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1 Introduction

Even though meanwhile dismissed, the 2014 BICEP2 announcement of a detection of pri-

mordial B-modes with a large tensor-to-scalar ratio of r ∼ 0.2, triggered much research

in string cosmology. Indeed, the main model building challenge is that for a ratio of

r > 0.01 the Lyth bound [1] implies that the inflaton has to roll over trans-Planckian field
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distances, hence making the process highly UV sensitive. Therefore, string theory as a

UV complete quantum theory of gravity provides a well defined framework to discuss high

scale inflation. Interestingly, there are some hints supporting the existence of an underlying

quantum gravity constraint that forbids trans-Planckian excursions. Further investigation

in this direction is therefore, not only phenomenological, but also conceptually interesting.

To forbid higher order Planck suppressed operators in the inflaton action, one can

employ a pseudo-scalar field with a continuous shift symmetry, called an axion. There

are essentially two mostly followed approaches towards realizing axionic inflation in string

theory. The first employs the periodic cosine potential [2] generically generated by instan-

tons, possibly with more than one axion to enlarge the field range [3, 4]. For the simplest

model of natural inflation, string theory requires to work outside the regime of a controlled

low-energy effective action [5]. It was realized [6–9] that this behavior is precisely reflected

in the Weak Gravity Conjecture (WGC) [10] extended from point particles to instantons.

The second approach is to impose a controlled spontaneous breaking of the axionic

shift symmetry [11] by adding branes or fluxes, inducing a potential energy that increases

by a certain amount over every period the inflaton transverses. This ansatz is called axion

monodromy inflation and was introduced in the stringy context in [12]. One mechanism to

generate a polynomial potential for axion monodromy inflation is to turn on background

fluxes generating a tree-level F-term scalar potential [13–15], see also [16–25] and for re-

views [26, 27]. For other attempts to realize axion monodromy inflation in string theory

see e.g. [28–30].

Turning on fluxes has the advantage that the same mechanism generating the axion

potential also stabilizes the other moduli and breaks supersymmetry. Therefore, the ques-

tion arose whether one can control the trans-Planckian regime for the axion in a consistent

scheme of moduli stabilization. This was analyzed in a series of papers [31–34] in the

framework of orientifolded Calabi-Yau compactification of the 10-dimensional type IIA or

type IIB theory giving rise to a four dimensional N = 1 supergravity theory with usually

plenty of massless scalar fields and axions. This geometry is then perturbed by turning on

geometric and non-geometric background fluxes leading to a gauged supergravity theory,

that can be deduced via dimensional reduction of double field theory [35].

A detectable tensor-to-scalar ratio of r > 0.01 and the so far not detected non-

Gaussianities favor single large-field inflation. In this case, the potential energy during

inflation is Minf ∼ 1016 GeV, the Hubble-scale during inflation is Hinf ∼ 1014 GeV and the

inflaton mass is Mθ ∼ 1013 GeV. In order to use an effective supergravity approach, the

string scale Ms and the Kaluza-Klein scale MKK must lie above all these scales. Moreover,

the other moduli masses should lie above the Hubble scale to guarantee a model of single

field inflation. Therefore, altogether we have the ordered hierarchy of mass scales

MPl > Ms > MKK > Mmod > Hinf > Mθ , (1.1)

where neighboring scales can differ only by a factor of O(10). This is obviously a major

challenge for concrete string model building.

Since for single field inflation, the inflaton should be the lightest scalar field, all other

moduli should better acquire their masses already at tree-level. In the type IIB setting this
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implies that the universal axio-dilaton requires an NS-NS three-form flux and the overall

volume a non-geometric Q-flux to be turned on. Closed string moduli stabilization with

solely fluxes was discussed in [32, 33] (see also [28]). There it was found that control

over the trans-Planckian regime in all examples required to violate at least one of the

required hierarchies in (1.1). Moreover, the backreaction of the rolling axion onto the

other moduli was substantial and led to a flattening of the potential [36] and in the extreme

case to a potential of plateau(Starobinsky)-type. The reason behind this is that for large

field excursions of an axion θ, the backreacted proper field distance showed a logarithmic

behavior Θ ∼ λ−1 log θ. Here λ−1 can be considered as the scale in field distance where

the backreaction becomes substantial.

It was realized in [37, 38] that this logarithmic scaling of the proper field distance is

very generic and that it precisely reflects the conjectured behavior by Ooguri/Vafa [39] to

distinguish effective field theory models that can be realized in string theory (the landscape)

from those that cannot be coupled in a UV complete way to gravity (the swampland) [40].

This, later called, swampland conjecture [38] says that if one moves over very large distances

in the moduli space of an effective quantum gravity theory, there appears an infinite tower

of states whose mass scales as m ∼ m0 exp(−λ∆Θ). This means that for ∆Θ > λ−1 the

effective theory breaks down. The prototype example of this appears for string theory

compactified on a circle, where it is the Kaluza-Klein tower that shows this behavior in

terms of the proper field distance.

The string theory models discussed in [37] always had λ = O(1), i.e. the cut-off in

the field distance where one could trust the effective description was close to the Planck-

scale. This led Kläwer and Palti in [38], to formulate the Refined Swampland Conjecture

(RSC), extending the former one by the statement that λ = O(1), i.e. one cannot push

λ−1 to values parametrically larger than one. Furthermore, the RSC applies to any scalar

field, including axions, unlike the original conjecture from [39] which only applies to the

geometric moduli space.

It was motivated in [41], though, that one should aim for engineering models with a

flux dependent λ in such a way that the backreaction can in principle be delayed in field

distance. The authors of [42] analyzed inflationary models with an open string modulus,

namely the deformation modulus of a D7-brane [15, 18, 19, 22, 43, 44], playing the role

of the inflaton. These models looked a priori promising to admit a parametrically large

value of λ−1. However, the Refined Swampland Conjecture implies that also F-term axion

monodromy inflation cannot be realized in a parametrically controlled way in string theory.

Let us mention that an argument based on entropy of de-Sitter space has led J. Conlon to

the same general conclusion [45] (see also [46]).

It is the purpose of this paper to challenge or find further evidence for this intricate

relation between F-term axion monodromy inflation and the Refined Swampland Conjec-

ture. Despite the danger of repeating parts of this introduction, in section 2 we review

former attempts to build string models of large field inflation, discuss the challenges one

faces when combining this with full moduli stabilization and also present the swampland

conjecture and its refinement. In section 3, we will revisite a simple purely closed string

model from [32, 33] and demonstrate how it fits nicely into this picture. Moreover, we
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will show that also the proposed backreacted plateau-like model [32] is not parametrically

under control.

In section 4, we extend and further examine the open string models discussed in [42].

We indeed find that the backreacted proper field distance always exhibit the predicted

logarithmic scaling at large field. Our aim is, though, to identify and analyze in detail

models where λ−1 is flux-dependent and can in principle be tuned parametrically large to

delay the backreaction. We find that also these models require λ ≈ 1 in order to have

parametric control over the effective field theories. For concreteness, we consider models

in which all scalars are fixed at tree level by fluxes. This requires the addition of geometric

fluxes in IIA, which become non-geometric in IIB. We identify two simple representative

models of having a tunable λ, and show that the necessary flux tuning would imply that

the scale of moduli masses becomes larger than the Kaluza-Klein scale. The (quantum

gravity) ingredients in the string effective action that are responsible for this behavior can

be identified as:

• The leading order Kähler potential always shows a logarithmic dependence on

the saxions.

• The specific form of the superpotential appearing in string theory.

• The moduli dependence of the various mass scales, like string, Kaluza-Klein and

moduli mass, resulting from dimensional reduction and moduli stabilization.

• The fact that fluxes are quantized.

These observations lead us to a change of perspective. Instead of trying to make the

models more baroque and to find loop-holes, maybe one should better believe in the Refined

Swampland Conjecture and figure out where these control issues were hidden or ignored in

the previous attempts that (naively) looked successful to realize large field inflation. We

also critically revisite attempts to build axion monodromy models where the Kähler moduli

were stabilized via non-perturbative effects, like in KKLT and the Large Volume Scenario.

We notice that the required flux tuning gets into conflict with the original assumptions

of small W0 and large volume, respectively. Our conclusions in section 5 will also discuss

possible loopholes and future directions to continue investigating the realization of axion

monodromy inflation and its relation with the Swampland Conjecture.

2 F-term axion monodromy inflation

In this section we review former attempts to realize large field inflation in string theory and

challenges one faces, when combining this with the issue of moduli stabilization. We also

review the Swampland Conjecture [39] as formulated by Ooguri/Vafa and following [38]

how it is related to large field inflation.

2.1 Large field inflation

The large number of difficulties encountered when embedding large field inflation in a

controlled string theory framework gave rise to the suspicion that a fundamental reason
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might underly the obstruction of getting trans-Planckian field ranges in a consistent theory

of quantum gravity. The search of this fundamental reason has triggered plenty of recent

work aiming to identify the constraints that quantum gravity imposes over an, a priori,

consistent quantum field theory.

The obstruction of getting a trans-Planckian decay constant to realize natural inflation

can be related, for instance, to the Weak Gravity Conjecture (WGC) [10]. This conjecture

generalized to axions reads

f Sinst ≤ 1 , (2.1)

where f is the axion decay constant and Sinst the instanton action. Thus, it states that for

any axion with a trans-Planckian decay constant there must exist an instanton, electrically

coupled to the axion, with an action at most of order one. Therefore, the potential for

the axion will generically receive non-suppressed instantonic corrections which signal the

breakdown of the effective theory and will reduce the effective field range to a sub-Planckian

value [6–9]. Attempts to engineer trans-Planckian flat directions by using multiple fields

are also highly constrained by strong versions of the Weak Gravity Conjecture [47].

As outlined in the introduction, a promising alternative is F-term axion monodromy

inflation [13]. The basic idea is to induce a non-periodic potential for the axion while

leaving the discrete shift symmetry unbroken. This leads to the familiar multi-branched

structure which allows for a non-compact field range for the axion. By rolling down one of

the branches a trans-Planckian excursion can be achieved even if the axionic decay constant

f (and therefore the underlying periodicity of the system) is sub-Planckian. This implies

that the above constraints coming from the WGC do not apply in this case. Furthermore,

the discrete shift of the axion if combined with a shift of the integer labeling the different

branches is still a symmetry of the theory. This protects the effective theory from dangerous

UV corrections coming from states above the cut-off scale.

The realization in four dimensions is given by coupling the axion φ to a 3-form gauge

field F4 = dC3 as follows,

L = −f2(dφ)2 − F4 ∧ ∗F4 + 2mF4 φ . (2.2)

This description was first analyzed in detail by Dvali [48, 49] and applied to inflation by

Kaloper and Sorbo [11, 50–52]. The gauge field has no dynamics in four dimensions but

its field strength can have a non-vanishing (quantized) value f0 in the vacuum. Upon

integrating out the 3-form field,

∗ F4 = f0 +mφ→ V = (f0 +mφ)2 (2.3)

one recovers the scalar potential for the axion with multiple branches labeled by f0. Notice

that this is not a particular model of F-term axion monodromy, but a dual formulation

in four dimensions, since for any massive axion one can always define an effective 3-form

field generating the corresponding scalar potential. This formulation makes the underlying

symmetries of the system manifest. In particular, the combined discrete shift

f0 → f0 + c , φ→ φ− c/m (2.4)
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is still a symmetry of the system, and for c/m = 2πf this transformation identifies gauge

equivalent branches.

