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1 Introduction

In the last decades, various investigations have shown that black hole physics plays a vital

role in our understanding of gravity on both macroscopic and microscopic scales. Aspects of

black holes such as horizon’s global structure, Hawking radiation, thermodynamical prop-

erties and black hole information are key concepts related to the fundamental structure of

space-time. For recent review see ref. ([1] and references therein). Examples of these new

concepts and constructions are the Holographic Principle and its realization in AdS/CFT

correspondence [2–4], Ashtekar approach and loop quantum gravity [5], Jacobson’s ther-

modynamic formulation [6] as well as Verlinde’s ENTOPIC approach to gravity [7]. In

general, seeking for new black hole solutions is extremely relevant to set up any relativistic

theory of gravity. Recently, a lot of attention has been devoted to the teleparallel equiv-

alent of General Relativity (TEGR) [8–10, 12].1 This theory is an equivalent to General

Relativity (GR) and can be generalized into a class of theories called f(T ) gravity [13–16].

TEGR and its generalizations are based on Weitzenböck connection instead of Levi-Civita

connection and use a vielbein field, eaµ, as a fundamental field variable, instead of the

metric [17]. TEGR is equivalent to GR since its field equations as well as its test particle

equation of motion are equivalent to that of GR. In TEGR and its generalizations the

gravitational field is represented by torsion instead of curvature because the later vanishes

in these theories. TEGR can be constructed as a gauge theory of the translation group,

where the vielbein is the gauge field and the torsion is the field strength [18–20]. This

theory is invariant under diffeomorphism and local Lorentz transformations [21, 22].

1See the translation in ref. [11].
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There is a considerable interest in generalizing TEGR in cosmological through adding

higher-torsion terms. These terms can mimic a dark energy fluid in Friedman-Robertson-

Walker (FRW) cosmologies without introducing exotic equations of state [23–44]. Telepar-

allel gravity with higher-torsion terms depending only on the torsion scalar, T , are known

as f(T ) theories. A part from these cosmological applications some interesting black holes

solutions were discovered and studied in the context of f(T ) theories. One of the most

studied models of these theories is f(T ) = T + β T 2, where spherically symmetric approx-

imate solution was found and analyzed [45–50], furthermore, the higher-torsion correction

term was constrained in this theory using the Solar System data.

Exact solutions in higher curvature/ torsion theories are not always easy to find also

in the framework of f(T ) [51–53]. Black holes with cosmological constant present some

attractive features: for example various horizon topologies appear in contrast to the asymp-

totically flat case. In these cases, black hole horizons can be spherical, hyperbolic or planar:

these features can lead to tori or cylindrical structures depending on the global identifi-

cations applied [54]. Asymptotically de Sitter and Anti-de-Sitter charged black holes and

rotating black holes in four and higher dimensions have been intensively studied in the

context of AdS/CFT and dS/CFT correspondences; see for example refs. [55–60].

In this paper, we are going to present new charged asymptotically Anti-de-Sitter black

hole solutions with flat horizons in f(T ) theories, where f(T ) = T + βT 2, β < 0, and

D ≥ 4. First of all, these black holes solutions have electric potentials which contains

a monopole as well as a quadrupole term. In order to get an asymptotically Anti-de-

Sitter (AdS) solution, we are forced to relate the electric monopole momentum and the

quadrupole momentum of these solutions, therefore, these two momenta are inseparable.

The second interesting feature is that, although this black hole solution is singular at the

origin, r = 0, its singularity is clearly milder than asymptotically Anti-de-Sitter charged

black solution in GR or TEGR. For example in D dimensions, the Kretschmann scalar,

derived from the Ricci tensor square, and the Ricci scalar are K = RµνR
µν ∼ r−2(D−2),

R ∼ r−(D−2) in contrast with, the known solutions in Einstein-Maxwell theory in both GR

and TEGR which have K = RµνR
µν ∼ r−2D and R ∼ r−D. Furthermore, although these

asymptotically AdS charged solutions have different gtt and grr component for the metric,

they have coinciding Killing and event horizons.

The outline of the paper is the following. In section 2, we briefly review the TEGR

formalism through tensors definitions and the field equations, then we introduce the field

equations of f(T ) gravity. In section 3, a vielbein field having flat horizon inD dimensions is

applied to the field equations of f(T ) gravity to obtain a general neutral black hole solution

in D dimensions, which is asymptotically AdS. In section 4, a cylindrically symmetric

vielbein is applied to the Einstein-Maxwell field equations in f(T ) gravity. We show how

this solution can be reduced to an exact charged static black hole in AdS space. The

interesting feature of this black hole is that it has monopole and the quadrupole momenta.

