dimensional reduction to the

TN=1[M3,U(1)] theory and its non-abelian generalization. The Lorentz and R-symmetry

group of the 6d theory is given by SO(1, 5)L × Sp(4)R ⊂ OSp(2, 6|4), the superconformal

group in 6d. We consider the decompositions

SO(1, 5)L → SO(1, 2)L × SO(3)M

Sp(4)R → SU(2)` × SU(2)r ,
(3.2)

where SO(1, 2)L and SO(3)M are the local Lorentz groups acting on R1,2 and M3, respec-

tively. The supersymmetry parameter transforms in the (4,4) which decomposes as

SO(1, 5)L × Sp(4)R → SO(1, 2)L × SU(2)M × SU(2)` × SU(2)r

(4,4) → (2,2,2,1)⊕ (2,2,1,2) .
(3.3)

As explained in (2.1) we twist the local Lorentz group of M3 with the R-symmetry SU(2)r

SU(2)twist = diag(SU(2)M , SU(2)r) , (3.4)

under which the supersymmetry parameters transform as

SO(1, 5)L × Sp(4)R → SO(1, 2)L × SU(2)twist × SU(2)`

(4,4) → (2,2,2)⊕ (2,1,1)⊕ (2,3,1) .
(3.5)

There are two supercharges that transform trivially under the twisted Lorentz symmetry

on M3, and thus N = 1 supersymmetry is preserved in the transverse 3d space-time. The

SU(2)` is thus not an R-symmetry but rather a flavour symmetry.

To substantiate this, let us now consider the reduction of the 6d abelian tensor mul-

tiplet, consisting of five scalars Φm̂n̂, a self-dual three-form H = dB, and fermions %αm̂

satisfying the symplectic-Majorana-Weyl condition (A.7). A summary of our conventions

can be found in appendix A, where m̂, n̂ = 1, · · · , 4 denotes the fundamental of Sp(4)R.7

Under (3.5) these become

SO(1, 5)L × Sp(4)R → SO(1, 2)L × SU(2)twist × SU(2)`

Φm̂n̂ : (1,5) → (1,2,2)⊕ (1,1,1) ≡ (φαα̂, ϕ)

Habc : (10,1) → (1,1,1)⊕ (3,3,1) ≡ (h,Haxy)

%αm̂ : (4̄,4) → (2,2,2)⊕ (2,1,1)⊕ (2,3,1) ≡ (ρσαα̂, λσ, ξσa ) .

(3.6)

7We take the convention of non-hatted indices and hatted indices to denote Lorentz and R-symmetry

indices, respectively.
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Underlined indices denote transformations under the 6d symmetries where a, b, c = 0, · · · , 5
are flat space-time indices and α = 1, · · · , 8 is a spinor index. Under the decomposition

σ, α, α̂ are two component spinor indices of the groups SO(1, 2)L, SU(2)twist and SU(2)`,

respectively. Finally, x, y and a, b are flat space-time indices on R1,2, and M3, respectively.

The key point to observe here is that from the 6d scalars we obtain a field φαα̂ transforming

as a spinor under both the twisted Lorentz SU(2)twist and the remnant flavour symmetry

SU(2)`. We therefore identify the SU(2)` with the SU(2)-bundle V in (2.13), which makes

φαα̂ a section of NM3 .8

3.2 From 6d (2,0) to 3d N = 1 TN=1[M3,U(1)]

For a single M5-brane, the dimensional reduction follows from the abelian tensor multi-

plet [54], and we can determine TN=1[M3,U(1)] explicitly. In appendix B we carry out the

reduction and show TN=1[M3,U(1)] to be a supersymmetric Chern-Simons theory with

free scalar multiplets. The spectrum of TN=1[M3,U(1)] depends on the first integral ho-

mology of M3

H1(M3,Z) ∼= Zb1(M3) ⊕ Zp1 ⊕ · · · ⊕ Zpr , (3.7)

as well as the number of twisted harmonic spinors d /D(M3, g) on M3.

These fields organize into 3d N = 1 multiplets (some basic properties of such theories

are summarized in appendix C). The supersymmetry transformations of the abelian 6d

N = (2, 0) theory are

δBab = εm̂Γab%
m̂

δΦm̂n̂ = −4ε[m̂%n̂] − Ωm̂n̂εr̂%r̂

δ%m̂ =
1

48
H+
abcΓ

abcεm̂ +
1

4
/∂Φm̂n̂εn̂ .

(3.8)

The topological twist is implemented by requiring that the invariant supersymmetry pa-

rameter satisfies

(Σa)
α
βε
βm̂ + δaâ (Σâ)

m̂
n̂ε
αn̂ = 0 , (3.9)

where Σa and Σâ are the generators of SU(2)M and SU(2)r, respectively, as defined in

appendix A.2. The solution to (3.9) is given by

εσαm̂ = εσεαm̂ and εσαα̂ = 0 , (3.10)

where εαm̂ is the anti-symmetric two-tensor. The 6d symplectic-Majorana-Weyl condition

implies the 3d reality condition

εσ =

(
ε1

iε2

)
, (3.11)

8Note that this identification can also be justified more rigorously on the group level. The twist iden-

tifies the preserved R-symmetry SO(4)R ⊂ Sp(4)R as the group preserving the G2-structure discussed in

section 2.2.
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with ε1 and ε2 real. The dimensional reduction of the supersymmetry variations yields

δAmx = −2εσγx
σ
τξ
τm

δαI = −2εσξ
σI

δϕ = −2εσλ
σ

δh = −2εσ/∂R1,2
σ
τλ

τ

δφi = −2εσρ
σi

δξσm = −1

8
εxyzFmxyγz

σ
τ ε
τ

δξσI = −1

4
/∂R1,2

σ
τα

Iετ

δλσ = −1

4
/∂R1,2

σ
τϕε

τ − 1

4
hεσ

δρσi = −1

4
/∂R1,2

σ
τφ

iετ .

(3.12)

Note that it is not possible to determine the supersymmetry variation of the auxiliary

scalar h by direct reduction as it only appears in the decomposition of the self-dual part of

the field strength H+, not of B itself. It is straightforward to determine δHabc = 3∂[aδBbc]
and from this the variations of H±. In order for δH− to vanish one has to impose the first

equation of motion in (B.24) by hand. This ensures that the 3d supersymmetry algebra

closes off-shell. Then, the variation of δH+
xyz reduces to δh in (3.12).

We can now compare this to the 3d N = 1 multiplet structure, which is summarized

in appendix C.9 Note that for the scalar multiplet with leading component ϕ we obtain

the full off-shell supersymmetry transformations. The field content of TN=1[M3,U(1)] can

be interpreted as consisting of the following free 3d N = 1 multiplets:

1. A single scalar multiplet Aϕ 3 {ϕ, λσ, h}. If we view TN=1[M3,U(1)] as a domain

wall in the 4d N = 1 bulk theory, obtained by compactifying M-theory on the G2-

holonomy manifold, this multiplet describes the center of mass.

2. b1(M3) massless scalar multiplets AIα 3 {αI , ξσI} coming from the free part of the

first homology group of M3.

3. d /D(M3, g) massless scalar multiplets Aiφ 3 {φi, ρσi} which describe the deformations

of the associative three-cycle M3 inside the G2-holonomy manifold. These explicitly

depend on the G2-holonomy metric g restricted to the associative cycle M3.

4. A set of r massive gauge multiplets VmA 3 {Am, ξσm} whose masses are generated by

Chern-Simons terms at levels pm. Each multiplet VmA is induced by a factor in the

torsion part of the first homology group (3.7) of M3 .

This gives the dictionary between the field content of TN=1[M3,U(1)] and the geometry of

the associative three-cycle M3.

3.3 Witten index of TN=1[M3,U(1)]

The observable for the proposed 3d-3d correspondence is the T 3-partition function, or

Witten index, of TN=1[M3], which is defined by I = Tr(−1)F [55], and for N = 1 theories

is the most natural and well-explored observable to consider. We will discuss the much

9By an appropriate rescaling of the fermions ε→
√

2ε and {λ, ξ, ρ} → − 1√
8
{λ, ξ, ρ}, the supersymmetry

variations can be brought into the standard form.
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less explored S3-partition function in section 6. We now compute the Witten index for the

abelian Chern-Simons theories TN=1[M3,U(1)] for general three-manifolds M3.

The key geometric input from M3 are its first Betti number b1(M3), the torsion numbers

pm in (3.7) and the number d /D(M3, g) of zero-modes of the twisted Dirac operator, with g

being the metric arising from the restriction of the G2-metric onto M3. Since the abelian

theory is non-interacting the multiplets decouple and the vacua can be written as tensor

products. Thus, the Witten index is a product with the following contributions:

1. Independent of the details of the compact M3 the theory includes a free scalar mul-

tiplet consisting of a bosonic and a fermionic state. Thus, the ground states always

come in pairs with opposite fermion number and the full Witten index vanishes. Since

this does not yield any information about the associative three-cycle we will exclude

this center of mass multiplet from the computation of I ′ = Tr′(−1)F in the same

fashion as in [25].

2. There are b1(M3) + d /D(M3, g) scalar multiplets, and as argued above, the Witten

index of a free scalar multiplet vanishes. Thus, the Witten index vanishes unless

b1(M3) = d /D(M3, g) = 0. It is believed, [19, 38], that generic associative three-

cycles have no deformation space, i.e. d /D(M3, g) = 0. For many examples, such as

three-spheres and simple modifications thereof, furthermore b1(M3) = 0.

3. The final piece is the set of r vector multiplets with Chern-Simons self-interactions at

levels pm given by the torsion numbers (3.7). For a single U(1) gauge field with Chern-

Simons level k the Witten index is k [23]. Since the r gauge fields are independent

of each other the total contribution of this sector is ICS =
∏r
m=1 pm.

The total Witten index I ′, excluding the center of mass contribution, is thus given by

I ′(b1(M3), d /D(M3, g), pm) =

{∏r
m=1 pm if b1(M3) = d /D(M3, g) = 0

0 else .
(3.13)

Thus the Witten index is non-zero if and only if M3 has trivial first rational homology

(b1(M3) = 0) and a vanishing obstruction space (d /D(M3, g) = 0, see the discussion in sec-

tion 2.2). These manifolds are known as unobstructed rational homology three-spheres.10

Under smooth deformations of the metric of the G2-holonomy manifold, or equivalently the

G2-form, this index is discontinuous, whenever the kernel of /D is non-vanishing. There is

no guarantee that the index is invariant after passing through these loci, as the deformation

space of an obstructed associative three-cycle can be singular. This phenomenon is known

as wall-crossing.

We should comment on how the wall-crossing that we observe compares with the one

proposed in [41] for associatives in G2-manifolds. We are interested only in variations of the

G2-form, which result in metric deformations on the associative three-cycle, while keeping

10Note that if M3 = S3 the index is one although there are no non-trivial cycles. This can be seen by

an explicit reduction, where the Hopf fiber induces a Chern-Simons term at level one. This is consistent

with (3.13) as I ′ reduces to the empty product.
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its class in the third homology fixed. In particular we do not consider deformations, where

the topology changes or the associative ceases to exists, or splits. The type of wall-crossing

considered by Joyce in [41] is more closely connected to the M2-instanton partition function,

as recently discussed in [56].

4 Non-abelian generalization

Ideally at this point we would provide a generalization to non-abelian theories

TN=1[M3,U(N)] for general, compact three-manifolds, however since the non-abelian 6d

theory is unknown this is hard to come by. Thus, a precise dictionary between the asso-

ciatives and the non-abelian theories in general is beyond the scope of the current paper.

However, we provide two alternate ways to obtain some information about the non-abelian

generalizations. One approach is to first reduce from 6d to 5d on a circle and study the 5d

SYM theory on M3. This results in a 2d sigma-model with (1, 1) supersymmetry, whose

target space is the moduli space of the gSW equations. The alternative is to use a special-

ization of M3, when the reduction is known, such as for M3 a Lens space. More generally

one can consider circle-fibrations and use methods such as [15] to compute the dimensional

reduction in those cases. We leave this for future work and focus here on the Lens spaces.

4.1 Circle reduction to 2d N = (1, 1) sigma-model

To generalize the correspondence to non-abelian theories, without specializing the three-

manifold, we first dimensionally reduce the 6d theory to 5d, and consider the non-abelian

5d SYM theory on M3. This will not immediately reveal the TN=1[M3] theory, however we

will be able to generalize our results to the non-abelian version of this theory dimensionally

reduced on a circle to a 2d N = (1, 1) sigma-model. The target of this sigma-model is the

moduli space of a particular generalization of 3d Seiberg-Witten equations. The setup is

sketched in figure 4. A similar approach was applied by Gaiotto-Moore-Neitzke [57] in

studying the class S theories, obtained from M5-branes on a Riemann surface Σ, in terms

of Hitchin equations, that arise in the compactification of the 5d SYM theory on Σ. The

role of the Hitchin equations is in our context played by the generalized 3d Seiberg-Witten

equations on M3.

