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1 Introduction

The gauge hierarchy problem continues to be one of the most pressing questions of modern

theoretical physics. It is a naturalness problem which, at its core, asks the question why the

electroweak scale can be light in spite of a high-energy embedding of the Standard Model

(SM) into a more complex theory with other heavy scalar degrees of freedom. One approach

to solve the hierarchy problem is the systematic cancellation of bosonic and fermionic loop

contributions to the Higgs mass within supersymmetry. However, due to the fact that no

supersymmertic particle has been observed yet, alternative approaches are appealing.

A radical way of addressing this problem is the assumption that the fundamental theory

describing Nature does not have any scale. In such a conformal model, the symmetry

can be realized non-linearly and explicit scales can appear. Early works that employ

scale-invariant models to solve the hierarchy problem include [1–5]. In recent years those

studies inspired a number of other works addressing different open questions beyond the
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SM — like small neutrino masses, the nature of dark matter or baryogenesis — in the

context of scale-invariant theories; see for example [6–34]. A common feature of those

works is the need for additional bosonic degrees of freedom, as in the SM alone the large

top mass does not permit radiative breaking of the electroweak symmetry. The conceptual

difficulty in the conformal model building is the nature of the symmetry, which is sometimes

misleadingly called classical scale invariance. This symmetry is anomalous, since generically

the renormalization-group (RG) running of the parameters leads to a non-vanishing trace

of the energy-momentum tensor (EMT), which enters the divergence of the scale current.

We now argue that, if conformal invariance is a fundamental symmetry of Nature,

then the quantum field theory must have a vanishing trace anomaly at some scale. In the

absence of explicit mass parameters, the trace of the EMT is given by a weighted sum of the

beta functions. The anomalous Ward identity thus allows only logarithmic dependence of

physical quantities on the renormalization scale. Any quadratically divergent contributions

to the Higgs mass must therefore be purely technical and are typically introduced by

explicitly breaking the conformal invariance by regulators. The formal divergences can be

absorbed by appropriate counterterms.

In the Standard Model, the hypercharge gauge coupling is not asymptotically free and

thus will increase with energy. In this context, there are two options to still accomplish a

vanishing trace anomaly. First, the SM gauge group is embedded in a non-Abelian group

so that the corresponding coupling is asymptotically free [35]. Second, the hypercharge

contribution to the trace anomaly is canceled by the gravitational anomaly. This is possible

as the anomalous gravitational contribution to the trace can be negative [36] given certain

values of the couplings of scalar fields and the curvature scalar. We will demonstrate how

this can work in a toy model set-up. We argue that this vanishing of the trace of the EMT

is a necessary matching condition between the low-energy theory and the UV-complete

conformal embedding.

If the second possibility is realized, from the point of view of a low-energy theory, this

means that the electroweak symmetry is broken by radiative corrections without tree-level

mass parameters. Furthermore, the theory must allow a RG evolution up to the Planck

scale, at which the gravitational contributions become relevant. This means in particular

that in the RG evolution no Landau poles or vacuum instabilities appear below the Planck

scale. Moreover, no explicit threshold scales can be located in between the Planck scale

and the low-energy theory. At this point we emphasize that the focus of the present paper

lies on the physics of a conformal theory below the Planck scale. In this energy regime

the theory is described by a renormalizable quantum field theory, the radiative behavior

of which is expressed in terms of the RG running. The criteria discussed in this article

are necessary conditions for any extension of the Higgs sector in order to enable stable

RG running up to the Planck scale. It is not the purpose of this paper to give a definite

answer to the question of what is the physics beyond the Planck scale. However, we will

address the question of how an effectively conformal model may emerge from an embedding

including gravity. The gravity scale itself can be generated spontaneously, see [37] for a

review. Of particular interest are Yang-Mills theories which can lead to a spontaneous

scale of gravity in a conformal set-up. We note, however, that this process can happen
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without further influence on the theory below the Planck scale and gravity might emerge

with an explicit scale and also induce a gravitational conformal anomaly. We will use this

fact to demonstrate that the trace of the EMT can vanish at a particular scale, leading to

a vanishing of the total conformal anomaly.

Our analysis changes the perspective under which the hierarchy problem is viewed. The

question is not why in a given model the Higgs mass is light, but rather whether a quantum

field theory with a given set of fields and parameters is stable under renormalization group

translations. This RG stability will be our essential criterion to distinguish models and

to analyze whether a particular parameter configuration is allowed. This criterion selects

certain representations which can be added to the SM. We find that only the interplay of

scalars, fermions and gauge bosons can lead to the desired RG stability.

