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1 Introduction

One of the remarkable claims that has arisen in recent years from the unexpected connection

between quantum chaos, quantum criticality, transport and universality is that a many-

body system exhibiting a quantum phase transition the Lyapunov exponent is maximized

at the critical point [1], and the butterfly velocity shows some characteristic behavior across

this point [4]. The Lyapunov exponent determines the (late time) growth of out-of-time

correlation (OTOC) function,

〈 [V(~x, t) , W(0, 0)]2 〉β ∼ eλL (t−t∗− |~x|/vB), (1.1)

where V,W are two local Hermitian operators, λL the Lyapunov exponent, t∗ is the so

called scrambling time and β is just the thermal timescale. The appearance of the but-

terfly velocity in this correlation function motivates it as the relevant velocity for defining

bounded transport [2]. The monotonic growth of the Lyapunov exponent at a quantum

critical point and its subsequent decrease away from the critical point determined by some

non-thermal coupling constant, g is sketched in figure 1. See also [3] for an exploration

of the connection between quantum chaos and thermal phase transitions. Moreover, this

behavior is believed to hold also at finite but low temperature inside the quantum critical

region. Preliminary studies connected to the proposal of [1] and to the onset of quantum

chaos across a QPT have been already performed within the holographic bottom-up frame-

work in [4]. Nevertheless a complete study, beyond simple models, is still lacking. A full

analysis of this problem appears to be in order in view of the recent experiments where the

OTOC has been measured using Lochsmidt echo sequences [5] and NMR techniques [6].

– 1 –
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Figure 1. An intuitive sketch of the results of [1] regarding the behavior of the Liapunov exponent

λL on the quantum critical region (blue region). The exponent λL gets its maximum value (black

line) at the quantum critical point g = gc. It is not clear, and indeed the purpose of our investigation,

if the butterfly velocity vB display a similar behaviour or not.

The aim of this paper is indeed to understand the onset of quantum chaos across

a quantum phase transition in more complicated holographic models displaying a quan-

tum phase transition. In particular, we will perform our computations in the holographic

bottom-up model introduced in [7, 8] which exhibits a QPT between a trivial insulating

state and a Weyl semimetal. The particular new wrinkle we bring to bear on the transition

is the presence of anisotropy. In other words, the rotational group SO(3) is broken to the

SO(2) subgroup by an explicit source in the theory. As a consequence of the underlying

anisotropy, we can define two butterfly velocities that we will denote as v and v⊥, where

denotes the direction(s) of the anisotropy, while ⊥ in the direction perpendicular to it.

Throughout the paper, we use this notation for all such directional quantities.

The results of our paper show that while the perpendicular velocity v⊥ displays a

behavior similar to that in [1], the parallel one v does not. In particular, the butterfly

velocity along the anisotropic direction will not display a maximum at the critical point

g = gc but rather a minimum. We pinpoint as the origin of this violation, the presence of

anisotropy itself.1 Interestingly, the bound on the viscosity is also violated in an anisotropic

system [13, 14] and by a strong magnetic field [15, 16]. Here the mechanism leading to the

violation of the bound are very analogous, that is explicit breaking of the SO(3), leading

to spatial-anisotropy. Note that [17] spontaneous breaking of rotation symmetry, despite

leading to a non-universal value for η/s, does not provide a violation of the KSS bound.

We expect this to be case for butterfly velocity as well. Here η is the viscosity and s is the

entropy density.

1Effects of anisotropy on the butterfly velocity were previously investigated in [9–12].
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To understand if any universal statement can be made about the butterfly velocity,

especially in the presence of anisotropy, we identify a quantity related to the spatial-spread

of information which is insensitive to the breaking of the SO(D) symmetry, where D is the

number of space dimensions. We do so by computing the OTOC holographically. Given

an anisotropic bulk spacetime of the form

ds2 = − gtt(r) dt
2 + grr(r) dr

2 + h⊥(r) d~x2
⊥ + +h (r) d~x2 , (1.2)

where we denote by the D anisotropic directions and with ⊥ the D⊥ remaining di-

rections. The butterfly velocities can be computed for this background as (η =⊥, )

vη = λL/Mη, where λL = 2π/β is the Lyapunov exponent and all the quantities are

computed at the horizon. The parameter M(⊥, ) controls the screening of the information

spreading in the (⊥, ) directions,

ψ(t, xη) ∼ eλL t−Mη |xi|, (1.3)

and it clearly depends on the warp factor hη. As a consequence, the butterfly velocity can

not represent a good and universal quantity in the presence of anisotropy. Contrastly, we

can define a dimensionless quantity controlling the screening of information through

µ2 ≡
M2
η

hη(r0)
. (1.4)

The factor hη(r0) is indeed the reason why we see dissimilar result from [1] in an anisotropic

setup. The important point is that our new physical parameter µ has no spatial dependence

and hence, it is completely insensitive to any anisotropy present in the system. Our proposal

is to consider the dimensionless information screening length L, which can be defined as

L ≡ 1/µ. Our claim can be rephrased as the dimensionless information screening length

L, which can be defined via the OTOC, is always maximum at the quantum critical point.

Moreover, for a theory passing through a Lifshitz-like critical point, given the number of

spatial directions D⊥ which scales similarly as time and the number of the directions D

which has an anisotropic scaling, β0, the conjecture regarding L can be restated as

2L ≤ 1

D⊥ + β0D
. (1.5)

We will later see that such a bound can be justified from NEC and in our model this is

saturated at the quantum critical point g = gc. In a similar spirit, [18] points out a bound

on the butterfly velocity for an isotropic space with different warp factors appearing along

the r, t directions, gtt(r), grr(r). Since in our case gtt(r)grr(r) = 1, we always saturate

their bound.