Furthermore, transitions between different branches are mediated by nucleation of

membranes electrically charged under the 3-form gauge field. By crossing a membrane, f0

shifts by an integer times the charge of the membrane. The tunneling rate is exponentially

suppressed, and can indeed be estimated by applying the WGC to the 3-form gauge field.

However, recent results show that the tunneling rate is not fast enough to constrain large

field inflation [53–55].

Remarkably, this is also the mechanism underlying flux stabilization of axions in string

theory, since the discrete axionic shift symmetry is indeed a gauge identification and cannot

be explicitly broken. As explained, this does not prevent the axions to become massive

in a consistent way with the discrete shift symmetry. Thus, all axions arising in string

compactifications which are stabilized by internal fluxes are examples of the aforementioned

multi-branched structure and candidates for F-term axion monodromy. In those cases, the

3-form fields come from dimensionally reducing higher NS-NS and R-R p-form fields and

are dual to the internal fluxes [25, 56].

Despite all these appealing features, including the apparent robustness against the

WGC, we think that there does not exist any completely successful and convincing string

realization of F-term axion monodromy inflation, yet. The difficulties are related to moduli

stabilization and backreaction effects from the other scalars of the compactification.1 When

taking the backreaction into account, the physical field range of the inflaton might be

drastically reduced, as we proceed to explain in section 2.2. More than a technical issue,

these difficulties might again point towards a fundamental obstruction of any consistent

theory of quantum gravity. As noticed in [37, 38], in this case these control issues can

be related to the Swampland Conjecture. We will review and extend this relation in

section 2.3.

2.2 Challenge with moduli stabilization

Any attempt to construct a realistic inflationary model in string theory has to deal with

the issue of moduli stabilization. The strong experimental bounds on non-Gaussianities

and isocurvature perturbations favor a scheme of single field inflation or, at most, moderate

multi-field inflation involving a few weakly-coupled scalars. To guarantee the consistency

of the effective field theory approach as well as to realize a model of single field inflation,

one has to stabilize the moduli such that the following hierarchy of mass scales is realized

MPl > Ms > MKK > Mmod > Hinf > Mθ , (2.5)

where Hinf is the Hubble scale during inflation and Mθ the inflaton mass. These scales are

constrained by the amplitude of scalar density perturbations and the value of the tensor-to-

scalar ratio. For chaotic inflation, Mθ ∼ 1013 GeV and Hinf ∼ 1014 GeV. Therefore there

is not much room left to stabilize the rest of the moduli (Mmod) above the inflaton mass

1From this perspective, inflationary string model building attempts that did not consider these issues

are not yet complete and need to be reevaluated.
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and below the Kaluza-Klein scale (which is also usually of order MKK ∼ 1016 − 1017 GeV

in perturbative string theory). To achieve this hierarchy of scales at the minimum of the

potential is already a challenge for many flux compactifications (see [28, 31] for some no-

go theorems for the complex structure moduli space of a Calabi-Yau three-fold). But to

guarantee the stabilization of these scales during the whole inflationary trajectory is an

even bigger challenge (see also [23, 28, 57, 58]).

Let us assume a pseudo-scalar θ parametrizing the inflationary trajectory. When θ is

displaced from its minimum, generically the minima of the other scalars will also change,

s(θ) = s0 + δs(θ) (2.6)

where s0 denotes the vacuum expectation value of the scalar s at the minimum of the

potential, i.e. when θ is also at its minimum. We will use the word saxions to refer to

all non-periodic (non-axionic) scalars. By plugging this back into the effective theory,

the scalar potential and the kinetic term for the inflaton can be substantially modified.

In other words, the inflationary trajectory is no longer only along θ but corresponds to a

combination of θ and s. This backreaction leads to a flattening of the inflaton potential [36].

Note that the above simple procedure of freezing s and plugging (2.6) back into the

effective theory is an approximation that relies on neglecting the variation of the kinetic

energy of the saxion with respect to the potential energy, so it is valid only as long as

there is a mass hierarchy between θ and s. Otherwise, a multifield analysis is required to

consider simultaneously the dynamics of both fields.

In the Kaloper-Sorbo formulation of the axion coupled to the 3-form gauge field, these

corrections do not appear from higher dimensional operators breaking the shift symmetry.

They arise from the fact that the kinetic metric of the 3-form gauge fields is also field

dependent (in particular, it depends on the saxions) [41]. When integrating out the 3-form

gauge field, the shape of the branches becomes field dependent and can be substantially

modified when displacing the inflaton away from the minimum (in a shift invariant way,

but potentially dangerous for inflation anyway).

In [33, 37] it was pointed out that the displacement of the saxions will generically

backreact on the kinetic metric of the inflaton leading at best to a logarithmic behavior of

the proper field distance at large field. More concretely,

Θ =

∫ √
Kθθ(s) dθ ∼

∫
1

s(θ)
∼ 1

λ
log(θ) (2.7)

where we have assumed that K = − log(s) with s being the saxionic partner of the inflaton,

and that for large field excursions δs(θ) ' λθ. In (2.7), Θ is the canonically normalized

inflaton field. This implies that parametrically large displacements are strongly disfavored

in string theory, but in principle trans-Planckian field ranges are still possible if λ� 1, so

that backreaction effects can be delayed far out in field space. In other words, the field

range available before backreaction effects become important and the logarithmic scaling

takes place, is given by

Θc =

∫ θc√
Kθθ(s) dθ ∼

θc
s0
∼ 1

λ
(2.8)
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in Planck units. Here θc is the critical value before backreaction effects dominate, which

occurs when δs(θc) ' s0 implying2 θc ' s0/λ. In [37, 38] it was claimed that λ is a flux

independent parameter of order one, implying that the backreaction effects are therefore

tied to the Planck mass. If this is true in general, it is a very powerful statement which

indicates a clear obstruction for having trans-Planckian field ranges.

However, the flux independence of λ was only proved [37] in type IIA flux compactifi-

cations where the inflaton belonged to the closed string sector. In [41] a possible loophole

involving the open string sector was pointed out (and examined in more detail in [42]).

There, the parameter λ is not flux-independent anymore but indeed proportional to the

mass hierarchy MΘ/Mheavy. Therefore a mass hierarchy between the inflaton and the sax-

ions can help to delay the backreaction effects which are not anymore tied to the Planck

mass. However, the incorporation of more ingredients to the compactification makes the

model more difficult to control, and it is not clear if such a hierarchy can be really achieved

in a fully reliable global compactification.

It is the purpose of this paper to continue the investigation of these models and similar

ones, in which λ can depend on the above mass hierarchy. We will see that in some

representative models, by setting λ small, we are inevitably also decreasing the Kaluza-

Klein scale compared to the moduli mass scale, signaling the breakdown of the effective

theory. But before turning to our results, let us discuss in more detail the relation between

the logarithmic scaling of the field distance, the breakdown of the effective theory and the

Swampland Conjecture.

2.3 The swampland conjecture

It is clear that not all effective quantum field theories can be obtained as effective theories

from string theory. As made more precise in [40], besides the string landscape there exist a

vast swampland of such theories that cannot be consistently coupled to quantum gravity.

In [39] Ouguri and Vafa formulated this in a more concise manner. They provided a couple

of conjectured criteria that an effective theory in the landscape necessarily should satisfy.

The most quantitative criterium was termed the Swampland Conjecture in [38] and it says:

Swampland conjecture: for any point p0 in the continuous scalar moduli space of a

consistent quantum gravity theory (the landscape), there exist other points p at arbitrarily

large distance. As the distance d(p0, p) diverges, an infinite tower of states exponentially

light in the distance appears, meaning that the mass scale of the tower varies as

M ∼M0 e
−αd(p0,p) . (2.9)

Thus, the number of states in the tower which are below any finite mass scale diverges

as d→∞.

Here, the distance is measured with the metric on the moduli space. Moreover, α is

a still undetermined parameter that specifies when this behavior sets in, namely beyond

2If the Kähler metric for the inflaton depends on more than one saxion, one can extract the value of

λ from K
−1/2
θθ (si) ' K

−1/2
θθ (si0) + δK

−1/2
θθ (si(θ)) with δK

−1/2
θθ (si(θ)) ' λθ at large field, and all previous

formulae apply.
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d(p0, p) ∼ α−1 the exponential drop-off becomes essential. Infinitely many states becoming

light beyond a certain distance in field space indicates that the quantum gravity theory

valid at the point p0 only has a finite range dc of validity in the scalar moduli space. As a

consequence any physics that we might derive for larger values d > dc cannot be trusted.

In this formulation, the flat axion moduli space is assumed to be compact and the loga-

rithmic behavior is expected to hold rather for the saxions. Therefore, it is not immediately

clear how this conjecture is related to the question of realizing large field inflation in string

theory. How this proceeds has been suggested in [37, 38] and will also be demonstrated

in the very explicit prototype models to be discussed in sections 3 and 4. Let us already

sketch here, how this works.

Say one has managed to stabilize the moduli such that there is only a single light

axion Θ with mass MΘ and a set of heavy other moduli stabilized at Mheavy. Then, after

integrating out the heavy moduli one can derive an effective polynomial potential Veff(θ)

for the light axion, potentially supporting large field inflation. However, this picture is

a bit too naive as we are interested in field excursion of θ that are trans-Planckian. As

explained in the previous section, for very large θ one has to take the backreaction of the

rolling inflaton onto the other moduli into account. The critical value in proper field space

where this behavior becomes essential is Θc ∼ 1/λ (see eq. (2.8)). As discussed above, for

field excursions beyond this value, the backreaction causes the following relation between

the proper field distance and θ

Θ =
1

λ
log (θ) . (2.10)

Therefore, e.g. KK-modes whose mass scales like MKK ∼ s(θ)−n ∼ θ−n have the scaling

MKK ∼ exp(−nλΘ) with respect to the proper field distance. This is precisely the behavior

stated in the Swampland Conjecture after identifying

α ∼ λ . (2.11)

Thus, it seems that the original version of the swampland conjecture can be extended to

axion directions upon taking into account backreaction effects. It is this generalization that

we consider in this paper. Notice that this formulation of the conjecture not only implies

a constraint on the field metrics but also on the shape of the scalar potentials coming from

string theory, since the backreaction on the saxions is essential to obtain such a logarithmic

behaviour at large field.

The essential question now is about the value of λ. The original swampland conjecture

leaves this open.3 The set of examples studied in [37] led the authors to define the so-

called Refined Swampland Conjecture, that in addition to the contents of the swampland

conjecture above states α = O(1). We will see that those examples are only particular

3For an axion, the WGC implies f Sinst ≤ 1 which can be rewritten in the presence of supersymmetry

in terms of the saxionic partner ϕ as
√
gϕϕ ϕ ≤ 1 [37]. After integration one gets∫

√
gϕϕ dϕ ≤

∫
1

ϕ
dϕ ⇐⇒ φ ≤ logϕ , (2.12)

i.e. the proper field distance grows at best logarithmically as φc logϕ with φc = O(1).
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cases and that in general one can have

Θc ∼
1

λ
∼
(
Mheavy

MΘ

)p
(2.13)

where p = 0, 1 depending on the model under consideration. In particular, the models

in [37] satisfy p = 0, while p = 1 corresponds to the loopholes in [41, 42]. For the latter

class of models, if one can manage to dynamically freeze the moduli such that λ < O(1/10),

then one has control over the effective theory for the required Ne = 60 e-foldings. However

we will see that for λ � 1 there are other reasons beyond the exponential drop-off, why

the effective theory fails.

3 Closed string models

In this section, we revisit a simple prototype model [32, 33] of closed string moduli stabiliza-

tion and analyze its relation to the Swampland Conjecture and how this restricts the poten-

tial to provide a controllable string (inspired) model of F-term axion monodromy inflation.