This feature extends results presented in [52]. In section 5, some relevant physical features

of these black holes are reported. In section 6, we discuss the thermodynamics of the black

holes presented in 4. Finally, concluding remarks are reported in section 7.
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2 The TEGR geometry and f(T ) gravity

TEGR is described by the pair {M, ei}, with M being a D-dimensional manifold and ei

(i = 1, 2, · · · , D) are vectors globally defined on the manifold M. Vector fields ei are the

parallel vectors. In D-dimension, the parallel vectors are named the vielbein fields and the

derivative of the contravariant vielbein fields have to vanish

Dµei
ν := ∂µei

ν + Γν
λµei

λ = 0, (2.1)

where the differentiation is with respect to the Weitzenböck connection and ∂µ := ∂
∂xµ and

Γν
λµ is a non-symmetric affine connection defined as [61]

Γλ
µν := ei

λ ∂νe
i
µ. (2.2)

In this geometry, the metric is given by

gµν := ηije
i
µe

j
ν , (2.3)

where ηij = (+,−,−,− · · · ) is D dimensional Minkowskian metric. The metricity condition

is fulfilled as a consequence of eq. (2.1). The torsion, Tα
µν , and the contortion, Kµν

α,

tensors field are defined as

Tα
µν := Γα

νµ − Γα
µν = ei

α
(

∂µe
i
ν − ∂νe

i
µ

)

,

Kµν
α := −1

2
(Tµν

α − T νµ
α − Tα

µν) . (2.4)

We introduce the teleparallel torsion scalar of TEGR theory which is

T := Tα
µνSα

µν , (2.5)

where the skew symmetric tensor Sα
µν is defined as

Sα
µν :=

1

2

(

Kµν
α + δµαT

βν
β − δναT

βµ
β

)

. (2.6)

Using eq. (2.4) it is possible to re-express eq. (2.2) as

Γµ
νρ =

{

µ
νρ

}

+Kµ
νρ, (2.7)

where the first term is the Levi-Civita affine connection of GR while the second one is

derived from the contortion.

It is natural to extend TEGR theory including higher torsion terms defining a La-

grangian f(T ) where f is a function of the torsion invariant T :

L =
1

2κ

∫

|e|(f(T )− 2Λ) dDx+

∫

|e|Lem dDx, (2.8)

where κ is a dimensional constant defined as κ = 2(D−3)ΩD−1GD, with GD being the New-

ton gravitational constant in D-dimensions and ΩD−1 the volume of (D − 1)-dimensional
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unit sphere given by the expression ΩD−1 = 2π(D−1)/2

Γ((D−1)/2) , with the Γ-function of the argu-

ment that depends on the dimension of spacetime.2 In eq. (2.8), |e| = √−g = det (eaµ)

and Lem = −1
2F ∧⋆ F is the Maxwell Lagrangian, with F = dA, with A = Aµdx

µ, is

the electromagnetic potential 1-form [52]. The variation of eq. (2.8) with respect to the

vielbein field eiµ and the vector potential Aµ gives the following field equations [15]

Sµ
ρν∂ρTfTT +

[

e−1eiµ∂ρ (eei
αSα

ρν)− Tα
λµSα

νλ
]

fT − f − 2Λ

4
δνµ +

1

2
κT

em ν

µ = Hν
µ ≡ 0,

∂ν
(√−gFµν

)

= 0 , (2.9)

where f := f(T ), fT := ∂f(T )
∂T , fTT := ∂2f(T )

∂T 2 and T
em ν

µ is the energy-momentum tensor

of the electromagnetic field defined as

T
em ν

µ = FµαF
να − 1

4
δµ

νFαβF
αβ .