The circle reduction of the 6d N = (2, 0) theory results in 5d N = 2 SYM, i.e. the

worldvolume theory of D4-branes in type IIA string theory, which of course is known for

any gauge algebra. We can then reduce further on M3, which encodes information about

the circle reduction of TN=1[M3] to two dimensions. The supersymmetry variations of the

5d theory are given by

δAb′ = − i
4
εm̂Γb′ρ

m̂ , δΦm̂n̂ = −ε[m̂ρn̂] − 1

4
Ωm̂n̂εr̂ρr̂

δρm̂ = −i /DΦm̂n̂Ωr̂n̂ε
r̂ +

1

2
F a
′b′Γa′b′ε

m̂ − 1

2
Ωn̂r̂[Φ

m̂n̂,Φr̂ŝ]εŝ ,

(4.1)

where Fa′b′ is the field strength of the 5d gauge field Ab′ and m̂ = 1, · · · , 4 is the R-symmetry

index. Consider the topological twist discussed in section 3.1, which is unaltered by the
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Figure 4. To study the non-abelian theory we consider first the dimensional reduction to 5d

SYM and then the reduction on M3 to 2d. This should correspond to the circle-reduction of the 3d

TN=1[M3] to a 2d N = (1, 1) sigma-model, whose target space are the generalized Seiberg-Witten

equations (gSW) in (4.3).

reduction to 5d. The resulting field content is given by

SO(1, 4)L × Sp(4)R → U(1)L × SU(2)twist × SU(2)`

A : (5,1) → (1,1)± ⊕ (3,1)0 ≡ (A±, Ab)

ρ : (4,4) → (1,1)± ⊕ (3,1)± ⊕ (2,2)± ≡ (λ±, ξ±a , ρ
±αα̂)

Φ : (1,5) → (1,1)0 ⊕ (2,2)0 ≡ (ϕ, φαα̂) .

(4.2)

The twist of the 5d N = 2 vector yields gauge fields Ab on M3 and A± on R1,1 respectively.

The decomposition of the spinor and scalar sectors is similar to (3.6). This preserves

two supercharges of opposite chirality corresponding to 2d N = (1, 1). In order to put

this theory on a general associative M3 the Dirac operator has to be covariantized with

respect to the spin connection on M3 as well as the SU(2)V connection A as discussed in

appendix B.11 To dimensionally reduce on M3 we introduce a length scale s of the three-

manifold and consider the theory in the limit s → 0. To this end we rescale the fields

and coordinates on M3 to make their s-dependence explicit. The reduction proceeds by

solving the BPS equations, which are the most divergent terms in the s-expansion of the

supersymmetry variations

εabcF
bc − i

2
[φαα̂, φ

βα̂](σa)
α
β = 0

( /Dφ)αα̂ = 0

Daϕ = [ϕ, φαα̂] = 0 .

(4.3)

The first two BPS equations are the generalized Seiberg-Witten equations (2.4). For field

configurations satisfying (4.3) the leading order terms in 5d vanish and the action is min-

11Note that this introduces a mass term for the φαα̂ proportional to the Ricci scalar R(M3) as well as

a term involving the field strength F of A. These terms arise naturally by requiring invariance under the

covariantized supersymmetry transformations. This is discussed in greater detail in section 6.
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imized. The reduction to two dimensions is performed in a standard way and leads to a

2d N = (1, 1) sigma model into the moduli space of solutions to (4.3). These equations

generalize the usual abelian 3d Seiberg-Witten equations in that the scalars φαα̂ transform

in the adjoint of a non-abelian gauge group and in the fundamental of an additional group

SU(2)V . The Dirac operator /D is therefore twisted by the SU(2)-bundle V .

To consider the 2d N = (1, 1) sigma model on T 2 one needs to choose boundary

conditions for the fermions. As described in [58], choosing Ramond boundary conditions

for both positive and negative chirality fermions corresponds to computing the Witten

index [55], which is equivalent to the Euler characteristic of the moduli space of solutions

to (4.3). On the other hand, by choosing Neveu-Schwarz boundary conditions for the

negative chirality fermions and Ramond boundary conditions for positive chirality one

computes the elliptic genus. To make a connection to the Witten index of the theories

TN=1[M3] the case of interest therefore corresponds to Ramond boundary conditions for

all fermions. As will be discussed in section 5.1, the topologically twisted theory on the

other side of the N = 1 3d-3d correspondence computes the Euler characeristic of the

moduli space of gSW equations, which corresponds to solutions of (4.3) with ϕ = 0. The

Euler characteristic of the moduli space for the abelian case, corresponding to a single

M5-brane, is computed in section 5.2, and shown to match the Witten index of the abelian

theory found in section 3.3.

4.2 Specializing M3: TN=1[L(p, q),U(N)]

Another approach to obtaining further insight into the non-abelian generalizations is to

consider special cases of three-cycles M3. In fact one of the most common associative

cycles in compact G2-manifolds that are known are three-spheres or simple modifications

thereof — see e.g. the twisted connected sum constructions in [26–28], where associatives

are either S3 or diffeomorphic to S2 × S1, or more recently the conjecture for an infinite

family of associative three-cycles with topology S3 in these geometries [56].

It is thus useful to consider specializations of the three-cycles M3 and determine the

non-abelian theories using special properties of the geometries. This strategy has already

been successfully applied for the N = 2 version of the 3d-3d correspondence. In particular

we focus on Lens spaces L(p, q), defined as Zp quotients of S3, where the action of the

quotient on S3, embedded as a unit sphere in C2 with complex coordinates (z1, z2), is

given by

(z1, z2)→ (e2πi/pz1, e
2πiq/pz2) . (4.4)

For (p, q) coprime this action has no fixed points, and is therefore free. Lens spaces appear

as associative three-cycles in the G2-manifolds

X7 = (R4 × S3)/Zp , (4.5)

considered in [25]. In these cases the embedding of the associative three-cycle is trivial

and there are no twisted harmonic spinors. For q = 1, the Lens space is a Hopf fibration

S1 ↪→ L(p, 1) → S2. The reduction of the 6d N = (2, 0) theory along the fiber direction

yields 5d N = 2 SYM in the presence of p units of graviphoton flux. This theory possesses
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a Lagrangian description for general gauge group and the subsequent reduction on S2 can

be performed explicitly. This yields a 3d SYM theory with a Chern-Simons term at level

p coupled to a scalar multiplet in the adjoint. The bosonic part of the action is given by

S =
1

g2

∫
d3xTr

(
−1

2
FijF

ij +
1

2
DiϕD

iϕ

)
+

p

4π

∫
CS(A) , (4.6)

where the scale of the gauge coupling is given by the radius of the Lens space g−2 ∼ r. In

the abelian case G = U(1) this matches the description in section 3.2 as H1(L(p, q),Z) =

Zp. Since the theory only depends on the topological data of the associative this can be

generalized to all q.

For these 3d N = 1 Chern-Simons theories TN=1[L(p, q)] the Witten index was com-

puted in [17, 25] to be

IT 3(TN=1[L(p, q),U(N)]) =

(
p

N

)
. (4.7)

To compute this one uses the fact that the vacua of the Chern-Simons theory (4.6) are

given by flat U(N)-connections. This moduli space consists of a set of points, each repre-

senting an N -dimensional representation of the fundamental group π1(L(p, q)) = Zp, and

the Witten index is given by the sum over all such points. The abelian flat connections

are in one-to-one correspondence with the irreducible representations of Zp, and can be

represented by the p nodes on the associated affine Dynkin diagram for Ap−1 [59]. The

generalization to flat U(N)-connections follows by considering the number of ways in which

N -dimensional representations of Zp can be built from the 1-dimensional irreducible repre-

sentations, which is given by
(
p
N

)
. In section 5.1 we shall show that in this case the N = 1

3d-3d correspondence holds by determining the partition function of the BFH-model.

5 BFH-model on M3

We now turn to the topological field theory side of the correspondence, i.e. the right hand

side of figure 1, whose partition function is conjectured to compute the Witten index of the

3d TN=1[M3] theory. The TQFT can be obtained from the T 3-reduction of the 6d (2,0)

theory, to a maximally supersymmetric 3d theory, which we then topologically twist along

M3 in the same fashion as in section 3.1. Following the correspondence (2.3) the partition

function of this topological theory computes the Witten index IT 3(TN=1[M3]) of the 3d

N = 1 theory, and we verify this in examples.

5.1 Topological twist of 3d N = 8 SYM

The reduction of the 6d N = (2, 0) theory on T 3 yields maximally supersymmetric 3d

N = 8 SYM theory on M3. The topological twist preserves two scalar supercharges Qσ̇
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and the field content of the theory is:

Field SU(2)twist × SU(2)` × SU(2)I

Bosonic

Aa (3,1,1)

ςȧ (1,1,3)

φαα̂ (2,2,1)

Fermionic

ξσ̇a (3,1,2)

λσ̇ (1,1,2)

ρσ̇αα̂ (2,2,2)

(5.1)

Here, the hatted and dotted indices denote the representations under the internal symme-

tries SU(2)` and SU(2)I , respectively. This 3d topological action is given by the 3d super-

BF-model [60, 61] coupled to a spinorial hypermultiplet, which first appeared in [62]. In

addition, we will gauge the SU(2)` flavour symmetry, which is identified with the bundle

V in (2.13), to ensure that M3 is embedded as an associative three-cycle.

This theory can also be obtained as the T 2-reduction of the twisted 5d N = 2 theory

introduced in section 4.1. After the reduction to three dimensions, the U(1) symmetry on

the torus gets enhanced to SU(2)I , and the transformations of the fields can be repackaged

into the content in (5.1). Inspired by the description in [62] we find that the reduction of

the supersymmetry variations can be written in an off-shell form with the introduction of

two auxiliary fields, Ba and Wαα̂,

Qσ̇Aa =
1

2
ξσ̇a , Qσ̇ς ȧ = −1

2
(σȧ)σ̇ τ̇λ

τ̇

Qσ̇φαα̂ =
1

2
ρσ̇αα̂ , Qσ̇λτ̇ = − i

2
εȧḃċ(σ

ȧ)σ̇τ̇ [ς ḃ, ς ċ]

Qσ̇ξτ̇a = (σȧ)σ̇τ̇Daςȧ + εσ̇τ̇Ba Qσ̇ρτ̇αα̂ = −[(σȧ)σ̇τ̇ ςȧ, φ
αα̂] + εσ̇τ̇Wαα̂

Qσ̇Ba = −1

2
Daλ

σ̇ − 1

2
(σȧ)σ̇ τ̇ [ςȧ, ξ

τ̇
a ] , Qσ̇Wαα̂ =

1

2
[λσ̇, φαα̂]− 1

2
(σȧ)σ̇ τ̇ [ςȧ, ρ

τ̇αα̂] .

(5.2)

The supersymmetry algebra closes up to gauge transformations induced by the ςȧ, i.e.

{Qσ̇, Qτ̇} = −(σȧ)σ̇τ̇δI(ςȧ) , (5.3)

where the gauge transformation acts as δI(ςȧ)Ab = −Dbςȧ and δI(ςȧ) = [ςȧ, ·] on all other

fields. The action invariant under this set of supersymmetry transformations has a BF-type

coupling and is given by

SBFH =
1

e2

∫
d3xTr

[
−Ba

(
Ba−εabcF bc+

i

2
[φαα̂, (σa)

α
βφ

βα̂]

)
− 1

2
Wαα̂

(
Wαα̂−2i /D

α
βφ

βα̂
)

+
1

2
[ςȧ, ςḃ][ς

ȧ, ς ḃ] +DaςȧD
aς ȧ +

1

2
[ςȧ, φαα̂][ς ȧ, φαα̂] + ξaσ̇D

aλσ̇ +
1

2
εabcξaσ̇Dbξ

σ̇
c

]
+
i

4
ρσ̇αα̂ /D

α
βρ

σ̇βα̂ +
1

4
ρσ̇αα̂(σȧ)σ̇ τ̇ [ςȧ, ρ

τ̇αα̂] +
1

2
ξaσ̇(σȧ)σ̇ τ̇ [ςȧ, ξ

aτ̇ ]

+
1

2
λσ̇(σȧ)σ̇ τ̇ [ςȧ, λ

τ̇ ] +
1

2
ρσ̇αα̂[φαα̂, λσ̇]− i

2
ξaσ̇[ρσ̇αα̂, (σ

a)α βφ
βα̂]

]
,

(5.4)
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which can be written in a Q-exact form

SBFH =
1

2e2
εσ̇τ̇Q

σ̇Qτ̇VBFH , (5.5)

where

VBFH =

∫
d3xTr

(
2εabc

(
Aa∂bAc +

2

3
AaAbAc

)
+

1

2
(ξaσ̇ξ

aσ̇ − λσ̇λσ̇)

+ iφαα̂(σa)α βDaφ
βα̂ +

1

4
ρσ̇αα̂ρ

σ̇αα̂

)
.

