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1 Introduction

Effective field theories such as Heavy Quark Effective Theory (HQET) and Non Relativis-

tic Quantum Chromo-(Electro-) dynamics NRQCD (NRQED) are indispensable tools in

controlling the effects of the strong interaction in diverse areas such as flavor physics, see

e.g [1–3], and proton structure effects in hydrogen-like systems, see e.g. [4–14]. The in-

creasing experimental precision requires the knowledge of higher dimensional operators.

For example, in extracting |Vcb| from inclusive B decays, matrix elements of HQET oper-

ators of dimension seven and eight are now used [15]. These operators contain two heavy

quarks fields and four or five covariant derivatives. As was shown in [16], see also [17, 18],

at dimension seven, four spin-independent and five spin-dependent matrix elements are

needed. At dimension eight, seven spin-independent and eleven spin-dependent matrix el-

ements are needed. A natural question arises: are these all the possible operators at each

dimension? In particular it could be that semileptonic decays considered in [16] depend

only on a subset of the possible HQET operators.

The HQET and NRQCD Lagrangians up to and including power 1/M3, where M is

the mass of of the spin-half field, were given in [19]. These include operators of dimension

seven and below. Although these two theories differ in the their power counting, the

two Lagrangians can be related via field redefinitions. The dimension-seven Lagrangian

contains six spin-independent operators and five spin-dependent operators. For the spin-

dependent operators the number is the same as the numbers of the spin-dependent matrix

elements considered in [16], while the spin independent number of operators is different.

Why is there a difference and what is the relation between these two bases?

More recently, the NRQED Lagrangian up to and including power 1/M4 was calcu-

lated in [9]. It includes NRQED operators of dimension eight and below. The Lagrangian

was constructed by considering all the possible rotationally invariant, P and T even, Her-

mitian combinations of iDt, iD, E, B, and σ. The analogous construction of the NRQED

Lagrangian up to 1/M2 was explicitly demonstrated in [20]. For higher power of 1/M ,

corresponding to higher dimensional operators, this construction becomes tedious. There

can be different choices for the form of the operators. It is not immediately clear if a pair of
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operators is linearly independent and what is the total number of linearly independent op-

erators. It would be useful to find a simpler way to construct these operators. Furthermore,

the 1/M4 NRQED Lagrangian contains four spin-independent and eight spin-dependent

operators. This is less than the number of matrix elements considered in [16]. Presumably

the rest correspond to NRQCD operators that do not exist for NRQED. What are they?

In this paper we address all of these questions. We show that by considering the

general decomposition of the diagonal matrix elements of pseudo-scalar heavy meson H of

the form 〈H|h̄ iDµ1 . . . iDµn(sλ)h|H〉, where iDµ is the covariant derivative and sλ is the

four-dimensional generalization of the Pauli matrices, into linearly independent tensors, we

can determine the form and number of linearly independent operators at each dimension

(up to some possible color factors). This method was used in [21] for dimension five and

six HQET operators. We improve on [21], by applying constraints from various symmetries

and generalize it to an arbitrary operator dimension.1 We will show that one can make one-

to-one correspondence between these HQET operators and NRQCD (NRQED) operators.

This allows in principle to construct the bilinear NRQCD (NRQED) Lagrangian at any

given order in 1/M .

We present several applications of our method. We relate the Manohar [19] and

Mannel-Turczyk-Uraltsev [16] bases for the dimension-seven operators. We relate the

dimension-eight operators of [16] to the NRQED operators of [9]. We analyze the gen-

eral dimension-nine spin-independent HQET matrix element, not considered so far in the

literature, and calculate moments of the leading power shape function up to and including

dimension nine HQET operators. Finally, we will present the bilinear NRQCD Lagrangian

at order 1/M4.

Throughout this paper we will not discuss four-fermion operators. The main rea-

son is that the one heavy fermion sector can be considered as interacting with another

heavy fermion leading to, e.g. higher power NRQCD and NRQED four-fermion operators,

see [9, 23–25], or as interacting with a relativistic fermion leading to the four-fermion op-

erators QED-NRQED operators, see [9, 14]. Each case should be considered separately

depending on the application and is beyond the scope of this paper. Similarly we will not

consider pure gauge operators.

The rest of the paper is structured as follows. We present our notation, the general

method, and a tabulation of the operators up to and including dimension eight in section 2.

We compare our basis to the known dimension seven and eight HQET operators in sec-

tion 3. We compare our basis to the known NRQED and NRQCD operators in section 4.

In section 5 we analyze the general dimension-nine spin-independent HQET matrix ele-

ment, calculate moments of the leading power shape function, and give the 1/M4 NRQCD

Lagrangian. We present our conclusions in section 6.

After the first version of this paper appeared on arxiv.org, a paper by Kobach and Pal

appeared on arxiv.org that uses a Hilbert series to construct an operator basis for NRQED

and NRQCD/HQET up to and including dimension eight [26]. As the authors of [26]

1While this work was in progress, [22] appeared. The appendix of [22] lists a tensor decomposition for

HQET operators up to dimension eight and relates it to [16].
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explain “While the Hilbert series can count the number of operators that are invariant

under the given symmetries, it does not say how the indices within each operator are

contracted. In general, this needs to be done by hand.” While analyzing the color indices

they have pointed out some operators with the same Lorentz structure but different color

structures that were omitted in the first version of this paper. We address the issue of

possible multiple color structures and correct this omission in section 2.1.

2 General method

2.1 General considerations

We begin by presenting the notation we use. We define the metric as gµν =

diag(1,−1,−1,−1). The four velocity v is defined by, v = p/M , where p is the particle mo-

mentum and M its mass. We often take v = (1, 0, 0, 0) to simplify the discussion. We follow

the standard HQET notation reviewed in [1–3]. In particular we denote the heavy quark

field as h. We will consider diagonal matrix elements of HQET operators between pseudo-

scalar meson statesH containing a heavy quark. Between heavy quark fields the Dirac basis

reduces to four matrices [21]. Following [21] we take the basis to be
{

1, sλ
}

, where the spin

matrices sλ are a generalization of the Pauli matrices for a frame moving with velocity v. In

particular, (1+ /v)γλγ5(1+ /v) ≡ 4sλ. The matrices sλ are orthogonal to v, i.e. v ·s = 0. We

follow [19] and define the covariant derivative as Dµ = ∂µ + igAµaT a =
(

D0,−D
)

, where

D0 = ∂/∂t + igA0aT a and D = ∇ − igAaT a. The (chromo-) electric and magnetic fields

are defined as E = (−i/g)[D0,D] and Bi = ǫijk(i/2g)[Dj ,Dk]. For the case of HQET

and NRQCD E ≡ EaT
a and B ≡ BaT

a, where T a is an SU(3) color matrix. As usual,

[X,Y ] ≡ XY − Y X, {X,Y } ≡ XY + Y X denote commutators and anti-commutators.

We analyze matrix element of the form 〈H|h̄ iDµ1 . . . iDµn(sλ)h|H〉, where n is a posi-

tive integer. We would like to collect the constraints on them as a result of heavy quark sym-

metry, parity, time-reversal, and Hermitian conjugation before the tensor decomposition.

The equation of motion of HQET imply that iv ·Dh = 0. As a result, multiplying the

matrix element by vµn gives zero.2 Since this is a forward matrix element, we find that if

we multiply the matrix element by vµ1 we will get zero too. Therefore HQET implies that

µ1 and µn must be orthogonal to v [21]. An analogous relation holds for the NRQED or

NRQCD operators. By a field redefinition one can always eliminate operators of the form

. . . iv · Dψ or ψ†iv · D . . . from the Lagrangian. See [20] for an explicit example. This

property allows us to treat NRQCD operators similar to HQET operators.

The effective field theories we consider are invariant under parity and time-reversal.

As a result the matrix elements have definite transformation properties under these

symmetries. Consider v first. Under parity the meson four-momentum changes as

p = (p0, ~p )
P
→ pP ≡ (p0,−~p ). As a result v

P
→ (v0,−~v ). Under time-reversal the me-

son four momentum changes as p = (p0, ~p )
T
→ pT ≡ (p0,−~p ). As a result v

T
→ (v0,−~v ).

Notice that in both cases for the standard choice of v = (1, 0, 0, 0), v does not change. Un-

2More accurately, the 1/M corrections to this equation give rise to higher dimensional operators, see

e.g. [3]. One can therefore impose this equation order by order in the 1/M expansion.
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der the combined operation of parity and time-reversal p = (p0, ~p )
PT
→ pPT ≡ (p0, ~p ). As a

result v
PT
→ (v0, ~v ), i.e. any choice of v is invariant under PT . Consider next the covariant

derivative iDµ. Under parity iDµ P
→ (−1)µiDµ, where (−1)µ = 1 for µ = 0 and (−1)µ = −1

for µ = 1, 2, 3. Due to presence of i, under time-reversal iDµ T
→ (−1)µiDµ. Under the

combined operation of parity and time-reversal iDµ PT
→ iDµ. Finally we need to consider

the transformation of h̄h and h̄sλh. If ψ is the full QCD quark field, h̄h = ψ̄ (1 + /v)ψ/2

and h̄sλh = ψ̄(1 + /v)γλγ5(1 + /v)ψ/4. From the known transformation properties of the

Dirac bilinear we find that h̄h is invariant under parity, time-reversal, and the combined

operation of parity and time-reversal. Similarly h̄sλh transforms as h̄sλh
P
→ −(−1)λ h̄sλh

under parity, h̄sλh
T
→ (−1)λ h̄sλh under time-reversal and h̄sλh

PT
→ − h̄sλh under the com-

bined operation of parity and time-reversal. Combining all of these allows us to show that

under the combined operation of parity and time-reversal,

〈H|h̄ iDµ1 . . . iDµnh|H〉
PT
= 〈H|h̄ iDµ1 . . . iDµnh|H〉∗ ,

〈H|h̄ iDµ1 . . . iDµnsλh|H〉
PT
= −〈H|h̄ iDµ1 . . . iDµnsλh|H〉∗, (2.1)

where the complex conjugation arises from the anti-linear T . As a result, the spin-

independent matrix elements are real, while the spin-dependent matrix elements are

imaginary. Constraints from parity are more transparent for the standard choice of

v = (1, 0, 0, 0), where v does not change under parity. For this case, h̄h, h̄sλh, iD0 are even

and iDi is odd. As a result, regardless of the spin structure, the matrix elements vanish if

they have an odd number of spacelike covariant derivatives.