The paper is organized as follows. In section 2, we present the holographic model and

its main, and known, transport features. In section 3, we study the onset of quantum chaos

in the model and in particular the butterfly velocity and the related conjectured bound.

Conclusions are reached in section 4. In appendices A and B we provide more technical

details about our computations.
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2 The holographic model

We begin by reviewing the holographic model of [7, 8] which exhibits a QPT from a topo-

logically non-trivial Weyl semimetal to a trivial insulating phase. Although the boundary

theory exhibiting this topological transition in eq. (2.1) is a free theory, the holographic

bulk theory strictly describes a strongly correlated system. The hope is that they share the

same set of symmetries, thereby capturing the essential properties of the phase transition,

if not all the details of the transport pertaining to interacting physics. Note that this is

a phase transition in a certain topological invariant (such as Chern number) and not in

the symmetries; thus, one can not probe it through the free energy density as it never

depends on any topological term in the action. The order parameter is represented by the

anomalous Hall conductance, σAHE which is zero in the trivial gapped phase and finite in

the Weyl semimetal phase.

2.1 Weyl semimetals

Weyl semimetals are a class of three dimensional topological materials characterized by

(point) singularities in the Brillouin zone (BZ) at which the band gap is zero. This peculiar

property gives rise to exotic transport phenomena (see [20] for a comprehensive review).

Quasiparticle excitations near such band-touching points, also called Weyl nodes, can be

described by (left- or right-handed) Weyl spinors. In a time-reversal symmetry broken

insulator, the left- and right- Weyl nodes are separated in the BZ which can be controlled

by a chiral or axial gauge potential, ~b. It is the interplay of this axial field and the (chiral)

mass of the spinor, M , that gives rise to different phases (see figure 1). Deep in the semi-

metal phase, b (≡ |~b|) is much larger and M simply renormalizes it causing a reduced

node-separation equal to [21] beff = b (1−M̄2)1/2, where M̄ ≡M/b. On the other hand, for

a larger M , renormalization by a weaker b reduces the gap to Meff = b (M̄2 − 1)1/2. Thus,

the semimetal-insulator phase transition occurs at M̄c ∼ O(1). The continuum description

capturing this physics is [22]

L = ψ̄ (i/∂ − e /B − γ5~γ ·~b+M)ψ . (2.1)

Here the slash denotes contraction by Dirac gamma matrices, γµ. The matrix γ5 =

iγ0γ1γ2γ3 allows one to project the Dirac spinors, ψ, into the chiral sectors, ψL,R =

(1 ± γ5)ψ. Bµ is the electromagnetic gauge potential; without loss of generality [23], we

choose the axial gauge potential to be ~b = b êz. The axial symmetry, however, is anomalous

(dJ5 6= 0), leading to a non-conservation of the number of particles of given chirality. This

can be seen [24] in the response of the axial current, ~J5 ∼ ~beff × d ~A, that is the anomalous

Hall conductance, σAHE ∼ beff. This clearly vanishes in the insulating phase, that is for

sufficiently large M . The mass term and the axial term act as relevant deformations. Thus,

with increasing M̄ , the theory moves from UV to IR thereby traversing through a fixed

point at M̄c.

– 4 –
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2.2 Holographic Weyl semimetal

Now we turn to the holographic model of the above phase transition. The bulk action takes

the form (fixing 2G2
N = L = 1, where GN is Newton’s constant, and L the AdS radius):

S =

∫
d5x
√
−g
[
R + 12 − 1

4
F 2 − 1

4
F 2

5 +
α

3
εµνρστ Aν

(
F 5

νρ F
5
στ + 3Fνρ Fστ

)
− (DµΦ)∗ (DµΦ) − V (Φ)

]
(2.2)

The bulk fields are an electromagnetic vector U(1) gauge field Bµ with fields strength

F = dB, an axial gauge field Aµ with field strength F5 = dA and a complex scalar

field Φ charged under the axial U(1) symmetry. The covariant derivative is defined as

DµΦ = ∂µ − iqAµΦ, and the scalar potential is chosen to be V (Φ) = m2|Φ|2 + λ
2 |Φ|

4.

Since the phase of the scalar field is not a dynamical variable, with out loss of generality

we assume it to be real. The mass of the field, m =
√

∆(∆− d) controls the scaling

dimension, ∆, of the boundary operator corresponding to Φ. Throughout the paper, we

will use d as the space-time dimension of the boundary field theory, occasionally denoting

the boundary spatial dimension as D = d − 1. From the mass deformation in eq. (2.1)

and the above relation, it is clear that one needs to choose m2 = −3 (see [19] for different

choices of m2 and [25, 26] for further studies of the model), such that the dual operator

has conformal dimension ∆ = 3. Note that this imaginary mass is perfectly allowed within

AdS/CFT since it is with in the Breitenlohner-Freedman (BF) bound, m2 ≥ −d2/4. The

UV boundary conditions for the vector and scalar field are chosen to be

lim
r→∞

rΦ = M , lim
r→∞

Az = b , (2.3)

where both M and b represent a source for the corresponding dual operators. The param-

eter b can be thought as an axial magnetic field that explicitly breaks the rotational SO(3)

symmetry of the boundary to the SO(2) subgroup. From figure 2, one can see that this

controls the effective separation between Weyl nodes. On the contrary, the source M for

the scalar field is simply introducing the mass scale required by the physics of the problem.