In [33] it was found that the considered single field inflationary models with a paramet-

rically light axion fail to also preserve the required hierarchy of mass scales, thus spoiling

parametric control over the employed effective action. This perfectly matches with the

results found in [37, 41] for their IIA counterpartners. Within the closed string sector of

IIA flux compactifications with RR and NS fluxes, it is not possible to get the mass hier-

archy required to suppress backreaction, implying that one always get a flux-independent

λ ∼ O(1). Therefore, we do not expect these closed string IIB models to work either.

However, they are a perfect playground to exemplify the backreaction problems and the

relation to the Swampland Conjecture. Therefore, instead of analyzing an exhaustive list

of elaborated models, we will choose the simplest one and discuss the problems arising

when trying to drive inflation in the regime Θ > Θc.

Let us emphasize that, in this paper, our focus is on analytically solvable models,

where in order to be able to compute also the string and KK-scales, all relevant moduli

are included. It is clear that e.g. the string and the KK-scales are only dynamically fixed

when we include the axio-dilaton as well as the Kähler moduli as dynamical fields.

For the presented representative examples, we focus on the parametric dependence

of certain relevant quantities in terms of the background fluxes. Our philosophy is that

parametric control is essential to claim that certain mass hierarchies can be naturally

achieved. Just an accidental, model dependent numerical factor of e.g. order O(1)−O(102)

is not sufficient and is certainly not related to general arguments from quantum gravity.

3.1 Moduli stabilization and non-geometric fluxes

Before analyzing concrete models for axion monodromy inflation in detail, let us briefly

review the necessary concepts of closed string moduli stabilization with various fluxes in

type IIB orientifold compactifications. Later we will not just consider moduli coming from

the closed string sector, but are furthermore taking open string moduli into account as
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number modulus name

1 S = g−1
s − iC0 axio-dilaton

h2,1
− (M) U i = ui + ivi complex structure

h1,1
+ (M) Tα = τα + iρα + . . . Kähler

h1,1
− (M) Ga= Sba + ica axionic odd

Table 1. Closed string moduli in type IIB orientifold compactifications.

they might provide an independent source for inflation. Let us postpone the discussion of

open string moduli stabilization to section 4.1.

We start with compactifying type IIB string theory on orientifolds of Calabi-Yau three-

folds M, which are equipped with a holomorphic three-form Ω3. The orientifold projec-

tion ΩP(−1)FLσ contains, besides the world-sheet parity operator ΩP and the left-moving

fermion number FL, a holomorphic involution σ :M→M. We choose the latter to act on

the Kähler form J and the holomorphic (3, 0)-form Ω3 of the Calabi-Yau three-fold M as

σ∗ : J → +J , σ∗ : Ω3 → −Ω3 . (3.1)

The fixed loci of this involution correspond to O7- and O3-planes, which in general require

the presence of D7- and D3-branes to satisfy the tadpole cancellation conditions. The

holomorphic involution σ of the orientifold projection splits the cohomology into even and

odd parts

Hp,q(M) = Hp,q
+ (M)⊕Hp,q

− (M) , hp,q = hp,q+ + hp,q− . (3.2)

Reducing the ten-dimensional bosonic field content of type IIB string theory on the Calabi-

Yau threefold M and taking the orientifold projection into account leads to numerous

massless moduli in the effective four-dimensional supergravity theory.

The closed string moduli relevant for later constructions are summarized in table 1,

where the convention was chosen such that the imaginary parts of the moduli correspond

to axions.4

Note that in the following we have redefined the axio-dilaton as S = s + i c. Moduli

are stabilized by turning on non-trivial background fluxes generating a scalar potential for

the moduli, see for instance the review [59]. Here we will not just focus on R-R and NS-NS

three-form fluxes, but supplementary make use of geometric and non-geometric fluxes. For

more details we refer to [32] as well as references therein.

As already mentioned in the introduction, for single field inflation one needs to achieve

a considerable mass hierarchy between the inflaton and the other moduli. The KKLT and

4The full definition of the Kähler moduli Tα is given by

Tα =
1

2
καβγt

βtγ + i

(
ρα −

1

2
καabc

abb
)
− 1

4
eφκαabG

a(G+G)b , (3.3)

where καβγ denote the triple intersection numbers.
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Large Volume Scenarios (LVS) [60, 61] incorporate small non-perturbative effects to fix

certain saxionic Kähler moduli, which makes it unnatural to obtain a mass hierarchy with

the axionic inflaton stabilized at tree-level. Therefore, it is more natural to fix all moduli

already at tree-level by employing geometric and non-geometric fluxes for the stabilization

of the Kähler moduli. Such fluxes appear in the context of N = 2 gauged supergravity

and double field theory. However, for completeness, we will also analyze models within the

framework of KKLT and LVS without non-geometric fluxes in section 4.4.

In addition to the usual R-R and NS-NS three-form fluxes F = 〈dC2〉 and H = 〈dB2〉
there are the geometric flux F IJK and the non-geometric fluxes Q JK

I and RIJK . Includ-

ing these new fluxes, the Gukov-Vafa-Witten superpotential [62] can be extended in the

following compact way [63, 64]

W =

∫
M

[
F +DΦev

c

]
3
∧ Ω3 , (3.4)

with the complex multi-form Φev
c = iS− iGaωa− iTα ω̃αand the cohomology bases {ωa} ∈

H1,1(M) and {ω̃α} ∈ H2,2(M). The twisted differential D is defined by

D = d−H ∧ −F ◦ −Q • −R x , (3.5)

where the operators appearing in (3.5) implement the mapping

H ∧ : p-form→ (p+ 3)-form , F ◦ : p-form→ (p+ 1)-form ,

Q • : p-form→ (p− 1)-form , R x : p-form→ (p− 3)-form .
(3.6)

One can be more specific about the action of D after introducing a symplectic basis for the

third cohomology H3(M) of the Calabi-Yau threefold. Eventually the non-vanishing flux

components5 can be summarized by:

F H F Q

{fλ, f̃λ} {hλ, h̃λ} {fλa, f̃λa} {q α
λ , q̃

λα}
(3.7)

where λ = 0, . . . , h2,1
− and the indices a, α label the moduli Ga, Tα, respectively. Let us

stress that all these fluxes, coupling to moduli of the closed string sector, are quantized

and may only take integer values.

Introducing the periods Xλ and Fλ of the holomorphic three-form Ω3, the complex

structure moduli are determined by U i = −iX i/X0. In terms of the periods, the superpo-

tential (3.4) simplifies to

W =−
(
fλX

λ − f̃λFλ
)

+ iS
(
hλX

λ − h̃λFλ
)

+ iGa
(
fλaX

λ − f̃λaFλ
)
− iTα

(
qλ
αXλ − q̃λαFλ

)
.

(3.8)

Apparently the superpotential depends only linearly on the moduli S, Ga, Tα and in

particular the Kähler moduli couple to non-geometric fluxes at tree-level. Together with

5It turns out that the purely non-geometric RIJK flux does not appear in the superpotential.
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the perturbative Kähler potential at large volume and small string coupling

K = − log

(
−i
∫
M

Ω3 ∧ Ω3

)
− log

(
S + S

)
− 2 logV , (3.9)

where V denotes the overall volume of the Calabi-Yau threefold M in Einstein frame, the

flux-induced F-term scalar potential of the moduli in the four-dimensional supergravity

theory is given by

VF = eK
(
KIJDIWDJW − 3

∣∣W ∣∣2) , (3.10)

with Kähler metric KIJ = ∂I∂JK and Kähler-covariant derivative DIW = ∂IW+(∂IK)W .

In general, this scalar potential stabilizes all the moduli and generates flux-dependent mass

terms for them.

The NS-NS fluxes also give rise to generalized Bianchi identities and to Freed-Witten

anomaly cancellation conditions. Let us remark that for the examples to be discussed in

this paper, these will all be satisfied. Let us finally remark that most non-geometric type

IIB fluxes considered in this paper would correspond to geometric fluxes in the T-dual IIA

compactification.

3.2 Closed string model: C1

Let us revisit the most simple model of tree-level flux induced moduli stabilization, that

only contains the two always present moduli, the axio-dilaton S = s + ic and the overall

volume modulus T = τ + iρ. This exactly solvable example already reveals the main

problem with achieving large field inflation for F-term axion monodromy. It can be thought

of as an isotropic T 6 with frozen complex structure modulus.

3.2.1 Moduli stabilization, masses and backreaction

At large values of the saxions (s, τ), the Kähler potential at leading order is given by

K = − log(S + S)− 3 log(T + T ) , (3.11)

and the flux-induced superpotential is chosen to be

W = −if0 + ih S + iq T . (3.12)

The resulting scalar potential reads

V =
(hs+ f0)2

16sτ3
− 6hqs− 2qf0

16sτ2
− 5q2

48sτ
+

θ2

16sτ3
(3.13)

with the linear combination θ = hc + qρ. This field will be our inflaton candidate. There

exists a non-supersymmetric, tachyon-free AdS minimum at

τ0 =
6 f0
5q

, s0 =
f0
h
, θ0 = 0 . (3.14)

The masses for the canonically normalized fields are

M2
mod,i = νi

hq3

f20
, (3.15)

with ν ∈ {0, 0.43, 0.21, 0.78}. The cosmological constant in the minimum is V0 = − 25
216

hq3

f20
.
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Figure 1. The backreacted potential Vback(Θ) (after adding a constant uplift) depending on the

proper field distance.

Thus, the mass of the axion θ is parametrically of the same order as the masses of the

two saxions. Comparing to section 2.3, this means that λ = O(1) and the backreaction

should set in right at the Planck-scale. Indeed, for field excursions in the direction θ, the

backreaction on the saxions can be exactly solved and gives

τ0(θ) =
3

20q

(
4f0 +

√
10θ2 + 16f20

)
,

s0(θ) =
1

4h

√
10θ2 + 16f20 .

(3.16)

Looking at the discriminant, it is clear that beyond the critical field-value θc =
√

8
5 f0 the

backreaction becomes substantial. The kinetic term for θ is

Lax
kin =

3

4(3h2s2 + q2τ2)
∂µθ∂

µθ , (3.17)

implying that for θ < θc the canonically normalized axion is Θ = 5√
74

θ
f0

. The critical proper

field distance is flux independent Θc =
√

20
37 ≈ 0.73, i.e. for the canonically normalized

axion the backreaction becomes substantial right at the Planck-scale. The backreacted

potential as a function of the proper field distance is shown in figure 1. Note that we added

a constant uplift.

It is evident that beyond Θc the potential is not any more of quadratic form and therefore

one cannot realize large field inflation. Indeed, in the trans-Planckian regime one finds

Lax
kin =

2

γ2

(
∂θ

θ

)2

, (3.18)

with γ = 2
√

7
5 . The canonically normalized field can be defined as

Θ =
2

γ
log

(
θ

2θc

)
. (3.19)

– 14 –



J
H
E
P
0
7
(
2
0
1
7
)
1
4
5

This is precisely the logarithmic behavior (2.10) satisfying λ ∼ O(1) expected from the

Refined Swampland Conjecture. After assuming a constant uplift by |V0|, the scalar po-

tential reads

Vback(Θ) = |V0|

[
1−

(
2θc
θ

)2
]

= |V0|
[
1− e−γΘ

]
. (3.20)

Like the Starobinsky model, Vback is a plateau potential for Θ > Θc.