Hermitian conjugation also restricts the number of linearly independent matrix ele-

ments. Since h̄h, h̄sλh, and iDµi are hermitian, we find that

〈H|h̄ iDµ1 . . . iDµn(sλ)h|H〉 = 〈H|
(

h̄ iDµ1 . . . iDµn(sλ)h
)†

|H〉∗

= 〈H|h̄ iDµn . . . iDµ1(sλ)h|H〉∗. (2.2)

Combining this with the PT constraints implies that the spin-independent (spin-

dependent) matrix elements are symmetric (anti-symmetric) under the inversion of the

indices. In the following we refer to it as “inversion symmetry”.

Since H is a pseudo-scalar, the matrix element of 〈H|h̄ iDµ1 . . . iDµn(sλ)h|H〉 can

only depend on vµi
and gµiµj and ǫαβρσ. Alternatively, we can follow [16] and define

Πµν = gµν − vµvν . In general vµΠ
µν = 0 and vνΠ

µν = 0. For the standard choice of

v = (1, 0, 0, 0), Π00 = 0 and Πij = −δij . Also, since the indices in ǫαβρσ cannot all be

orthogonal to v, we can replace ǫαβρσ by ǫαβρσvα without loss of generality.

Another constraint to keep in mind is that in four dimensions one can have only four

independent directions. As a result, certain tensors with more than four indices are not

independent. For example, in a tensor of the form Πµνǫαβρσvα, relevant for the matrix

elements of dimension seven spin-dependent operators, three indices are the same and

not all the tensors obtained by permuting indices between Πµν and ǫαβρσvα are linearly

independent. For spin-independent operators a similar constraint arises only starting at

dimension eleven operators where the structure Πµ1µ2Πµ3µ4Πµ5µ6Πµ7µ8 arises.

– 4 –
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The decomposition gives a correspondence between the operators h̄ iDµ1 . . . iDµn(sλ)h

and non-perturbative parameters. Questions such as the linear independence of a given

set of operators, and the number of linearly independent operators of a given dimension

are answered by considering the vector space of non-perturbative parameters of a given

dimension.3

Another issue we need to address is that of possible color factors. The covariant

derivative Dµ = ∂µ + igAµaT a combines a unit matrix in color space, i.e. a color singlet,

and a product of an octet vector field Aµa and an octet of SU(3) color matrices. By gauge

invariance the two must appear together, and the covariant derivative does not have an

independent color singlet and color octet parts. Operators constructed from two covariant

derivatives can be expressed in terms of a commutator or an anti-commutator of two

covariant derivatives. A commutator has only an octet part while the anti-commutator has

again both singlet and octet parts that cannot be separated. The case of three covariant

derivatives is analogous to that of two covariant derivatives, see section 4.

When we consider four covariant derivatives the situation changes. We can now have

a product of two commutators of covariant derivatives. Consider for example the NRQCD

operator ψ†Ei
aT

aEi
bT

bψ [26]. It contains the symmetric product of two different SU(3)

colors matrices:
{

T a, T b
}

= 1
3δ

ab + dabcT c. Now the singlet and octet parts are not

connected by gauge invariance and they give rise to two operators with different color

structure. Instead of a singlet and an octet we can choose the basis of
{

T a, T b
}

and δab.

Thus we have two different operators with two chromo-electric fields: ψ†Ei
aE

i
b

{

T a, T b
}

ψ

and ψ†Ei
aE

i
bδ

abψ. Only the first one is generated by commutator and anti-commutators

of covariant derivatives. The second operator is generated when we consider the one-loop

self-energy corrections to the first operators. Thus a one gluon exchange between ψ† and

ψ in ψ†Ei
aE

i
b

{

T a, T b
}

ψ gives the color structures

T c
ij

{

T a, T b
}

jk
T c
kl =

{

T a, T b
}

jk

(

1

2
δilδkj −

1

6
δijδkl

)

=
1

2
δabδil −

1

6

{

T a, T b
}

il
(2.3)

where i, j, k, l = 1, 2, 3 and a, b = 1, . . . , 8 and we have used a color identity for T c
ijT

c
kl.

In other words, when calculating observables at tree level only ψ†Ei
aE

i
b

{

T a, T b
}

ψ ap-

pears [19]. At one loop we need to consider also ψ†Ei
aE

i
bδ

abψ. The case of five covariant

derivatives is discussed in sections 2.2.6 and 2.3.6.

In applications to power corrections to inclusive B decays, only the contribution of the

dimension five operators are known with O(αs) Wilson coefficients [27–29]. The dimension

six and seven operators are known only with O(α0
s) Wilson coefficients. This explains

why the dimension seven operator ψ†Ei
aE

i
bδ

abψ and similar dimension eight operators were

not included in [16] as was recently pointed out in [26]. The analysis we perform below

is sensitive only to the possible Lorentz structure of 〈H|h̄ iDµ1 . . . iDµn(sλ)h|H〉 and it

does not distinguish operators that contain
{

T a, T b
}

from δab. These need to be put “by

3A potential caveat to this argument is that one can imagine an operator that has a zero matrix element.

The only such example is the operator h̄ iv ·Dh, which is the first term in the HQET and NRQCD (NRQED)

Lagrangians. This term is unique in the sense that it is the only one that includes iv · D in the HQET

Lagrangian or iDt (not in a commutator) in the NRQCD (NRQED) Lagrangian.
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hand”. While not ideal, the main complication arises from the Lorentz indices and it is

fairly easy to identify the different colors structures, at least below dimension nine. We

show below how one can identify and enumerate the number of operators that have more

than one color structure. Using the constraints discussed above we can now perform the

tensor decomposition.

2.2 Tabulation of spin-independent operators up to dimension eight

These operators are of the form 〈H|h̄ iDµ1 . . . iDµnh|H〉, where n = operator dimension−

3. We decompose the matrix elements of such operators in terms of non-perturbative

parameters multiplying the possible tensors allowed by the symmetries.

2.2.1 Dimension three

For dimension three there are no covariant derivatives and one has, see e.g. [2],

1

2MH
〈H|h̄h|H〉 = 1. (2.4)

2.2.2 Dimension four

Since we have only one covariant derivative iDµ1 , the matrix element must be proportional

to vµ1 . Since iv ·Dh = 0 the matrix element must vanish. Thus

1

2MH
〈H|h̄ iDµ1h|H〉 = 0. (2.5)

2.2.3 Dimension five

Since iv · Dh = 0 and h̄ iv · D = 0, the matrix element can only depend on Πµ1µ2 and

we have
1

2MH
〈H|h̄ iDµ1iDµ2h|H〉 = a(5)Πµ1µ2 , (2.6)

where a(5) is a non-perturbative parameter. The dimension of the operator appears in the

superscript. Notice that Πµ1µ2 = Πµ2µ1 as required by the inversion symmetry.

2.2.4 Dimension six

We need to consider 〈H|h̄ iDµ1iDµ2iDµ3h|H〉. The tensor ǫρµ1µ2µ3vρ is ruled out by parity.

This is most easily seen by taking v = (1, 0, 0, 0) which requires µ1, µ2, µ3 to be space-like.

Hence the matrix element has a an odd number of space-like covariant derivatives and is

zero by parity. The only possible tensor combination is a product of a v and Π. We must

use Πµ1µ3 and we find only one possible non-perturbative parameter:

1

2MH
〈H|h̄ iDµ1iDµ2iDµ3h|H〉 = a(6)Πµ1µ3vµ2 . (2.7)

Under inversion Πµ1µ3vµ2 → Πµ3µ1vµ2 = Πµ1µ3vµ2 .

– 6 –
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2.2.5 Dimension seven

Here we need more than one tensor structure. We can have a product of two Π’s or a

product of Π and two v’s. For products of two Π’s we can contract µ1 with µ2, µ3, or µ4

using Π. The other two indices are also contracted by Π. In total we have three such

combinations of two Π’s. Using two v’s, they can only be contracted with µ2 and µ3 giving

us a fourth tensor. In total we have

1

2MH
〈H|h̄ iDµ1iDµ2iDµ3iDµ4h|H〉 = a

(7)
12 Π

µ1µ2Πµ3µ4 + a
(7)
13 Π

µ1µ3Πµ2µ4 +

+a
(7)
14 Π

µ1µ4Πµ2µ3 + b(7)Πµ1µ4vµ2vµ3 . (2.8)

It is easy to check that each tensor separately is invariant under inversion. Our notation for

the parameters is such that the subscript denotes the first two indices that are contracted

via Π’s in numerical order, and the dimension of the operators appears in the superscript.

We also use a different letters for tensors with a different number of v’s.

As was mentioned in the introduction, the NRQED Lagrangian has four spin-

independent operators. We will show in section 4 that these can be related to the four

operators above. It should be clear already though that it is easier to tabulate the opera-

tors as was done here than to construct them from E,D, and B.

As was pointed out in [26] and discussed in section 2.1, there can be more than one

color structure for operators constructed from four covariant derivatives. This is most

easily seen when one constructs NRQCD operators and then consider the possible color

structure, as we do in section 4. But we can anticipate the result by considering structures

of the form h̄ {[iDµi , iDµj ], [iDµk , iDµl ]}h. It is a symmetric product of two SU(3) color

matrices that give rise to two possible color structures: a singlet and an octet. There can be

three different structures h̄ {[iDµ1 , iDµ2 ], [iDµ3 , iDµ4 ]}h, h̄ {[iDµ1 , iDµ3 ], [iDµ2 , iDµ4 ]}h,

and h̄ {[iDµ1 , iDµ4 ], [iDµ2 , iDµ3 ]}h, corresponding to the possible partitions of four indices

into two pairs. In order to form scalar operators, we need to multiply these structures by

one of the four possible tensors on the right hand side of (2.8): Πµ1µ2Πµ3µ4 , Πµ1µ3Πµ2µ4 ,

Πµ1µ4Πµ2µ3 , and Πµ1µ4vµ2vµ3 . We find only two linearly independent combinations from all

of the contractions, namely, a
(7)
13 −a

(7)
14 , and b(7). We confirm this result in section 4.1.4. We

conclude that we can form only two such operators with two possible color structures each.

Including the possible color structures, there are in total six possible NRQCD (HQET)

operators.