In this paper we revisit several classically scale-invariant models and investigate

whether they can be low-energy realizations of a conformal theory. Including all rele-

vant effects we find that in contrast to previous studies, for example [2], the SM extension

by one real scalar field is not consistent with this requirement. Eventually, we identify the

minimal conformal extension of the SM Higgs sector to consist of the usual complex Higgs

doublet supplemented by two real scalar gauge singlets, one of which develops a non-zero

vacuum expectation value (vev). In this context, minimality implies that the SM gauge

group is not altered and the additional number of representations is minimal. We find that

the scalar field without the vev can be a viable dark matter candidate. Furthermore, small

neutrino masses can be easily accommodated in this model. Another important result of

our work is that the physical Higgs will have sizable admixtures of one of the singlet scalars

which can be used to constrain our model’s parameter space.

We present our analyses in section 2. First, we describe the method used in this paper

to obtain our results. After that we scan through the most simple conformal models,

starting with the extension of the SM by one additional scalar. We then systematically

investigate further scalar extensions until we find a successful model. We will discuss the

matching of the low-energy theory to the semi-classical regime in gravity in section 3. In

section 4 we discuss important implications of our findings and summarize our results.

2 Finding the minimal model

One of the central aspects in the Standard Model is the spontaneous breaking of elec-

troweak symmetry induced by a negative mass parameter of the Higgs field. In a con-

formal extension of the SM, without any explicit mass scale present at tree level, the

spontaneous breakdown must be triggered by quantum effects. The corresponding mecha-

nism was first investigated by Coleman and E. Weinberg in the context of massless scalar

QED [38]. There, the authors showed that even if a theory possesses a symmetric vacuum

at tree level, the one-loop effective potential may exhibit a non-trivial minimum which

then induces spontaneous symmetry breaking (SSB). In other words, radiative corrections

dynamically generate a mass scale in a classically conformal model. A scale generated in

this way obviously also breaks the (anomalous) conformal symmetry spontaneously. Ac-

cordingly, we expect the theory’s low-energy phase to contain one pseudo-Goldstone boson

– 3 –



J
H
E
P
0
7
(
2
0
1
7
)
1
1
3

(PGB) which obtains its finite mass only at loop level. Note that from the low energy

perspective the PGB discussed here can be described by an effective theory of the dilaton,

for a detailed discussion on the phenomenology see [39].

From a more technical point of view, determining the effective potential’s minimum is

typically a challenging task in models of several scalars. However, there exists a method

due to Gildener and S. Weinberg which allows a systematic minimization [40]. In their for-

malism, minimization conditions manifest themselves as implicit equations for the model’s

scalar couplings, the so-called Gildener-Weinberg conditions. Due to the couplings’ run-

ning, these conditions will only be satisfied at a particular energy, which then is to be iden-

tified with the scale of SSB, henceforth referred to as the Gildener-Weinberg scale ΛGW. We

review the basic principles and some technical details of the Gildener-Weinberg formalism in

appendix A. In particular, we will introduce the loop function B in eq. (A.5) which will play

a central role in our analysis. It quantifies the effective potential’s curvature at its minimum

and thus also the PGB mass squared (cf. eq. (A.7)). Consistency requires B to be positive.

It is well known that radiative symmetry breaking à la Coleman-Weinberg does not

work in the SM due to the large top quark mass [41]. In the Gildener-Weinberg formalism

this failure is reflected in the fact that B = BSM is negative such that the effective potential

does not develop a minimum but a maximum. In order to render B positive, one has

to achieve a dominance of bosonic degrees of freedom (see eq. (A.5)). By this line of

argumentation, it is immediately clear that no model can work in which the SM is extended

by fermionic representations only. In particular, the SM supplemented by right-handed

neutrinos cannot facilitate radiative SSB. Hence, it is necessary to add bosonic degrees of

freedom to the theory.

The question for the rest of this work will be: what is the minimal configuration to

enable radiative SSB with successful RG running up to the Planck scale? In this context

minimality implies that the SM gauge group,

SU(3)c × SU(2)L ×U(1)Y ,

is not altered and the additional number of representations is minimal. If two models are

equal according to the above criteria, the number of parameters selects the minimal model.

In particular, we will not add any new gauge degrees of freedom. Note that the scalar

degrees of freedom added to the model in principle may or may not acquire finite vacuum

expectation values, depending on their quantum numbers.