(5.6)

We identify the gauge coupling constant e as

1

e2
=

vT 2

8π2r
, (5.7)

where vT 2 is the T 2-volume and r is the radius of the M-theory circle. Note that the radii

of the three circles enter the gauge coupling differently, as we first reduce to 5d, where the

fields are rescaled by the corresponding radius r to ensure canonical scaling dimension.12

The auxiliary fields can be integrated out to give

Ba =
1

2

(
εabcF

bc − i

2
[φαα̂, φ

βα̂](σa)
α
β

)
Wαα̂ = i /D

α
βφ

βα̂ ,

(5.8)

such that the bosonic action can be written as

SBFH|bosonic =
1

e2

∫
d3xTr

(
1

2
FabF

ab +
1

2
[ςȧ, ςḃ][ς

ȧ, ς ḃ] +DaςȧD
aς ȧ − 1

2
φαα̂( /D

2
φ)αα̂

+
1

2
[ςȧ, φαα̂][ς ȧ, φαα̂] +

1

8
[φαα̂, φββ̂ ][φαα̂, φββ̂ ]

)
.

(5.9)

Note that the above derivation holds for curved M3 by covariantizing the derivatives with

respect to the spin connection on M3 and the connection A of the SU(2) bundle V . Indeed,

the energy momentum tensor Tab, the variation of SBFH with respect to the metric on M3,

can be written in a Q-exact form

Tab = εσ̇τ̇Q
σ̇Qτ̇

(
εcd(aAb)Fcd − 2Acε

cd
(aFb)d − εcd(aAb)[Ac, Ad] +

1

2
ξaρ̇ξ

ρ̇
b

+ iφαα̂(σ(a)
α
βDb)φ

βα̂ − gabVBFH

)
,

(5.10)

where VBFH is the Lagrangian density in (5.6). The BFH-model is therefore topological in

the sense of Witten, however this does not forbid the observables to exhibit wall-crossing.

As discussed in section 5.2, the partition function of the BFH-model, under the proposed

correspondence (2.3), is expected to undergo wall-crossing for metrics admitting twisted

12This is very similar to the arguments in the geometric interpretation of S-duality in 4d N = 4 SYM

obtained by a T 2-reduction of the 6d N = (2, 0) theory.
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harmonic spinors. We can understand this as the moduli space of vacua becoming singular

due to the obstructions discussed in section 2.2.

The BFH-model (5.4) preserves two topological supercharges and the partition function

is expected to compute the Euler characteristic of some moduli space [53, 63].13 For the

case of the supersymmetric BF-model, where the spinorial hypermultiplet is absent, it was

shown in [60] that for gauge group SU(2) and M3 = S3 the partition function computes

the Casson invariant. For general three-manifolds the partition function computes the

Euler characteristic of the moduli space of flat connections [66], which was conjectured to

be the generalization of the Casson invariant to arbitrary three-manifolds. For the BFH-

model (5.4) we expect the associated moduli space to be the moduli space of solutions

to the generalized Seiberg-Witten equations (2.4), which minimizes the action (5.9) for

Daςȧ = [ςȧ, φ
αα̂] = 0. The partition function of this topological theory is then, under

the N = 1 3d-3d correspondence, conjectured to match the T 3-partition function of the

TN=1[M3] theory.

Indeed, for the simple case of Lens spaces L(p, q) considered in section 4.2 there are

no twisted harmonic spinors for the standard metric and the gSW equations reduce to

flat U(N)-connections. Thus, the partition function of the BFH model reduces to the

Euler characteristic of the moduli space of flat connections. Since the moduli space of flat

connections for Lens spaces consists of a set of points, the counting of flat connections

computed in section 4.2 to determine the vacua of the theory TN=1[L(p, q)] corresponds

to the Euler characteristic of the moduli space. We thus find the partition function of the

BFH-model for Lens spaces is given by

ZBFH,U(N)(L(p, q)) = χ(Mflat,U(N)) =

(
p

N

)
, (5.11)

and matches with the Witten index of TN=1[L(p, q),U(N)].

5.2 The Abelian BFH-model

Let us look at the abelian case more closely, where we are able to perform concrete compu-

tations and comparisons. The action of the abelian BFH-model is minimized by solutions

to the now decoupled equations

Fab = 0 , ( /Dφ)αα̂ = 0 , ∂aϕ = 0 . (5.12)

This implies that the moduli space splits into a product where the individual pieces relate

to one of the equations in (5.12). The solutions to the last equation are constant scalars

on M3, which we identify with the center of mass mode introduced in section 3.2. The two

remaining contributions correspond to flat U(1)-connections and twisted harmonic spinors

13For the Euler characteristic to be well-defined the moduli space needs to be compact. This was shown to

be the case for the 3d abelian Seiberg-Witten equations coupled to n spinors transforming under an SU(n)-

bundle in [48]. The moduli space of the non-abelian generalisation in 4d can be non-compact, but has a

natural compactification analogous to the Uhlenbeck compactification of anti-self-dual instantons. This has

been studied for the case of PU(N)-monopoles in [64, 65], however to our knowledge the compactification

of the moduli space of 3d non-abelian Seiberg-Witten equations has not been studied.
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on M3 respectively. It is discussed in appendix B that the moduli space of flat U(1)-

connections has two independent contributions coming from the free and torsion part of

the first homology group (3.7) respectively. For the free part the moduli space is given

by a b1(M3)-dimensional torus. The torsion part MT of the moduli space is a finite set

of
∏r
m=1 pm points, where the pm are the torsion numbers. Finally, the elements of the

moduli space H /D of twisted harmonic spinors on M3 are locally described by the sections

of the normal bundle NM3 = S⊗ V , which is the space of deformations of the associative.

The full moduli space of solutions to (5.12), neglecting the center of mass contribution,

is thus given by

MU(1) = T b1(M3) ×MT ×H /D . (5.13)

Under the 3d-3d correspondence the T 3-partition function of TN=1[M3,U(1)] is equiva-

lent to the partition function of the abelian BFH-model which is computed by the Euler

characteristic of the moduli space (5.13),

ZBFH(M3) = χ
(
MU(1)

)
= χ

(
T b1(M3)

)
χ (MT )χ

(
H /D
)
. (5.14)

For generic metrics on M3 no solutions for twisted harmonic spinors exist besides the trivial

solution φαα̂ = 0. In that case the partition function computes the Euler characteristic of

the moduli space of flat U(1)-connections on M3, which is given by

ZBFH(M3) =

{∏r
m=1 pm b1(M3) = 0

0 else
. (5.15)

For the case of d /D(M3, g) = 0 this result is in agreement with the Witten index computed

in section 3.3. In order to recover the full Witten index, i.e. including d /D(M3, g) 6= 0,

one needs to prove that the index ZBFH(M3) vanishes unless b1(M3) = d /D(M3, g) = 0.

However, the moduli space of twisted harmonic spinors is not necessarily smooth and

compact for d /D(M3, g) ≥ 0, and these cases require a more careful treatment of how the

partition function is defined in terms of integrals over the moduli space.14 For cases when

the moduli space H /D is compact we conjecture via the N = 1 3d-3d correspondence that

χ(H /D) = 0 for d /D(M3, g) 6= 0 . (5.16)

This has the consequence that the partition function of the abelian theory is not completely

invariant under metric deformations, but can jump, whenever the metric deforms to allow

for harmonic spinors. Although this is not explicitly verified in the non-abelian case we

expect this type of wall-crossing to persist in the more general case as well.

In the case of T 7 expressed as the product T 3 × T 4, it is noted in [38] that there exist

a family of flat G2-structures for which T 3 is an associative three-cycle with a deformation

14A similar situation arises in Donaldson theory where the moduli space is described by the pair (A, φ)

satisfying

F+ = 0 , Dµφ = 0 .

The moduli space becomes non-compact for solutions with non-zero scalar field φ [67], which correspond

to reducible connections. From the results of Uhlenbeck, there exists a natural compactification of the

anti-self-dual instanton moduli space from which one computes the Donaldson invariants.
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space of dimension four. In fact this deformation space is exactly the transverse T 4, and

one finds a confirmation of the conjecture (5.16). In this case, the twisted harmonic spinors

simply correspond to the covariantly constant spinors on T 3.

We note that in the well-studied case of 3d N = 2 supersymmetry the reduction of the

6d abelian theory differs from section 3.2 only in the scalar and spinor sectors. From the

N = 2 topological twist and reduction on M3 we obtain instead b1(M3) chiral multiplets

in addition to the centre of mass multiplet. The Witten index in this case is given by

IN=2 =

{∏r
m=1 pm b1(M3) = 0

0 else
. (5.17)

On the topological field theory side the BFH-model is replaced by a complex super-BF-

model that localizes on complex flat G-connections. In the abelian case these coincide with

real U(1)-connections and the moduli space is T b1(M3)×MT . Thus, its Euler characteristic

coincides with the index (5.17).

6 S3-partition function and Chern-Simons-Dirac theory

In this last section we will discuss a much less explored observable for 3d N = 1 theories,

the S3-partition function. Much progress in computing this observable has been made for

N = 2 thanks to localization results, however these seem to be not applicable in the minimal

supersymmetric situation. Nevertheless there is a well-defined question as to what a 3d-

3d correspondence for this case would look like, i.e. what constitutes the topological field

theory whose partition function on M3 computes the S3-partition function of TN=1[M3].

For 3d N = 2 this topological theory is the complex Chern-Simons theory (2.2). In this

section we will argue that for N = 1 the topological theory is real Chern-Simons gauge

theory at level k = 1 coupled to a twisted harmonic spinor. The equations of motion of this

theory are precisely the generalized Seiberg-Witten equations in (2.4). We thus propose

that the S3-partition function of TN=1[M3, G] is computed by

ZCSR−Dirac,G(M3) = ZS3(TN=1[M3, G]) . (6.1)

The derivation of this proceeds by considering M5-branes on S3 in a conformal supergravity

background that preserves N = 1 supersymmetry. The circle-reduction along the fiber of

the Hopf fibration S1 ↪→ S3 → S2 gives 5d SYM on S2 with radius

RS2 =
r

2
, (6.2)

where RS2 is the radius of the two-sphere and r is the radius of the Hopf circle. For the

N = 2 preserving background this reduction from 5d to 3d after non-abelianization was

carried out in [15]. Due to the non-trivial geometry of the S2 it is necessary to couple

to conformal supergravity [68, 69]. We determine the values of the background fields by

solving the Killing spinor equations. The coupling to supergravity then leads to additional

mass terms and interactions.
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Label Background Field Sp(4)R Properties

ea
′
µ′ Frame 1

Cµ′ Graviphoton 1 G = dC

V
m̂n̂
a′ R-symmetry gauge field 10

Sm̂n̂ Auxiliary scalar 10

T
m̂n̂
a′b′ Auxiliary 2-form 5 T

m̂n̂
a′b′ = −T m̂n̂b′a′ , T

m̂n̂
a′b′ = −T n̂m̂a′b′

Dm̂n̂
r̂ŝ Auxiliary scalar 14

Dm̂n̂
r̂ŝ = −Dn̂m̂

r̂ŝ , D
m̂n̂

r̂ŝ = −Dm̂n̂
ŝr̂

Ωm̂n̂D
m̂n̂

r̂ŝ = Ωr̂ŝDm̂n̂
r̂ŝ = Dm̂n̂

m̂n̂ = 0

ba′ Dilaton gauge field 1

Table 1. The bosonic background fields for 5d N = 2 supergravity.

After determining the supergravity background we perform the topological twist on

the equations of motion coupled to supergravity, which preserves two scalar supercharges

on M3, and dimensionally reduce the theory on S2, to determine the 3d topological the-

ory. Most of the technical details can be found in appendix D. In the following, we will

summarize the salient features and the results.

6.1 Supergravity background for 5d SYM

The 6d (2, 0) theory on M3 × S3 can be described in terms of a supergravity background

of 5d SYM on M3 × S2, that is obtained after dimensional reduction along the Hopf-fiber.

Here M3 will be as before, an associative three-cycle in a G2-manifold. The metric of the

background for 5d SYM is

ds2
5d =

r2

4
(dθ2 + sin2 θdφ2) + dxadx

a , (6.3)

where (θ, φ) are the spherical polar coordinates. As the Hopf fibration is non-trivial, there

is a non-vanishing graviphoton C = cos2 θ
2dφ, in 5d with field strength

Gxy = −1

2

(
2

r

)2

εxy , (6.4)

where x, y are flat indices on S2, and εxy is the rank 2 antisymmetric tensor such that G is

proportional to the volume form of the unit two-sphere. In the following we determine the

supergravity background fields, that ensure N = 1 supersymmetry for the theory along S3

(or equivalently, two scalar supercharges along M3).