Note the presence of two more (bulk) free parameters in the problem; the quartic coupling,

λ, controls the location of the quantum critical point (QCP) by changing the depth of the

effective potential of Φ, and the charge q relates to the mixing between the operators dual

to Φ and Aµ. Following [7, 8] we fix these parameters to q = 1, and λ = 1/10, which fixes

M̄c to 0.744. The generic solution of the system is given by the following ansatz

ds2 = −f(r)dt2 +
dr2

f(r)
+ g(r)

(
dx2 + dy2

)
+ h(r) dz2 , (2.4)

A = Az(r) dz , Φ = φ(r). (2.5)

Although not necessary for computing the butterfly velocity, we will first discuss the

behavior of zero-temperature solutions for understanding the various low-temperature lim-

its. For finite temperature, we assume the presence of a black hole horizon at r = r0 such

that f(r0) = 0. For the zero temperature background there is a Poincaré horizon at r0 = 0,

– 5 –
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Figure 2. There is a topologically non-trivial to trivial phase transition as M/b increases (from

left to right). Due to broken time-reversal symmetry, the 2-fold degeneracy has been lifted, giving

rise to 4-bands in eq. (2.1). The (top) left figure has two Weyl nodes (a pair of Dirac cones where

the bands cross) separated by 2~beff in momentum. The band structure on the (top) right is that

of a topologically trivial insulator with an explicit band-gap 2Meff. At the QCP, the two Dirac

cones merge together, giving rise to a Lifshitz fixed point (black dot in the bottom figure) with a

scaling anisotropy along the same direction as ~b. In the holographic picture, away from the QCP,

the theory flows to two different types of (deep IR) near-horizon geometries, AdS5 (Weyl semimetal

phase) or domain wall-AdS5 (trivial insulator phase). The figure shares some resemblances with

those in [7, 19].

and f(r) = g(r). There are tree types of solutions at zero temperature — (i) insulating

background (for M̄ > M̄c), (ii) critical background (for M̄ = M̄c), and (iii) semimetal

background (for M̄ < M̄c). These solutions can be obtained by solving the equations of

motion, the details of which we discuss in the appendix A. We quote the results here (up

to leading order near the IR).

Insulating background. — Similar to a zero-temperature superconductor, the near-horizon

geometry of a topologically trivial insulator is an AdS5 domain-wall

f(r) =

(
1 +

3

8λ

)
r2 , h(r) = r2 , Az(r) = a1r

β1 , φ(r) =

√
3

λ
+ φ1r

β2 . (2.6)

Here a1 is fixed to 1 and φ1 is treated as a shooting parameter. Exponents β1,2 can be

expressed as functions of (m,λ, q), and are (2.69, 0.29) for our choice of parameters. Thus,

the near-horizon value of Az is always zero, and that of φ is
√

3/λ (for λ = 1/10, it is

φ(r0) ' 5.477).

Critical background. — This solution is exact and displays an anistropic Lifshitz-like scaling

parametrized by β0,

f(r) = f0r
2 , h(r) = h0r

2β0 , Az(r) = rβ0 , φ(r) = φ0 . (2.7)

The scaling anisotropy is explicitely induced by the source of the axial gauge field Aµ,

hence is along the direction of ~b. The parameters (f0, h0, β0, φ0) are determined by fix-

– 6 –
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ing (m,λ, q). For the parameter choice mentioned previously, we have (f0, h0, β0, φ0) '
(1.468, 0.344, 0.407, 0.947). From the zero-temperature equations of motion, it can be shown

that β0 = −2q2/(m2 + λφ2
0 − 2q2) and is always ≤ 1 owing to the NEC, and regularity of

solutions demands β0 > 0 [19]. Thus, the near-horizon value of Az at criticality is always

zero, whereas that of φ is φ0.

Semimetal background. — The following solution describes the near-horizon geometry of

the semimetal phase, which is simply AdS5

f(r) = r2 = h(r) , Az(r) = a1 +
πa2

1φ
2
1

16r
e−

2a1q
r , φ(r) =

√
πφ1

(
a1φ1

2r

)3/2

e−
a1q
r . (2.8)

The λ dependence is hidden in higher order terms. Note in this case, the near horizon

solution of Az is finite; a1, however, φ(r0) vanishes. Figures 8 and 9 of appendix A provides

the full A(r) and φ(r) functions for various values of M̄ . The apparent deviations of A(r0)

and φ(r0) from the IR asymptotes described above owes to the fact that we obtain the

solutions for a small but finite temperature up to order O(T̄ ), where T̄ ≡ T/b. We will

treat M̄ and T̄ as the free parameters in the theory to control the phase transition.

2.3 Anomalous transport

As mentioned before, the order parameter for the QPT is the anomalous Hall conductivity.

The DC, limit of all the conductivities can be extracted from (for both zero and finite

temperatures) horizon data as follows

σAHE = 8αAz(r0) , σ⊥ =
√
h(r0) , σ =

g(r0)√
h(r0)

. (2.9)

Here σ is just a short hand for σzz and ‘⊥’ refers to the conductivity matrix elements,

σxx, σyy, and should not be mistaken for the transverse conductivity. In figures 3 and 4,

we plot the above conductivities as functions of M̄ , for various temperatures T̄ . We discuss

them individually, starting from their zero-temperature behavior. In order not to sacrifice

numerical stability, we confine our lowest temperature value to T̄ = 0.005 and treat it as

zero temperature.

Note that σAHE ∼ Az(r0), and from the discussion of the zero-temperature solutions,

we see σAHE is finite only for M̄ < M̄c. A more physical picture could be that since in the

IR, the axial gauge field is completely screened [27], there are no degrees of freedom that

could be coupled to it and hence, it can not be probed any further. As the temperature

is increased, the sharp phase transition slowly becomes a cross-over. At zero-temperature,

the onset of the semimetal phase is well fitted by σAHE ∝
(
M̄c − M̄

) 0.21
. For M = 0

(or, M̄ = 0), the near-horizon geometry is the deformed AdS5 background of eq. (2.8).