Therefore, the strong backreaction led to a significant flattening of the potential, the

initial quadratic potential of the axion became plateau-like. If Hinf < Mmod < MKK could

be parametrically guaranteed, the potential (3.20) by itself could still support inflation

with a resulting lower value of the tensor-to-scalar ratio

r =
8

(γNe)2
∼ O(10−3) . (3.21)

This looks promising at a first glance, but as we work just at the limit of having control,

there are three serious caveats:

• In the trans-Planckian regime, the KK-masses show the expected exponential drop-off

MKK ∼
1

τ
∼ q

f0
exp

(
−γ

2
Θ
)
, (3.22)

while the inflationary mass scale Minf = |V0|
1
4 stays constant on the plateau. Using

the relation V0 = 3M2
plH

2
inf , one finds for the ratio

MKK

Hinf
∼ 1

(q h)
1
2

exp
(
−γ

2
Θ∗

)
. (3.23)

Thus we parametrically get Hinf
&
p
MKK so that we are outside the regime of control-

ling the effective action.

• We were assuming here a constant uplift potential, which is however not realistic, as

in string theory all known potentials drop-off at infinity. The task then is to identify

a realistic uplift term that still admits the plateau up to the pivot scale before it

drops-off towards larger values for the inflaton. This issue will be addressed below in

section 3.2.2.

• Since the mass of the inflaton candidate is of the same scale as the mass of the other

moduli, the latter cannot really be integrated out and one has to treat the model in

the framework of multifield inflation. This will affect the trajectory and the scalar

potential along it.

Thus, this example confirms in an analytically deducible way the statement of the

Refined Swampland Conjecture even for the case of axionic fields with a shift symmetry.

It is the backreaction onto the saxionic fields that limits the parametrically controllable

field range to be smaller than the Planck-scale. We have also identified a tower of Kaluza-

Klein modes that become exponentially light in the trans-Planckian regime. Hence, even

Starobinsky-like inflation on a sufficiently broad plateau is not under parametric control.
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As we will explain next, to get such a plateau is also challenged from another perspec-

tive, namely by considering more realistic (non-constant) uplift terms. This latter point

has also been observed in [23] for a class of models including instanton contributions, like

for KKLT or the Large Volume Scenario.

3.2.2 A semi-realistic uplift

So far we were just assuming a constant uplift. Due to the backreaction this implied to a

constant plateau for Θ → ∞. For models with a realistic uplift potential, like D3 branes

in a warped throat, such a behavior will not happen. Instead there will be another critical

value Θup beyond which the uplift term dominates the backreaction.

For the simple closed string model from section 3.2, it is found that an uplift potential

via D3 branes in a warped throat

VD3 =
ε

τ2
(3.24)

does not work as the full potential VF +VD3 does not admit tachyon-free Minkowski-minima

(after fine-tuning of the warp factor ε). In principle, an assumed uplift potential

Vup =
ε

s
(3.25)

works much better.6 Here, the full potential provides a tachyon-free Minkowski-minimum

for the values

τ0 =
3 f0
2q

, s0 =
7f0
2h

, θ0 = 0 , ε =
2q3

9f0
. (3.26)

Note that in the perturbative regime ε becomes small. The masses for the canonically

normalized fields scale in the same way as in the non-supersymmetric AdS minimum

M2
mod,i = νi

hq3

f20
, (3.27)

with ν ∈ {0, 0.55, 0.10, 0.87}.
When computing the backreaction of a large field excursion of θ onto the saxions, one

finds that the scaling (3.16) only holds up to a threshold scale

θup ≈ 2 f0 , (3.28)

above which the uplift term becomes dominant. The consequence of this behavior is that

for values θ > θup, the local minimum for the saxions is not present any more, i.e. the valley

one is following up comes to an end at θup. This is shown for a concrete choice of fluxes in

figure 2. In this example, the critical scale θup is between θc (the convex-concave turning

scale of the potential) and the scale where one reaches the top of the plateau. Therefore,

for this more realistic non-constant uplift potential, including the backreaction, one can

never reach the top of the plateau. Of course, this is just a simple model but, together

with the observations made in [23], we think that it exemplifies another generic obstacle

6We do not know which string theoretic, supersymmetry breaking object can lead to this functional form

of an uplift potential.
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Figure 2. We plotted on the left the backreacted potential Vback(θ) including the uplift and

on the right a slice of the potential V (θ, s0(τ), τ). Both pictures show the destabilization of the

inflationary valley.

to realize plateau-like large field inflation in string theory. We will come back to this point

when we discuss large field inflation in KKLT and Large Volume Scenario in section 4.4.

Therefore, it seems clear that one cannot drive inflation in the regime Θ > Θc. After

having familiarized ourselves with the relevant issues that appear when one wants to realize

large field inflation in a controlled manner, let us now challenge the Refined Swampland

Conjecture by trying to follow a recent idea on how one could achieve a trans-Planckian

critical field value Θc � 1 by introducing open string fields. Notice that we also found a

closed string model showing this feature when incorporating an axionic odd G modulus.

As it turned out, this model suffers, however, from the same issues which we will describe

in the next section about open string moduli.

4 Open string models

The example in the previous section featured Θc = O(1), providing support for the Refined

Swampland Conjecture. In this example, Θc was flux independent and we had no chance to

tune it larger. The aim of this central section of this paper is to provide examples involving

brane deformation moduli that admit an in principle tunable flux dependent Θc.

4.1 Stabilization of D7-brane moduli

Again, before starting a detailed analysis of models including open string moduli, let us

briefly review the necessary conceptual ingredients.

4.1.1 D7-brane deformation moduli

Consider a space-time filling D7-brane with gauge group U(1) wrapping a 4-cycle C4 of the

orientifolded Calabi-Yau threefoldM. The spectrum of the D7-brane leads to two different

types of open string moduli in the 4d effective supergravity theory. On the one hand, there

are moduli from deformations transverse to the D7-brane, i.e. D7-brane position moduli,

and on the other hand we have Wilson lines of the U(1) gauge field on the 4-cycle C4, see

for instance [65]. As shown in [66], Wilson line moduli are not stabilized by fluxes which
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makes them unattractive for our setup. For that reason we are exclusively focusing on

D7-brane position moduli denoted by

ΦI = ϕI + iθI with I = 1, . . . , h2,0
− (C4) . (4.1)

If the transverse space of the D7-brane supports 1-cycles, like in a toroidal compactification,

the above real fields φI and θI enjoy a shift symmetry. For simplicity we restrict our analysis

in the following to the case of a single D7-brane with one complex position modulus Φ.

It is well-known that open string moduli lead to a redefinition of the holomorphic chiral

variables. Whereas Wilson line moduli change the Kähler moduli, the D7-brane position

moduli we are employing here, modify the axio-dilaton S [65, 67, 68]. For a D7-brane

wrapping a 4-cycle T 4 inside T 6 = T 2 × T 4, the redefinition reads

S −→ S − 1

2
Φ

Φ + Φ

U + U
, (4.2)

with U being the complex structure modulus of the transverse T 2. This can be used to

determine the Kähler potential. In our prototype models we will compactify on an isotropic

six-torus, whose closed string Kähler potential reads

Kcl = −3 log(T + T )− log(S + S)− 3 log(U + U) . (4.3)

Taking now also the open string modulus of the D7-brane into account, according to the

redefinition of eq. (4.2), one arrives at the Kähler potential we will use for our prototype

models [65]

Kop = −3 log(T + T )− 2 log(U + U)

− log

[
(S + S)(U + U)− (Φ + Φ)2

2

]
.

(4.4)

It is known that α′ corrections from the Dirac-Born-Infeld action of the brane give rise

to a non-canonical kinetic term for the inflaton which leads to an additional flattening of

the effective scalar potential [22, 44]. These corrections will appear as higher derivative

corrections to the above Kähler potential and can have implications in the determination

of the critical value Θc. However, since we do not have control over all analogous α′

corrections in the closed string sector, we will restric our analysis to leading order in α′ in

both open and closed string sectors.

Let us finally specify the superpotential we are working with. It was argued in [19, 22]

that D7-brane position moduli give rise to a superpotential of the form

W ⊃ µΦ2 . (4.5)

Its microscopical origin can be deduced from reducing the DBI and Chern-Simons actions of

the D7-brane or from the T-dual type IIA description with D6-branes [42, 56]. Additional

motivation of this superpotential arises from F-theory where complex structure and D7

position moduli are put on an equal footing. Let us elucidate this in more detail.
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4.1.2 Superpotential for brane deformations

Recall that the D7-brane is wrapping a homological 4-cycle C4 in a CY threefold ambient

spaceM and is embedded via a map ι : C4 →M. In the perturbative type IIB superstring

theory the relevant F-term potential is (see e.g. [69])

Wo =

∫
Γ5

Ω3 ∧ (ι∗B + F ) + ∆Wo (4.6)

where Γ denotes the 5-chain swept out by pulling the D7-brane off the orientifold O(7)-

plane. Moreover, ι∗B denotes the pull-back of the ambient NS-NS two-form B onto the

world-volume of the D7-brane. The gauge field strength F on the brane can be expanded

into a basis of H2(C4,Z) and splits into two-cocycles that are pull-backs from two-cocycles

on M and those whose push-forward to M is trivial, i.e. F = FM + F̃ .

Clearly, Γ5 depends on the deformation moduli Φ ∈ H0(C4, NC4) = H2,0(C4,Z) and

the induced obstruction appears when by pulling off the brane from the O7-plane a (0, 2)-

component of F = (ι∗B + F ) is generated. Since the CY ambient space itself does not

have any closed (0, 2) form, this can only happen if dB = H 6= 0 or for the flux com-

ponents F̃ that are cohomologically trivial on M. In a toroidal set-up, the generation

of such an obstruction via a non-trivial H-flux was demonstrated explicitly in [70]. The

discussion of the F̃ fluxes appeared in [67] and for toroidal configurations does not provide

a contribution to Wo.

Note that in type IIB the co-chain ι∗B (for H = dB) is not necessarily quantized as

an integer. It was argued in [19] that by taking the weak coupling limit of F-theory, an

additional term

∆Wo =
i

2π

∫
M
H ∧ log

(
PD7

PO7

)
Ω3 (4.7)

appears. Here PD7 and PO7 are polynomials in the coordinates on the base that vanish at

the location of the D7-branes and O7-planes, respectively. In particular, they depend on

the complex structure and brane moduli. They arise due to the fact that in F-theory the

axio-dilaton is not constant but

τ = τ0 +
i

2π
log

(
PD7

PO7

)
(4.8)

in the orientifold limit. In F-theory all fluxes reside in G4 ∈ H4(Y,Z) and are quantized.

Therefore, the extra term ∆Wo in the type IIB superpotential can be considered to be

necessary for compensating the non-quantization of the term involving ι∗B.

Thus, the naive type IIB superpotential (that treats the brane as a probe, thus ignoring

backreaction effects) presumably admits non-quantized open string fluxes, whereas in the

full F-theory treatment the quantization of all open and closed string fluxes is manifest.

Since the Kähler potential that we use is motivated by a single D7-brane wrapping the

isotropic T 6, let us lay out what the form of the superpotential could be.

4.1.3 Superpotential for D7-brane on a six-torus

Consider a T 6 = (T 2)3 and on each T 2 we introduce a complex structure via za = xa+iUa ya
with a = 1, 2, 3. Moreover, we introduce a D7-brane wrapping the first two T 2 factors. Since
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this brane does not contain any 2-cycles that are trivial in the bulk T 6, the only source for

a brane superpotential is a non-vanishing H-flux. Such a flux will however generate both

a bulk and a brane superpotential.