In the models under investigation we find that obtaining scalar couplings, which allow

for a successful RG running up to the Planck mass MPl, turns out to be a tightrope walk.

On the one hand, the couplings need to be large enough at the GW scale in order to

have sufficiently heavy new scalars which then render B positive at low energies. On the

other hand, starting with too large scalar couplings at ΛGW will inevitably lead to low-scale

Landau poles in the scalar sector.

The method used in our analysis is as follows. First, we choose the class of models we

want to investigate. Then, we derive the corresponding potential and the one-loop beta

functions. The unknown scalar couplings introduced by the potential constitute our initial
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parameter space. We use the Gildener-Weinberg formalism to obtain the theory’s vacuum

and from this derive the masses of the physical scalar modes.

In doing so, we ascertain that the well-established physics of electroweak symmetry

breaking (EWSB) is preserved. For instance, we will directly exclude models which imply a

significant shift of the ρ-parameter. We then explicitly check whether the observed values

for the Higgs mass mHiggs and the electroweak scale v are properly reproduced. As an

additional consistency requirement, we make sure that the scalar to be identified with the

Higgs boson observed at the LHC, HLHC, mainly consists of the field that couples to the

SM fermions. An experimental bound on the mixing of HLHC to other scalars is given

by |sinβ| ≤ 0.44 [42, 43]. Together with appropriate Gildener-Weinberg conditions, all of

the above constrains will allow us to limit the model’s parameter space and obtain initial

conditions for the renormalization group equations (RGEs).

In a first analysis of a given model’s RG running, we apply a “best-case approximation”.

Thus, we obtain a conservative estimate for the largest possible scale ΛUV at which at latest

an instability occurs or the theory’s couplings turn non-perturbative. If the scale found in

this way is significantly smaller than the Planck mass, we exclude the model in accordance

with our previous discussion. Otherwise, we perform a numerically more challenging but

completely consistent calculation in order to determine the actual value for ΛUV.

In the following we are going to present the results of our study. In section 2.1 we

discuss the simplest extension of the SM by one additional scalar. We analyze the next-to-

simplest case of adding two scalar degrees of freedom in section 2.2. This set-up contains

the minimal extension of the SM that leads to correct SSB and successful RG running up

to the Planck scale.

2.1 SM + one scalar representation

In accordance with our discussion in the previous paragraph, the simplest extension of the

SM which might allow for radiative symmetry breaking is obtained by adding a scalar gauge

singlet. Generalizing this ansatz, we investigate models in which one in general complex,

colorless scalar SU(2)L multiplet with given hypercharge is added to the SM,

χ ∼ (1, N, Y ) . (2.1)

The scalar potential consistent with the SM gauge symmetries and scale invariance, which

our discussion will be based on, reads as follows

V = λ1(φ†φ)2 + λ2(χ†χ)2 + λ3(χ†T aχ)2 + κ1(φ†φ)(χ†χ) + κ2(φ†τaφ)(χ†T aχ) , (2.2)

where φ = (φ+, φ0)ᵀ denotes the usual complex Higgs doublet and T a are the generators

of the SU(2) Lie algebra in the N -dimensional irreducible representation (irrep) under

which χ transforms. Accordingly, τa denote the generators of SU(2) in the fundamental

representation.
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Note that further gauge-invariant operators of the form (χ†T a1 . . . T anχ)2 as well as

the corresponding portal terms are, in principle, present in the potential eq. (2.2).1 How-

ever, the authors of [44] have found that for the most stable RG running all associated

couplings have to vanish in the infrared, i.e. at the Gildener-Weinberg scale in our context.

Nevertheless, we include the simplest representatives of the above operators, namely the

λ3 and κ2 term.

Besides, there exist additional operators, which are only invariant for special combina-

tions of N and Y . Again motivated by the results of [44], we will in general ignore those

terms. In cases in which we take them into account, we will discuss them separately.

Checking the consistency of the models of interest necessarily requires knowledge about

the corresponding RGEs. Therefore, we have calculated the one-loop beta functions for

these models and list the results in appendix B. Before we investigate the most general case,

let us first restrict the discussion to the situation in which χ represents a real multiplet.

2.1.1 Real multiplet with zero vacuum expectation value

Let χ for the moment be a real SU(2)L multiplet in the sense that it coincides with its

charge conjugate field, i.e.