2.2.6 Dimension eight

We have five covariant derivatives, so we must have an odd number of v’s. We cannot

have five v’s and there is only one tensor with 3 v’s: Πµ1µ5vµ2vµ3vµ4 . As a result of the

inversion symmetry, tensors with one v must be of the form vµ2ΠΠ + vµ4ΠΠ or vµ3ΠΠ.

– 7 –
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All together we find seven possible tensors:

1

2MH
〈H|h̄ iDµ1iDµ2iDµ3iDµ4iDµ5h|H〉 =

a
(8)
12 (Πµ1µ2Πµ3µ5vµ4 +Πµ1µ3Πµ4µ5vµ2) +

a
(8)
13 (Πµ1µ3Πµ2µ5vµ4 +Πµ3µ5Πµ1µ4vµ2) + a

(8)
15 (Πµ1µ5Πµ3µ4vµ2 +Πµ1µ5Πµ2µ3vµ4) +

b
(8)
12 Π

µ1µ2Πµ4µ5vµ3 + b
(8)
14 Π

µ1µ4Πµ2µ5vµ3 + b
(8)
15 Π

µ1µ5Πµ2µ4vµ3 +

c(8)Πµ1µ5vµ2vµ3vµ4 . (2.9)

Our notation is as above, but we use different letters for the vµ2ΠΠ+ vµ4ΠΠ and vµ3ΠΠ

tensors.

We also need to consider the issue of possible color structures. Multiple col-

ors structures for a given operator arise from the anti-commutator of two color

octets. For five covariant derivatives there are two possibilities of color octets:

[iDµi , iDµj ] and [iDµk , [iDµl , iDµm ]]. If we combine them together we get two structures4

h̄ {[iDµi , iDµj ], [iDµk , [iDµl , iDµm ]]}h and h̄ {[iDµi , iDµj ], [iDµm , [iDµk , iDµl ]]}h. There

are
(

5
2

)

× 2 = 20 such structures. We can also combine {[iDµi , iDµj ], [iDµk , iDµl ]} with an

anti-commutator of a fifth covariant derivative:5 h̄ {iDµm , {[iDµi , iDµj ], [iDµk , iDµl ]}}h.

There are
(

5
1

)

× 3 = 15 such structures. Contracting each of the possible structure with

the tensors on the left hand side of (2.9), we find only one non-zero linear combination:

a
(8)
12 − a

(8)
15 − b

(8)
14 + b

(8)
15 from h̄ {iDµm , {[iDµi , iDµj ], [iDµk , iDµl ]}}h. We will obtain the

same result in section 4.1.5. Including the two possible color structures there are eight

operators in total.

2.3 Tabulation of spin-dependent operators up to dimension eight

These operators are of the form 〈H|h̄ iDµ1 . . . iDµnsλh|H〉, where n =

operator dimension − 3. Their matrix elements are complex. We decompose the

matrix elements in terms of non-perturbative parameters multiplying the possible tensors

allowed by the symmetries.

2.3.1 Dimension three

For dimension three there are no covariant derivatives. The matrix elements of h̄sλh can

only be proportional to vλ. Since v · s = 0 we find that the matrix element is zero:

1

2MH
〈H|h̄sλh|H〉 = 0. (2.10)

2.3.2 Dimension four

The matrix element of the operator h̄ iDµ1sλh can only be proportional to Πµ1λ, since both

vµ1 = 0 and vλ = 0. But then for the choice v = (1, 0, 0, 0) the matrix element contains

4A third possible structure h̄ {[iDµi , iDµj ], [iDµl , [iDµm , iDµk ]]}h is related to the first two by the Jacobi

identity.
5Using a commutators does not give a new structures since [iDµm , {[iDµi , iDµj ], [iDµk , iDµl ]}] =

{[iDµi , iDµj ], [iDµm , [iDµk , iDµl ]]}+ {[iDµk , iDµl ], [iDµm , [iDµi , iDµj ]]}.
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one space-like covariant derivative and is zero by parity. Thus

1

2MH
〈H|h̄ iDµ1sλh|H〉 = 0. (2.11)

2.3.3 Dimension five

The operator h̄ iDµ1iDµ2sλh has three indices, all of which are orthogonal to v. As a

result, we cannot use three v’s or a product of one Π and one v. There is only one possible

structure:
1

2MH
〈H|h̄ iDµ1iDµ2sλh|H〉 = iã(5)ǫρµ1µ2λvρ. (2.12)

The tensor ǫρµ1µ2λvρ is antisymmetric under inversion as required.

2.3.4 Dimension six

There is only one possible tensor, a product of v and ǫ. Thus

1

2MH
〈H|h̄ iDµ1iDµ2iDµ3sλh|H〉 = iã(6)vµ2ǫρµ1µ3λvρ. (2.13)

Again the inversion symmetry is manifest.

2.3.5 Dimension seven

For the matrix elements of dimension seven spin-dependent operators there are five inde-

pendent tensors. One has 2 v’s and ǫ and four that have Π and ǫ. Thus

1

2MH
〈H|h̄ iDµ1iDµ2iDµ3iDµ4sλh|H〉 =

iã
(7)
12

(

Πµ1µ2ǫρµ3µ4λvρ −Πµ4µ3ǫρµ2µ1λvρ

)

+ iã
(7)
13

(

Πµ1µ3ǫρµ2µ4λvρ −Πµ4µ2ǫρµ3µ1λvρ

)

+

+iã
(7)
14 Π

µ1µ4ǫρµ2µ3λvρ + iã
(7)
23 Π

µ2µ3ǫρµ1µ4λvρ + ib̃(7)vµ2vµ3ǫρµ1µ4λvρ, (2.14)

where we have imposed the inversion symmetry by combining tensors in the second line

of (2.14) with the same non-perturbative parameters.

Naively it might seem that there are two other possible independent tensors that involve

Πλµi , namely Πµ1λǫρµ2µ3µ4vρ − Πµ4λǫρµ3µ2µ1vρ and Πµ2λǫρµ1µ3µ4vρ − Πµ3λǫρµ4µ2µ1vρ. But

this would be an over-counting. The tensor Πµνǫσαβρvσ has five indices orthogonal to v,

but in four space-time dimensions there can be only three different indices orthogonal to

v. Since α 6= β 6= ρ and µ = ν, it follows that three of the indices in the set {α, β, ρ, µ, ν}

are equal. Therefore if λ is equal to any µi it is also equal to some µj and hence µi = µj

and already included in the tensors of (2.14).

For the dimension seven spin-independent case one can construct operators with the

same Lorentz structure but different color structure. We can check whether this is possible

for the spin-dependent operators by contracting h̄ {[iDµi , iDµj ], [iDµk , iDµl ]}h with the

tensors on the right hand side of (2.14). We find that all of these vanish, so there are no

such operators. We will find the same result in section 4.2.3.
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2.3.6 Dimension eight

For the matrix elements of the dimension eight spin-dependent operators we can have one

tensor with 3 v’s, vµ2vµ3vµ4ǫρµ1µ5λvρ, and tensors which are of the form vΠ ǫ. Following the

discussion above, the Π’s should depend only on µi. Once we fix vµi to be vµ2 , vµ3 , or vµ4 ,

there are four indices left, which gives six pairs {µj , µk} for Π. Including the constraints

from inversion symmetry, we find

1

2MH
〈H|h̄ iDµ1iDµ2iDµ3iDµ4iDµ5sλh|H〉 =

iã
(8)
12

(

vµ3Πµ1µ2ǫρµ4µ5λvρ − vµ3Πµ4µ5ǫρµ2µ1λvρ

)

+

+iã
(8)
14

(

vµ3Πµ1µ4ǫρµ2µ5λvρ − vµ3Πµ5µ2ǫρµ4µ1λvρ

)

+

+iã
(8)
15 v

µ3Πµ1µ5ǫρµ2µ4λvρ + iã
(8)
24 v

µ3Πµ2µ4ǫρµ1µ5λvρ +

+ib̃
(8)
13

(

vµ2Πµ1µ3ǫρµ4µ5λvρ − vµ4Πµ5µ3ǫρµ2µ1λvρ

)

+

+ib̃
(8)
14

(

vµ2Πµ1µ4ǫρµ3µ5λvρ − vµ4Πµ5µ2ǫρµ3µ1λvρ

)

+

+ib̃
(8)
15

(

vµ2Πµ1µ5ǫρµ3µ4λvρ − vµ4Πµ1µ5ǫρµ3µ2λvρ

)

+

+ib̃
(8)
34

(

vµ2Πµ3µ4ǫρµ1µ5λvρ − vµ4Πµ3µ2ǫρµ5µ1λvρ

)

+

+ib̃
(8)
35

(

vµ2Πµ3µ5ǫρµ1µ4λvρ − vµ4Πµ3µ1ǫρµ5µ2λvρ

)

+

+ib̃
(8)
45

(

vµ2Πµ4µ5ǫρµ1µ3λvρ − vµ4Πµ2µ1ǫρµ5µ3λvρ

)

+

+ic̃(8)vµ2vµ3vµ4ǫρµ1µ5λvρ. (2.15)

As for the spin-independent case we can check if there are operators

with the same Lorentz structure but different color structure by contract-

ing h̄ {[iDµi , iDµj ], [iDµk , [iDµl , iDµm ]]}h, h̄ {[iDµi , iDµj ], [iDµm , [iDµk , iDµl ]]}h, and

h̄ {iDµm , {[iDµi , iDµj ], [iDµk , iDµl ]}}h with the tensors of the right hand side of (2.15).

We find six linearly-independent combinations, indicating that there will be six operators

with two possible color structures. We will find the same result in section 4.2.4. Including

these possible color structures, there seventeen NRQCD (HQET) operators in total.

3 HQET operators

We can now easily relate the matrix elements analyzed in the previous section to the HQET

parameters listed in [16]. As described in section 2.1, the operators listed [16] relevant to

tree level matching of power corrections to inclusive B-decays have color structure of the

form T aT b and not δab. The different color structure is generated via (at least) one gluon

exchange. We list the other operators in section 4.
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3.1 Spin-independent operators

3.1.1 Dimension five

In [21] the spin-independent matrix element is defined as

1

2MH
〈H(v)|Q̄v iD

µ1iDµ2Qv|H(v)〉 =
1

3
λ1Π

µ1µ2 , (3.1)

while [16] defines

1

2MB
〈B|b̄v iD

µ1iDµ2bv|B〉Πµ1µ2 = −µ2
π. (3.2)

Comparing to (2.6) and using Πµ1µ2Πµ1µ2 = 3 we find that −µ2
π = λ1 = 3a(5). One should

keep in mind though that µ2
π is not defined in the heavy quark limit, but using the full

QCD b fields [16]. Therefore the relation between −µ2
π and λ1 has 1/m2

b corrections.