We begin with the 5d N = 2 SYM coupled to background supergravity, which was

derived in [69, 70] from a dimensional reduction of the 6d N = (2, 0) tensor multiplet

coupled to conformal supergravity [68]. The bosonic 5d supergravity background fields are

summarized in table 1, where the index conventions are those in appendix A.

To determine which fields are compatible with the topological twist along the associa-

tive three-cycle we have to work out whether there are any singlets under the full twisted
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symmetry group

Gtwist = SO(2)L × SU(2)twist × SU(2)` , (6.5)

and we will determine the group theoretic decomposition of the background fields under

SO(5)L × Sp(4)R −→ SO(2)L × SO(3)M × SU(2)` × SU(2)r
twist−−−→ Gtwist . (6.6)

For ba′ = 0 and Sm̂n̂ = 0 we find no singlets under Gtwist. The R-symmetry gauge field

V
m̂n̂
a′ decomposes as

V
m̂n̂
a′ : (5,10) −→

(
(1,3)⊕ (2,1), (1,3)⊕ (3,1)⊕ (2,2)

)
twist−−−→ (1,1,1)⊕ · · · . (6.7)

For the singlet we make an ansatz in terms of the generators of the SU(2)r, (Σâ)
m̂
n̂, defined

in appendix A.2

Va
m̂
n̂ = −2iv

r
δaâ (Σâ)

m̂
n̂ , (6.8)

where a, â = 1, 2, 3 are the vector indices of SO(3)M and SU(2)r respectively, and the

normalization is chosen for convenience. The field Dm̂n̂
r̂ŝ decomposes as

Dm̂n̂
r̂ŝ : (1,14) −→ (1,1,1)⊕ (1,2,2)⊕ (1,3,3) , (6.9)

and a singlet exists independent of the twist. Instead of making an ansatz in terms of the

Sp(4)R description it is much more convenient to go to the SO(5)R description Dâb̂, where

â = 1, . . . , 5, which are related by

Dm̂n̂
r̂ŝ = Dâb̂(γâ)

m̂n̂(γb̂)r̂ŝ . (6.10)

The singlet can then be written as

D5̂5̂ = −4d, DÂB̂ = d δÂB̂ , Â, B̂ = 1, · · · , 4 , (6.11)

where the relative prefactor is chosen such that D is traceless. The field T
m̂n̂
a′b′ reduces as

T
m̂n̂
a′b′ : (10,5) −→

(
(1,1)⊕ (1,3)⊕ (2,3), (1,1)⊕ (2,2)

)
twist−−−→ (1,1,1)⊕ · · · ,

(6.12)

such that the ansatz for the singlet can be written as

T m̂n̂xy =
t

r
εxyγ

m̂n̂

5̂
, (6.13)

where we have included a factor of r for later convenience.

The Killing spinor equations are solved in appendix D.1, and we find a one-parameter

family of solutions, parametrized by v, of the form

t =
1− v

2
, d =

3(5v2 − 2)

8r2
. (6.14)

The supersymmetry parameter is solved to be constant along M3 and satisfies(
σ3 /DS2

)µ
νε
ν = −εµ , (6.15)

along S2. The resulting supergravity background preserves two scalar supercharges on M3.
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6.2 5d SYM on M3 × S2

The action for 5d SYM on R3×S2 in the supergravity background of section 6.1 is derived in

appendix D.2 using the decomposition of the 5d fields as in (4.2). We find a one-parameter

family of theories, where the masses of the fields, with the exception of the 3d gauge field

and its superpartner, are dependent on the background parameter v. We note that the

final action with v = 0 matches the action derived in [71] for M5-branes on R1,2× S3 from

an alternative, deconstruction point of view starting with the BLG-theory. Whereas in [71]

the action was argued to be unique, here we find, by coupling to off-shell supergravity, that

there is a one parameter family of solutions for this background. The key difference lies in

the presence of the spinorial kinetic term for the field φαα̂ of the form

Sv = vφαα̂ /D
α
βφ

βα̂ . (6.16)

This term is absent in [71], but can be included while preserving the same amount of super-

symmetry by adding mass terms for the bosonic fields ϕ and φαα̂ and their superpartners.

The 3d flat space action and supersymmetry variations can be generalized to curved

M3 by covariantizing the derivatives and determining the additional terms required in the

action for supersymmetry to be preserved, by first noting that the non-vanishing curvature

on M3 modifies the commutation relations satisfied by the covariant derivatives, which

enters into the supersymmetry variation of the action. In addition we gauge the flavour

symmetry SU(2)`, which is identified with SU(2)V associated with the bundle V in the

normal bundle of M3.

For the spinor φαα̂ on M3 we obtain

([Da,Db]φ)αα̂ = Fabφ
αα̂ +

1

4
Rab cd(σcd)α βφβα̂ + Fab

α̂
β̂φ

αβ̂ , (6.17)

where D is the covariant derivative on the three-manifold with respect to the metric, with

Riemann tensor Rab cd, the gauge connection A and the SU(2)V connection A, with field

strength F. To cancel the contribution of these terms in the supersymmetry variation of

the action it is necessary to introduce the terms

Scurv
Φ =

1

16π2r

∫
d5xTr

(
R
4
φαα̂φ

αα̂ − i

2
εabcFab

α̂
β̂(σc)

α
βφαα̂φ

ββ̂

)
. (6.18)

No additional corrections are required for the other fields. In appendix D.3 the additional

curvature terms are determined by turning on an R-symmetry gauge field, to cancel the

spin-connection on M3, in the background supergravity. We find that the terms required

for preserving supersymmetry on a curved three-manifold agree, however in order to solve

the supergravity Killing spinor equations M3 is required to be Einstein.

In the action the additional terms (6.18) can be combined with the covariantized kinetic

term for φαα̂ using the Lichnerowicz-Weitzenböck formula for the twisted Dirac operator,

derived in [72]

φαα̂

(
DaDa −

R
4

)
φαα̂ +

i

2
εabcFab

α̂
β̂(σc)

α
βφαα̂φ

ββ̂

= φαα̂( /D2
φ)αα̂ +

i

2
εabcF

ab(σc)αβ [φαα̂, φ
βα̂] . (6.19)
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Making use of this identity we generalize the action derived in section D.2 to curved M3

S = SA + SΦ + Sρ + Sint

SA =
r

32π2

∫ √
|g|d3x sin θdθdφTr

(
1

2
FabF

ab +
4

r2
FxaF

xa +
8

r4
FxyF

xy +
2i

r
CS(A)

)
SΦ =

r

64π2

∫ √
|g|d3x sin θdθdφTr

(
2DaϕDaϕ− φαα̂( /D2

φ)αα̂

− i
2
εabcF

ab[φαα̂, φ
βα̂](σc)α β −

v

r
φαα̂( /Dφ)αα̂ +

8

r2
DxϕDxϕ

+
4

r2
Dxφαα̂Dxφαα̂ −

16(1− v)

r3
εxyFxyϕ+

8(1− v)

r2
ϕ2

+
(2 + v)(2− v)

4r2
φαα̂φ

αα̂

)
Sρ =

r

128π2

∫ √
|g|d3x sin θdθdφTr

(
− 4ξaµ(σ3)µ νDaλν − 2εabcξ

a
µ(σ3)µ νDbξcν

+iρµαα̂(σ3)µ ν( /DM3
ρ)ναα̂ +

4i

r
λµ /DS2

µ
νλ

ν +
4i

r
ξaµ /DS2

µ
νξ
aν

+
2i

r
ρµαα̂ /DS2

µ
νρ
ναα̂ − 4iv

r
λµ(σ3)µ νλ

ν − i(2− v)

2r
ρµαα̂(σ3)µ νρ

ναα̂

)
Sint =

r

128π2

∫ √
|g|d3x sin θdθdφTr

(
−2λµ[ϕ, λµ]− 2ξaµ[ϕ, ξaµ] + ρµαα̂[ϕ, ρµαα̂]

− 2λµ[ρµαα̂, φ
αα̂] + 2iξaµ[ρµαα̂, φ

βα̂](σa)α β + 2[ϕ, φαα̂][ϕ, φαα̂]

+
1

2
[φαα̂, φββ̂ ][φαα̂, φββ̂ ]

)
,

(6.20)

where CS(A) is the Chern-Simons functional on M3. Note that this action is only invariant

under the supersymmetry variations

δAb = −1

2
εµ(σ3)µ νξ

ν
b , δAx = − ir

4
εµ(σx)µ νλ

ν

δϕ =
1

2
εµλ

µ , δφαα̂ = −1

2
εµρ

µαα̂

δλµ = −2i

r
ϕ(σ3)µ νε

ν +
2i

r
Dxϕ(σx)µ νε

ν +
2i

r2
Fxyε

xy(σ3)µ νε
ν

δξµa = −1

2
εabcF

bcεµ −Daϕ(σ3)µ νε
ν − 2i

r
Fxa(σ3σ

x)µ νε
ν +

i

4
[φαα̂, (σa)

α
βφ

βα̂]εµ

δρµαα̂ =
i

2r
(2− v)φαα̂(σ3)µ νε

ν − i(σa)α βDaφβα̂(σ3)µ νε
ν

− 2i

r
Dxφαα̂(σx)µ νε

ν + [ϕ, φαα̂]εµ .

(6.21)

after imposing (6.15) on the supersymmetry parameter.

6.3 Reduction to Chern-Simons-Dirac theory

The reduction of the action and supersymmetry variations proceeds by expanding the fields

in terms of harmonics on S2, which are detailed in appendix D.4.1. For the gauge fields
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we first note that S2 does not admit any non-trivial one-forms and therefore there are no

zero modes for the gauge field Ax. However, we need to integrate out Fxy which sets it to

Fxy =
r

2
(1− v)ϕεxy , (6.22)

leading to an additional mass term for ϕ. Taking the zero mode of Ab on the sphere leads

to the 3d action

SA =
1

4π

∫
d3xTr

(
r

2
F ∧ ?F + iCS(A)

)
, (6.23)

where all higher modes become massive and decouple. In the limit r → 0 the kinetic term

is suppressed and we obtain real Chern-Simons theory at level k = 1. Depending on the

choice of v this is coupled to additional fields. The values of v for which the remaining

bosonic and fermion fields becomes massless are computed in appendix D.4.2. For v = 0, 1

we show that the theory reduces to real Chern-Simons theory. However it is clear that

if the 3d-3d correspondence is to hold, the topological theory has to be sensitive to the

twisted harmonic spinors φ on M3. Even for the abelian theory it is clear that non-trivial

d /D(M3, g) will result in additional scalar multiplets that contribute to the sphere partition

function. This motivates us to consider the case v = 2, which has a massless twisted

harmonic spinor. It would indeed be very nice to have another first principle way to fix v

from the reduction in the supergravity background.

Recall that the 3d gauge field is massless for all values of v and its action is given

by (6.23). The case v = 2 is the simplest one for which there is also a massless field coming

from φαα̂, namely the one that is constant along the S2. The reduction of its kinetic term

is straightforward

Sv=2
φ =

1

8π

∫
d3xTr

(
− r

2
φαα̂( /D2

φ)αα̂ − φαα̂( /Dφ)αα̂
)
. (6.24)

Crucially, the spinorial kinetic term is leading in the limit r → 0. The massless field content

is completed by spinors λ(2,j) and scalars ϕ(1,m) as can be seen from the conditions (D.41)

and (D.42). Since the kinetic term of λ couples to ξ in (6.20) the massive modes ξa(2,j)
have to be integrated out correctly. This same procedure was also used in [15] and will be

written out in detail in appendix D.4.3 for the (slightly simpler) case v = 1. Crucially, the

kinetic terms of the λ(2,j) become bosonic and scale with r. The same naturally happens

for the kinetic terms of the scalars ϕ(1,m). Here, we will only consider terms at leading

order in r, so these fields do not receive a kinetic term.15 Nevertheless, they still appear in

the action to order O(r0) in the form of non-vanishing Yukawa couplings. However, these

fields do not couple to the gauge field or the bispinor and are thus non-dynamical. This

interaction term thus vanishes on-shell. At leading order in r we are left with the action

Sv=2 =
i

4π

∫
d3xTr

(
CS(A) +

i

2
φαα̂( /Dφ)αα̂

)
. (6.25)

15In [15] the corresponding fields are interpreted as ghosts responsible for gauge fixing. We will find the

same interpretation for the case v = 1. In the case at hand this interpretation is rather unclear.
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This theory is non-abelian Chern-Simons theory coupled to twisted harmonic spinors i.e.

non-abelian Chern-Simons-Dirac theory. The equations of motion are given by the gener-

alized Seiberg-Witten equations

( /Dφ)αα̂ = 0 , εabcF
bc − i

2
[φαα̂, (σa)

α
βφ

βα̂] = 0 , (6.26)

that have already appeared at various points throughout this paper.