With our choice of normalizations, for low temperatures, g(r0) = h(r0) = π2T 2 and hence,

σdiag ' πT , which clearly vanishes at T = 0. The subscript ‘diag’ collectively refers to all

the diagonal components of the conductivity matrix, σxx, σyy, σzz. There are two features

of σdiag of interest. First, for vanishing b (or, M̄ � 1) the near-horizon geometry is the

domain-wall AdS5 geometry of eq. (2.6), which makes σdiag ' c πT , where c < 1 and

– 7 –
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M̄

0

0.25

0.5

0.75

1

σAHE

8αb

Figure 3. Anomalous Hall conductivity (obtained from σxy) as a function of the dimensionless

mass parameter M̄ for temperatures T̄ = 0.1, 0.05, 0.005 (from green to orange). Note for a very

low temperature the conductivity sharply drops to zero at a critical value, M̄c ∼ 0.74. This marks

the semimetal-insulator topological phase transition.

0 0.5 1 1.5 2

M̄

0

2

4

6

σ⊥

πT

0 0.5 1 1.5 2

M̄

0

0.4

0.8

1.2

σ

πT

Figure 4. Longitudinal conductivities σxx, σzz in function of the dimensionless quantum parameter

M̄ for temperatures T̄ = 0.1, 0.05, 0.005 (from green to orange).

independent of temperature. This is due to the fact that it is a phase transition between

a semimetal-insulator transition and some degrees of freedom are now gapped out in the

trivial phase. The reason why the conductivity is still finite in the insulating phase can be

understood by computing the ratio of the gapped to un-gapped degrees of freedom [19],

which eventually becomes a statement about the geometry or more precisely about the

holographic a-theorem [28]. This ratio can be made to vanish by controlling m2 and λ.

Second, and the most relevant for our discussion, is the fact that at the critical point, there

– 8 –
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M̄

0
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4πη

s

Figure 5. (Left) The anisotropy parameter ε0 evaluated at the horizon for various T̄ =

0.1, 0.05, 0.005 (from green to orange). (Right) Viscosity to entropy ratio, 4πη‖/s along the

anisotropic direction for T̄ = 0.005, 0.05, 0.1. The viscosity is given in terms of the horizon data as

η‖ = g2(r0)/
√
h(r0) [29]. The violation of the KSS bound is evident. On the contrary the ratio

along the isotropic direction saturates exactly the KSS bound 1/4π and it is not shown here.

are strong divergences at zero temperature. This can be attributed to the anisotropy of the

critical point. For convenience, we define the ratio ε0 at the horizon (also see figure 5a),

ε0 ≡
h(r0)

g(r0)
− 1 (2.10)

as the measure of spatial anisotropy along the z direction at the horizon. More precisely,

from the expressions of the σdiag in eq. (2.9), one can see that the ratio of the two at zero

temperature becomes
σ⊥
σ

=
h(r0)

g(r0)
∼ r2(β0−1)

0 , (2.11)

which clearly diverges at the quantum critical point M̄c. Another way of achieving the same

conclusion is to analyze the AC conductivities [30]. From there, or simply from eq. (2.11),

we can indeed conclude that σ⊥/σ ∼ ω2(β0−1), which blows up at the DC limit. We will

later see that this ratio ε0 plays a key role in the behaviour of the butterfly velocity. In

some sense, such a result is not surprising [11, 12] since in theories with anisotropic scalings,

one also observes a violation of the KSS bound [13, 14, 31]. As shown in [29], in the model

we consider, the viscosity along the anisotropic direction η violates the KSS bound (see

figure 5b). It is important to note that the ratio between the ⊥ quantities and their

relatives is always fixed by the anisotropic parameter defined previously,

σ⊥
σ

=
η⊥
η

= 1 + ε0 . (2.12)

We will next see that this will still be true for the butterfly velocities v2
B and will ultimately

be responsible for the violation of the maximization hypothesis. We show the behavior of

the anisotropy parameter ε0 is a function of M̄ in figure 5a. As already discussed, the

– 9 –



J
H
E
P
0
7
(
2
0
1
8
)
0
4
9

anisotropy parameter is peaked around the quantum critical point and it blows up at

T = 0 following eq. (2.11).

3 Quantum chaos & universality

In this section, we compute the butterfly velocity for the above holographic model. Af-

ter obtaining a general expression of vB in terms of the near-horizon data for a given

background, we (numerically) solve it near the quantum phase transition. Consider an

anisotropic black brane metric

ds2 = −f(r)dt2 +
dr2

f(r)
+
∑
η

h(η)(r)d~x
2
(η) . (3.1)

Here η (not to be confused with viscosity) counts the number of different warp factors,

h(η)(r), present in the Ση = {~x(η)} sub-manifold of the above background; thus, D =∑
η dη, where dη = dim(Ση). The growth of the commutator in eq. (1.1) can be studied in

holography by perturbing a black hole with a localized operator V(~x, t) [32, 33]. After a

sufficiently long time, (t > tr = β) the backreaction of this perturbation grows enormously,

giving rise to a shockwave profile, ψ(~x, t), spreading at a speed vB. Before the perturbation

has been completely scrambled (t < ts + |~x|/vB), the OTOC behaves as ∼ ψ(~x, t)2. In

appendix B we solve the shock-profile for the above background and obtain the butterfly

velocities for an anisotropic AdS background. Note that in an anisotropic background, the

velocity of the shockwave-front will depend on the spatial sector Ση, and the full profile

ψ(~x, t) can be approximated as a product of the shock-profile of each sector. Doing so,

we obtain

v
(ζ)
B =

λL

µ
√
h(ζ)(r0)

, µ2 = 2π T
∑
η

dη
2

h′(η)(r)

h(η)(r)

∣∣∣
r0
. (3.2)

Note that 1/µ defines a theory-dependent, dimensionless IR length-scale in the problem,

a screen length over which the shock-profile (exponentially) decays, see eq. (B.14). This

quantity plays an important role in our discussion and below we analyze this further.