Eq. (2.9) can be re-expressed as

∂ν

[

eSaρνfT

]

= κeeaµ

[

tρµ + T
emρµ

]

, (2.10)

where tνµ has the form

tνµ =
1

κ

[

4fTS
ανλTαλ

µ − gνµf

]

. (2.11)

Since Saνλ is a skew-symmetric tensor in the last pairs, then

∂µ∂ν [eS
aµνfT ] = 0, which yields ∂µ

[

e
(

taµ + T
emaµ)]

= 0. (2.12)

eq. (2.12) yields

d

dt

∫

V
d(D−1)x e eaµ

(

t0µ + T
em 0µ

)

+

∮

Σ

[

e eaµ

(

tjµ + T
em jµ

)]

= 0. (2.13)

eq. (2.13) is the conservation law of the energy-momentum tensor T
emλµ

and the quantity

tλµ. Thus, we can consider tλµ to describe the gravitational energy-momentum tensor in

f(T ) gravity [62]. Therefore, the energy-momentum of f(T ) theory contained in a (D-1)-

dimensional volume V takes the form

P a =

∫

V
d(D−1)x e eaµ

(

t0µ + T
em 0µ

)

=
1

κ

∫

V
d(D−1)x∂ν

[

eSa0νfT
]

. (2.14)

From eq. (2.14), we can return to the standard TEGR as soon as f(T ) = T [63]. Eq. (2.13)

represents the conserved four-momentum for any asymptotic flat solution: in this work

we discuss a class of asymptotically AdS solution. Therefore, it is natural to calculate

conserved quantities relative to a pure AdS space. Otherwise, the conserved quantities is

plagued by infinities because of the asymptotic behavior of the asymptotically AdS solution.

2When D = 4, one can show that 2(D − 3)ΩD−1 = 8π.
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For example the total mass/energy of an AdS black hole measured by a stationary observer

at infinity might be understood as the difference in energy between the AdS black hole

solution and AdS space itself. Therefore, in calculating conserved quantities, it is natural

to subtract off the contributions coming from pure AdS space in the above conserved

quantities of eq. (2.13); this is why we have subscript “r” which stands for the regularized

value of the physical quantity.

d

dt

∫

V
d(D−1)x e eaµ

(

t0µr + T
em

r

0µ
)

+

∮

Σ

[

e eaµ

(

tjµr + T
em

r

jµ
)]

= 0.

3 Asymptotically AdS black holes

We apply the field equations of extended teleparallel gravity f(T ), eq. (2.9), to the flat

D-dimensional spacetime horizon, which directly gives rise to the vielbein written in cylin-

drical coordinate (t, r, φ1, φ2,· · · φD−2) as follows [52]:

(ei
µ) =

(

√

N(r), 1√
N1(r)

, r, r, r · · ·
)

(3.1)

where N(r) and N1(r) are two unknown functions of r. Substituting from eq. (3.1) into

eq. (2.5), we evaluate the torsion scalar as3

T = 2(D − 2)
N ′N1

rN
+ (D − 2)(D − 3)

N1

r2
. (3.2)

Applying eq. (3.1) to the field equation (2.9) when T
em ν

µ = 0 we get the following non-

vanishing components:

Hr
r=2TfT +2Λ−f=0,

Hφ1

φ1
=Hφ2

φ2
= ······=HφD−2

φD−2
=

fTT [r
2T+(D−2)(D−3)N1]T

′

(D−2)r
+

fT

2r2N2

{

2r2NN1N
′′

−r2N1N
′2+2(2D−5)rNN1N

′+r2NN ′N ′

1+2(D−3)N2[2(D−3)N1+rN ′

1]

}

−f+2Λ=0,

Ht
t=

2(D−2)N1fTTT
′

r
+
(D−2)fT

r2N

{

2(D−3)NN1+rN1N
′+rNN ′

1

}

−f+2Λ=0. (3.3)

Now we are going to find a general solution to the above differential equations using a

specific form of f(T ), i.e., f(T ) = T + βT 2. For this specific form of f(T ), eqs. (3.3) take

the form

H
r
r=T+3βT 2+2Λ=0,

H
φ1

φ1
=H

φ2

φ2
= ······H

φD−2
φD−2

=
2β[r2T+(D−2)(D−3)N1]T

′

(D−2)r
+
(1+2βT )

2r2N2

{

2r2NN1N
′′

−r
2
N1N

′2+2(2D−5)rNN1N
′+r

2
NN

′
N

′
1+2(D−3)N2[2(D−3)N1+rN

′
1]

}

−T−βT
2+2Λ=0,

H
t
t=

4(D−2)βN1T
′

r
+
(1+2βT )(D−2)

r2N

{

2(D−3)NN1+rN1N
′+rNN

′
1

}

−T−βT
2+2Λ=0. (3.4)