Using the conventions and techniques from [70], let us see what type of terms can in

principle be generated. Turning on the general H3 form flux

H = h0 dy1 ∧ dy2 ∧ dy3

+ h1 dx1 ∧ dy2 ∧ dy3 + h2 dy1 ∧ dx2 ∧ dy3 + h3 dy1 ∧ dy2 ∧ dx3

+ h̃1 dy1 ∧ dx2 ∧ dx3 + h̃2 dx1 ∧ dy2 ∧ dx3 + h̃3 dx1 ∧ dx2 ∧ dy3

+ h̃0 dx1 ∧ dx2 ∧ dx3 ,

(4.9)

introduces a bulk superpotential

Wb =
(
h0 − ih1U1 − ih2U2 − ih3U3 − h̃1U2U3

− h̃2U1U3 − h̃3U1U2 + ih̃0U1U2U3

)
iS .

(4.10)

Here all fluxes are integers and, since the H-fluxes do have one leg on each T 2 factor, the

Freed-Witten anomaly cancellation condition
∫

D7H = 0 is satisfied. In order to find the

open string superpotential, we restrict the three-form onto the brane-worldvolume

BD7 = h0 y3 dy1 ∧ dy2 + . . .+ h̃0 x3 dx1 ∧ dx2 . (4.11)

Now, we have to check whether this contains a (0, 2) component. Indeed, we find

B
(0,2)
D7 = ω(0,2)

[
∂SWb

2Re(U3)
(Φ− Φ) +

(
− h3 + ih̃1U2 + ih̃2U1 + h̃0U1U2

)
Φ

]
(4.12)

where Φ = z3 and

ω(0,2) =
dz1 dz2

4 Re(U1)Re(U2)
(4.13)

denotes the (0, 2)-form on the worldvolume of the D7-brane. On the supersymmetric locus

∂SW = 0 the (0, 2) component of B depends holomorphically on the brane position as

B
(0,2)
D7 =

(
− h3 + ih̃1U2 + ih̃2U1 + h̃0U1U2

)
Φω(0,2) . (4.14)

Therefore, the brane position is frozen at Φ = 0. In the full F-theory picture, where the

brane is not treated as a probe in a supersymmetric bulk, the bulk/brane superpotential

is expected to read

Wtot = ih0S + h1U1S + h2U2S + h3(U3S − Φ2)− ih̃1U2(U3S − Φ2)

− ih̃2U1(U3S − Φ2)− ih̃3U1U2S − h̃0U1U2(U3S − Φ2) .
(4.15)

As we want to deal with the most simple model, we restrict this to the isotropic torus. We

do this in two steps. First we set all complex structures to be equal, U1 = U2 = U3 ≡ U .

Then (4.15) becomes

Wtot = ih0S + (h1 + h2 + h3)US − h3Φ2 − i(h̃1 + h̃3 + h̃3)U2S

+ i(h̃1 + h̃2)UΦ2 − h̃0(U3S − U2Φ2) .
(4.16)
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Still treating the various fluxes as independent parameters, the coefficients of e.g. the US-

term and the C2-term could be disentangled. In the following, we will call this the weakly

isotropic torus. In section 4.2, we will present an exactly solvable toy model of this type.

Since it has the advantage of being exactly solvable, many of the issues about large field

excursions can be seen very explicitly.

However, thinking of the isotropic torus as proper Calabi-Yau with only one complex

structure modulus, one would not expect to have more components of the H-flux available

than the number of three cycles, that would be b3 = 4. This is the reason why for the

strongly isotropic torus, we also restrict the fluxes to be symmetric, i.e. h1 = h2 = h3 ≡ µ1,

h̃1 = h̃2 = h̃3 ≡ µ2 and h̃0 ≡ µ3. In this case the superpotential (4.15) becomes

Wtot = ih0S + µ1(3US − Φ2)− iµ2(3U2S − 2UΦ2)− µ3(U3S − U2Φ2) (4.17)

and a UnΦ2 term is always accompanied by a corresponding Un+1S term. We will also

discuss examples of this more realistic type in section 4.3.

4.1.4 Criteria for models with tunable Θc

The purpose of introducing open string fields relies on extending our analysis to models

with a tunable flux-dependent critical value Θc. Then, one might be able to delay the

backreaction and the consequent exponential drop-off of the massive states to a trans-

Planckian value for the inflaton Θc > 1. As first remarked in [41], this requires the

minimum of the potential to satisfy the following condition:

Θc will be tunable if one can set the inflaton mass to zero without destabilizing

the other scalars.

In other words, one needs to engineer a flat direction which is stabilized by an additional

subleading flux µ in a second step. The new minimum will correspond then to the old

minimum (without the inflaton) corrected by a term proportional to µ. This is precisely

the approach that was also followed in [31] and for the flux scaling models considered in [32].

It turns out that the backreacted minima for the saxions — once we move the inflaton away

from its minimum — take the following schematic form,

s = s0 + δs(θ) , δs(φ) ' λ θ (4.18)

with λ depending on the mass hierarchy as λ ∼ (MΘ/Mheavy)p. In the closed string models

of section 3 and those first analyzed in [37], the above condition is not satisfied since the

value of s0 blows up in the limit µ → 0. In those models, the critical canonical field

distance before the logarithmic behavior dominates is inevitably fixed at Θc = λ−1 = O(1)

in Planck units (or equivalently p = 0). The inclusion of open string fields allows us to

engineer models with p = 1 that satisfy the previous condition.

Let us consider the flux superpotential (4.17) of the effective theory of a D7-brane living

in a strongly isotropic torus derived in the previous section. Every term Φ2 is accompanied

by a bulk term SU . This implies that the only superpotential term for the dilaton which

is independent of Φ is the linear term ih0S. Therefore, we need to have h0 6= 0 in order
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to stabilize the dilaton while keeping θ = Im(Φ) massless. We also assume that there are

some RR fluxes stabilizing the complex structure modulus U and a non-geometric flux

stabilizing T via a superpotential term iqT . We are left then with two possibilities:

• µ1 6= 0 and/or µ3 6= 0.

As a consequence the superpotential mixes real and imaginary parts of the moduli

differently (i.e. even and odd powers of the fields), e.g.

W = ihS + µ1(3US − Φ2) + . . . (4.19)

The new minimum cannot be understood as a deformation of the old minimum pro-

portional to µ1. In particular, the orthogonal direction to the axionic combination

σ0 = hc0 + qρ0 remains unfixed in the old minimum and gets a vacuum expectation

value in the new minimum proportional to µ−1
1 . This modifies the vevs of the saxions

leading to the same parametric dependence on µ−1
1 , so that we do not recover the

old minima when setting µ1 = 0. The strong backreaction then implies λ ∼ O(1)

independently of the flux choice. A solution comes from adding a term q1UT with the

non-geometric flux satisfying q1 = qµ1/h, which vanishes when µ1 goes to zero. In

this way, the problematic axionic direction remains unfixed and the new minimum is

simply a deformation of the old minimum, giving rise to a good candidate for having

a flux-tunable λ.

• µ1 = µ3 = 0.

The only possibility to stabilize the open string modulus is now to turn on µ2, hence

W = ihS + iµ2U(3US − 2Φ2) + . . . (4.20)

This model enters within the class of flux-scaling models analyzed in [32]. The new

minimum can be understood as a deformation of the old minimum which goes to zero

when µ is vanishing. This model is thus a good candidate to obtain a λ depending

on the flux-tunable mass hierarchy.

For later convenience, we dub the first model with µ1, q1 6= 0 as O2 and analyze it

further in section 4.3. Let us remark, though, that we get the same conclusions from

analyzing the model with µ2 6= 0 and we do not include the explicit analysis simply to

avoid cluttering and repetition of results. We will also analyze an extension of O2 by

having both µ1 and µ3 non-vanishing. This allows us to discuss an example in which the

µ-parameter entering on λ is not a flux integer but an effective parameter depending also

on field vacuum expectation values. Notice that the other possibility, having both µ1 and

µ2 non-vanishing, does not really lead to an effective parameter. This is due to the relative

factor of i =
√
−1 in the superpotential.

In addition, one can also consider the weakly isotropic torus (4.16) which allows us to

drop the condition of having the same flux parameter for the SU and Φ2 terms. In this

manner we can stabilize the dilaton independently of the inflaton, without the need of a

linear term ihS. The new minimum will be a deformation of the old minimum, yielding
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a good candidate for having again a tunable flux-dependent λ. Due to its computational

simplicity, we will first analyze this model, dubbed as O1, in section 4.2, and leave the

model O2 for section 4.3.

Our analysis will show that, in spite of having in principle a tunable flux dependent

λ, the flux choice required to delay backreaction cannot be done without losing parametric

control of the effective theory. In particular, by requiring a mass hierarchy leading to λ < 1,

the moduli masses become heavier than the Kaluza-Klein scale.

4.2 Open string model: O1

Consider now the so-called STU -model extended by a complex open string modulus Φ

that parametrizes the transversal deformation of the D7-brane. Here the four complex

moduli are

S = s+ ic , T = τ + iρ , U = u+ iv , Φ = ϕ+ iθ (4.21)

where the imaginary parts are axion-like scalars. At large values of the saxions (s, τ, u),

the Kähler potential at leading order is given as

K = −3 log(T + T )− 2 log(U + U)

− log
[
(S + S)(U + U)− 1

2(Φ + Φ)2
]
.

(4.22)

As we have seen, the model could be realized as a D7-brane wrapping a four-cycle T 4 on

an isotropic T 6 = (T 2)3. Now we turn on fluxes to generate the superpotential

W = f0 + 3f2 U
2 − hS U − q T U − µΦ2 . (4.23)

Note that for the strongly isotropic torus, the fluxes h and µ would not be independent.

Thus, this model only makes sense for the weakly isotropic torus and could therefore still

be in the swampland. Nevertheless, as we will see, it reveals many interesting features and

hence is a very good toy model to sharpen our tools. Furthermore, in a more complicated

Calabi-Yau, one could aim to disentangle the h and µ fluxes via additional bilinear couplings

of the dilaton to other complex structure moduli that contribute to the first but not to the

second one. Therefore, it is a good candidate to exemplify the problems arising even if one

manages to get h 6= µ. Let us mention that this model is related via mirror-symmetry to

a type IIA model with only geometric fluxes.7

7Applying three T-dualities in the three x-directions (of (T 2)3), one gets a type IIA flux model, where

the D7 becomes a D6-brane and the complex structure moduli get exchanged with the Kähler moduli. The

Kähler potential reads

K = −3 log(U + U)− 2 log(T + T )− log
[
(S + S)(T + T )− 1

2
(Φ + Φ)2

]
, (4.24)

and the superpotential

W = f6 + 3f2 T
2 − f0 S T − f1 U T − µΦ2 . (4.25)

Here f6 denotes a R-R six-form flux, f2 a R-R two-form flux and fi geometric fluxes.