3.1.2 Dimension six

In [21] the spin-independent matrix element is defined as

1

2MH
〈H(v)|Q̄v iD

µ1iDµ2iDµ3Qv|H(v)〉 =
1

3
ρ1Π

µ1µ3vµ2 . (3.3)

while [16] defines

1

2MB
〈B|h̄

[

iDµ1 ,
[

iDµ2 , iDµ3
]

]

h|B〉
1

2
Πµ1µ3vµ2 = ρ3D. (3.4)

Comparing to (2.7) we find that ρ3D = ρ1 = 3a(6).

3.1.3 Dimension seven

In [16] the four spin-independent matrix element are defined as

2MB m1 = 〈B|b̄v iDρiDσiDλiDδ bv|B〉 1
3

(

ΠρσΠλδ +ΠρλΠσδ +ΠρδΠσλ
)

2MB m2 = 〈B|b̄v
[

iDρ, iDσ

][

iDλ, iDδ

]

bv|B〉Πρδvσvλ

2MB m3 = 〈B|b̄v
[

iDρ, iDσ

][

iDλ, iDδ

]

bv|B〉ΠρλΠσδ

2MB m4 = 〈B|b̄v

{

iDρ,
[

iDσ,
[

iDλ, iDδ

]

]}

bv|B〉ΠσλΠρδ (3.5)

Using the definitions of (2.8) we find

m1 = 5
[

a
(7)
12 + a

(7)
13 + a

(7)
14

]

, m2 = 3b(7),

m3 = 12
[

a
(7)
13 − a

(7)
14

]

, m4 = 12
[

a
(7)
12 − 2a

(7)
13 + a

(7)
14

]

. (3.6)
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3.1.4 Dimension eight

In [16] seven spin-independent matrix elements are listed6 as:

2MBr1 = 〈B|b̄ iDρ (iv ·D)3 iDρ b|B〉

2MBr2 = 〈B|b̄ iDρ (iv ·D) iDρ iDσ iD
σ b|B〉

2MBr3 = 〈B|b̄ iDρ (iv ·D) iDσ iD
ρ iDσ b|B〉

2MBr4 = 〈B|b̄ iDρ (iv ·D) iDσ iD
σ iDρ b|B〉

2MBr5 = 〈B|b̄ iDρ iD
ρ (iv ·D) iDσ iD

σ b|B〉

2MBr6 = 〈B|b̄ iDρ iDσ (iv ·D) iDσ iDρ b|B〉

2MBr7 = 〈B|b̄ iDρ iDσ (iv ·D) iDρ iDσ b|B〉 (3.7)

Notice that for r2, r3, and r4 the operators are not Hermitian. In the following we assume

that the contractions of indices is done using Π, i.e. the contracted indices are space-like. If

they are contracted using the regular metric tensor, it slightly changes the relation of r4 and

r6 to our basis. As written above, we can relate these matrix elements to the parameters

introduced in (2.9). We find7

r1 = 3c(8),

r2 = 3
[

3a
(8)
12 + a

(8)
13 + a

(8)
15

]

, r3 = 3
[

a
(8)
12 + 3a

(8)
13 + a

(8)
15

]

, r4 = 3
[

a
(8)
12 + a

(8)
13 + 3a

(8)
15

]

r5 = 3
[

3b
(8)
12 + b

(8)
14 + b

(8)
15

]

, r6 = 3
[

b
(8)
12 + b

(8)
14 + 3b

(8)
15

]

, r7 = 3
[

b
(8)
12 + 3b

(8)
14 + b

(8)
15

]

. (3.8)

3.2 Spin-dependent operators

Matrix elements of spin dependent operators of dimension three and four are zero. The

first non-vanishing matrix element is of dimension five.

3.2.1 Dimension five

In [21] the spin-dependent matrix element is defined as

1

2MH
〈H(v)|Q̄v iD

µ1iDµ2sλQv|H(v)〉 =
1

2
λ2 iǫ

ρµ1µ2λvρ, (3.9)

while [16] defines

1

2MB
〈B|b̄v

1

2
[iDµ1 , iDµ2 ](−iσµ1µ2)bv|B〉Πµ1µ2 = µ2

G. (3.10)

The matrix (−iσµν) is related to sλ via [21]

(−iσµν) →
1 + /v

2
(−iσµν)

1 + /v

2
= ivαǫ

αµνβsβ . (3.11)

Comparing to (2.12) we find that µ2
G = 3λ2 = 6ã(5). As for µ2

π, there are 1/m2
b corrections

to the relation between µ2
G and λ2.

6The change bv → b is presumably a typo in [16].
7If we use the regular metric tensor for contractions, r4 → r4 + 3c(8) and r6 → r6 + 3c(8).
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3.2.2 Dimension six

In [21] the spin-dependent matrix element is defined as

1

2MH
〈H(v)|Q̄v iD

µ1iDµ2iDµ3sλQv|H(v)〉 =
1

2
ρ2 ivνǫ

νµ1µ3λvµ2 , (3.12)

while [16] defines

1

2MB
〈B|b̄v

1

2

{

iDµ1 , [iDµ2 , iDµ3 ]
}

(−iσαβ)bv|B〉Πµ1αΠµ3βvµ2 = ρ3LS . (3.13)

Comparing to (2.13) we find that ρ3LS = 3ρ2 = 6ã(6).

3.2.3 Dimension seven

In [16] the five spin-dependent matrix element are defined as

2MB m5 = 〈B|b̄v
[

iDρ, iDσ

][

iDλ, iDδ

](

− iσαβ
)

bv|B〉 ΠαρΠβδvσvλ

2MB m6 = 〈B|b̄v
[

iDρ, iDσ

][

iDλ, iDδ

](

− iσαβ
)

bv|B〉 ΠασΠβλΠρδ

2MB m7 = 〈B|b̄v

{

{

iDρ, iDσ

}

,
[

iDλ, iDδ

]

}

(

− iσαβ
)

bv|B〉 ΠσλΠαρΠβδ

2MB m8 = 〈B|b̄v

{

{

iDρ, iDσ

}

,
[

iDλ, iDδ

]

}

(

− iσαβ
)

bv|B〉ΠρσΠαλΠβδ

2MB m9 = 〈B|b̄v

[

iDρ,
[

iDσ,
[

iDλ, iDδ

]

]

]

(

− iσαβ
)

bv|B〉 ΠρβΠλαΠσδ . (3.14)

Comparing to (2.14) we find

m5 = 6b̃(7), m6 = 6
[

−2ã
(7)
13 + ã

(7)
14 + ã

(7)
23

]

, m7 = 12
[

4ã
(7)
12 − 3ã

(7)
14 + 3ã

(7)
23

]

(3.15)

m8 = 48
[

3ã
(7)
12 − ã

(7)
14 + ã

(7)
23

]

, m9 = 12
[

5ã
(7)
12 − 4ã

(7)
14 − 3ã

(7)
14 + 2ã

(7)
23

]

.

3.2.4 Dimension eight

In [16] eleven spin-dependent matrix elements are listed as:

2MBr8 = 〈B|b̄ iDµ (iv ·D)3 iDν (−iσµν) b|B〉

2MBr9 = 〈B|b̄ iDµ (iv ·D) iDν iDρ iD
ρ (−iσµν) b|B〉

2MBr10 = 〈B|b̄ iDρ (iv ·D) iDρ iDµ iDν (−iσµν) b|B〉

2MBr11 = 〈B|b̄ iDρ (iv ·D) iDµ iD
ρ iDν (−iσµν) b|B〉

2MBr12 = 〈B|b̄ iDµ (iv ·D) iDρ iDν iD
ρ (−iσµν) b|B〉

2MBr13 = 〈B|b̄ iDρ (iv ·D) iDµ iDν iD
ρ (−iσµν) b|B〉

2MBr14 = 〈B|b̄ iDµ (iv ·D) iDρ iD
ρ iDν (−iσµν) b|B〉

2MBr15 = 〈B|b̄ iDµ iDν (iv ·D) iDρ iD
ρ (−iσµν) b|B〉

2MBr16 = 〈B|b̄ iDρ iDµ (iv ·D) iDν iD
ρ (−iσµν) b|B〉

2MBr17 = 〈B|b̄ iDµ iDρ (iv ·D) iDρ iDν (−iσµν) b|B〉

2MBr18 = 〈B|b̄ iDρ iDµ (iv ·D) iDρ iDν (−iσµν) b|B〉 . (3.16)
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Notice that for r9 − r14 the operators are not Hermitian. In the following we assume that

the contractions of indices is done using Π, i.e. the contracted indices are space-like. We

can relate these matrix elements to the parameters introduced in (2.15). We find

r8 = 6c̃(8)

r9 = −6
[

b̃
(8)
14 + b̃

(8)
15 − b̃

(8)
34 − b̃

(8)
35 − 3b̃

(8)
45

]

, r10 = 6
[

3b̃
(8)
13 + b̃

(8)
14 − b̃

(8)
15 + b̃

(8)
34 − b̃

(8)
35

]

,

r11 = 6
[

b̃
(8)
13 + 3b̃

(8)
14 + b̃

(8)
15 + b̃

(8)
34 − b̃

(8)
45

]

, r12 = 6
[

−b̃
(8)
13 + b̃

(8)
15 + b̃

(8)
34 + 3b̃

(8)
35 + b̃

(8)
45

]

,

r13 = −6
[

b̃
(8)
13 − b̃

(8)
14 − 3b̃

(8)
15 − b̃

(8)
35 + b̃

(8)
45

]

, r14 = 6
[

b̃
(8)
13 + b̃

(8)
14 + 3b̃

(8)
34 + b̃

(8)
35 + b̃

(8)
45

]

,

r15 = 6
[

3ã
(8)
12 − ã

(8)
15 + 3ã

(8)
24

]

, r16 = 6
[

−2ã
(8)
12 + 2ã

(8)
14 + 3ã

(8)
15

]

,

r17 = 6
[

2ã
(8)
12 + 2ã

(8)
14 + 3ã

(8)
24

]

, r18 = 6
[

3ã
(8)
14 + ã

(8)
15 + ã

(8)
24

]

. (3.17)

4 NRQED and NRQCD operators

We now relate the known NRQED and NRQCD operators up to dimension eight to the

decomposition of section 2. As we will see, there are dimension eight NRQCD operators

that do not appear in the dimension eight NRQED Lagrangian. These operators were not

considered before in the literature. We will list them in section 5.