3For abbreviation we will write N(r) ≡ N , N1(r) ≡ N1, N ′ ≡ dN
dr

and N ′
1 ≡ dN1

dr
.
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A general D-dimension solution of eq. (3.4) is

N(r) = − r2

6(D − 1)(D − 2)β
− m

rD−3
, N1(r) =

1

N(r)
, (3.5)

where m is the mass parameter and we choose Λ = 1
24β to get a unique solution.4

4 A new charged AdS black hole solution

Using the D dimensional spacetime of eq. (3.1) with a vector potential A = V (r)dt, the

field equations have the following non-vanishing components:

H
r
r=2TfT +2Λ−f+

2V ′2(r)N1

N
=0,

H
φ1

φ1
=H

φ2

φ2
= ······=H

φD−2
φD−2

=
fTT [r

2T+(D−2)(D−3)N1]T
′

(D−2)r
+

fT

2r2N2

{

2r2NN1N
′′

−r
2
N1N

′2+4(D−3)2N2
N1+2(2D−5)rNN1N

′+r
2
NN

′
N

′
1+2(D−3)rN2

N
′
1

}

−f+2Λ−
2V ′2(r)N1

N
=0,

H
t
t=

2(D−2)N1fTTT
′

r
+
(D−2)fT [2(D−3)NN1+rN1N

′+rNN ′
1]

r2N
−f+2Λ+

2V ′2(r)N1

N
=0, (4.1)

where V ′ = dV
dr and as before we set Λ = 1

24β . The general D-dimensional solution of the

above differential equations takes the form

N(r) =
r2(D − 3)4c2

4

(D − 1)(D − 2)(2D − 5)2c32
+

c1

rD−3
+

3(D − 3)c2
2

(D − 2)r2(D−3)
+

2(D − 3)c2c3
(D − 2)r3D−8

,

N1(r) =
1

f(r)N(r)
, where f(r) = −

(2D − 5)2c3
2
[

1 + (2D−5)c3
c2(D−3)rD−2

]2

6β(D − 3)4c24
,

V (r) =
c2

rD−3
+

c3

r2D−5
. (4.2)

To get an asymptotically AdS or dS solution we have to set

c3
2 =

−6(D − 3)4c2
4β

(2D − 5)2
, (4.3)

otherwise the solution have no clear asymptotic behavior. As a result, the monopole

momentum is related to the quadrupole momentum of the solution. In this case, one gets

N(r) =
r2

6(D−1)(D−2)|β| −
m

rD−3
+

3(D−3)q2

(D−2)r2(D−3)
+

2
√

6|β|(D−3)3q3

(2D−5)(D−2)r3D−8
,

N1(r) =
1

f(r)N(r)
, f(r)=

[

1+
(D−3)q

√

6|β|
rD−2

]2

, V (r)=
q

rD−3
+
(D−3)2q2

√

6|β|
(2D−5)r2D−5

, (4.4)

where we set c1 = −m, and c2 = q, which is the monopole momentum. The quadrupole

moment is Q =
(D−3)2q2

√
6|β|

(2D−5) . As one can notice eq. (4.3) tells us that β have a negative

value otherwise we get an unphysical solution.

4The cosmological constant for these solutions has two values −1±
√
1−24αΛ
12α

.
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It is important here to comment on the charged black solutions obtained in [52]. Note

that differential equations (4.1) are different from those derived in [52] from many aspects:

i) The disappearance of the term f(T ) from eqs. (5·13) and (5·14).

ii) The terms of the charges in eqs. (5·12), (5·13) and (5·14) are different from the

present eqs. (4.1).

Furthermore, the solution (4.4) generalizes the solution in [52]. As it is clear from

eq. (4.4), the potential V (r) depends on a monopole and quadrupole momenta and by

setting q = 0 both momenta vanish and we get a non-charged solution. On the other hand,

in [52], the charged solution depends only on the monopole.

5 The main features of the solution

Let us now discuss some relevant features of the charged solution presented in the previous

section.