An alternative way to express this is through the following near-horizon quantities —

surface gravity, κ = 2π T , and the area density of the r-slices, which relates the horizon

with the entropy density of our dual QFT. We define the density of an r-slice which is

simply proportional to the area of the spatial surface, A2(r) ∼ Πη h
dη
(η)(r). Thus µ is

µ2 = κ
∂

∂r
logA

∣∣∣∣
r=r0

. (3.3)

For the holographic model considered in the previous section, we have one anisotropic

direction z, that is, two butterfly velocities. The velocity along the z-axis is denoted v

and that on the xy-plane is denoted v⊥. Now we use eq. (3.2) to obtain the butterfly

velocities for the background in eq. (2.5). Since this a holographic theory, the Lyapunov

exponent naturally saturates the Maldacena bound [34], λL = 2π/β. In the unit of ~ =
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1 = kB, the maximal Lyapunov exponent is equal to surface gravity, λL = κ; however, to

avoid ambiguity relating the source of the thermal factor, we continue distinguishing them

and write

v⊥ =
2π

β µ
√
g1
, v =

2π

β µ
√
h1
, (3.4)

µ2 = κ

(
g2

g1
+

h2

2h1

)
= 6−

(
m2 +

q2A2
z1

h1

)
φ2

1

2
− λφ

4
1

4
. (3.5)

Here we have used the near-horizon expansion of the metric functions, g(r) = g1 +g2(r−r0)

and h(r) = h1 + h2(r − r0) discussed in appendix A, which involves Az(r0) ≡ Az1 and

r0φ(r0) ≡ φ1. Also, we have set the horizon radius to r0 = 1. As discussed in the previous

section, the boundary theory is described by two dimensionless parameters, (M̄, T̄ ). In

turn, this fixes two near-horizon quantities, (φ1, Az1). All other IR variables are functions

of (M̄, T̄ ), through (φ1, Az1). In figure 6 we numerically obtain the behavior of the butterfly

velocities. Although, as noted in [35], there is a characteristic behavior of vBs near the

critical point; however, there is a clear departure from the result of [1] since the velocity

along the anisotropic direction seems to attain a local minimum around the critical point,

instead of a local maximum. The apparent inability of v to attain a maximum can be

traced back to the anisotropic scaling. As before, this can be seen from the ratio,

v2
⊥
v2 =

h(r0)

g(r0)
= 1 + ε0 . (3.6)

Since we observe finite v2
⊥ at g = gc, the divergence of this ratio at the critical point causes

v to vanish. In other words, it is the length scale appearing in the formula of the butterfly

velocity that sources the deviation from the maximization behavior. Hence, modulo this

length scale, v
(η)
B maximizes only when µ is minimized. Hence, if we consider the dimen-

sionless information screening length L ≡ 1/µ instead, perhaps a universal statement can

be made irrespective of the anisotropic scaling of the QPT. In this regard, we conjecture

that L, and not the butterfly velocity vB, maximizes across a quantum phase transition.

Notice that in the isotropic case, the two statements are perfectly equivalent, and therefore

the previously conjectured bound holds. Before discussing this more generally, we analyze

the asymptotic limits of µ2 in our system, using eq. (3.5) as a guide.

Firstly, at M̄ = 0, since there is no perturbation, we have µUV =
√

6 ' 2.45. The factor

of 6 is simply twice the spatial-dimension of the boundary CFT, 2D = 2
∑

η dη, which also

fixes the butterfly velocity of a d-dimensional Schwarzschild black hole background [37]. At

zero temperature, as M̄ is increased, until one crosses M̄c, there is no condensate, causing

µ2 to stay unchanged. At the critical point (using eq. (2.7) for the critical background)

we have µc = (4 + 2β0)1/2 ' 2.19. As discussed before, NEC forces β0 < 1. In turn this

causes µ2 to sharply decrease at the critical point. For an isotropic system (β0 = 1), one

observes no transition in µ2. This sharp transition at the critical point for β0 6= 1 smears

out becoming a cross-over behavior at finite temperature. A final question is whether or

not µ2 monotonically decreases after the transition or if it increases. The IR asymptotic

2We thank Viktor Jahnke for pointing this out. This bound was observed to be violated in [11, 12].
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M̄
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1
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1.04

v⊥
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M̄
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0.36

0.74

1

1.22

v

Figure 6. Butterfly velocities as function of dimensionless mass M̄ , for various temperatures

T̄ = 0.1, 0.05, 0.005 (from green to orange). The grid-line is drawn at M̄c ' 0.74 in order to

show the QCP. As one lowers the temperature the behavior of vBs near the critical point becomes

increasingly non-analytic. Note the longitudinal (w.r.t. anisotropy direction) butterfly velocity

behaves exactly opposite to its maximization observed in [1]. The vB values have been normalized

by their asymptotic values at M̄ = 0, that is, 2/
√

6. This is obtained from eq. (3.5), and is equal

to the bound in [36], v2
B = (D + 1)/2D, which is clearly violated2 by v⊥ at larger M̄ .

value of µ2, using the data of eq. (2.6), is µIR = (6 + 9/4λ)1/2 ' 5.34. Clearly this is

larger than µc; in fact it is bound to be larger than µUV as well since λ is always positive.