The 1/M3 NRQCD Lagrangian that contains operators up to dimension seven was

given in [19]

Ldim≤7
NRQCD = ψ†

{

iDt + c2
D2

2M
+ cF g

σ ·B

2M
+ cDg

D·E−E ·D

8M2
+ icSg

σ ·(D×E−E×D)

8M2
+

+c4
D4

8M3
+ icMg

{Di, (D ×B −B ×D)i}

8M3
+ cW1g

{D2,σ ·B}

8M3
− cW2g

Diσ ·BDi

4M3
+

+cp′pg
σ ·DB ·D +D ·Bσ ·D

8M3
+ cA1g

2

(

Bi
aB

i
b −Ei

aE
i
b

)

T aT b

8M3
− cA2g

2 E
i
aE

i
b T

aT b

16M3
+

+cA3g
2

(

Bi
aB

i
b −Ei

aE
i
b

)

δab

8M3
− cA4g

2 E
i
aE

i
b δ

ab

16M3

−cB1g
2σ · (Ba ×Bb −Ea ×Eb)f

abcT c

16M3
+ cB2g

2σ · (Ea ×Eb)f
abcT c

16M3

}

ψ. (4.1)

We follow the notation of [19], but display explicitly the color factors for terms bilinear in

E or B. For terms linear in E or B we have Ei ≡ Ei
aT

a and Bi ≡ Bi
aT

a. The operators

on the last line of (4.1) appear only for NRQCD and not NRQED. Also, for NRQED the

operators whose coefficients are cA1 and cA3 (cA2 and cA4) are identical.
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The 1/M4 NRQED Lagrangian that contains operators of dimension eight was

given in [9]

Ldim=8
NRQED = ψ†

{

cX1g
[D2,D ·E +E ·D]

M4
+ cX2g

{D2, [∂ ·E]}

M4
+ cX3g

[∂2∂ ·E]

M4

+ icX4g
2 {D

i, [E ×B]i}

M4
+ icX5g

Diσ · (D×E −E×D)Di

M4
+ icX6g

ǫijkσiDj [∂ ·E]Dk

M4

+ cX7g
2σ ·B[∂ ·E]

M4
+ cX8g

2 [E · ∂σ ·B]

M4
+ cX9g

2 [B · ∂σ ·E]

M4

+ cX10g
2 [E

iσ · ∂Bi]

M4
+ cX11g

2 [B
iσ · ∂Ei]

M4
+ cX12g

2σ ·E × [∂tE − ∂ ×B]

M4

}

ψ . (4.2)

Some of these operators need to be rewritten in a form appropriate for NRQCD operators,

e.g. not assuming that E and B commute. We will do that below.

The general procedure we will follow is to take a general NRQCD (NRQED) operator of

the form ψ†Oψ where O is written in terms of D,E,B. We change ψ → h and ψ† → h̄ and

write O in terms of covariant derivatives iDµ contracted with Π and v. The matrix element

of the resulting operator can be written in terms of the parameters of section 2. The utility

of this method is that given two NRQCD operators we can immediately determine if they

are linearly independent, based on the linear combination of parameters that corresponds

to each operator. Possible multiple color factors for operators with the same Lorentz

structure are considered separately. We will illustrate this procedure in detail below.

4.1 Spin-independent operators

4.1.1 Dimension four

There is one spin-independent operator of dimension four in (4.1). It has one time-like

covariant derivative ψ†iDtψ. The corresponding HQET operator is h̄iv ·Dh whose matrix

element vanishes.

4.1.2 Dimension five

There is one spin-independent operator of dimension five in (4.1): ψ†D2ψ. The operator

D2 can be written as Πµ1µ2iD
µ1iDµ2 . Changing ψ → h and ψ† → h̄, we get

ψ†D2ψ →
1

2MH
〈H|h̄ iDµ1iDµ2Πµ1µ2h|H〉 = 3a(5). (4.3)

4.1.3 Dimension six

There is one spin-independent operator of dimension six in (4.1): gψ† (D ·E −E ·D)ψ.

It can be written as −vµ2Πµ1µ3 [iD
µ1 , [iDµ2 , iDµ3 ]]. Changing ψ → h and ψ† → h̄, we get

−ψ†vµ2Πµ1µ3 [iD
µ1 , [iDµ2 , iDµ3 ]]ψ → −

1

2MH
〈H|h̄vµ2Πµ1µ3 [iD

µ1 , [iDµ2 , iDµ3 ]]h|H〉

= −6a(6). (4.4)
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4.1.4 Dimension seven

There are six spin-independent dimension-seven operators in (4.1): ψ†D4ψ,

gψ†{Di, (D × B − B × D)i}ψ, g2ψ†
(

Bi
aB

i
b −Ei

aE
i
b

)

T aT bψ, −g2ψ†Ei
aE

i
b T

aT bψ,

g2ψ†
(

Bi
aB

i
b −Ei

aE
i
b

)

δabψ, −g2ψ†Ei
aE

i
b δ

abψ. Changing ψ → h and ψ† → h̄ the matrix

elements of these operators are

ψ†D4ψ →
1

2MH
〈H|h̄ iDµ1iDµ2iDµ3iDµ4h|H〉Πµ1µ2Πµ3µ4 = 3

(

3a
(7)
12 + a

(7)
13 + a

(7)
14

)

,

ψ† g{Di, (D ×B −B ×D)i}ψ

→
1

2MH
〈H|h̄

{

iDµ1 , [iDµ2 , [iDµ3 , iDµ4 ] ]
}

h|H〉Πµ1µ4Πµ2µ3

= 12
(

a
(7)
12 − 2a

(7)
13 + a

(7)
14

)

,

g2ψ†
(

Bi
aB

i
b −Ei

aE
i
b

)

T aT bψ, g2ψ†
(

Bi
aB

i
b −Ei

aE
i
b

)

δabψ

→ −
1

2

1

2MH
〈H|h̄ [iDµ1 , iDµ2 ] [iDµ3 , iDµ4 ]h|H〉gµ1µ3gµ2µ4

= 3
(

−2a
(7)
13 + 2a

(7)
14 + b(7)

)

,

−g2ψ†Ei
aE

i
b T

aT bψ, −g2ψ†Ei
aE

i
b δ

abψ

→ −
1

2MH
〈H|h̄ [iDµ1 , iDµ2 ] [iDµ3 , iDµ4 ]h|H〉gµ1µ3vµ2vµ4

= −3b(7). (4.5)

These linear combinations of a
(7)
12 , a

(7)
13 , a

(7)
14 and b(7) are all independent of each other. We

also have two pairs of operators that differ only by their color structure. These indeed

depend on the linear combinations we have identified earlier, namely a
(7)
13 − a

(7)
14 , and b(7).

4.1.5 Dimension eight

There are four spin-independent dimension-eight operators in the dimension-eight

NRQED Lagrangian (4.2). We rewrite three of them in a form appropriate for

NRQCD. Thus we rewrite gψ†{D2, [∂ · E]}ψ as gψ†{D2, [Di,Ei]}ψ, gψ†[∂2∂ · E]ψ as

gψ†[Di, [Di, [Dj ,Ej ]]]ψ. The operator g2ψ†{iDi, [E × B]i}ψ can be generalized for

NRQCD as either 1
2g

2ψ†{iDi, ǫijkEj
aB

k
b {T

a, T b}}ψ or g2ψ†{iDi, ǫijkEj
aB

k
b δ

ab}ψ. Replac-

ing ψ → h and ψ† → h̄ the matrix elements of these operators are

gψ†[D2, {Di,Ei}]ψ → −
1

2MH
〈H|h̄ [iDµ1iDµ2 , {iDµ3 , [iDµ4 , iDµ5 ]}]h|H〉vµ4Πµ1µ2Πµ3µ5

= −6
(

3b
(8)
12 + b

(8)
14 + b

(8)
15

)

,

gψ†{D2, [Di,Ei]}ψ → −
1

2MH
〈H|h̄ {iDµ1iDµ2 , [iDµ3 , [iDµ4 , iDµ5 ]]}h|H〉vµ4Πµ1µ2Πµ3µ5

= −6
(

6a
(8)
12 + 2a

(8)
13 + 2a

(8)
15 − 3b

(8)
12 − b

(8)
14 − b

(8)
15

)

,

– 16 –



J
H
E
P
0
7
(
2
0
1
7
)
1
3
7

ψ† g[Di, [Di, [Dj ,Ej ]]]ψ →

→ −
1

2MH
〈H|h̄ [iDµ1 , [iDµ2 , [iDµ3 , [iDµ4 , iDµ5 ]]]]h|B〉vµ4Πµ1µ2Πµ3µ5

= −6
(

8a
(8)
12 + 4a

(8)
13 + 8a

(8)
15 − 5b

(8)
12 − 3b

(8)
14 − 7b

(8)
15

)

,

g2

2
ψ† {iDi, ǫijkEj

aB
k
b {T

a, T b}}ψ, g2ψ† {iDi, ǫijkEj
aB

k
b δ

ab}ψ →

→
1

2

1

2MH
〈H|h̄ {iDµ1 , {[iDµ2 , iDµ3 ], [iDµ4 , iDµ5 ]}}h|B〉vµ2Πµ1µ4Πµ3µ5

= 6
(

a
(8)
12 − a

(8)
15 − b

(8)
14 + b

(8)
15

)

. (4.6)

Notice that the last line of depends on the linear combination that was anticipated in

section 2.2.6. We anticipated eight dimension eight spin-independent operators in sec-

tion 2.2.6, but we have listed only five so far. It is clear the NRQCD Lagrangian will

contain three extra spin-independent operators. We will list them in section 5.3.

4.2 Spin-dependent operators

Our convention for sign of the Levi-Civita tensor is ǫ0123 = −1 and ǫ0123 = 1. As a result,

the three dimensional contraction ǫijkA
iBjCk → −ǫ0µναA

µBνCµ in four dimensions, as-

suming Ai → Aµ etc. The overall minus sign arises from the three space-like contractions.

Since Dµ =
(

D0,−D
)

, we have an extra minus sign for each space-like derivative that

appears in the triple product.