The metric of the vielbein (4.4) takes the form

ds2 =

[

r2Λef − m

rD−3
+

3(D − 3)q2

(D − 2)r2(D−3)
+

2
√

6 |β|(D − 3)3q3

(2D − 5)(D − 2)r3D−8

]

dt2 (5.1)

− dr2

[

1 +
(D−3)q

√
6|β|

rD−2

]2
[

r2Λef − m
rD−3 + 3(D−3)q2

(D−2)r2(D−3) +
2
√

6|β|(D−3)3q3

(2D−5)(D−2)r3D−8

] − r2
D−2
∑

i=1

dφ2
i ,

where Λef = 1
6(D−1)(D−2)|β| . Eq. (4.4) shows clearly that the metric of the charged solution

is asymptotically AdS. Notice that there is no corresponding TEGR solution upon taking

the limit β → 0, which means this charged solution has no analogue in GR or TEGR. By

taking the limit q → 0, we get the AdS non-charged black holes presented in section (3).

Notice that although these asymptotically AdS charged solutions have different gtt and grr

component for the metric, they have coinciding Killing and event horizons.

Singularity: here we derive physical singularities by calculating curvature and torsion

invariants. Since the function f(r) could have roots (when q < 0), which we call rn, one

has to consider the behavior of curvature invariants close to these roots. By calculating

the Kretschmann scalar as function of the radial coordinate r, we found that the scalar is

well behaved. Now calculating the various curvature and torsion invariants, one obtains

RµνλρRµνλρ=F1(r)

(

1

r2(D−2)

)

, RµνRµν=F2(r)

(

1

r2(D−2)

)

,

R=F3(r)

(

1

r(D−2)

)

, TµνλTµνλ=F4(r)

(

1

r(D−2)

)

, TµTµ=F5(r)

(

1

r(D−2)

)

,

T (r)=F6(r)

(

1

r(D−2)

)

, (5.2)

where RµνλρRµνλρ, R
µνRµν , R, TµνλTµνλ TµTµ and T are the Kretschmann scalar, the

Ricci tensor square, the Ricci scalar, the torsion tensor square, the torsion square vector

and the torsion scalar: Fi(r) are polynomial functions in r. The above invariants show that:

– 7 –
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a) There is a singularity at r = 0 which is a curvature singularity.

b) In the charged case, the torsion scalar has the form

T =
r(D−2) − 2q2(D − 3)

√

6 |β|
6 |β| r(D−2)

, (5.3)

which shows that the scalar torsion has singularity at r = 0. Close to r = 0, the

behavior of the Kretschmann scalar, the Ricci tensor square and the Ricci scalar for

the charged solution is given by K = RµνR
µν ∼ r−2(D−2), R = TαβγTαβγ = TαTα =

T ∼ r−(D−2) in contrast with the solutions of the Einstein-Maxwell theory in both GR

and TEGR which haveK = RµνR
µν ∼ r−2D and R = TαβγTαβγ = TαTα = T ∼ r−D.

This shows clearly that the singularity is much milder than the one obtained in GR

and TEGR for the charged case. This result raises the question if these singularities

are weak singularities, according to Tipler and Krolak [64, 65], and if it is possible to

extend geodesics beyond these regions. This topic will be discussed in forthcoming

studies.

Energy: let us now calculate the energy related to the charged black holes given by

eqs. (4.4). Using eq. (2.14), it is possible to derive the components of energy in the solu-

tion (3.5). We get:

S001 =
(D − 2)

2r
. (5.4)

Substituting eq. (5.4) into eq. (2.14), we get the energy in the form

P 0 = E =
(D − 2)ΩD−2[m− Λef r

(D−1)]

2κ
=

(D − 2)[m− Λef r
(D−1)]

4(D − 3)GD
, (5.5)

where the value of κ has been used in the second equation of eq. (5.5). The value of energy

of eq. (5.5) is therefore divergent, so we have to use a regularization procedure to obtain a

finite value. The regularized expression of eq. (2.14) takes the form

P a :=
1

κ

∫

V
dD−2x

[

eSa00fT
]

− 1

κ

∫

V
dD−2x

[

eSa00fT
]

AdS
, (5.6)

where AdS means calculated for pure Anti-de-Sitter space. Using (5.7) in solution (3.5),

we get

E =
(D − 2)ΩD−2m

2κ
=

(D − 2)m

4(D − 3)GD
, (5.7)

which is a finite value and clearly shows that the energy is depending on the coefficient of

the higher order torsion terms. For the charged solutions given in (4.2), and by using the

same procedure adopted for the non-charged case, we get

E =
(D − 2)m

4(D − 3)GD
− (D − 3)q2

2GDrD−3
+

(D − 3)3
√

6 |β|q3
3(2D − 5)GDr2D−5

+O

(

1

r3

)

. (5.8)

This shows the contributions of monopole and quadrupole potential energies to the total en-

ergy at large distances r. Notice only term depending on β is the quadrupole term. Consid-

ering the limit r → ∞, we get the total energy measured by a stationary observer at infinity.