At finite temperature this asymptotic value softens but stays larger than the critical value

for low enough temperature. We plot the behavior of µ in figure 7 which conforms to our

inference and conforms to

µc ≤ µUV ≤ µIR or, L c ≥ L UV ≥ L IR . (3.7)

Now, in the spirit of [19], we attempt to understand whether this conclusion remains

valid if the boundary operator assumes any other scaling dimension. This discussion is

confined just to the insulating phase since the scalar deformation operator condenses only

for large M̄ . In other words, when the second- or higher- order terms in µ2 are turned on

in eq. (3.5). We focus on the behavior of µ at low temperature, and when M̄ − M̄c � 1, so

that we can simplify our treatment by using the scalar hair φ1 as a perturbation parameter.

Also, since away from the critical point, µ behaves analytically and monotonically so as to

establish our lower-bound conjecture, it suffices to justify that µ starts increasing as one

enters slightly into the insulating phase. The coefficient of O(φ2
1) term is simply the effective

mass of the scalar hair, m2
eff = m2 + gzzq2A2

z. Since at low temperature gzz = 1/h1 → 0 at

the QPT, we first consider m2 only. At this order, µ2 ≈ 6−m2φ2
1/2, and only for m2 < 0

one has increasing µ. Recall [38] that the mass of a bulk scalar field is fixed by the scaling

dimension of the dual boundary operator as m2 = ∆(∆− d). The BF instability prevents

this mass from becoming smaller than mBF = −d2/3 (in this case, mBF = −4). For our

conjecture, m2 < 0 is true as long as ∆ < d, or the perturbation is relevant. It should

– 12 –
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0 1 2 3

M̄

0.1

0.3

0.5

L

L IR ∼ 0.19

LUV ∼ 0.41

L c ∼ 0.45

0.6 0.7 0.8
0.38

0.41

0.44

Figure 7. Dimensionless scale L across the quantum phase transition for various temperatures

T̄ = 0.1, 0.05, 0.005 (from green to orange). In the IR limit it asymptotes to L IR and in the UV

this is L UV. The inset zooms into the behavior around the critical point. For low temperature L

maximizes around the critical temperature and reaches the maximum, L c = (4 + 2β0)−1/2. Since

NEC ensures β0 < 1, thus L c is always larger than L IR. In the text we argue for this maximum to

be a universal property.

be noted that this is a fundamental requirement in order to generate a QPT, since by

perturbing a UV with an irrelevant operator, one can never generate a non-trivial RG flow

towards an IR fixed point. This is indeed the case as noted in the numerical studies of [19].

Thus, irrespective of the scaling dimension of the boundary deformation operator, one can

define a lower bound on the length scale of information scrambling, which is fixed by the

CFTd. For a non-relativistic CFTd with a scaling anisotropy β0, along a D -dimensional

sub-space (D = D −D⊥), the upper bound is (using eq. (3.3) for a generic background)

2L ≤ 1

D + (β0 − 1)D
≡ 2Lc , (3.8)

and the equality is saturated exactly at the quantum critical point,3 g = gc as illustrated in

the figure above. Note that ultimately it is the NEC that restricts β0 to be less than one, and

3Since the anisotropic geometry turns out to be the critical geometry in the above model, the saturation

happens at the QCP leading to the violation of the maximization-result. However, a system exhibiting

such geometries in the UV or IR might saturate this bound away from the QCP. Thus, the significance of

the bound should not necessarily be attached to quantum criticality but rather should be seen more as a

universal feature of the near-horizon IR geometry. We thank Elias Kiritsis for discussing this issue.
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hence, makes the critical value Lc larger as compared to any other asymptotic value. In the

case of isotropy, the maximum on the information screening length L becomes translated

to the maximum of the butterfly velocity vB since vB ∼ λL L. Nevertheless, as we showed,

in the presence of anisotropy (β0 6= 1), the statement about the butterfly velocity does not

hold anymore and it has to be replaced by the behavior of the dimensionless information

screening length L.

4 Conclusion

Throughout this work, we studied the onset of quantum chaos on an anisotropic quantum

phase transition in a holographic bottom-up model. In particular, we focused on the

behavior of the butterfly velocities in the quantum critical region and across the quantum

phase transition. We observed a disagreement with the results proposed in [1]. More

precisely, the butterfly velocity along the anisotropic direction does not develop a maximum

but rather a minimum at the quantum critical point. We reiterate the similarity of our

conclusions with the violation of the Kovtun-Son-Starinets (KSS) lower bound on the

viscosity to entropy density ratio [13, 14]. In either cases, the presence of the anisotropic

scaling, β0 seems to play an identical role. The viscosities have indeed been computed [29]

within the holographic model we considered and, as expected and already mentioned, the

η/s ratio along the anisotropic direction violates the KSS bound, recall figure 5b.