4.2.1 Dimension five

There are no dimension four spin-dependent operators. There is one spin-dependent opera-

tor of dimension five in (4.1): gψ†σ ·Bψ. It can be written as −
i

2
ψ†ǫijkσi[iDj , iDk]ψ. As

explained above, ǫijkσi[iDj , iDk] → −ǫρλµ1µ2v
ρsλ [iDµ1 , iDµ2 ]. Changing ψ → h, ψ† → h̄

we get

gψ†σ ·Bψ →
1

2MH

1

2
iǫρµ1µ2λv

ρ〈H|h̄ sλ [iDµ1 , iDµ2 ]h|H〉 = 6ã(5). (4.7)

4.2.2 Dimension six

There is one dimension six spin-dependent operator in (4.1): ig ψ†σ · (D ×E −E ×D)ψ.

The corresponding HQET matrix element is

ig ψ†σ · (D ×E −E ×D)ψ → −
1

2MH
iǫρλµ1µ3v

ρvµ2 〈H|h̄ sλ{iDµ1 , [iDµ2 , iDµ3 ]}h|H〉 =

= −12ã(6). (4.8)

4.2.3 Dimension seven

There are five spin-dependent operator in (4.1): gψ†{D2,σ ·B}ψ, gψ†Diσ ·BDiψ, gψ†σ ·

DB ·D+D ·Bσ ·Dψ, g2ψ†σ · (Ba×Bb)f
abcT cψ, and g2ψ†σ · (Ea×Eb)f

abcT cψ. The last

two appear in a different linear combination in (4.1). Notice that there are no operators
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with the same Lorentz structure and multiple color structures as we anticipated before.

Changing ψ → h, ψ† → h̄ we get

gψ†{D2,σ ·B}ψ →
1

2MH

1

2
iǫρµ3µ4λv

ρΠµ1µ2〈H|h̄ sλ{iDµ1iDµ2 , [iDµ3 , iDµ4 ]}h|H〉 =

= 12
(

3ã
(7)
12 − ã

(7)
14 + ã

(7)
23

)

,

gψ†Diσ ·BDiψ →
1

2MH

1

2
iǫρµ2µ3λv

ρΠµ1µ4〈H|h̄ sλiDµ1 [iDµ2 , iDµ3 ]iDµ4 h|H〉 =

= 6
(

−2ã
(7)
12 + 2ã

(7)
13 + 3ã

(7)
14

)

,

gψ†σ ·DB ·D+D ·Bσ ·Dψ →−
1

2MH

1

2
iǫρµ1µ2µ3v

ρΠλµ4〈H|h̄ sλiDµ1 [iDµ2 , iDµ3 ]iDµ4 h|H〉

−
1

2MH

1

2
iǫρµ4µ2µ3v

ρΠλµ1〈H|h̄ sλiDµ1 [iDµ2 , iDµ3 ]iDµ4 h|H〉 = −12
(

ã
(7)
12 − ã

(7)
13 + ã

(7)
14

)

,

g2ψ†σ · (Ba ×Bb)f
abcT cψ →

1

2MH

1

2
iǫρµ1µ2µ4v

ρΠλµ3〈H|h̄ sλ[iDµ1 , iDµ2 ][iDµ3 , iDµ4 ]h|H〉

= 6
(

2ã
(7)
13 − ã

(7)
14 − ã

(7)
23

)

,

g2ψ†σ · (Ea ×Eb)f
abcT cψ →

1

2MH
iǫρµ2µ4λv

ρvµ1vµ3〈H|h̄ sλ[iDµ1 , iDµ2 ][iDµ3 , iDµ4 ]h|H〉

= −6b̃(7). (4.9)

4.2.4 Dimension eight

There are eight spin-dependent dimension-eight operators in the 1/M4 NRQED La-

grangian (4.2). For the NRQCD operators we rewrite ψ†ǫijkσiDj [∂ · E]Dkψ as

ψ†ǫijkσiDj [Dl,El]Dkψ. The operator g2ψ†σ · B[∂ · E]ψ corresponds to two possible

NRQCD operators 1
2g

2ψ†{σ ·BaT
a, [Di,Ei]bT

b}ψ and g2ψ†σ ·Ba[D
i,Ei]aψ. The notation

is such that [Di,Ei]a = ∇ ·Ea+gfabcAb ·Ec [26]. Similarly g2ψ†[E ·∂σ ·B]ψ corresponds

to 1
2g

2ψ†{Ei
aT

a, [Di,σ ·B]bT
b}ψ and g2ψ†Ei

a[D
i,σ ·B]aψ, g

2ψ†[B ·∂σ ·E]ψ corresponds

to 1
2g

2ψ†{Bi
aT

a, [Di,σ ·E]bT
b}ψ and g2ψ†Bi

a[D
i,σ ·E]aψ, g

2ψ†[Eiσ ·∂Bi]ψ corresponds

to 1
2g

2ψ†{Ei
aT

a, [σ · D,Bi]bT
b}ψ and g2ψ†Ei

a[σ · D,Bi]aψ, and g2ψ†[Biσ · ∂Ei]ψ cor-

responds to 1
2g

2ψ†{Bi
aT

a, [σ · D,Ei]bT
b}ψ and g2ψ†Bi

a[σ · D,Ei]aψ. The last operator

in (4.2) contains two parts: σ ·E × [∂tE] and −σ ·E × [∂ ×B]. The second part can be

expressed in terms of other operators in (4.2), so we will not consider it below. The first

part corresponds to two possible NRQCD operators 1
2g

2ψ†ǫijkσiE
j
a [Dt,E

k]b {T
a, T b}ψ and

g2ψ†ǫijkσiE
j
a [Dt,E

k]a ψ. Changing ψ → h, ψ† → h̄ we get

igψ†Diσ · (D ×E −E ×D)Diψ →

→
1

2MH
(−i)ǫρλµ2µ4v

ρΠµ1µ5vµ3〈H|h̄ sλiDµ1{iDµ2 , [iDµ3 , iDµ4 ]}iDµ5h|H〉 =

= 12
(

2ã
(8)
12 − 2ã

(8)
14 − 3ã

(8)
15 − b̃

(8)
13 + b̃

(8)
14 + 3b̃

(8)
15 + b̃

(8)
35 − b̃

(8)
45

)

,
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igψ†ǫijkσiDj [Dl,El]Dkψ →

→
1

2MH
iǫρλµ1µ5v

ρΠµ2µ4vµ3〈H|h̄ sλiDµ1 [iDµ2 , [iDµ3 , iDµ4 ]]iDµ5h|H〉 =

= 12
(

2ã
(8)
12 + 2ã

(8)
14 + 3ã

(8)
24 − b̃

(8)
13 − b̃

(8)
14 − 3b̃

(8)
34 − b̃

(8)
35 − b̃

(8)
45

)

,

1

2
g2ψ†{σ ·BaT

a, [Di,Ei]bT
b}ψ, g2ψ†σ ·Ba[D

i,Ei]aψ →

→ −
1

2MH

i

4
ǫρλµ1µ2v

ρΠµ3µ5vµ4〈H|h̄ sλ{[iDµ1 , iDµ2 ], [iDµ3 , [iDµ4 , iDµ5 ]]}h|H〉 =

= 6
(

3ã
(8)
12 − ã

(8)
15 + ã

(8)
24 − 6b̃

(8)
13 − 2b̃

(8)
14 + 2b̃

(8)
15 − 2b̃

(8)
34 + 2b̃

(8)
35

)

,

1

2
g2ψ†{Ei

aT
a, [Di,σ ·B]bT

b}ψ, g2ψ†Ei
a[D

i,σ ·B]aψ →

→ −
1

2MH

i

4
ǫρλµ4µ5v

ρΠµ2µ3vµ1〈H|h̄ sλ{[iDµ1 , iDµ2 ], [iDµ3 , [iDµ4 , iDµ5 ]]}h|H〉 =

= 6
(

4b̃
(8)
13 − 4b̃

(8)
15 + b̃

(8)
34 − 2b̃35 + b̃45

)

,

1

2
g2ψ†{Bi

aT
a, [Di,σ ·E]bT

b}ψ, g2ψ†Bi
a[D

i,σ ·E]aψ →

→
1

2MH

i

4
ǫρµ1µ2µ3v

ρΠλµ5vµ4〈H|h̄ sλ{[iDµ1 , iDµ2 ], [iDµ3 , [iDµ4 , iDµ5 ]]}h|H〉 =

= −6
(

ã
(8)
12 + ã

(8)
14 − ã

(8)
24 − 2b̃

(8)
13 + b̃

(8)
14 − b̃

(8)
15 + b̃

(8)
34 − b̃

(8)
35

)

,

1

2
g2ψ†{Ei

aT
a, [σ ·D,Bi]bT

b}ψ, g2ψ†Ei
a[σ ·D,Bi]aψ →

→
1

2MH

i

4
ǫρµ2µ4µ5v

ρΠλµ3vµ1〈H|h̄ sλ{[iDµ1 , iDµ2 ], [iDµ3 , [iDµ4 , iDµ5 ]]}h|H〉 =

= −6
(

b̃
(8)
13 − b̃

(8)
15 − b̃

(8)
34 + 2b̃

(8)
35 − b̃

(8)
45

)

,

1

2
g2ψ†{Bi

aT
a, [σ ·D,Ei]bT

b}ψ, g2ψ†Bi
a[σ ·D,Ei]aψ →

→
1

2MH

i

4
ǫρµ1µ2µ5v

ρΠλµ3vµ4〈H|h̄ sλ{[iDµ1 , iDµ2 ], [iDµ3 , [iDµ4 , iDµ5 ]]}h|H〉 =

= −6
(

ã
(8)
12 − ã

(8)
14 + ã

(8)
15 − 2b̃

(8)
13 + b̃

(8)
14 − b̃

(8)
15 + b̃

(8)
34 − b̃

(8)
35

)

,

1

2
g2ψ†ǫijkσiEj

a [Dt,E
k]b {T

a, T b}ψ, g2ψ†ǫijkσiEj
a [Dt,E

k]a ψ →

→ −
1

2MH

i

2
ǫρλµ2µ5v

ρvµ1vµ3vµ4〈H|h̄ sλ{[iDµ1 , iDµ2 ], [iDµ3 , [iDµ4 , iDµ5 ]]}h|H〉 =

= 6c̃(8). (4.10)

As in the previous cases, one can check and verify that the matrix elements of operators

that have two color structures depend on linear combinations of parameters calculated

in 2.3.6. This confirms our observation that one can predict how many operators have

multiple color structures using our general method.