6.4 Generalization to lens spaces

In the preceding sections we have determined the reduction of the 6d N = (2, 0) theory

on a three-sphere. There is a straightforward generalization to Lens spaces L(p, 1) which

were defined in section 4.2 as the free Zp action

(z1, z2)→ e2πi/p(z1, z2) , (6.27)

on S3 =
{

(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1
}

. Writing the S3 as a Hopf fibration the base

S2 is parametrized by z = z1
z2

, so the group action (6.27) does not act on the base.16

It does however act on the fiber and we can write the Lens space as a Hopf fibration

S1 ↪→ L(p, 1)→ S2, where the radii of the spheres are given by

RS1 =
r

p
, RS2 =

r

2
. (6.28)

The length scale r is chosen to have the same interpretation as in the previous sections.

For p = 1 the setup thus reduces to L(1, 1) = S3. The metric of the Lens space is given by

ds2 =

(
r

2

)2 (
dθ2 + sin2 θ dφ2

)
+

(
r

p

)2

(pC + dψ)2 , (6.29)

where C is the graviphoton with field strength G as in (6.4) and ψ is the coordinate on

the fiber. One can then repeat the reduction of the 6d N = (2, 0) along the fiber in [69]

for general p. From the metric (6.29) we find that the dilaton g
−1/2
ψψ = p

r gets rescaled

by p and we can interpret the resulting 5d theory as N = 2 SYM coupled to p units of

graviphoton flux.

The rescaling of the dilaton by p has the effect of rescaling the entire 5d action as

Sp = pSp=1 , (6.30)

where Sp=1 is the action relevant for the reduction on the S3. The 5d supersymmetry

variations and Killing spinor equations in [69] are unchanged since they only depend on

the invariant combination G g
1/2
ψψ . This rescaling does not affect the subsequent reduction

on the S2 and we can thus conclude that the reduction on the Lens space yields the same

one-parameter family of theories, now with Chern-Simons level p. Choosing v = 2 we obtain

Sv=2
p =

ip

4π

∫
d3xTr

(
CS(A) +

i

2
φαα̂( /Dφ)αα̂

)
, (6.31)

i.e. Chern-Simons-Dirac theory at level p. This generalizes our proposed correspon-

dence (6.1) to

ZCSDp,G(M3) = ZL(p,1)(TN=1[M3, G]) . (6.32)
16Note that this logic fails for general L(p, q 6= 1).
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6.5 Chern-Simons-Dirac partition function and WRT-invariants

As we have repeatedly stated, not much is known about the S3-partition function for 3d

N = 1 theories. In fact this motivated studying the topological theory, which would under

a 3d-3d correspondence compute this quantity in terms of the partition function on M3.

Taking stock we should assess how concrete this proposal can be made. We have seen

that the topological theory is a Chern-Simon-Dirac theory, whose equations of motion

are the generalized Seiberg-Witten equations gSW (2.4), the fields are a gauge field and

twisted harmonic spinors solving ( /Dφ)αα̂ = 0, which are twisted by an SU(2) bundle. Put

differently, these are sections of the normal bundle of M3 inside the G2-holonomy manifold.

Let us re-emphasize that these gSW equations, or equivalently the CS-Dirac functional,

have in this form not been studied. The CS-Dirac functional has played an important role

related to the standard SW equations, see e.g. [22], however the generalization that we

find here seems to not have appeared so far in this literature. However recall that in a

generic G2-manifold, the associatives will not have any deformations/obstructions (see the

discussion in section 2.2). It is thus also of interest to consider the case when φ = 0 and the

topological theory reduces to real Chern-Simons. In this case much more is known about

three-manifold partition functions, which we will briefly summarize now.

The partition function of real Chern-Simons theory is a topological invariant of three-

manifolds, the Witten-Reshetikhin-Turaev invariant [23, 24]. In [24] an oriented three-

manifold invariant was constructed, which was proposed to be equal to Witten’s invariant,

the partition function of real Chern-Simons theory. Analytic expressions of these have been

computed for M3 = S3 and L(p, q = ±1) Lens spaces in [23, 73]. For level k and gauge

group G = SU(2) these are

ZCS,k(S3) =

√
2

k + 2
sin

(
π

k + 2

)
ZCS,k(L(p, q = ±1)) =

2

k + 2
e

2πi(q 3k
8(k+2)

)
k+1∑
`=1

sin2

(
`π

k + 2

)
e

2πi
(
`2−1

4(k+2)

)
qp
.

(6.33)

For general Lens spaces (and gauge groups) the partition function was determined in [74].

Futhermore for Seifert manifolds exact expressions were determined for any simply-laced

gauge groups in [75–77]. For k = 1 our result suggests that these are the values of the

S3-partition functions of the TN=1[M3] theories for M3 without any deformations. Equiva-

lently, for k = p, this should reproduce the L(p, 1)-partition function. Needless to say, this

would be indeed very interesting to check. Perhaps a more accessible framework similar

to the one applied for N = 1 AGT in [12] is to start with quotients of N = 2 theories for

which the S3-partition function has been computed.

7 Discussions and outlook

We proposed an N = 1 3d-3d correspondence relating two observables of 3d N = 1 theories

TN=1[M3] labeled by three-manifolds M3, to partition functions of topological theories: the
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Witten index, which is related to the M3-partition function of a BFH-model (a super-BF-

model coupled to a hypermultiplet), and the S3-partition function, which is related to

the partition function of Chern-Simons-Dirac theory on M3. Both topological theories are

closely linked to a set of generalized Seiberg-Witten equations (2.4) for a gauge field and

a twisted harmonic spinor on M3. We have defined the theories TN=1[M3] as arising from

M5-branes wrapped on associative three-cycles in G2-manifolds with a topological twist,

and have shown that the geometry of the associative cycle, specifically its normal bundle,

play a key role in the dimensional reductions.

In the case of the Witten index we were able to perform various checks of the proposed

correspondence: the partition function of the BFH-model is computed in terms of the

Euler characteristic of the moduli space of solutions to the generalized Seiberg-Witten

equations (2.4), and we provided evidence for this correspondence in specific examples. In

particular this can be made explicit for abelian theories, where the moduli space decouples

into a product of the space of real flat connections with the space of twisted harmonic

spinors on M3.

Unfortunately not much is known about localization results for 3d theories preserv-

ing N = 1 supersymmetry, unlike their higher-supersymmetric cousins, which limits the

scope of checks in the case of the S3-partition function. It would indeed be interesting to

use the results in section 6 and either gain insight into the computation of S3-partition

functions of 3d N = 1 through the correspondence with CS-theory, or to compare with

direct computations by other means, e.g. from orbifolds of N = 2 theories. Thanks to some

resurgence in interest in dualities in 3d theories without [78–81] and with minimal [82–85]

supersymmetry, as well as new geometric constructions [86], further progress on 3d N = 1

theories may be on the horizon. Another interesting direction to pursue is the relation of

the N = 1 3d-3d correspondence to an N = 1 AGT type correspondence, much along the

lines of [4], where the 3d theories are defects in the 4d N = 1 theories.

We have seen that there is a wall-crossing phenomenon for the Witten index of

TN=1[M3] and it would be interesting to further investigate this, in tandem with a better

understanding of the moduli space of generalized Seiberg-Witten equations for metrics on

M3, which admit twisted harmonic spinors. In the abelian theories TN=1[M3,U(1)] these

special metrics give rise to additional zero modes, which result in the vanishing of the

Witten index, and one natural question is the non-abelian generalization of this.

One possible method of accessing this information is the following. It was conjectured

in [87] that the Euler characteristic of the moduli space of solutions to the non-abelian 3d

Seiberg-Witten equations, coupled to additional matter multiplets, is proportional to the

Rozansky-Witten invariant [88] of M3. The set of equations in [87] take the form

εabc(F
bc)A − 1

2

Nf∑
I=1

(φα)I T
A
I (σa)

α
β(φβ)I = 0 , /DA(φα)I = 0 , (7.1)

where TAI are the generators of G in representation RI, and Nf is the number of flavors,

and the generalized Seiberg-Witten equations (2.4) are obtained from (7.1) for Nf = 2

and RI =Adj. It is therefore natural to conjecture, when the bundle V is trivial, that the
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6d 5d M3 R1,2 S2

Vector a, b = 0, · · · , 5 a′, b′ = 0, · · · , 4 a, b = 1, · · · , 3 x, y = 0, · · · , 2 x, y = 1, 2

Spinor α, β = 1, · · · , 8 α′, β′ = 1, · · · , 4 α, β = 1, 2 σ, τ = 1, 2 µ, ν = 1, 2

Table 2. Space-time indices.

SO(5)R SU(2)r SU(2)`

Vector â, b̂ = 1, · · · , 5 â, b̂ = 1, · · · , 3 â′, b̂′ = 1, · · · , 3

Spinor m̂, n̂ = 1, · · · , 4 m̂, n̂ = 1, 2 α̂, β̂ = 1, 2

Table 3. R-symmetry indices.

partition function of the BFH-model can be computed by the Rozansky-Witten invariant for

the sigma-model on M3 with target the Coulomb branch of a 3d N = 4 theory. The relevant

3d N = 4 theory is singled out, in that after the topological twist, its BPS equations should

be given by the gSW equations. To make use of the proposal in [87] knowledge of the full

non-perturbative corrections to the Coulomb branch of 3d N = 4 SU(N) SYM in the

presence of matter is required, which are not known in general. However, it would be

interesting to explore this further for the case of two additional adjoint hypermultiplets in

the light of the correspondence proposed in this paper.
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A Conventions

In this appendix we summarize our conventions for indices, gamma matrices and spinors

in this paper.

A.1 Index conventions

For convenience we summarize the space-time and R-symmetry indices in tables 2 and 3,

respectively. All 6d indices are underlined and all hatted indices are associated to an

R-symmetry. Note that after imposing the twist SU(2)twist = diag(SU(2)M , SU(2)r)

we identify the indices α = m̂ as the spinor index of the SU(2)twist. Note that the spinor

components denote those of a Dirac spinor and we need to impose the symplectic-Majorana-

Weyl condition, which halves the degrees of freedom, see (A.7).
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A.2 Gamma matrix and spinor conventions

There are two types of gamma matrices involved in the calculations, describing either the

space-time or the R-symmetry.

Gamma matrices of SO(1, 5)L. On R1,2 ×M3 we use the gamma matrices

Γ0 = 12 ⊗ iσ1 ⊗ σ2 , Γ1 = 12 ⊗ σ2 ⊗ σ2 , Γ2 = 12 ⊗ σ3 ⊗ σ2 ,

Γ3 = σ1 ⊗ 12 ⊗ σ1 , Γ4 = σ2 ⊗ 12 ⊗ σ1 , Γ5 = σ3 ⊗ 12 ⊗ σ1 ,
(A.1)

with the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (A.2)

The 6d gamma matrices obey {Γa,Γb} = 2ηab, where a = 0, · · · , 5 and η = diag(− + + +

++). The 6d chirality matrix Γ = −
∏
a Γa, the charge conjugation matrix C and the

reality matrix B are given by

Γ = diag(14,−14)

Cαβ = −σ2 ⊗ σ2 ⊗ σ1 = Cαβ

Bαβ = iσ2 ⊗ σ3 ⊗ σ3 ,

(A.3)

and satisfy the relations
CΓaC

−1 = −ΓTa

BΓaB
−1 = Γ∗a .

(A.4)

The antisymmetrized product of gamma matrices is defined as

Γa1···an =
1

n!

∏
σ∈Sn

(−1)sgn(σ)Γaσ(1) · · ·Γaσ(n) , (A.5)

where Sn is the symmetric group of order n. The natural index structure of the gamma

matrices is Γα β acting on the spinors Ψβ . The spinor indices are raised and lowered by

the charge conjugation matrix

Ψα = ΨβCβα , Ψα = CαβΨβ . (A.6)

The spinors of SO(1, 5)L obey a symplectic-Majorana-Weyl condition

Ψ∗αm̂ ≡
(

Ψαm̂
)∗

= BαβΩm̂n̂Ψβn̂ , (A.7)

which can be written in terms of the Dirac conjugate spinor Ψ̄αm̂ = Ψ∗βm̂Γ0
β
α as

Ψ̄m̂ = Ψm̂ . (A.8)

This reduces the number of independent components by half. We will point out the ap-

propriate reality condition on the spinors explicitly when carrying out the decomposition.