– 8 –
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6 The first law of thermodynamics

There is a great deal of work in analyzing the behavior of the horizon thermodynamics in

modified theories of gravity. In a wide category of these theories, one gets solutions with

horizons and can connect the temperature and entropy with the surface gravity and the

area of the outer horizon. Let us now check the validity of the first law of thermodynamics

in f(T ) gravity using the charged solution derived above.

To investigate the violation of the first law of thermodynamics of the black hole (4.4),

let us follow the analysis performed by Miao et al. [66]. In this work the authors use the

Jacobson thermodynamics approach [6], which has been generalized in [67, 68], to formulate

the first law through rewriting the non-symmetric field equations (2.9) into symmetric and

skew symmetric parts as

L(µν) := Sµνρ∂
ρTfTT + fT

[

Gµν −
1

2
gµνT

]

+
f − 2Λ

2
gνµ =

κT
em ν

µ

2
,

L[µν] := S[µν]ρ∂
ρTfTT = 0. (6.1)

Assuming an exact Killing vector, they have shown that for a heat flux δQ passing through

the black hole horizon, it is

δQ =
κ

2π

[

fTdA

4

]dλ

0

+
1

κ

∫

H
kνfTT T,µ(ξ

ρSρν
µ −∇νξ

µ), (6.2)

where H stands for the black hole horizon which is equal to (D− 2)-dimensional boundary

of the hypersurface at infinity. The authors have shown that the first term in eq. (6.2) can

be rewritten as TδS [66]. Thus, if the second term in eq. (6.2) is not vanishing then there

will be a violation of the first law of thermodynamics. Miao et al. [66] have explained that

the second term in eq. (34) cannot be equal to zero. Therefore, if we want to satisfy the first

law of thermodynamics, we must have either fTT = 0 which gives the TEGR (GR) theory,

or T = constant. Indeed, AdS black hole solution (3.5) satisfies the fact that T = constant

and therefore, the first law of thermodynamics of this black hole is satisfied. However, the

new charged solution (4.4) enforces the torsion scalar to be non-trivial, i.e., not constant.

Therefore, according to eq. (6.2), solution (4.4) violates the first law of thermodynamics.

Explicitly calculating the violation term in (6.2), it is not vanishing and proportional to

the electric charge q. Due to this feature, the first law of thermodynamics is violated.

7 Conclusions

In this work, we present a new charged solution in Maxwell-f(T ) gravitational theory

for any dimension D ≥ 4. The exact solution is achieved for f(T ) = T + βT 2, where

β < 0 and possesses some interesting features. First of all, the solution has a monopole

and quadrupole term which are related by requiring the metric is asymptotically AdS.

This fact generalizes the result presented in [52] where only the monopole term is present.

Secondly, we have studied the singularity of this black hole and have shown that all the

invariants constructed from the curvature and torsion have a singularity at r = 0. This

singularity is milder than the one of a charged black hole in GR and TEGR. The asymptotic

– 9 –
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behavior of the Kretschmann invariant and the Ricci tensor squared, and the Ricci scalar

have the form K = RµνR
µν ∼ r−2(D−2), R ∼ r−(D−2) in contrast with, the known solutions

in Einstein-Maxwell theory in both GR and TEGR. Also the non-charged solution derived

in this study, eq. (3.5), behaves as K = RµνR
µν ∼ r−2D and R ∼ r−D. Moreover, in spite

that the charged black hole has different components of gtt and grr, both have a coinciding

Killing and event horizons. We have calculated the total energy of the charged solution

using the generalization of the energy-momentum tensor and have shown that the resulting

form depends on the mass of the black hole. Finally, we have shown that the charged black

hole violates the first law of thermodynamics according to the discussion given in [66].

From a genuine physical point of view, these kind of objects can contribute in the debate

to establish on what the most reliable representation of gravity is, i.e. the curvature or

torsion picture. As discussed in [16], being GR and TEGR substantially equivalent, the

ground of debate should be shifted to f(R) and f(T ) models since these two theories are

substantially inequivalent. As shown in [69], also fundamental structures like gravitational

waves are substantially different in f(R) and in f(T ) formulations. A deep understanding

of black hole features could be of great interest to solve the debate.
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