As a remedy, we propose an improved conjecture which also holds in the presence

of anisotropy, and is stated in eq. (3.8). This involves a length scale, L, from the bulk

perspective which can be computed using eq. (3.3). For the boundary theory this may

be indirectly extracted by measuring the ballistic growth of a local perturbation through

the OTOC and combining this with the measurement of various transport properties such

as viscosity or conductivity along specific anisotropic directions. This is needed since the

factors g(r0) or h(r0) can only be made relevant to the boundary theory through these

quantities, such as in eq. (2.9). In an anisotropic case, we observe L c ≥ L UV ≥ L IR;

however for the isotropic case we do not expect L to have a local maximum at the critical

point, that is L c = L UV. It would be interesting to understand the physics behind this L

more precisely, especially to see if the emergence of this length scale in a strongly correlated

theory can be better understood without making any reference to AdS/CFT.
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A The holographic background

We discuss some more details about the gravitational background here and some aspects of

the pertaining numerics. We follow closely [8]. The equations of motions derived combining

the action in eq. (2.2) with our ansatz in eq. (2.5) are (note in order to be consistent with

the notations in Landsteiner et al. we have switched f → u, g → f):

u′′ +
h′

2h
u′ − u

(
f ′′

f
+
f ′ h′

2 f h

)
= 0 , (A.1a)

f ′′

f
+
f ′ u′

f u
− f ′2

4f2
+
u′′

2u
− A′z

2

4h
+
m2φ2

2u
− q2A2

zφ
2

2hu
+
λφ4

4u
− 6

u
+

1

2
φ′

2
= 0 , (A.1b)

A′z
2

4h
−
(

f ′

2f u
+

h′

4hu

)
u′ − f ′ h′

2f h
− f ′2

4f2
−
(
m2 +

q2A2
z

h
+
λφ2

2

)
φ2

2u
+

6

u
+

1

2
φ′

2
= 0 , (A.1c)

A′′z +A′z(r)

(
f ′

f
− h′

2h
+
u′

u

)
− 2q2Az φ

2

u
= 0 , (A.1d)

φ′′ + φ′
(
f ′

f
+
h′

2h
+
u′

u

)
− λφ3

u
+

(
−q

2A2
z

hu
− m2

u

)
φ = 0 . (A.1e)

Here the primes denote derivative with respect to the radial-coordinate. We want to

nnumerically integrate the system of equations (A.1) from the horizon r = r0 to the

boundary r = ∞. In order to do so we first try to find the asymptotic behavior of the

solutions near the IR boundary (horizon) and UV (conformal) boundary. Close to the UV

boundary, the bulk fields have the following leading order asymptotic expansion:

u = r2 + . . . , f = r2 + . . . , h = r2 + . . . , Az = b+ . . . , φ =
M

r
+ . . . . (A.2)

Note that we have rescaled the boundary values of the three different metric functions to

unity, such that the boundary field theory depends only on the following free parameters,

T, b,M . The removal of the boundary values of the metric is achieved by invoking the

following (three) scaling symmetries

1. (x, y)→ a(x, y), f → a−2f ;

2. z → az, h→ a−2h, Az → a−1Az;

3. r → ar, (t, x, y, z)→ (t, x, y, z)/a, (u, f, h)→ a2(u, f, h), Az → aAz .

Owing to there symmetries we only have two dimensionless scales, T̄ and M̄ , which control

the entire of the solution space. The near-horizon expansion up to O(r − r0) can be
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Figure 8. Log-linear plot of the bulk profiles for the gauge field Az(r) and the scalar field φ(r)

at T̄ = 0.05. The various colors (from blue to brown) are M̄ = 0.66, 0.724, 0.736, 0.743, 0.757, 0.8.

The phase transition can be seen from the a large shift og the near-horizon values of the bulk fields

when M̄ exceeds 0.744.
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Figure 9. Numerical details for the results presented in the main text for T̄ = 0.1, 0.05, 0.005.

Left: the values of (Az1, φ1) for the horizon shooting. Center: the value of φ1 in function of M̄ .

Right: the value of f1 in function of M̄ .

written as

u ' 4π T (r − r0) + u2 (r − r0) , f ' f1 + f2 (r − r0) , h ' h1 + h2 (r − r0) ,

Az ' Az1 +Az2 (r − r0) , rφ ' φ1 + φ2 (r − r0) . (A.3)

Here Az1 and φ1 are the only free parameters, being controlled by the boundary data T̄

and M̄ . From now onward, we also set the horizon radius to r0 = 1. In summary, while

the horizon data are (T, r0, f1, h1, Az1, φ1), using the (three) scaling symmetries they get

reduced to (T,Az1, φ1). At the conformal boundary they take the form of (T,M, b). We

can now use shooting to construct the numerical background on the 2D plane of (M̄, T̄ ).

An example of the bulk profiles for the Az(r) and φ(r) fields is shown in figure 8.
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B Butterfly velocities in anisotropic backgrounds

Here we set up the shock wave equation in a generic anisotropic (in the spatial field theory

directions) background with constant curvature. For this we closely follow the derivations

presented in [2, 33, 39]. Consider the following d-dimensional background with a black hole

ds2
(0) = −a(r)f(r)dt2 +

dr2

b(r)f(r)
+
∑
η

h(η)(r)d~x
2
(η) . (B.1)

Here η counts the number of different warp factors, h(η)(r), present in the Ση = {~x(η)} sub-

manifold of the above background. The treatment of Sfetsos confines to η = 1, however,

here we are interested in the case when η > 1. The black hole (or black brane) horizon

is assumed to be located r0, such that f(r0) = 0 with non-vanishing a(r0) and b(r0). The

temperature of the black hole is, 4πT = 2κ = f ′(r0)
√
a(r0) b(r0), here κ is the surface

gravity. The background is assumed to be sourced by a stress tensor, T
(0)
µν . For further

simplifications we first move to tortoise coordinate,

ds2
(0) = a(r)f(r)

(
dr2
∗ − dt2

)
+ · · · , (B.2)

r∗(r) =

∫ r

r0

dr′

f(r′)
√
a(r′) b(r′)

≈ 1

4πT
ln
r − r0

r0
. (B.3)