Lastly, we define a set of SO(3) generators

SO(3)M : Σa = − i
2
σa ⊗ 14 , (A.9)

that act along M3.
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Gamma matrices of SO(1, 4)L and SO(5)L. Our conventions for the 5d gamma

matrices Γa′ , where a′ = 0, · · · , 4, on R1,1 ×M3 are

Γ0 = iσ1 ⊗ 12 Γ1 = σ2 ⊗ 12 Γ2 = σ3 ⊗ σ1 Γ3 = σ3 ⊗ σ2 Γ4 = σ3 ⊗ σ3 . (A.10)

In the Euclidean case on S2 ×M3 we take the same gamma matrices (A.10) but with a

Wick rotation on Γ0 such that ΓEucl
0 = σ1 ⊗ 12. For both the Minkowski and Euclidean

gamma matrices the charge conjugation matrix is given by

Cα′β′ = σ1 ⊗ iσ2 = Cα
′β′ , (A.11)

raising and lowering the spinor indices as

Ψα′ = Ψβ′Cβ′α′ , Ψα′ = Cα
′β′Ψβ′ . (A.12)

Gamma matrices of Sp(4)R. The R-symmetry of the full 6d theory is Sp(4)R ∼=
SO(5)R. The gamma matrices in the SO(5)R representation are

γ1̂ = σ2 ⊗ σ1 , γ2̂ = σ2 ⊗ σ2 , γ3̂ = σ2 ⊗ σ3 , γ4̂ = σ1 ⊗ 12 , γ5̂ = σ3 ⊗ 12 . (A.13)

The index structure is
(
γâ
)m̂

n̂ where â = 1̂, · · · , 5̂ is the vector index of SO(5)R. The

symplectic structure is given by

Ωm̂n̂ = 12 ⊗ iσ2 = Ωm̂n̂ , ΩγâΩ = −
(
γâ
)T

, Ωm̂n̂ = −(Ω−1)m̂n̂ , (A.14)

which raises and lowers the R-symmetry indices

Ψm̂ = Ψn̂Ωn̂m̂ , Ψm̂ = Ωm̂n̂Ψn̂ . (A.15)

In order to break the R-symmetry SO(5)R → SO(4)R ∼= SU(2)r × SU(2)` we regard γ5̂ as

the chirality matrix. The two identical copies of SU(2) are generated by the (anti-)self-dual

part of the SO(4)R and the generators can be written as

SU(2)r : Σâ = − i
2

(
1 0

0 0

)
⊗ σa , SU(2)` : Σâ′ = − i

2

(
0 0

0 1

)
⊗ σa , (A.16)

with â = 1, 2, 3 and â′ = 1, 2, 3 the adjoint indices of SU(2)r and SU(2)`, respectively.

A.3 Spinor decomposition

In the following we will give the spinor decompositions used throughout this paper.

6d→ 3d + 3d Conventions for section 3. On R1,2×M3 the 6d spinor decomposes as

Ψα →

(
Ψσα

+

iΨσα
−

)
, (A.17)

where σ = 1, 2 and α = 1, 2 are the spinor indices of SO(1, 2)L and SO(3)M , respectively.

The subscript ± denotes the 6d chirality and the additional factor of i is included for
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convenience. The symplectic-Majorana-Weyl condition can then be imposed by setting

Ψσ =
(

Ψ1

iΨ2

)
, where the fields Ψ1 and Ψ2 are real. The spinor indices are raised and

lowered by

Cστ = −Cστ =

(
0 −i
i 0

)
= Cαβ = −Cαβ

Ψσα = ΨτβCτσCβα , Ψσα = CστCαβΨτβ .

(A.18)

The gamma matrices reduce in the obvious way such that on the two three-dimensional

spaces they are given by

R1,2 : (γx)σ τ = {iσ1, σ2, σ3}σ τ
M3 : (γa)

α
β = (σa)

α
β .

(A.19)

We will also use that the 6d Dirac operator acting on an (anti-)chiral spinor Ψ
α
± decom-

poses as

/∂
α
βΨ

β
± →

(
/∂
α
βδ
σ
τ ± i/∂

σ
τδ
α
β

)
Ψτβ
± . (A.20)

5d → 3d + 2d conventions for section 6. Under the splitting SO(5)L → SO(2)L ×
SO(3)M of the 5d Lorentz symmetry the spinor representation decomposes as 4→ (2,2).

A spinor thus reduces as

Ψα′ → Ψµα . (A.21)

where µ and α represent the spinor indices of SO(2)L and SO(3)M , respectively. Note that

all components are strictly real. The index µ is raised and lowered by

Cµν = Cµν =

(
0 1

1 0

)
, Cαβ = Cαβ =

(
0 1

−1 0

)
Ψµα = ΨνβCνµCβα , Ψµα = CµνCαβΨνβ .

(A.22)

R-symmetry conventions. Under the decomposition of the R-symmetry Sp(4)R →
SU(2)r × SU(2)` the fundamental representation reduces as 4 → (2,1) ⊕ (1,2), and the

R-symmetry index splits as m̂ → (m̂, α̂), where m̂ and α̂ represent the spinor indices of

SU(2)r and SU(2)`, respectively. We denote this decomposition by

Ψm̂ →

(
Ψm̂

Ψα̂

)
, (A.23)

where we can view γ5̂ as the chirality matrix. The symplectic structure Ωm̂n̂ does not mix

the left and right SU(2) indices, and the spinor indices after the decomposition are raised

and lowered as

Ψm̂ = Ψn̂εn̂m̂ , Ψm̂ = εm̂n̂Ψn̂

Ψα̂ = Ψβ̂εβ̂α̂ , Ψα̂ = εα̂β̂Ψβ̂ .
(A.24)
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B Dimensional reduction of the tensor multiplet

In this appendix we dimensionally reduce the abelian tensor multiplet from 6d on M3 with

the topological twist discussed in section 3.1. The tensor multiplet consists of a self-dual

tensor field H = dB, five scalars Φm̂n̂ and four symplectic-Majorana-Weyl spinors %αm̂ of

negative chirality. We will look at them in turn. The three-form H satisfies the equations

of motion

dH = 0 , Habc =
1

3!
εabc

defHdef . (B.1)

We can make an ansatz for H

H =
1

3!
Hxyze

x∧ey∧ez+
1

2!
Haxye

a∧ex∧ey+
1

2!
Habxe

a∧eb∧ex+
1

3!
Habce

a∧eb∧ec , (B.2)

where the ea are local coordinates of T ∗M3 and x, y, z = 0, 1, 2 label coordinates along

R1,2. Self-duality then reads

Habc = −1

6
εabcε

xyzHxyz , Habx =
1

2
εab

cεx
yzHcyz , (B.3)

where we normalize ε012345 = ε012 = ε345 = 1. Inserting this into dH = 0 we obtain

−1

6
εabc∂wε

xyzHxyz −
1

2
εw

xy∂[aεbc]
dHdxy = 0

1

2
∂[xεy]

wzεab
cHcwz − ∂[aHb]xy = 0

∂[xHyz]a − ∂aHxyz = 0 .

(B.4)

To obtain the massless spectrum in 3d one expands Haxy in a basis of harmonic one-forms

ωI,a that depend on the local coordinates on M3

Haxy =

b1(M3)∑
I=1

F Ixy ωI,a , (B.5)

where b1(M3) is the first Betti number of M3. The F Ixy then only depend on the coordinates

of R1,2. After taking Hxyz to be a constant on M3 the equations of motion take the form

dF I = 0 , d ? F I = 0 , (B.6)

where ? is the Hodge star on R1,2. The first equation of motion implies that locally we can

write F I = dAI and from the second equation we obtain the usual equation of motion for

free gauge fields. The massless spectrum therefore consists of b1(M3) gauge fields. Since

in three dimensions a massless gauge field is dual to a massless scalar we can introduce a

set of scalars αI with

∂xα
I =

1

2
εx

yzF Iyz , (B.7)

which are periodic due to the gauge symmetry of the F I . In terms of these scalars the 3d

action can be written as

S =

∫
R1,2

dαI ∧ ? dαI . (B.8)
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Now consider the equation of motion for the three-form Hxyz which is given by

d ? H = 0 , (B.9)

where Hxyz is constant on the M3. This equation of motion can be obtained from the

3d action ∫
R1,2

H ∧ ?H , (B.10)

where H = dB, since H closes trivially. In terms of the scalar Hxyz = −εxyzh dual to the

three-form this action gives rise to the equation of motion [89] h = 0, and we obtain a scalar

field which is set to zero by its equation of motion. We will see from the supersymmetry

variations that this scalar can be identified with the auxiliary field in the center of mass

scalar multiplet.

By this direct reduction it is not possible to detect gauge fields with non-zero Chern-

Simons term. The action of a single such field takes the form

S = g−2

∫
R1,2

F ∧ ?F +
k

4π

∫
R1,2

A ∧ F , (B.11)

where g is the gauge coupling and k is the integer Chern-Simons level. In the presence of

such a Chern-Simons term the gauge field acquires a mass [90]

m =
g2k

4π
. (B.12)

Despite the massive nature of the gauge field the theory is not completely trivial at low

energies [17]. It was argued in [91] that the integral first homology group of the three-

manifold is presented by the matrix of Chern-Simons levels in a U(1)R theory, where

R = b1(M3) + r. In other words, the Chern-Simons levels induce the relation

kMNγ
N = 0 , (B.13)

where γN are the generators of the full integral homology H1(M3,Z) as in (3.7).17 Thus,

given H1(M3,Z), one can present it in terms of a diagonal matrix of Chern-Simons levels

where the torsion numbers pm, where m = 1, · · · , r, correspond to the (non-zero) integer

eigenvalues of kMN and the free part of H1(M3,Z), generated by the one-cycles γI , span

the kernel of kMN . The resulting theory is a U(1)R theory with b1(M3) massless gauge

fields AI and r gauge fields Am with level pm Chern-Simons self-interactions.

Next, let us discuss the remaining bosonic field content coming from the five scalars

Φm̂n̂. Under the topological twist the scalars decompose as

SO(1, 5)L × Sp(4)R → SO(1, 2)L × SU(2)twist × SU(2)`

(1,5)→ (1,1,1)⊕ (1,2,2) ,
(B.14)

17This also explains why we were not able to see these fields in the reduction from 6d. In order to impose

the self-duality H has to be R-valued so the torsion part of the homology is not detected.
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yielding a singlet ϕ and a field φαα̂ that, as discussed in section 3.1, is a section of the

normal bundle (2.13) of M3. The decomposition of the R-symmetry naturally leads to the

identification
Φαβ = −ϕεαβ , Φα̂β̂ = ϕεα̂β̂

Φαα̂ = φαα̂ , Φα̂α = φα̂α ,
(B.15)

where we have identified the SU(2)r index m̂ with the spinor index α on M3 as dictated

by the topological twist. The conventions are chosen such that φαα̂ satisfies φαα̂ = −φα̂α

and the reality condition

φ11̂
∗

= φ22̂ , φ12̂
∗

= −φ21̂ . (B.16)

Since ϕ is a singlet the 6d equation of motion D2Φm̂n̂ = 0, where D is the 6d covariant

derivative, reduces to (
∆M3 + ∂2

R1,2

)
ϕ = 0 , (B.17)

and we obtain a single massless scalar in 3d for ϕ constant on M3. As discussed in sec-

tion 3.1, the fields φαα̂ are identified with sections of the normal bundle of M3. For general

three-manifolds the additional SU(2)V -bundle is twisted with the spin bundle and can act

non-trivially. Thus, the derivative acting on φαα̂ needs to be covariantized not only with

respect to the spin connection on M3, but also an SU(2)V connection. The equation of

motion for φαα̂ therefore takes the form

( /D2
φ)αα̂ + ∂2

R1,2φ
αα̂ = 0 , (B.18)

where /D is the twisted Dirac operator on M3 explicitly given by

(Daφ)αα̂ = ∂aφ
αα̂ +

1

4
ωa

bc(σbc)
α
βφ

βα̂ + Aa
α̂
β̂φ

αβ̂ , (B.19)

where ωa
bc is the spin connection on M3 and Aa

α̂
β̂ is the SU(2)V connection. Since the

kernels of /D and /D2
are equal φαα̂ is expanded in a basis of twisted harmonic spinors ζαα̂i

φαα̂ =

d/D(M3,g)∑
i=1

φiζαα̂i . (B.20)

The number of massless modes is given by the dimension, d /D(M3, g), of the kernel of

the twisted Dirac operator /D on the associative three-cycle. As reviewed in section 2.2

this dimension depends on the metric on the associative three-cycle M3 induced by the

G2-holonomy metric.