χ̃ := Cχ∗ !
= χ , (2.3)

where C is a suitable charge conjugation matrix.2 As obvious from the above definition,

real multiplets necessarily have zero hypercharge. Furthermore, it is easy to show that the

term χ†T aχ vanishes identically for all real fields transforming under an arbitrary irrep

of SU(2)L. Hence, the only non-zero terms in the general potential eq. (2.2) are those

proportional to λ1, λ2 and κ1. The potential therefore reduces to

V = λ1(φ†φ)2 + λ2(χ†χ)2 + κ1(φ†φ)(χ†χ) . (2.4)

Notice that the above potential enjoys an accidental global O(4)×O(N) symmetry. Since

only the odd-dimensional irreps of SU(2) are real (as opposed to pseudo-real), multiplets

satisfying the reality condition in eq. (2.3) can only be consistently defined for odd N .

For real scalar multiplets χ, always one of its component fields is electrically neutral

and may therefore acquire a finite vev. We will discuss this case separately later. For now,

let us assume that all χi have zero vacuum expectation value. Then the electroweak vev is

just that of the Higgs doublet, v ≡ vφ, and the new scalar’s component fields all obtain a

finite mass during EWSB (φ0 = v + h/
√

2),

m2
χ = 2κ1v

2 . (2.5)

Similarly, the mass of the physical Higgs mode HLHC ≡ h is given by m2
Higgs = 6λ1v

2 at tree

level. Since all physical masses have to be real, the above formula shows that the portal

coupling κ1 is necessarily non-negative at the GW scale.

1Depending on the dimension N , some operators might be redundant in the sense that they can be

expressed as a linear combination of operators containing less generator matrices. Accordingly, no additional

coupling is introduced in those instances.
2For the proper definition of C, see the discussion after eq. (2.20).
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Next, the Gildener-Weinberg condition corresponding to the assumed vev configuration

is λ1(ΛGW) = 0. Accordingly, the tree-level mass of the Higgs vanishes at ΛGW, which

implies that the physical Higgs is to be identified with the PGB of broken scale invariance.

Hence, working in the GW formalism, the physical Higgs mass at ΛGW is to be calculated

via the one-loop formula given in eq. (A.7), i.e.

m2
Higgs = 8(BSM +Badd)〈ϕ〉2 = 8Baddv

2 −K , (2.6)

where K := −8BSMv
2 > 0 and 〈ϕ〉 = v denotes the condensate introduced after eq. (A.3)

in the appendix. Furthermore, it follows from eq. (A.5) and eq. (2.5) that

Badd =
Nκ2

1

16π2
. (2.7)

Eq. (2.6) and eq. (2.7) can now be solved for the unique portal coupling at the GW scale

which is consistent with the experimental values for mHiggs and v

κ1(ΛGW) =
π

v

√
2
(
m2

Higgs +K(ΛGW)
)
·N−1/2 . (2.8)

Even though mHiggs in the above equation is evaluated at ΛGW, we can still insert the

measured value of the Higgs pole mass mHiggs = 125 GeV, since it runs logarithmically and

we always assume ln(ΛGW) ∼ ln(mHiggs). Equation (2.8) now shows that increasing the

number N of new scalar degrees of freedom implies a smaller value for the portal coupling

for otherwise fixed quantities. In other words, introducing a large scalar multiplet helps

to maintain the necessary condition B > 0, while at the same time allowing small portal

couplings. One might therefore think that for large enough N Landau poles in the scalar

sector can be entirely evaded. However, N also unavoidably enters in some terms of the

model’s beta functions leading to a faster RG running such that even for small couplings at

ΛGW low-scale Landau poles are possible (see also appendix B). Since N enters the problem

in a non-trivial way, only an explicit calculation of the RG running can shed light on the

question of whether some Landau pole exists below MPl for given N .

In order to simplify such a calculation in the class of models under consideration, we

neglect the SM contribution to the Higgs mass K ≡ K(ΛGW) and set

κ1(ΛGW) :=
√

2π
mHiggs

v
N−

1/2 . (2.9)

As K is positive, this definition exemplifies the “best-case approximation” in the sense

that for given N , the exact value for κ1(ΛGW) will always be larger than that defined in

eq. (2.9). But the larger the initial portal coupling, the sooner one of the scalar couplings

will develop a Landau pole.