– 23 –



J
H
E
P
0
7
(
2
0
1
7
)
1
4
5

4.2.1 Moduli stabilization and masses

This model admits an analytically solvable non-supersymmetric tachyon-free AdS mini-

mum at

s0 =
2

7
4 · 3

1
2

5
1
4

(f0 f2)
1
2

h
, τ0 =

5
3
4 · 3

1
2

2
1
4

(f0 f2)
1
2

q

u0 =
1

10
1
4 · 3

1
2

(
f0
f2

) 1
2

, ϕ0 = 0

v0 = hc0 + qρ0 = θ0 = 0 ,

(4.26)

leaving one axionic direction unconstrained. The value of the scalar potential in the AdS

minimum is

V0 = − 1

120 · 3
1
2 · 10

1
4

h q3

f
3
2
0 f

1
2
2

. (4.27)

For the canonically normalized mass-matrix we obtain

M2
closed = νi

h q3

f
3
2
0 f

1
2
2

(4.28)

with ν ∈ {0, 0.0001, 0.0019, 0.0029, 0.0117, 0.0162} and

M2
φ = 0.0022

[
1 + 14

µ

h
+ 24

(µ
h

)2
]
h q3

f
3
2
0 f

1
2
2

' 0.0022
h q3

f
3
2
0 f

1
2
2

M2
θ = 0.0065µ

(3.1623 + 8µh )q3

f
3
2
0 f

1
2
2

' 0.0205
µ q3

f
3
2
0 f

1
2
2

(4.29)

where on the right hand side we assumed µ/h � 1. Therefore, in this regime the open

string axion θ is parametrically lighter than all the other massive moduli, indeed

Mheavy

MΘ
∼

√
h

µ
= λ−1 . (4.30)

Comparing this to the relation (2.13) from the general discussion of the Swampland Con-

jecture, one expects that λ =
√
µ/h is the now flux dependent parameter that controls the

backreaction of the inflaton onto the other moduli.

4.2.2 Backreaction

We can now analyze the model further, in particular to relate to the general swampland

discussion in section 2.3.

Since this model features a parametrically light axion mass, we expect that the back-

reaction in the slow-role regime is also under control. Let us analyze this in more detail

under the assumption λ� 1. Up to subleading corrections of order O(λ2), the conditions
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for the backreacted minima can be solved

s0(θ) ∼ 2
7
4 3

1
2

5
1
4

(f0 + µθ2)
1
2 f

1
2
2

h
, τ0(θ) ∼ 5

3
4 3

1
2

2
1
4

(f0 + µθ2)
1
2 f

1
2
2

q

u0(θ) ∼ 1

10
1
4 3

1
2

(
f0 + µθ2

f2

) 1
2

(4.31)

with all other fields sitting in their minimum at zero. Thus, the critical value of θ where

the backreaction becomes significant is

θc =

√
f0

µ
. (4.32)

The kinetic term for the inflaton becomes

Lax
kin = KΦΦ ∂µθ∂

µθ =
1

8

√
5

2

h

f0 + µθ2
(∂θ)2 (4.33)

so that the critical value for the canonically normalized inflaton field Θ is

Θc = γ

√
h

f0
θc = γ

√
h

µ
= γλ−1 (4.34)

with γ = 1
2

(
5
2

) 1
4 = 0.63. Therefore, from this perspective, for λ � 1 and Θ � Θc the

backreaction can be neglected and one gets the effective potential for the inflaton (after

adding a constant uplift)

Veff '
µhq3

f
7
2

0 f
1
2

2

(
2f0θ

2 + µθ4
)
' µhq3

f
5
2

0 f
1
2

2

θ2 ' µq3

f
3
2

0 f
1
2

2

Θ2 . (4.35)

Note that the quartic term is parametrically suppressed by a factor θ2/θ2
c relative to the

quadratic one. Thus, it seems that by parametrically choosing Θc ∼ λ−1 > 10 one can

achieve a stringy model featuring large field inflation with a quadratic potential. This is

consistent with the observation already made in [42] for a more complicated, only numeri-

cally treatable open string model (without non-geometric fluxes).

Beyond the critical value, the kinetic term for the inflaton takes the form

Lax
kin =

1

8

√
5

2

h

µ

(
∂θ

θ

)2

(4.36)

so that the canonically normalized inflaton shows the logarithmic behavior

Θ = Θc log

(
θ

θc

)
' 1

λ
log θ '

Mheavy

MΘ
log θ . (4.37)

Let us mention that, in this regime, the backreacted scalar potential (after constant uplift)

becomes

Vback ' |V0|

[
1−

(
θc

θ

)3
]

= |V0|
[
1− exp

(
−3

Θ

Θc

)]
. (4.38)

Thus, in this large field regime Θ� Θc the backreacted potential is not polynomial but of

Starobinsky-like type.
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4.2.3 Mass scales and the swampland conjecture

From the previous section, the model seems promising to realize large field inflation with an

effective quadratic potential once we are able to choose the fluxes such that Θc ∼ λ−1 � 1

and Θ < Θc. Thus we need h/µ = O(102). This could easily be achieved, if the flux µ could

be tuned much smaller than one. However, the origin of this flux in F-theory suggests that

also this open string flux is a quantized integer (see section 4.1.2). In this case, one can

only introduce a large flux h > O(102).

The question is whether such large fluxes are consistent with the use of the low-energy

effective field theory that we employed for our analysis. To see what happens let us consider

the various mass scales, like string scale, Kaluza-Klein scales, heavy moduli masses and

the inflaton mass. As mentioned in the beginning of this section, we will not be concerned

with model dependent numerical prefactors, but will focus on desired mass hierarchies that

are guaranteed or spoiled parametrically.

Thus, up to numerical coefficients, the relevant masses scale in the following way with

the fluxes (recall that we set Mpl = 1): the string scale is

M2
s ∼

1

τ
3
2 s

1
2

∼ h
1
2 q

3
2

f0 f2
. (4.39)

Moreover, considering our model as being realized on the isotropic T 6, we now have two

Kaluza-Klein scales

M2
KK ∼

1

τ2
u±1 , (4.40)

for u > 1, yielding a heavy and a light Kaluza-Klein mass

M2
KK,h ∼

q2

f
1
2
0 f

3
2
2

, M2
KK,l ∼

q2

f
3
2
0 f

1
2
2

. (4.41)

Recall that the mass of the heavy moduli and the inflaton scaled as

M2
mod ∼

h q3

f
3
2
0 f

1
2
2

, M2
Θ ∼

µ q3

f
3
2
0 f

1
2
2

. (4.42)

Therefore, one gets

M2
s

M2
KK,h

∼
(
hf2
qf0

) 1
2

. (4.43)

Thus, by choosing the fluxes {f0, f2, h, q} all of the same size, parametrically one can still

keep all moduli at the boundary of the perturbative regime and have the heavy KK-scale

parametrically not bigger than the string scale, i.e. Ms
'
p
MKK,h.

To relate the mass structure of this model to the Swampland Conjecture, reviewed in

section 2.3, we can also evaluate the various mass-scales in the large field regime. Due

to (4.31), this means that we just have to change

f0 → f0

(
θ

θc

)2

→ f0 exp

(
2

Θ

Θc

)
(4.44)
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so that the string scale becomes

M2
s = M2

s

∣∣
0

exp

(
−2

Θ

Θc

)
. (4.45)

Similarly, the KK-scales in the large field regime are

M2
KK,h = M2

KK,h

∣∣
0

exp

(
− Θ

Θc

)
, M2

KK,l = M2
KK,l

∣∣
0

exp

(
−3

Θ

Θc

)
(4.46)

and for the heavy moduli masses we obtain

M2
mod = M2

mod

∣∣
0

exp

(
−3

Θ

Θc

)
. (4.47)

Therefore, all these mass scales show the expected exponential drop off (2.9) at large values

in the field space. Thus, for very large values of Θ/Θc we have many exponentially light

states that invalidate the use of the low-energy effective action. For still moderate values

of Θ/Θc, one might argue that this by itself would not be disastrous, as long as the order

is preserved. However, we also get

M2
s

M2
KK,h

=
M2

s

M2
KK,h

∣∣∣∣
0

exp

(
− Θ

Θc

)
(4.48)

which means that for field excursions Θ/Θc > 1 all heavy KK-states are heavier than

the string scale, i.e. MKK,h
&
p
Ms. This invalidates the usage of the low-energy effective

supergravity action.

This is all consistent with the Swampland Conjecture. The question now is whether

we also get constraints for the critical value Θc ∼ λ−1. Can it really be tuned by fluxes to

be larger than Mpl or do we find support for the Refined Swampland Conjecture that says

Θc is close to Mpl?

For this purpose, let us consider the quotient of the light KK-mass and the heavy

moduli mass
M2

KK,l

M2
mod

∼ 1

h q
. (4.49)

This ratio is independent of f0 and therefore of Θ in the large field regime. Now, we can

distinguish two cases:

1. In the case that we could tune λ small by choosing the open string flux µ small, there

is no problem with the mass hierarchies. As discussed in section 4.1.2, this would be

in principle possible if one just considers the naive type IIB form of the open string

superpotential.

2. However, in the backreacted F-theory picture µ is quantized. It is obvious that

for large H-flux h (i.e. λ � 1) the ratio (4.49) is parametrically smaller than one

and the moduli masses are heavier than the KK-mass. This spoils the usage of an

effective four-dimensional effective action for studying the stabilization of the former

massless moduli.8

8Recall that for the strongly isotropic torus, one has µ = h and therefore Θc = O(1) from the

very beginning.
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For case 2. one has λ = O(1) and consequently Θc = O(1). Thus, we found evidence

that the distance in proper field space Θ, where the logarithmic behavior sets in, is around

the Planck-scale and cannot be much increased without invalidating the effective theory.

In addition, this means that the inflaton cannot be kept parametrically lighter than the

other moduli. Therefore, integrating out the latter first is not a self-consistent approach.

We emphasize that this is precisely what the Refined Swampland Conjecture states.

With Θc = O(1) for trans-Planckian field excursions one gets the plateau-like poten-

tial (4.38). Analogous to the former closed string example, for the ratio of the KK-scale to

the Hubble scale one finds

MKK,l

Hinf
∼ 1

(q h)
1
2

exp

(
−3Θ∗

2Θc

)
. (4.50)

We again find the parametric relation Hinf
&
p
MKK,l. Having KK-modes lighter than the

Hubble scale, spoils the possibility of realizing large field plateau-like inflation in a con-

trolled way.

4.3 Open string model: O2

Let us now consider a model on the strongly isotropic torus. Unfortunately, it is not exactly

solvable, but the intuition we gained from the previous examples, allows us to extract the

value of λ at least in a perturbative approach. Here we follow the procedure described

in section 4.1.4 and laid out in [31, 32], i.e. in a first step we freeze all moduli except the

axionic inflaton candidate. Then we scale these fluxes up and introduce an additional order

one flux to freeze the inflaton. As long as the initial values of the moduli are shifted only

slightly, we can integrate them out and determine an effective potential for the inflaton.

This allows us to read off the ratio of the heavy moduli masses and the inflaton masses.

From the former analysis, we expect that this ratio is directly related to Θc = λ−1, the

scale which determine the backreaction.