By N = 1 supersymmetry the bosonic fields are supplemented by their fermionic

superpartners. The negative chirality spinor %αm̂ was shown in (3.6) to decompose after

the twist as

%αm̂ → iλσεαα̂ + ξσa (σa)α βε
βα̂ − iρσαα̂ , (B.21)

where the prefactors have been introduced for convenience. The 6d symplectic-Majorana-

Weyl condition (A.7), implies a reality condition on a 3d spinor ψσ such that it takes

the form

ψσ =

(
ψ1

iψ2

)
, (B.22)
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where ψ1, ψ2 are real. Applied to the fields ραα̂ there is an additional condition

ρ11̂
∗

= ρ22̂ , ρ12̂
∗

= −ρ21̂ . (B.23)

Note that this is the same reality condition (B.16) as for the φαα̂. The 6d equations of

motion /Dα β%βm̂ = 0 reduce to

?d ? ξσ + /∂R1,2
σ
τλ

τ = 0

dλσ + ?dξσ − /∂R1,2
σ
τξ
τ = 0

i( /Dρ)σαα̂ + /∂R1,2
σ
τρ
ταα̂ = 0 ,

(B.24)

where ?, d and /D denote the Hodge star, the exterior derivative and the twisted Dirac

operator along M3, respectively. As λσ is the superpartner of the scalar ϕ it is constant

along M3. The equations then decouple leading to a single massless spinor λσ in 3d. The

massless modes from ξσa are obtained by expanding

ξσa =

b1(M3)∑
I=1

ξσIωI,a , (B.25)

where the ωI,a are a basis of harmonic one-forms on M3. This yields the superpartners

of the b1(M3) massless gauge fields AI . The superpartners of the massive gauge fields

Am also arise from the reduction of ξσa . Each of the torsion cycles γm ∈ H1(M3,Z)torsion

corresponds to a massive fermion ξσm whose mass is governed by the respective torsion

number pm. Lastly, the massless superpartners of the φi arise from the expansion of ρσαα̂

in terms of twisted harmonic spinors on M3

ρσαα̂ =

d/D(M3,g)∑
i=1

ρσiζαα̂i . (B.26)

Summarizing this reduction the spectrum of the abelian theory TN=1[M3,U(1)] is given by

1. b1(M3) massless gauge fields AI (or dually, periodic scalars αI) and gauginos ξσI .

2. r massive gauge fields Am with Chern-Simons levels pm, and massive fermionic su-

perpartners ξσm from the torsion part of the first integral homology.

3. A single real massless scalar ϕ and spinor λσ.

4. An auxiliary real scalar field h.

5. d /D(M3, g) real scalars φi and spinors ρσi, where i = 1, · · · , d /D(M3, g) is the number

of twisted harmonic spinors on M3, which depends on the metric on M3.
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C 3d N = 1 supersymmetry

In this appendix we review the basic multiplet structure of 3d N = 1 in signature (−+ +),

following [92]. The gamma matrices are given by γx = {iσ1, σ2, σ3}. We begin with defining

coordinates θσ, where σ = 1, 2, on the superspace. Throughout this discussion all spinors

are of the form Ψσ =
(

Ψ1

iΨ2

)
with real components Ψ1,2, where the indices are raised and

lowered as in (A.18). Next, define derivatives ∂σ on the superspace with the convention

∂σθτ = δστ . (C.1)

Note that written as a spinors ∂σ and θσ fulfill the above reality condition on the

components.

To define supersymmetry transformations the usual Poincaré algebra is extended by

supercharges Qσ which obey

[Px, Py] = 0 , {Qσ, Qτ} = 2(γx)σ τPx , [Qσ, Px] = 0 (C.2)

where Px = −∂x is the momentum operator generating translations. The supercharges are

given by

Qσ = ∂σ − (γx)σ τθ
τ∂x . (C.3)

Since the partial derivative acting on the superspace coordinates is not invariant under Q,

one defines a covariant derivative

Dσ = ∂σ + (γx)σ τθ
τ∂x , (C.4)

such that [Dσ, Px] = {Dσ, Qτ} = 0. The fields invariant under supersymmetry are func-

tions of space-time coordinates and the θσ. Since the latter anticommute it is possible to

expand the fields in powers of θσ terminating at θ2. There are two types of superfields that

we will discuss in more detail.

Scalar multiplet. The scalar multiplet Aϕ contains a real scalar ϕ, a spinor λσ and a

real auxiliary scalar h

Aϕ = ϕ+ θσλ
σ +

1

2
θσθ

σh . (C.5)

Its transformation under the supersymmetry is generated by the supercharges Qσ

δAϕ = εσQ
σAϕ , (C.6)

where εσ is an infinitesimal supersymmetry parameter. Direct calculation yields

δϕ = εσλ
σ , δλσ = hεσ + /∂

σ
τϕε

τ , δh = εσ/∂
σ
τλ

τ . (C.7)

From these scalar multiplets one can build supersymmetric actions that are invariant un-

der (C.7). Since Dσ is invariant, every Lorentz invariant function of the superfields and its

derivatives can be inserted into

SA =

∫
d3x d2θf(A, DA, · · · ) . (C.8)
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If we choose f(A, DA, · · · ) = −1
2(DσAϕ)2 then we obtain the kinetic term

Skin
Aϕ =

1

2

∫
d3x

(
∂xϕ∂

xϕ+ λσ/∂
σ
τλ

τ − h2
)
. (C.9)

Interaction terms can be added by picking more general functions.

Vector multiplet. Let us now couple such a scalar multiplet to a real gauge field Ax. In

order to preserve supersymmetry we can again make an ansatz for a vector multiplet VσA
consisting of the gauge field Ax and a spinor ξσ. Then the covariant derivative changes as

Dσ → Dσ + VσA , (C.10)

to ensure gauge invariance using the same logic as for the non-supersymmetric case. In

a particular gauge, the Wess-Zumino gauge, the vector multiplet and its associated gauge

invariant field strength can be written as

VσA = Ax(γx)σ τθ
τ + θτθ

τξσ

Wσ
A =

1

2
DτDσVAτ = ξσ − 1

2
εxyzFxy(γz)

σ
τθ
τ +

1

2
/∂
σ
τξ
τθυθ

υ .
(C.11)

The two simplest gauge invariant actions are

Skin
VA = − 1

g2

∫
d3x d2θ WσWσ =

1

g2

∫
d3x

(
−1

2
FxyF

xy − ξσ/∂
σ
τξ
τ

)
SCS
VA =

k

4π

∫
d3x d2θ WσVσ =

k

4π

∫
d3x

(
1

2
εxyzAxFyz + ξσξ

σ

)
.

(C.12)

The first action describes the canonical kinetic term for a gauge field with gauge coupling

g. The Chern-Simons term is unusual as it involves the vector multiplet, which is not gauge

invariant on its own. However, for integer k the quantum theory is gauge invariant. This

construction is unique to three dimensions and gives the field strength an effective mass.

D M5-branes on S3

This appendix contains details of the reduction of M5-branes on S3 in section 6.

D.1 The Killing spinor equations on S2 × R3

In this section we solve the Killing spinor equations and determine the resulting conditions

on the supersymmetry parameter and the supergravity background.

D.1.1 Gravitini-variation

In our background, the non-vanishing components of the supersymmetry variation of the

gravitini ψ
m̂
a′ , are [69]

δψ
m̂
a′ = Da′εm̂ +

ir

2
Ga′b′Γ

b′εm̂ +
i

8

[
rGb

′c′Ωm̂n̂ − 4(T m̂n̂)b
′c′
]

Γa′b′c′εn̂ , (D.1)
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with covariant derivative

Da′εm̂ = ∂a′ε
m̂ +

1

4
ωa′

b′c′Γb′c′ε
m̂ − 1

2
Va′

m̂
n̂ε
n̂ . (D.2)

We impose that the supersymmetry parameter solves the equation for the topological twist

on M3 (3.9), and therefore, using the spinor decompositions detailed in appendix A.3, the

non-vanishing components can be written as

εα
′m̂ = εµεαm̂ , (D.3)

where µ = 1, 2, α = 1, 2 and m̂ = 1, 2 denote the spinor representations of SO(2)L, SO(3)M
and SU(2)r, respectively.18

Flat directions. Let us first consider the components of (D.1) along R3. Inserting the

ansätze for the background fields and taking the supersymmetry parameter to be constant

along R3, the Killing spinor equation reduces to

0 = δψm̂a = −1

2
Va

m̂
n̂ε
n̂ +

i

8

[
rGxyΩm̂n̂ − 4(T m̂n̂)xy

]
Γaxyεn̂ , (D.4)

which is solved for

t =
1

2
(1− v) , (D.5)

and no further restrictions on εµ arise.

S2 directions. To solve the equations along the S2 we have to include an explicit depen-

dence of the supersymmetry parameter on the coordinates ξ = (θ, φ) . The non-vanishing

contributions are

0 = δψ
m̂
ξ = Dξεm̂ +

ir

2
GξζΓ

ζεm̂ . (D.6)

Taking the two angles individually and inserting the singlet ansatz (D.3) for the supersym-

metry parameter one obtains

∂θε
µ =

i

2
(σ2)µ νε

ν

∂φε
µ =

(
i

2
cos θ(σ3)µ ν −

i

2
sin θ(σ1)µ ν

)
εν ,

(D.7)

which is equivalent to

(σ3 /DS2)µ νε
ν = −εµ , (D.8)

where

/DS2
µ
ν =

(
∂θ +

1

2
cot θ

)
(σ1)µ ν +

∂φ
sin θ

(σ2)µ ν , (D.9)

is the Dirac operator on the unit two-sphere. Since the operator (σ3 /DS2) has two eigen-

vectors with eigenvalue −1 we find that the background preserves two supercharges, which

transform as scalars on M3.

18Here we do not decompose the spinors on S2 into one component positive and negative chirality spinors

labelled by ± as in section 4.1. Instead we will leave them as two component spinors for compactness.

Similarly, we keep x = 1, 2 as the flat vector index on the S2.
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D.1.2 Dilatino-variation

The non-vanishing components of the second Killing spinor equation, given by the super-

symmetry variation of the dilatino χm̂n̂ r̂, are

0 = δχm̂n̂ r̂ =

[
−Rb′c′ [m̂ r̂δ

n̂]
ŝ Γb

′c′ + rGa
′b′T

m̂n̂
a′b′Ωr̂ŝ − 2T

m̂n̂
a′b′T

a′b′
r̂ŝ −

4

15
Dm̂n̂

r̂ŝ

]
εŝ − [traces] ,

(D.10)

where the curvature is given by

R
m̂n̂
a′b′ = 2∂[a′Vb′]

m̂n̂ + V[a′
r̂(m̂Vb′]

n̂)
r̂ . (D.11)

The trace terms, determined in [68], ensure that the variation fulfills the symmetries of the

dilatino Ωm̂n̂χ
m̂n̂

r̂ = χm̂n̂ m̂ = 0.

Using the ansätze for the background fields derived in section 6.1 the second Killing

spinor equation is solved for

d =
3t(t− 1)

r2
+

9v2

8r2
=

3
(
5v2 − 2

)
8r2

, (D.12)

where we used (D.5) for the second equality.

D.2 5d N = 2 SYM on R1,2 × S2

In this section we determine the 5d action coupled to off-shell supergravity fields using the

ansätze determined in sections 6.1 and D.1. The field content of the SYM after the topo-

logical twist is given in (4.2). We find a one parameter family of actions where the masses

of the twisted scalars (ϕ, φαα̂), and their superpartners, depend on the free parameter v.

Gauge field. The 5d action of the gauge field is given by

SA =
1

8π2r

∫
Tr (F ∧ ?F + ir C ∧ F ∧ F ) . (D.13)

The graviphoton C is only non-vanishing in the φ-direction on S2 and therefore from the

second term in the 5d action we obtain a Chern-Simons term on R3. The action thus

reduces to

SA =
r

32π2

∫
d3x sin θdθdφTr

(
1

2
FabF

ab +
4

r2
FxaF

xa +
8

r4
FxyF

xy

+
2i

r
εabc

(
Aa∂bAc +

2

3
AaAbAc

))
,

(D.14)

where we have taken out the factor of r2

4 in the metric on the S2 in (6.3). From here on

curved indices on S2 are therefore raised and lowered using the metric on a unit radius

two-sphere.
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Scalars. The 5d action of the scalars is given by

SΦ =
1

32π2r

∫
d5x
√
gTr

(
Da′Φm̂n̂Da′Φm̂n̂ − 4Φm̂n̂Fa′b′T

a′b′
m̂n̂ − Φm̂n̂(M2

Φ)m̂n̂ r̂ŝΦ
r̂ŝ
)
.

(D.15)

In the 5d theory the covariant derivative and mass term for the scalars are given by

Da′Φm̂n̂ = Da′Φm̂n̂ − Va′ r̂ [m̂Φn̂]r̂

D2Φm̂n̂ =
(
Da′ + ωb′

a′b′
)
Da′Φm̂n̂ − Va′ r̂ [m̂Da

′
Φn̂]r̂

(M2
Φ)m̂n̂ r̂ŝ =

(
r2

20
Ga′b′G

a′b′ − R
5

)
δ
m̂
r̂ δ

n̂
ŝ −

1

15
Dm̂n̂

r̂ŝ − T m̂n̂a′b′T
a′b′
r̂ŝ ,

(D.16)

where Da′ = ∂a′ + [Aa′ , ·]. Inserting in the form of the background fields and the field

decomposition under the topological twist the mass of ϕ takes the form

M2
ϕ =

4(v − 1)

r2
. (D.17)

For the spinor φαα̂ on M3 there is an additional contribution to its mass besides the ex-

plicit 5d mass term in (D.16), originating from the R-symmetry gauge field in the covariant

derivative. This term is proportional to V 2 and the combination of these two mass contri-

butions gives

M2
φ,total =

1

4r2
(v + 2)(v − 2) . (D.18)

The linear coupling with the R-symmetry gauge field, arising from the covariant derivative,

in the scalar equations of motion gives rise to a spinorial kinetic term for φαα̂. The full

scalar action becomes

SΦ =
r

64π2

∫
d3x sin θdθdφTr

(
2DaϕD

aϕ+
8

r2
DxϕD

xϕ− 16(1− v)

r3
εxyFxyϕ

+
8(1− v)

r2
ϕ2 +Daφαα̂D

aφαα̂ +
v

r
Daφαα̂(σa)α βφ

βα̂

+
4

r2
Dxφαα̂D

xφαα̂ +
(2 + v)(2− v)

4r2
φαα̂φ

αα̂

)
.