We anticipated seventeen operators in section 2.3.6, but generalizing the NRQED to

the NRQCD case gives only fourteen operators. It is clear the NRQCD Lagrangian will

contain three extra operators. We will list them in section 5.3.
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5 Applications

5.1 Dimension nine spin independent HQET operators

Based on the general method, it is easy to parameterize the matrix element of the general

spin-independent dimension nine HQET operators. We have six covariant derivatives and

we can have terms with zero v’s, two v’s, or 4 v’s. Taking into account the various ways

to contract the other indices, we have all together 24 possible tensors:

1

2MH
〈H|h̄ iDµ1iDµ2iDµ3iDµ4iDµ5iDµ6h|H〉 =

a
(9)
12,34Π

µ1µ2Πµ3µ4Πµ5µ6 + a
(9)
12,35 (Πµ1µ2Πµ3µ5Πµ4µ6 +Πµ1µ3Πµ2µ4Πµ5µ6) +

+a
(9)
12,36 (Πµ1µ2Πµ3µ6Πµ4µ5 +Πµ1µ4Πµ2µ3Πµ5µ6) +

+a
(9)
13,25Π

µ1µ3Πµ2µ5Πµ4µ6 + a
(9)
13,26 (Πµ1µ3Πµ2µ6Πµ4µ5 +Πµ1µ5Πµ2µ3Πµ4µ6) +

+a
(9)
14,25Π

µ1µ4Πµ2µ5Πµ3µ6 + a
(9)
14,26 (Πµ1µ4Πµ2µ6Πµ3µ5 +Πµ1µ5Πµ2µ4Πµ3µ6) +

+a
(9)
15,26Π

µ1µ5Πµ2µ6Πµ3µ4 + a
(9)
16,23Π

µ1µ6Πµ2µ3Πµ4µ5 + a
(9)
16,24Π

µ1µ6Πµ2µ4Πµ3µ5 +

+a
(9)
16,25Π

µ1µ6Πµ2µ5Πµ3µ4 + b
(9)
12,36 (Πµ1µ2Πµ3µ6vµ4vµ5 +Πµ1µ4Πµ5µ6vµ2vµ3) +

+b
(9)
12,46 (Πµ1µ2Πµ4µ6vµ3vµ5 +Πµ1µ3Πµ5µ6vµ2vµ4) + b

(9)
12,56Π

µ1µ2Πµ5µ6vµ3vµ4 +

+b
(9)
13,26 (Πµ1µ3Πµ2µ6vµ4vµ5 +Πµ1µ5Πµ4µ6vµ2vµ3) +

+b
(9)
13,46Π

µ1µ3Πµ4µ6vµ2vµ5 + b
(9)
14,26 (Πµ1µ4Πµ2µ6vµ3vµ5 +Πµ1µ5Πµ3µ6vµ2vµ4) +

b
(9)
14,36Π

µ1µ4Πµ3µ6vµ2vµ5 + b
(9)
15,26Π

µ1µ5Πµ2µ6vµ3vµ4 +

b
(9)
16,23 (Πµ1µ6Πµ2µ3vµ4vµ5 +Πµ1µ6Πµ4µ5vµ2vµ3) +

+b
(9)
16,24 (Πµ1µ6Πµ2µ4vµ3vµ5 +Πµ1µ6Πµ3µ5vµ2vµ4) + b

(9)
16,25Π

µ1µ6Πµ2µ5vµ3vµ4 +

+b
(9)
16,34Π

µ1µ6Πµ3µ4vµ2vµ5 + c(9)Πµ1µ6vµ2vµ3vµ4vµ5 . (5.1)

Our notation is such that the subscripts denotes the first indices that are contracted via

Π’s in numerical order. We use different letters for different number of v’s in the tensors.

We should in principle consider also the various possible color structures. These can

arise from combining three possible pure color octets: [iDµi , iDµj ], [iDµi , [iDµj , iDµk ]],

and [iDµi , [iDµj , [iDµk , iDµl ]]]. There are several possibilities for combining them with

each other and/or with other covariant derivatives. We will not consider these multiple

color structure here. For phenomenological applications at the current level of precision,

see e.g. section 5.2, only one color structure is needed, namely, the one that contains T aT b

and not δab.

5.2 Moments of the leading power shape functions

In analyzing charmless inclusive B decays one often encounters “shape functions” [30–37].

These are Fourier transforms of diagonal matrix elements of non-local HQET operators,

analogous to nucleon parton distribution functions. Moments of these shape functions can

often be related to HQET parameters. The matrix elements decomposition presented above
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makes the calculation of the moments especially easy. We illustrate this by calculating

moments of of the leading power shape.

The leading power shape function can be defined as8

S(ω) =

∫

dt

2π
eiωt

〈B̄(v)|h̄(0)Sn(0)S
†
n(tn)h(tn)|B̄(v)〉

2MB
, (5.2)

where is n is a light-like vector, i.e. n2 = 0, and n · v = 1. Sn is a Wilson line in the n

direction, see [37] for its definition.

For completeness we review how the moments of S(ω) are related to local HQET

operators. The zeroth moment of S(ω) is

∫

dω S(ω) =

∫

dω

∫

dt

2π
eiωt

〈B̄(v)|h̄(0)Sn(0)S
†
n(tn)h(tn)|B̄(v)〉

2MB
=

=
〈B̄(v)|h̄(0)Sn(0)S

†
n(0)h(0)|B̄(v)〉

2MB
=

〈B̄(v)|h̄(0)h(0)|B̄(v)〉

2MB
, (5.3)

where we have used the unitarity of the Wilson lines, Sn(x)S
†
n(x) = 1. Using the identity,

in ·DSn(x) = Sn(x) in · ∂, the first moment of S(ω) is

∫

dω ω S(ω) =

∫

dt

∫

dω

2π

(

−i
∂

∂t
eiωt

)

〈B̄(v)|h̄(0)Sn(0)S
†
n(tn)h(tn)|B̄(v)〉

2MB
=

=

∫

dt

∫

dω

2π
eiωt

〈B̄(v)|h̄(0)Sn(0) in · ∂ S†
n(tn)h(tn)|B̄(v)〉

2MB
=

=

∫

dt

∫

dω

2π
eiωt

〈B̄(v)|h̄(0)Sn(0)S
†
n(tn)Sn(tn) in · ∂ S†

n(tn)h(tn)|B̄(v)〉

2MB
=

=

∫

dt

∫

dω

2π
eiωt

〈B̄(v)|h̄(0)Sn(0)S
†
n(tn) in ·DSn(tn)S

†
n(tn)h(tn)|B̄(v)〉

2MB
=

=
〈B̄(v)|h̄(0) in ·Dh(0)|B̄(v)〉

2MB
. (5.4)

Similarly we can show that the k-th moment of the S(ω) is

∫

dω ωk S(ω) =
〈B̄(v)|h̄ (in ·D)k h|B̄(v)〉

2MB
=

nµ1 . . . nµk
〈B̄(v)|h̄ iDµ1 . . . iDµk h|B̄(v)〉

2MB
.

(5.5)

8There are several equivalent definitions of the leading power shape functions in the literature. The one

presented here can be obtained from [37] by using the translation invariance of the matrix element elements

and changing t → −t in the integration.
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Using (5.5) we can easily calculate the moments. We find that the first six moments are
∫

dω S(ω) = 1,

∫

dω ω S(ω) = 0,

∫

dω ω2 S(ω) = −a(5) = −λ1/3,
∫

dω ω3 S(ω) =−a(6)=−ρ1/3,

∫

dω ω4 S(ω) = a
(7)
12 + a

(7)
13 + a

(7)
14 − b(7) = m1/5−m2/3,

∫

dω ω5 S(ω) = 2a
(8)
12 + 2a

(8)
13 + 2a

(8)
15 + b

(8)
12 + b

(8)
14 + b

(8)
15 − c(8) =

= (−8r1 + 2r2 + 2r3 + 2r4 + r5 + r6 + r7) /15,
∫

dω ω6 S(ω) =−a
(9)
12,34− 2a

(9)
12,35− 2a

(9)
12,36− a

(9)
13,25− 2a

(9)
13,26− a

(9)
14,25− 2a

(9)
14,26− a

(9)
15,26− a

(9)
16,23

−a
(9)
16,24− a

(9)
16,25+ 2b

(9)
12,36+ 2b

(9)
12,46+ b

(9)
12,56+ 2b

(9)
13,26+ b

(9)
13,46 + 2b

(9)
14,26 + b

(9)
14,36

+b
(9)
15,26 + 2b

(9)
16,23 + 2b

(9)
16,24 + b

(9)
16,25 + b

(9)
16,34 − c(9). (5.6)

For all the moments apart from the sixth we have used the relations to previously defined

HQET parameters from section 3. The sixth moment is expressed in terms of the new

HQET parameters of section 5.1. Using the HQET parameters extracted in [15] one can

use the moments up to the fifth one to improve the modeling of the leading power shape

function.

5.3 NRQCD Lagrangian to order 1/M4

From section 4 we learn that the 1/M4 NRQCD Lagrangian contains three spin-

independent operators and three spin-dependent operators that cannot be obtained from

simple generalization of the NRQED Lagrangian. Here we list these new operators.

The new NRQCD operators contain commutators of chromoelectric and chromomag-

netic fields, which vanish for NRQED. We can easily test the linear independence of the

possible operators by calculating the matrix elements of the corresponding HQET opera-

tors. For the spin-independent operators we have

g2ψ†[Ei, [iDt,E
i]]aT

aψ →

→
1

2MH
〈H|h̄ [[iDµ1 , iDµ2 ], [iDµ3 , [iDµ4 , iDµ5 ]]]h|H〉vµ1vµ3vµ4Πµ2µ5 = −6c(8),

ig2ψ†[Bi, (D ×E +E ×D)i]aT
aψ →

→
1

2MH
〈H|h̄ [[iDµ1 , iDµ2 ], [iDµ3 , [iDµ4 , iDµ5 ]]]h|H〉vµ4Πµ1µ3Πµ2µ5 = 12(b

(8)
14 − b

(8)
15 ),

ig2ψ†[Ei, (D ×B +B ×D)i]aT
aψ →

→ −
1

2MH
〈H|h̄ [[iDµ1 , iDµ2 ], [iDµ3 , [iDµ4 , iDµ5 ]]]h|H〉vµ1Πµ3µ4Πµ2µ5 =

= 12(a
(8)
12 − 2a

(8)
13 + a

(8)
15 ). (5.7)

It is easy to check that these operators are linearly independent of the operators of (4.6)

and Hermitian and invariant under P and T .