4.3.1 Moduli stabilization and masses

The model is defined by the same Kähler potential (4.22) and the superpotential

W = Λ
(
if1U + ĩf0 U

3 + ih S + iq T
)
− µ1 (3US − Φ2)− q1 3UT , (4.51)

where Λ is a large scaling factor of the four fluxes that, in the first step, will fix all four

saxions and two axionic directions. It turns out that the effective approach is only justified

if one choose hq1 − qµ1 = 0, i.e. that only the axionic combination hc + qρ appears in

the superpotential. Thus, the orthogonal combination will remain massless. Otherwise,

we would not recover the old minimum when setting µ1 = 0 and the strong backreaction

would imply Θc ∼ O(1) from the very beginning.
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In the first step, we set µ1 = q1 = 0 and find that there exist a tachyon-free non-

supersymmetric minimum at

s0 =
2

5
4 · 5

1
2

3
9
4

f
3
2
1

h f̃
1
2
0

, τ0 =
5

1
2

2
3
4 · 3

5
4

f
3
2
1

q f̃
1
2
0

u0 =
5

1
2

2
1
4 · 3

3
4

(
f1

f̃0

) 1
2

, ϕ0 = 0

v0 = hc0 + qρ0 = 0 ,

(4.52)

leaving one axionic direction unconstrained. The masses of the massive moduli are all of

the same scale

M2
heavy ∼

Λ2 h q3 f̃
5
2
0

f
9
2
1

. (4.53)

In the second step we now scale Λ up and turn on the small fluxes µ1 and q1. Since the

axion θ = Im(Φ) only appears in these extra term in W , we expect that it receives a

small mass. In order to estimate it, we integrate out the former stabilized heavy moduli

and compute an effective scalar potential for θ. In this regime, the canonically normalized

mass of the axion Θ is

M2
Θ ∼

µ2
1 q

3 f̃
3
2
0

h f
7
2
1

, (4.54)

so that, for the scale where the backreaction is expected to become substantial, we obtain

Θc ∼
Mheavy

MΘ
∼ Λh f̃

1
2
0

µ1 f
1
2
1

� 1 . (4.55)

This is large for a sufficiently large flux-scaling factor Λ. Note that at this stage, Θc is flux

dependent and by appropriate choices can be tuned large.

As in the previous example O1, let us compute the various mass scales. We obtain for

the string scale, the heavy and light KK-scales in the minimum

M2
s ∼

h
1
2 q

3
2 f̃0

f31
, M2

KK,h ∼
q2 f̃

1
2
0

f
5
2
1

, M2
KK,l ∼

q2 f̃
3
2
0

f
7
2
1

. (4.56)

For the ratio of the string and the heavy KK-scale one finds

M2
s

M2
KK,h

∼

(
h̃f0
qf1

) 1
2

� 1 , (4.57)

that we require to be parametrically larger than one. However, the ratio of the light

KK-scale and the heavy moduli mass is given by

M2
KK,l

M2
heavy

∼ 1

Λ2 q2

(
qf1

h̃f0

)
.
p

1 (4.58)

– 29 –



J
H
E
P
0
7
(
2
0
1
7
)
1
4
5

which becomes parametrically small for large Λ. Therefore, even to get all the high scales

in the correct order, we can at best work at the boundary of parametric control, where all

fluxes are of order O(1). However, in this case also the critical field distance becomes of

order one Θc = O(1) for quantized flux µ1.

The only possible loop-hole could be that µ1 is not quantized and can be significantly

smaller than one. This will be analyzed next.

4.3.2 A comment on tuning in the landscape

From the discussed examples it is clear that a possible loop-hole is the assumption about

the quantization of the fluxes. Of course, all the fluxes in the initial superpotential are

quantized but, following the idea of the landscape, one could imagine that it is a linear

combination of terms that leads to an effective flux µeff that eventually appears in Θc.

This effective flux could depend, not only on flux integers but, also on vacuum expectation

values of other fields. Here we present a model which exemplifies the above idea and discuss

the difficulties to get a substantial tuning.

In the framework of the isotropic torus, we can extend the model O2 by additional

flux induced terms9

W = Λ
(
if1U + ĩf0 U

3 + ih S + iq T
)
− µ1 (3US − Φ2)− q1 3UT

+ µ3 U
2(US − Φ2) + q3 U

3T .
(4.59)

Again, to control the minimum of the potential we choose the fluxes such that only the

combination hc + qθ appears in W, i.e. hq1 − qµ1 = hq3 − qµ3 = 0. This guarantees that

all Bianchi identities are satisfied, as well. Integrating out the heavy moduli, the mass of

the inflaton takes the same form as in (4.54)

M2
Θ ∼

µ2
eff q

3 f̃
3
2
0

h f
7
2
1

, (4.60)

but with an effective flux parameter

µ2
eff = µ2

1 −
5

12
√

6

(
f1

f̃0

)
µ1 µ3 +

25

54

(
f1

f̃0

)2

µ2
3 . (4.61)

As mentioned above, this effective parameter is also moduli dependent and therefore is

certainly not an integer. The question is whether in the perturbative regime f1 > f̃0 (so

s0, τ0 > 1), the effective flux can be non-zero and significantly smaller than one. First, for

µ1 6= 0, the effective flux µeff can be expressed as

µ2
eff =

63

64
µ2

1 +
25

54

(
f1

f̃0

)2
(
µ3 −

3
√

3

20
√

2

(
f̃0
f1

)
µ1

)2

≥ 63

64
µ2

1 (4.62)

showing that µeff is larger than 63/64 ≈ 1. For µ1 = 0, it is also clear that µeff > 25/54

giving us the total lower bound for the effective flux. Thus, we conclude that in this model

9Applying a T-duality in the three x-directions, the fluxes µ3 and q3 become non-geometric R-fluxes in

type IIA.
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one cannot substantially tune the effective flux in the landscape. As a consequence, the

critical field distance is still of order one.

Up to now, we have analyzed all possible models arising from the brane superpoten-

tial (4.17) corresponding to a single D7-brane living on an isotropic torus T 6, although

the results also apply to the case of a Calabi-Yau with a single complex structure mod-

ulus. The natural forthcoming step would be to generalize the previous idea of tuning

in the landscape to more elaborated models including more than one complex structure

modulus, with the hope of getting a more intricate effective flux parameter µeff that can

be tuned small.

However, the inclusion of more fields makes it necessary to extend the backreaction

analysis to also these new fields and the corresponding KK scales. Of course, this issue

cannot so easily be addressed in full generality, but we would like to emphasize a universal

obstacle which seems difficult to overcome even if appealing to landscape arguments. This

universal obstacle is the backreaction coming from the dilaton field. The best thing one can

intend, is to stabilize the dilaton by inducing mixing terms between the latter and other

complex structure moduli that do not couple to the open string modulus. In this way, one

can hope to decouple the scale of S and Φ and delay the backreaction. As pointed out

in [28], this tuning is in principle possible in the context of F-theory, where the D7 position

moduli and the dilaton become part of the complex structure moduli of the Calabi-Yau

four-fold. Let us remark, though, that this is precisely the mechanism underlying the model

O1, in which in principle one can get a tunable flux-dependent λ. However, as we have

seen, even in this case the model fails from realizing large field inflation. The required mass

hierarchy cannot be achieved without getting into trouble with the KK scale. Therefore,

we suspect similar results might hold for more generic models with more than one complex

structure modulus. A more thorough analysis of Calabi-Yau geometries is surely interesting

and deserves more investigation, so we leave it for future work.

4.4 Models with instanton corrections

Let us consider now the case of open string models within the framework of KKLT [60]

and Large Volume Scenario (LVS) [61]. The inflaton is still a D7-brane position modu-

lus. The Kähler moduli are not stabilized by non-geometric fluxes, though, but by non-

perturbative effects. These non-perturbative corrections can arise, for instance, from Eu-

clidean D3-branes or gaugino condensation of a stack of distant D7-branes. As in the

previous examples, the complex structure and axio-dilaton moduli will be stabilized by

R-R and NS-NS fluxes.

The backreaction of a field excursion of the inflaton onto the complex structure and

axio-dilaton moduli proceeds analogously to the previous section and leads to a logarithmic

scaling of the proper field distance at large field. The critical value at which this happens

is given by the mass ratio Mu/Mθ. In contrast to the previous models, now this value can

in principle be tuned large, because the KK-scale entering (4.49) depends on the Kähler

modulus whose stabilization is now disentangled from the stabilization of the complex

structure and axio-dilaton moduli. In fact, in the analysis of the KKLT and LVS scenarios
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we will assume a hierarchy of scales

Mu > Mτ > Mθ , (4.63)

and analyze the effective models after integrating out the complex structure and the axio-

dilaton moduli. The question is whether this effective field theory also shows the typical

control issues that we found for the previously studied models. As opposed to the previous

flux examples, here the backreaction can only be determined up to next-to-leading order.

The relevant parameter controlling when the backreaction of the inflaton field onto the

Kähler modulus becomes substantial is θc ∼ (Mτ/Mθ)
p. Notice that the saxions that

determine the kinetic term for the inflaton have already been integrated out. Therefore,

one does not see the logarithmic behavior from the swampland conjecture for very large

field excursions. However, as before, we find a potential problem that can invalidate the

possibility of large field inflation.

As already observed in [23, 71], in the presence of a dynamical uplifting term, the

backreaction on the Kähler moduli can destabilize the vacuum. If the relative displacement

of the Kähler moduli during inflation is of order one, the minimum and the maximum of

the KKLT potential merge into a saddle point so that the minimum disappears and the

theory decompactifies. This is the same effect that we also found in section 3.2.2 for an

uplift for the closed string model C1. Thus, the trajectory does not extend into the regime

θ > θc. The question is, then, whether one can parametrically obtain θc > 1, i.e. the

mass hierarchy between the inflaton and the Kähler modulus. This is an obvious challenge

for KKLT and LVS as the open string modulus is stabilized at tree-level, whereas Kähler

moduli are fixed by non-perturbative corrections.

We also believe that a full treatment of the backreaction, i.e. including the com-

plex structure and axio-dilaton moduli, would also reveal behavior from the swamp-

land conjecture.

4.4.1 KKLT scenario

Let us start analyzing the case of KKLT extended by an open string modulus Φ. The

effective theory, once the dilaton and complex structure moduli are integrated out, is given

by the Kähler potential

K = −3 log(T + T ) +
(Φ + Φ)2

2
, (4.64)

and the superpotential

W = W0 + µΦ2 +Ae−aT . (4.65)

For simplicity we have set 4su = 1 (in eq. (4.4)), as one can show that otherwise the

constraints discussed below become even stronger. Moreover, we have approximated the

Kähler potential by assuming a small real part of the open string modulus Re(Φ) = φ,

which will in fact be stabilized at zero. W0 and the Pfaffian A are determined in terms of

fluxes and the stabilized values of the complex structure moduli. In the following we make

the assumptions of KKLT, namely A = O(1) and W0 � 1. Moreover, we have in mind

that µ is quantized so that we will work in the regime W0 � µ.
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The interplay between large field inflation and KKLT moduli stabilization was already

analyzed in [23] and further examined in [42]. Here we just borrow some of the relations

derived there. The supersymmetric AdS minimum of the scalar potential is at Φ = 0 and

for a τ0 satisfying the transcendental relation

W0 = −Ae−aτ0
(

1 +
2aτ0

3

)
. (4.66)

The masses of the Kähler modulus and the inflaton θ = Im(Φ) are given by

M2
τ =

(aW0)2

2τ0
, M2

θ =
1

2τ3
0

(
µ2 + 3

2µW0

)
(4.67)

where the latter is the sum of a supersymmetric mass and a soft mass. If the inflaton

is displaced away from its minimum, the minimization condition for the Kähler modulus

changes in such a way that the minimum for τ becomes θ-dependent with

τ = τ0

[
1 +

1

2

(
θ

θc

)2

+ . . .

]
, θ2

c =
aτ0W0

µ
. (4.68)

The backreaction becomes substantial beyond the critical field distance θc. In the regime

of interest W0 � µ, the supersymmetric mass term for Mθ is dominant so that one gets

the relation

θc =

√
Mτ

Mθ
, (4.69)

i.e., as for the previous examples, large field inflation is possible once we parametrically

control the mass ratio Mτ
Mθ

> 1. Let us now analyze the two possible obstructions men-

tioned above:

• Controlling θc
From (4.68) it is already clear that one cannot get θc > 1 for µ quantized and W0 � 1

(as required in KKLT). Employing the condition (4.66), we obtain an upper bound

for the critical field distance10

θ2
c =
|A|
µ

(aτ0) e−aτ0
(

1 +
2aτ0

3

)
=
|A|
µ
F (aτ0) .

|A|
µ
. (4.70)

Thus, for A = O(1) one can get θc > 1 only for a parametrically small value of µ.