(D.19)

From this action we observe that only for certain values of v are either ϕ or φαα̂ massless.

We will see the same feature arising for the superpartners of these fields in the next section.

Fermions. The theory includes a set of fermions ρm̂ whose 5d action is given by

Sρ =
1

32π2r

∫
d5x
√
gTr

(
iρm̂ /Dρm̂ + ρm̂(Mρ)

m̂n̂ρn̂

)
(D.20)

with

Da′ρm̂ =

(
Da′ +

1

4
ωa′

b′c′Γb′c′

)
ρm̂ − 1

2
Va′

m̂
n̂ρ

n̂

(Mρ)
m̂n̂ =

r

8
Ga′b′Γ

a′b′Ωm̂n̂ − 1

2
T
m̂n̂
a′b′Γ

a′b′ .

(D.21)
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Using the spinor decomposition

ρα
′m̂ → λµεαm̂ + iξµa (σa)α βε

βm̂ + ρµαα̂ , (D.22)

the kinetic terms and mass terms for the fermions take the form

Sρ =
r

128π2

∫
d3x sin θdθdφTr

(
− 4ξaµ(σ3)µ νD

aλν − 2εabcξ
a
µ(σ3)µ νD

bξcν

+
4i

r
λµ /DS2

µ
νλ

ν +
4i

r
ξaµ /DS2

µ
νξ
aν − 4iv

r
λµ(σ3)µ νλ

ν

+ iρµαα̂(σ3)µ ν(σa)
α
βD

aρνβα̂ +
2i

r
ρµαα̂ /DS2

µ
νρ
ναα̂

− i(2− v)

2r
ρµαα̂(σ3)µ νρ

ναα̂

)
,

(D.23)

where DS2 is the covariant derivative on S2 with respect to the metric and the gauge field

Ax. The mass terms for the fermions include contributions from the explicit mass term in

5d and the coupling to the R-symmetry gauge field in the 5d covariant derivative. Note

that the supersymmetry partners for the gauge fields on M3, corresponding to ξσa , are

always massless, while the other fermions have v dependent mass terms.

Interactions. The final piece of the 5d action are the interaction terms given by

Sint =
1

32π2r

∫
d5xTr

(
ρm̂[Φm̂n̂, ρn̂]− 1

4
[Φm̂n̂,Φ

n̂r̂][Φr̂ŝ,Φ
ŝm̂]

)
, (D.24)

consisting of the standard Yukawa coupling and quartic scalar potential. After decomposing

the fields one obtains

SYuk =
r

128π2

∫
d3x sin θdθdφTr

(
−2λµ[ϕ, λµ]− 2ξaµ[ϕ, ξaµ] + ρµαα̂[ϕ, ρµαα̂]

−2λµ[ρµαα̂, φ
αα̂] + 2iξaµ[ρµαα̂, φ

βα̂](σa)α β

)
Spot =

r

128π2

∫
d3x sin θdθdφTr

(
2[ϕ, φαα̂][ϕ, φαα̂] +

1

2
[φαα̂, φββ̂ ][φαα̂, φββ̂ ]

)
.

(D.25)

D.3 Generalization to curved M3

In defining the theory on general three-manifold the derivatives need to be covariantized

with respect to the curvature on M3 and the connection A of SU(2)` as discussed in

section 2.2. In section 6.2 we added the correction terms (6.18) necessary to preserve

supersymmetry. Alternatively, in this section we use the supergravity background to derive

the required curvature terms. Let us perform the twist using the R-symmetry gauge field

in the supergravity multiplet. In this we keep the ansatz for the other two fields T
m̂n̂
a′b and

Dm̂n̂
r̂ŝ the same and introduce the additional prefactors dtwist and ttwist

Va
m̂
n̂ → Va

m̂
n̂ + (Vtwist)a

m̂
n̂

d→ d+ dtwist

t→ t+ ttwist .

(D.26)
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Since the values of d and t have been fixed by the vanishing of the Killing spinor equations,

in the following we only consider the contributions involving the new twist prefactors. It

turns out that ttwist can be chosen to vanish so we will not consider it further here. Let

ωa
bc be the spin connection of M3 such that the first Killing spinor equation for a constant

supersymmetry parameter (3.10) now takes the form

δψm̂a =
1

4
ωa

bcΓbcε
m̂ − 1

2
(Vtwist)a

m̂
n̂ε
n̂ . (D.27)

For a general spin connection this is solved for

(Vtwist)a
m̂
n̂ = ωa

bcεbcâ(Σâ)
m̂
n̂ , (D.28)

where the Σâ are the generators of SU(2)r defined in (A.16). The second Killing spinor

equation becomes

δχm̂n̂ r̂ = −Rab[m̂ r̂Γ
abεn̂] − 4

15
Dm̂n̂

r̂ŝε
ŝ − (traces) , (D.29)

where the curvature of the R-symmetry gauge field is defined in (D.11). Using the solution

for Vtwist we can write the curvature as

R
m̂n̂
ab = Rab cdεcdâ(Σâ)

m̂n̂ , (D.30)

where Rab cd is the Riemann tensor on M3. One finds that the Killing spinor equation can

only be solved if M3 is Einstein, i.e. the Ricci tensor is proportional to the metric

Rab =
R
3
gab , (D.31)

where Rab andR are the Ricci tensor and scalar on M3. The second Killing spinor equation

is then solved by

dtwist =
3R
16

. (D.32)

Turning on these background fields introduces an additional mass term for the scalars

given by

(M2
Φ)curvΦm̂n̂ =

R
5

Φm̂n̂ +
1

15
Dm̂n̂

r̂ŝΦ
r̂ŝ , (D.33)

which reduces to
(M2

ϕ)curv = 0

(M2
φ)curv =

R
4
.

(D.34)

This result agrees with the additional curvature term derived in section 6.2, and in order

to generalize the action to curved M3 this mass term has to be added. It is not clear to the

authors where the additional condition, that M3 is Einstein, comes from in the supergravity

approach. However, since the twist by hand does not require this constraint it should not

be necessary. Similarly, adding an SU(2)` connection, which amounts to turning on the R-

symmetry gauge field in the direction Va
α̂
β̂ , forces this connection to be flat which should

not be necessary in general.
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D.4 Reduction on S2

The next step is to reduce the action (6.20) on the S2, keeping only the massless modes

on M3. To this end we expand the 5d fields in terms of eigenvectors of the relevant

differential operators.

D.4.1 Spherical harmonics and eigenspinors on S2

For the Laplacian ∆S2 = DxDx the eigenvectors are given by the spherical harmonics Y m
k ,

where k is a non-negative integer and |m| ≤ k counts the multiplicity. They fulfill

∆S2Y m
k = −k(k + 1)Y m

k (D.35)

and are normalized as∫
S2

sin θdθdφ Y m
k Y m′

k′ = 4π(−1)mδk,k′δm,−m′ . (D.36)

The modified Dirac operator (σ3 /DS2)µ ν , with /DS2 as in (D.9), has eigenvalues ±n, for n a

positive integer. This can be seen by noticing that (σ3 /DS2)2 = −( /DS2)2 and acknowledging

that the usual Dirac operator on the unit sphere has eigenvalues ±in, see [93]. Let us call

the corresponding eigenspinors Θµ
n,j , where the subscript j is the eigenvalue under i∂φ

leading to a degeneracy of 2n. They thus fulfill

(σ3 /DS2)µ νΘν
n,j = nΘµ

n,j . (D.37)

Concretely, we can write

Θµ
n,j =

C(|n|, |j|)√
r

e−ijφ

 (1− x)
1
2
|j− 1

2
|(1 + x)

1
2
|j+ 1

2
|P
|j− 1

2
|,|j+ 1

2
|

|n|−|j|− 1
2

(x)

sgn(nj)(1− x)
1
2
|j+ 1

2
|(1 + x)

1
2
|j− 1

2
|P
|j+ 1

2
|,|j− 1

2
|

|n|−|j|− 1
2

(x)

 , (D.38)

where x = cos θ and the Pα,βn are Jacobi polynomials. The additional r-dependence is

included such that the fermions have the canonical scaling dimension [λ] = 1 in three

dimensions. The normalization C(|n|, |j|) is chosen such that∫
S2

sin θdθdφ Θn,jµΘµ
n′,j′ = sgn(nj)

4π

r
δn,−n′ δj,−j′ . (D.39)

D.4.2 Spectrum of massless fields

Depending on the choice of v, different fields become massless in 3d. In this section we

determine the values of v for which the bosons and fermions become massless. Let us first

look at the bosonic fields. These are expanded in terms of the spherical harmonics, e.g. for

the singlet ϕ

ϕ =

∞∑
k=0

k∑
m=−k

ϕ(k,m)Y m
k (θ, φ) . (D.40)
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From the 5d equations of motion we find the conditions for the bosons to be massless in

3d reduces to

v(kϕ) =

{
kϕ + 1

−kϕ
, v(kφ) = ± (4kφ + 2) . (D.41)

We can repeat the same logic for the fermions. Expanding them in terms of the

eigenspinors (D.38) of the modified Dirac operator the massless conditions for the fermions

are given by

v(nλ) = nλ , v(nρ) = −4nρ + 2 , (D.42)

whereas ξ always receives a mass. Since there is no closed form for the 3d theory for general

v, we have to fix v first and then carry out the reduction. In section 6.3 it was argued that

for the value v = 2 we obtain real Chern-Simons-Dirac theory. In the following we will

carry out the reduction for the values v = 0, 1 in more detail and obtain real Chern-Simons

theory.

D.4.3 Real Chern-Simons theory: v = 0, 1

In the case v = 1 the massless field content consists of the gauge field Ab as well as a scalar

field ϕ, which is constant on the S2, and two fermions λ±. To obtain the correct action we

also have to integrate out the massive fields ξ±a and λ̃±. In terms of the eigenspinors Θµ
n,j

of the Dirac operator as in (D.38) these fields are defined by

λµ = λ±Θµ

1,± 1
2

+ λ̃±Θµ

−1,± 1
2

ξµa = ξ±a Θµ

1,± 1
2

.
(D.43)

All the modes coming from the fields φαα̂ and ρµαα̂ are massive and can safely be ignored.

The 3d action is then given by

Sv=1 = SA + Sv=1
Φ + Sv=1

ρ + Sv=1
int

SA =
r

8π

∫
d3xTr

(
F ∧ ?F +

2i

r
CS(A)

)
Sv=1

Φ =
r

8π

∫
d3xTr (DaϕDaϕ)

Sv=1
ρ =

1

8π

∫
d3xTr

(
−ξ+

a Daλ− + ξ−a Daλ+ − 2i

r
λ̃+λ̃− +

2i

r
ξ+
a ξ

a−
)

Sv=1
int =

1

8π

∫
d3xTr

(
λ̃+[ϕ, λ−]− λ̃−[ϕ, λ+]

)
,

(D.44)

so that the massive fields are integrated out to

ξ±a = − ir
2
Daλ± , λ̃± = − ir

2
[ϕ, λ±] , (D.45)

to obtain the action

Sv=1 = SA +
r

8π

∫
d3xTr

(
DaϕDaϕ+

i

2
Daλ+Daλ− − i

2
[ϕ, λ+][ϕ, λ−]

)
. (D.46)
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A very similar action has appeared in the case for N = 2 supersymmetry in [15]. There it

was shown that the fields with kinetic terms scaling with r can be interpreted as ghosts.

These can be integrated out to gauge fix the complex Chern-Simons action. In the case at

hand we obtain exactly half the field content of [15]. We can thus again interpret ϕ and

λ± as gauge parameters. Consequently, we can safely take the limit r → 0, without fixing

a gauge, and obtain real Chern-Simons theory

Sv=1 =
i

4π

∫
d3xTr (CS(A)) . (D.47)

The story is slightly different for the case v = 0. As the Dirac operator on the S2

does not admit any zero-modes there are no massless fermions according to (D.42). The

remaining field content is unaltered compared to v = 1. Thus, we can immediately write

down the action

Sv=0 =
r

8π

∫
d3xTr

(
F ∧ ?F +

2i

r
CS(A) +DaϕDaϕ

)
. (D.48)

Again taking the r → 0 limit results in

Sv=0 =
i

4π

∫
d3xTr (CS(A)) . (D.49)
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