In the last line we’ve done a near-horizon expansion of r∗ which is justified since r∗(r0)

blows up. Next we move to Kruskal coordinate by exponentiating the null coordinates of

t− r∗ space,

u = e2πT (r∗−t) , v = e2πT (r∗+t) =⇒ r∗ =
1

4πT
ln(uv) , t =

1

4πT
ln
v

u
(B.4)

In this coordinate the horizon is at uv = 0 and the boundary is at uv = −1. The black

hole singularity is at uv = 1. The above relation can be used to express the background in

Kruskal coordinates

ds2
(0) = 2A(uv)dudv +

∑
η

h(η)(uv)d~x 2
(η) , 2A(uv) =

a(r)f(r)

(2πT )2
e−4πTr∗ . (B.5)

We will need the following relations later, h′(0) = r0h
′(r0), and using near-horizon ex-

pansion of f(r) we have, 2A(0) = r0
(2πT )2

a(r0)f ′(r0) and 2A′(0) =
r20

(2πT )2
(a(r)f ′(r))′|r0 .

One can think of the above background is being generated from stress tensor T (0) by us-

ing Einstein equation, G
(0)
µν = 8πT

(0)
µν , where G

(0)
µν is the Einstein tensor corresponding to

ds2
(0) and

T (0) = T (0)
uv dudv + T (0)

uu du
2 + T (0)

vv dv
2 + T (0)

ηη d~x
2
(η) + T (0)

uη dudx
η . (B.6)

Starting from eq. (B.5) we now obtain the butterfly velocity. For that we perturb our

background with a point particle that is released from ~x = 0 at time tw in the past. The

particle is localized onn the u = 0 horizon but moves in the direction of v with light speed.

For late time, tw > β its energy density can be written as [40]

T puu = E0e
2π
β
twδ(u)δ(~x) (B.7)
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We want to compute the backreaction of this stress tensor on our background. This can

be done perturbatively for a small energy density. One can start with an ansatz solution

that v gets shifted by ψ(~x) only for u > 0, v → v + Θ(u)ψ(~x). This new geometry is the

shockwave geometry and we want to solve for ψ(~x), that is the shockwave. By relabeling

v, we replace dv → dv − δ(u)ψ(~x)du. Plugging this in the above metric we obtain the

perturbed metric

ds2
(1) = −2A(uv)δ(u)ψ(~x)du2 , (B.8)

and the stress tensor is (along with T p)

T (1) =
(
T puu − T (0)

uv δ(u)ψ(~x)
)
du2 − 2T (0)

vv δ(u)ψ(~x) dudv (B.9)

Since ds2
(1) doesn’t generate finite Einstein tensor, G

(1)
uv = 0, we can demand δ(u)T

(0)
vv =

0 = δ(u)G
(0)
vv . There remains only one relevant Einstein equation that gives rise to the

shock wave equation (which is subject to the previous contstraint)

G(1)
uu = 8πT puu − δ(u)ψ(~x)G(0)

uv . (B.10)

Or,
∑
η

(
A(0)

h(η)(0)
∆(η) − dim(η)

h′(η)(0)

2h(η)(0)

)
ψ(~x) = 8πE0e

2π
β
twδ(~x) , (B.11)

=⇒
(
∆(ζ) −M2

ζ

)
ψ(x

(ζ)
i ) =

16πE0h(ζ)(0)

2A(0)
e

2π
β
twδ(x

(ζ)
i ) , (B.12)

where, M2
ζ = h(ζ)(0)

∑
η

dim(Ση)
h′(η)(0)

2A(0)h(η)(0)
(B.13)

In the second last line, assuming linear order, we have divided the solution space into

different anisotropy sectors, labeled by ζ. Clearly, for the isotropic case, η = 1 = ζ, one

recovers the shock equations of [2, 33], with dim(Ση) = d − 2. Also if the field theory

living at a constant r, t-slice is curved then the shock front is no longer planar but depends

on the curvature of the spatial slice, thus its dynamics involves curved space Laplacian,

∆(η) ≡ 1√
g(η)

∂
(√

g(η) g(η) ∂
)

, rather than the flat space Laplacian used above. This affects

the spatial-profile of the shock but not its speed, that is the butterfly velocity [41]. We

want to solve this equation, which is equivalent to solving the Green’s function of the flat

space Laplacian. At very long distance (x�M−1
ζ ) the solution becomes

ψ(~x(ζ), t) ∼
e

2π
β

(tw−t)−Mζ |~x(ζ)|

|~x(ζ)|
d−3
2

. (B.14)

Note that the factor 2π/β is the Lyapunov exponent for Einstein gravity. Note that M−1
ζ

defines the screening length-scale in the problem and λ−1
L defines the timescale. The but-

terfly velocity, as can be seen in the above equation, is a ratio of these two scales

v
(ζ)
B =

λL
M(ζ)

, M2
(ζ) = h(ζ)(r)b(r)f

′(r)
∑
η

dim(Ση)
h′(η)(r)

4h(η)(r)

∣∣∣∣
r0

. (B.15)
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Here v
(ζ)
B is the velocity corresponding to the shockwave propagating in the Σζ subspace.

In defining M(ζ) we have used the expression in eq. (B.13) and switched from Kruskal

coordinates to usual Schwarzschild coordinates using the identities discussed previously.

For simplicity, we set a(r) = b(r) = 1 and rewrite M2
(ζ) in terms of a dimensionless quantity

µ, such that

µ2 =
M2

(ζ)

h(ζ)(r)
= πT

∑
η

dim(Ση)
h′(η)(r)

h(η)(r)

∣∣∣∣
r0

. (B.16)
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