This was already noticed in [42]. Therefore, the situation is very similar to the cases

studied before, where the Kähler moduli were stabilized via fluxes. This supports

the conjecture that one cannot achieve single large field inflation in a parametrically

controlled effective theory.

• Destabilization due to dynamical uplift

As shown in [23, 42, 71], in the presence of an uplift term (which goes to zero in

10Here we used the fact that the function F (x) = x e−x
(
1 + 2x

3

)
is bounded from above by Fmax =

3 exp
(
− 3

2

)
∼ 0.67 .
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the decompactification limit) the relative displacement of the Kähler modulus δτ/τ0

cannot be made larger than one since otherwise the AdS minimum and the maximum

of the potential merge into a saddle point, destabilizing the Kähler modulus. Thus,

around the critical value θc the inflationary trajectory stops before reaching the top

of the backreacted potential.

Let us remark that, unlike in the previous models, there is no problem related to Kaluza-

Klein states becoming light. Indeed, the Kaluza-Klein scale stays heavier than the rest of

the scales as long as W0 � 1/(a
√
τ0), which is satisfied for large volume.

4.4.2 Large volume scenario

One could think that the above problems can be avoided by considering a scheme in which

W0 is not necessarily small. This is indeed one of the ideas proposed in [42] to avoid the

above control problems. As an example, we now consider the LVS scenario [61] extended

by a D7-brane position modulus Φ = φ + iθ. The important feature of LVS is that there

exists a non-supersymmetric AdS minimum in which the leading order α′-correction to the

Kähler potential is balanced against a non-perturbative correction to the superpotential.

This leads to an exponentially large overall volume V that parametrically controls the

vacuum against higher order corrections.

After integrating out the complex structure and axio-dilaton moduli, we get an effective

model for a typical swiss-cheese manifold with large and small Kähler moduli Tb and Ts,

respectively,

W = W0 +Ae−aTs + µΦ2 ,

K = −2 ln
[
(Tb + T b)

3
2 − (Ts + T s)

3
2 + ξ

]
+

(Φ + Φ)2

2
.

(4.71)

Here, ξ denotes the usual α′-correction term and W0 and A are treated as effective param-

eters of order one. In particular, denoting the overall volume by V ≈ τ
3/2
b and the small

four-cycle volume as τ = Re(Ts), in the minimum one gets for their values

V0 =
3W0
√
τ0√

2aA
eaτ0

(
1− 3

4aτ0

)
. (4.72)

The relevant mass scales for this model are given by

MV ∼
W0

V
3
2
0

, Mτ ∼
W0

V0
, MKK ∼

1

V
2
3
0

, (4.73)

where, compared to V0, we have treated the value of τ0 as a number of order one. The

requirement of having the small four-cycle Kähler modulus lighter than the Kaluza-Klein

scale already imposes an upper bound for W0,

W0 < V1/3
0 . (4.74)

The mass of the open string inflaton was derived in [23] and at leading order in 1/V it

takes the simple form

M2
θ ∼

4µ2

V2
0

. (4.75)
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The backreaction of an inflaton excursion onto the Kähler moduli has also been examined

in [23](eq. (5.21)). At leading order in 1/V, it can be expressed as

V = V0

[
1 +O(1)

µ2V0

W 2
0

θ2 + . . .

]
τ = τ0

[
1 +O(1)

µ2V0

W 2
0

θ2 + . . .

]
,

(4.76)

where the order one prefactors include powers of τ0 and a. Thus, the critical field distance

can be read of as

θc ∼
W0

µV
1
2
0

∼ MV
Mθ

, (4.77)

and, as usual, is related to the quotient of the masses. Finally, we are ready to consider

the issues we have already encountered for KKLT:

• Controlling θc
Employing the condition (4.74), we immediately arrive at the constraint

θc <
1

µV
1
6
0

(4.78)

which for quantized µ and large volume is parametrically smaller than one. Only

for very small values of µ with µ < V−
1
6 it could exceed the Planck-scale. Clearly,

this problem just reflects the naive expectation that it is hard to control an inverted

mass hierarchies, i.e. that a non-perturbative mass term should be larger than a

tree-level mass.

• Destabilization due to dynamical uplift

As for the KKLT example, it was found in [23] that in the presence of a dynamical

uplift, the overall volume gets destabilized and the theory decompactifies if the energy

during inflation is bigger than the potential barrier. This occurs when the displace-

ment of the overall volume field becomes comparable to the value at the minimum,

i.e. at θc. Therefore, the trajectory does not extend in the regime θ > θc.

Hence, LVS does not provide a better framework than KKLT in this regard. We can

conclude that for a quantized open string flux µ ≥ 1, the effective KKLT and LVS scenarios

for Kähler moduli stabilization feature the similar control issues that we already saw for

the previous example of tree-level Kähler moduli stabilization.

The loophole again comes from considering an effective µ-parameter depending on

other scalars such that it could be tuned small in the landscape. Whether this tuning is

indeed possible is still an open question and deserves more investigation. Notice that the

difficulties outlined in section 4.3.2 also apply to these models. Let us also mention that

here we are assuming that W0, A can be disentangled from the mass scale of the complex

structure moduli. But it could very well be that in a full fledge global compactification

the two parameters controlling the backreaction of complex structure and Kahler moduli

are related, which could reveal the behavior from the swampland conjecture at a lower
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scale than naively expected. Unfortunately, the global 10d action of these scenarios is not

known, so we cannot address this issue in more detail for the moment (see though [72] for

an effective analysis of the effect of field-dependent Pfaffians A).

5 Conclusions

In this paper we have critically analyzed the possibility of realizing large field inflation in

the framework of F-term axion monodromy inflation for concrete models of string moduli

stabilization. This included revisiting some of the earlier attempts [31–34], where it was

already observed that once one dials the flux parameters such that a model of single field

inflation arises, one encounters major obstacles to parametrically control the various mass

hierarchies in the chain

Mpl > Ms > MKK > Mmod > Hinf > MΘ .

It was suggested in [37, 38], that these obstacles could be related to the axionic extension of

the Swampland Conjecture, that was proposed to hold in a theory of quantum gravity. For

large field inflation, the essential parameter in this conjecture is the critical scale Θc ∼ λ−1,

beyond which a field excursion imply an infinite tower of states to become exponentially

light. The purpose of this paper was to continue the investigation initiated in [37, 38, 41, 42]

by enlarging the class of models put under the microscope of the Swampland Conjecture.

Discussing both closed and open string models with flux induced superpotentials in

the perturbative large volume regime, we found further evidence for this conjecture to hold

in string theory, once moduli stabilization is taken into account. We explicitly saw the

appearance of KK-towers of exponentially light states that could be traced back to the

backreaction of a large field excursion on the other moduli, leading to the relation for the

proper field distance Θ ∼ log(θ).

Upon the addition of a constant uplift term, the backreaction of the inflaton onto

the other moduli deforms the polynomial potential to a Starobinsky-like plateau above

Θ > Θc. However, the appearance of KK-towers invalidates the effective theory in this

regime, spoiling inflation. Figure 3 illustrates these issues for a typical backreacted axion

potential. Furthermore, in the presence of a dynamical uplift which goes to zero at infinite

volume, the minimum disappears and the trajectory destabilizes at a scale close to Θc, as

already observed in the framework of large field inflation for KKLT and LVS. The only

hope to achieve large field inflation is, thus, obtain a parametrically large value for the

critical scale Θc.

Whenever the inflationary trajectory can be understood as an original flat direction

stabilized by a subleading flux µ, the critical value Θc will depend on the mass hierarchy

between the inflaton mass and the heavy moduli masses. If the theory is well behaved in

the µ → 0 limit and the saxions are not destabilized, one can aim to delay the backreac-

tion effects by increasing the aforementioned mass hierarchy. We have carefully analyzed

effective theories arising from toroidal compactifications of type IIB in which all moduli

(including the Kähler moduli) are stabilized at tree level by fluxes. Employing these fea-

tures for promising models of large field inflation with an open string modulus, we find that
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Invalidity of effective theory

due to Swampland Conjecture

sub-Planckian

due to RSC

Starobinsky-like

Inflation

Polynomial

Inflation

Θ
Θc

V (Θ)

Figure 3. The plot depicts schematically a typical potential V (Θ) for an inflaton Θ achieved via

axion monodromy. Above some critical value Θc the backreaction of the inflaton onto the other

moduli deforms the polynomial potential to a Starobinsky-like plateau. However, in this regime the

effective theory breaks down according to the swampland conjecture. The refined version of the con-

jecture (RSC) sets Θc ∼ 1, reducing the controllable inflaton field range to sub-Planckian distances.

parametric control over the effective supergravity theory eventually required that the crit-

ical scale is just at the Planck-scale, i.e. Θc ≈ 1. Consistent with the Refined Swampland

Conjecture, we could only achieve a light axionic inflaton at the expense of spoiling the

validity of the four-dimensional effective action due to a decrease of the Kaluza-Klein scale.

We also discussed two scenarios (KKLT and LVS) where the Kähler moduli are not

stabilized at tree level by fluxes but by non-perturbative effects. Similar control issues arose

in the effective theories after integrating out the complex structure and the axio-dilaton

moduli at a higher scale.

Thus we conclude: all the previous failing attempts and the concrete string models

discussed in this paper support the Refined Swampland Conjecture [37, 38]. The take home

message is that even if the critical field value Θc at which the effective theory breaks down

is in principle a tunable flux-dependent parameter, we find that it cannot be tuned larger

than the Planck mass without losing parametric control of the effective theory in all the

examples considered so far.

Since our analysis was focusing on obtaining parametric control, we cannot exclude

that there might occur accidental coincidences where the numerical prefactors all work in

favor of seemingly generating the right hierarchy of scales. Though, in all the examples we

investigated this does not happen.

We think that it is satisfying to see that a general principle, the Refined Swampland

Conjecture, explains the failure of all previous attempts to embed the idea of F-term axion

monodromy inflation in the framework of string moduli stabilization. If true, it has huge

implications for phenomenology, implying the following result:

In string theory (quantum gravity) it is impossible to achieve a parametrically

controllable model of large (single) field inflation. The tensor-to-scalar ratio is

thus bounded from above by r / 10−3.
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It is a task for the future to gather more evidence for the conjecture or find a model that

challenges their implications. With this in mind, let us mention a few possible loop-holes

that can trigger further investigation, even though we are not very confident that they will

make large field inflation possible.

It could be that not all fluxes are quantized, as it naively seemed to arise for the type

IIB open string superpotential. Alternatively this could happen after integrating out other

more heavy moduli so that an effective parameter appears in front of a light modulus in

the superpotential. This is what one usually means by fine-tuning in the landscape. We

have analyzed a possible model of this kind within the toroidal framework, without succeed

in getting a trans-Planckian field range. However, whether this can happen in a controlled

way in a more generic F-theory compactification, remains to be seen. One related issue is

that, introducing more moduli, also means introducing more KK-scales whose sizes cannot

simply be ignored in a honest approach. Thus, by referring too early to the help of a

fine-tuning property in the landscape, the danger is that one sweeps the dangerous control

issues under the carpet.

Moreover, we were also restricting the analysis to the small string coupling, large radius

and large complex structure regime. It could be that perturbing around other points in the

moduli space works better, even though we expect that one faces serious control issues [73],

as well.
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