For the spin-dependent operators we consider the set of spin-dependent NRQED

operators OX7 ≡
1

2
g2ψ†{σ · B, [Di,Ei]}ψ, OX8 ≡

1

2
g2ψ†{Ei, [Di,σ · B]}ψ, OX9 ≡
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1

2
g2ψ†{Bi, [Di,σ·E]}ψ, OX10 ≡

1

2
g2ψ†{Ei, [σ·D,Bi]}ψ, OX11 ≡

1

2
g2ψ†{Bi, [σ·D,Ei]}ψ,

where the notations follows from equation (4.2). We can generate new operators by replac-

ing the commutators by anti-commutators and vice versa. Only three operators will be

linearly independent of the NRQED spin-dependent operators. We can choose to modify

OX7, OX9, OX10, or OX7, OX9, OX11, or OX8, OX9, OX10, or OX8, OX9, OX11. We choose

OX7, OX9, OX10. We have

g2ψ†[σ ·B, {Di,Ei}]aT
aψ →

→ −
1

2MH

i

2
ǫρλµ1µ2v

ρΠµ3µ5vµ4〈H|h̄ sλ[[iDµ1 , iDµ2 ], {iDµ3 , [iDµ4 , iDµ5 ]}]h|H〉 =

= −12
(

3ã
(8)
12 − ã15 + ã24

)

,

g2ψ†[Bi, {Di,σ ·E}]aT
aψ →

→
1

2MH

i

2
ǫρµ1µ2µ3v

ρΠλµ5vµ4〈H|h̄ sλ[[iDµ1 , iDµ2 ], {iDµ3 , [iDµ4 , iDµ5 ]}]h|H〉 =

= 12
(

ã
(8)
12 + ã

(8)
14 − ã24 − b̃14 + b̃15 + b̃34 − b̃35

)

,

g2ψ†[Ei, {σ ·D,Bi}]aT
aψ →

→
1

2MH

i

2
ǫρµ2µ4µ5v

ρΠλµ3vµ1〈H|h̄ sλ[iDµ1 , iDµ2 ], {iDµ3 , [iDµ4 , iDµ5 ]}]h|H〉 =

= −12
(

b̃13 + b̃15 − b̃34 + b̃45

)

. (5.8)

It is easy to check that these operators are linearly independent of the operators of (4.10)

and Hermitian and invariant under P and T .

We can now list the full dimension-eight NRQCD Lagrangian. It is

Ldim=8
NRQCD = ψ†

{

cX1g
[D2, {Di,Ei}]

M4
+ cX2g

{D2, [Di,Ei]}

M4
+ cX3g

[Di, [Di, [Dj ,Ej ]]]

M4

+ icX4a g
2 {D

i, ǫijkEj
aB

k
b {T

a, T b}}

2M4
+ icX4b g

2 {D
i, ǫijkEj

aB
k
b δ

ab}

M4

+ icX5g
Diσ · (D ×E −E ×D)Di

M4
+ icX6g

ǫijkσiDj [Dl,El]Dk

M4

+ cX7a g
2 {σ ·BaT

a, [Di,Ei]bT
b}

2M4
+ cX7b g

2σ ·Ba[D
i,Ei]a

M4

+ cX8a g
2 {E

i
aT

a, [Di,σ ·B]bT
b}

2M4
+ cX8bg

2E
i
a[D

i,σ ·B]a
M4

+ cX9a g
2 {B

i
aT

a, [Di,σ ·E]bT
b}

2M4
+ cX9b g

2B
i
a[D

i,σ ·E]a
M4

+ cX10a g
2 {E

i
aT

a, [σ ·D,Bi]bT
b}

2M4
+ cX10b g

2E
i
a[σ ·D,Bi]a

M4

+ cX11a g
2 {B

i
aT

a, [σ ·D,Ei]bT
b}

2M4
+ cX11b g

2B
i
a[σ ·D,Ei]a

M4

+ c̃X12a g
2 ǫ

ijkσiE
j
a [Dt,E

k]b {T
a, T b}

2M4
+ c̃X12b g

2 ǫ
ijkσiE

j
a [Dt,E

k]a
M4
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+ icX13g
2 [E

i, [Dt,E
i]]

M4
+ icX14g

2 [B
i, (D ×E +E ×D)i]

M4

+ icX15g
2 [E

i, (D ×B +B ×D)i]

M4
+ cX16g

2 [σ ·B, {Di,Ei}]

M4

+ cX17g
2 [B

i, {Di,σ ·E}]

M4
+ cX18g

2 [E
i, {σ ·D,Bi}]

M4

}

ψ. (5.9)

Notice that we have modified the operators OX12 as explained in section 4.2.4. We have

introduced extra a and b subscripts for operators that have multiple color structure but

the same Lorentz structure. Explicit color indices are shown for these operators. These

results agree also with [26] that uses a slightly different basis.

6 Conclusions

Effective field theories are an important tool in current research. The effective theory La-

grangian is often written as a series of operators with increasing dimension suppressed by

the inverse powers of the cutoff scale of the theory. As research progresses, higher dimen-

sional operators are receiving more and more attention. For example, the construction of

higher dimension operators in the Standard Model Effective Field Theory (SM EFT) was

shown recently be simpler than one might expect [38].

In this paper we investigated the question of constructing higher dimensional opera-

tors for the HQET and NRQCD (NRQED) Lagrangians. Despite having a different power

counting, the two Lagrangians are closely related. We showed how one can analyze op-

erators that contain two HQET fields or two NRQCD (NRQED) fields with an arbitrary

number of covariant derivatives. The method we use is to consider diagonal matrix elements

of HQET operators between pseudo-scalar meson states. We write such matrix elements

as non-perturbative HQET parameters multiplied by tensors constructed from the heavy

quark velocity, the metric tensor and the Levi-Civita tensor. Imposing constraints from

P and T symmetries, hermitian conjugation, and the fact that we consider theories in

3+1 dimensions, allows the reduce the number of HQET parameters of a given dimension.

The number of possible HQET operators at each dimension corresponds to the number of

HQET parameters. This method allows us to easily determine the number of operators

at each dimension and whether a given set of operators of a given dimension is linearly

independent. NRQCD and NRQED operators can be similarly analyzed by replacing those

fields with HQET fields and considering the matrix elements of these operators.

One drawback of this method is that it does not distinguish operators that have the

same Lorentz structure but different color structure. As was recently pointed out in [26],

operators that contain a symmetric product of two color matrices, e.g. ψ†Ei
aT

aEi
bT

bψ, can

be decomposed in terms of a color octet and a color singlet operators, e.g. ψ†Ei
aE

i
b d

abcT cψ

and ψ†Ei
aE

i
bδ

abψ. Since they only differ in their color structure, both will give the same

linear combination of parameters. Alternatively we can use the basis of ψ†Ei
aE

i
b

{

T a, T b
}

ψ

and ψ†Ei
aE

i
bδ

abψ. The operator ψ†Ei
aE

i
b

{

T a, T b
}

ψ is generated by commutator and anti-

commutators of covariant derivatives and it is the only of the two that appears when

calculating observables at tree level. The operator ψ†Ei
aE

i
bδ

abψ will be generated when
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considering radiative corrections [19]. For applications to inclusive B decays this operator

arises at only O(αs)/m
4
b , beyond the current level of precision. This explains why such

operators were not considered in [16]. To address the possibility of multiple color struc-

tures, one has to consider them separately from the general method we presented. But

using the method presented above allows to determine how many linearly independent op-

erators there are for possible different color structures. We showed how this is done for

the dimension seven and eight operators and confirmed the results of [26] for the multiple

color structures.

We presented our general method in section 2. We demonstrated it by relating the

HQET parameters of operators of dimension four, five, six, seven, and eight known from

the literature to our basis in section 3. NRQCD operators up to dimension seven and

NRQED operators up to dimension eight were previously known in the literature. We have

analyzed these operators and related the corresponding HQET matrix elements to our basis

in section 4. This allows to easily relate the known HQET and NRQCD operators to one

another.

Going beyond the known operators, we presented several new results in section 5.

We analyzed the dimension nine spin-independent HQET parameters, finding 24 possible

parameters (not including multiple color structures) see equation (5.1). We calculated

moments of the leading power shape function in terms of HQET parameters up to and

including local matrix elements of dimension nine, see equation (5.6). This will allow to

improve the modeling of the leading power shape function. Similarly, one can use this to

improve modeling of subleading shape functions [39]. Most importantly, we constructed the

dimension eight NRQCD operators that do not appear in the 1/M4 NRQED Lagrangian.

These allow to present for the full 1/M4 bilinear NRQCD Lagrangian, see equation (5.9).

We conclude by considering possible extensions of this work. The method we presented

allows in principle to write down all the possible HQET operators of any given dimension.

It would be interesting to automatize the procedure using a computer program to construct

these higher dimensional operators and of the NRQCD Lagrangian. Also, certain multiple

color structures were considered separately from the general method. It would be desirable

to find a method that automatically generate these color structures.

A separate interesting question is what are the Wilson coefficients of the operators.

In particular what are the relations between coefficients of operators of different dimen-

sions. These are known as “reparameterization invariance” [40] or “Lorentz invariance”

constraints9 [41]. For NRQED such relations are known for up to dimension eight opera-

tors [9, 41] but not for NRQCD or HQET operators above dimension six. Such relations

allow to determine the contribution of a certain higher dimensional operators based on

the knowledge of lower dimensional operators. This has applications to semileptonic and

radiative B decays, see e.g. [27, 28, 42].

Finally, throughout the paper we have not considered operators with more than two

HQET or NRQCD (NRQED) fields. The reason, as explained in the introduction, is that

9The ansatz for implementing Lorentz invariance via reparametrization invariance breaks down starting

at dimension eight operators, see [41].
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the one non-relativistic fermion sector can be combined with an additional non-relativistic

field or an additional relativistic field. Results for each case were presented in the litera-

ture [9, 14, 23–25], but not for an arbitrary operator dimension.
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