Uniquely solving the given model’s RGEs requires to additionally fix the value of the

second quartic coupling at the GW scale λ2(ΛGW) as well as the renormalization point

ΛGW itself. Note that setting the portal coupling according to eq. (2.9) only guarantees

the proper ratio mHiggs/v, but not the correct overall scale. In a full calculation the latter,

would have to be set by adjusting ΛGW appropriately. For the following study, we will,
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Figure 1. Largest possible UV scale in extensions of the conformal SM by one real SU(2)L N -plet

with vanishing vev. The color code indicates which set of beta functions and couplings are taken

into account.

however, ignore this additional constraint and choose ΛGW = 500 GeV. Since we expect

the exact value of ΛGW to be of the same order as v and the running is not very sensitive

on where we precisely start in the range [100 GeV, 1 TeV], this approximation will not

significantly affect the position of Landau poles.

Lastly, we vary λ2(ΛGW) in the perturbative range and eventually employ the value

which allows the farthest extrapolation into the UV. For given order N , figure 1 shows

the largest possible scale ΛUV at which at least one of the model’s couplings becomes non-

perturbative. According to our discussion right after eq. (2.9), the plotted values for ΛUV

are to be seen as an upper bound for the true values, which is sufficient to exclude running

up to the Planck scale.

The pure scalar contribution (blue circles) supports running only up to

log(ΛUV/GeV) ≈ 6, which is 13 orders of magnitude below the Planck scale. This poor

performance can be explained as follows: with the scalar couplings alone, see eq. (B.2), no

cancellation can take place and the couplings will always increase quickly. The larger the

initial values of the scalar couplings the more drastic this effect becomes. Including the

top contribution into our calculation (red squares) makes the running even worse.

To understand the effects of including the gauge sector (green triangles) we consult

eq. (B.3) and eq. (B.5). On the one hand, the scalar beta functions receive stabilizing

(negative) contributions proportional to the gauge coupling g2 which grow as N2. The

Landau poles in the scalar RGEs are thus shifted towards larger energies for increasing

N . Accordingly, we observe a rise in ΛUV for N ≤ 5 in figure 1. On the other hand, the
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Figure 2. Running of the relative contributions to the beta function of the Higgs self-coupling.

The different contributions from the scalar, Yukawa and gauge sectors are displayed in blue, red

and green, respectively. Note that the dashed red (dotted green) curve shows the absolute value of

the negative contribution proportional to −y4 (−λg2) for better comparison with the positive ones.

coefficient in the g2 beta function becomes positive for large enough N and a Landau pole

emerges at ever smaller energies. At some point the gauge-sector Landau pole drops below

that of the scalar subsystem and thus becomes the restricting one. Correspondingly, the

UV scale declines for N > 5.

The results obtained via the full running (orange diamonds) shows that we cannot

reach the Planck scale in this set-up, so that the present class of models must be discarded.

We can further illuminate the above observations by analyzing the interplay between

the different contributions to the beta function of the Higgs self-coupling λ1, illustrated

in figure 2 (cf. also appendix B.1). It shows the running of the contributions from the

scalar (blue), Yukawa (red) and gauge (green) sectors with respect to the renormalization

scale µ. Note the logarithmic scale of the y-axis. While in the gauge sector the stabilizing

negative contribution −λg2 soon dominates over the positive +g4, it is still overpowered

by the contribution +λy2 which dominates the Yukawa sector for large enough scales µ.

However, the most important observation from figure 2 is that the relative contribution

of the portal coupling κ1 is about one order of magnitude larger than the non-scalar ones.

Correspondingly, the divergence in λ1 is triggered by the portal term which therefore must

be kept sufficiently small in order to avoid any Landau pole. However, eq. (2.8) prevents

small initial values for κ1 in the present case. Additionally, figure 2 explicitly demonstrates

that there is no possibility for complete cancellations between the Yukawa and gauge
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sectors on the one hand, and the scalar sector on the other hand. Consequently, stabilizing

cancellation must spring from negative contributions within the scalar sector itself.

2.1.2 Real multiplet with finite vacuum expectation value

Starting again from the scalar potential in eq. (2.4), we will now investigate the situation in

which one component of the real scalar multiplet, say χm0 , develops a finite vev, i.e. χm0 =

vχ + σ. Since the symmetry group of electromagnetism is observed to be unbroken at low

energies, only electrically neutral components of χ may acquire a non-zero vev. Together

with Y = 0 for real multiplets this gives the relation m0 = (N + 1)/2.

Anticipating the common origin of both vevs in the Coleman-Weinberg mechanism

and adopting the notation of appendix A, we parametrize

vφ = n1〈ϕ〉 ≡ sinα〈ϕ〉 ,
vχ = n2〈ϕ〉 ≡ cosα〈ϕ〉 ,

(2.10)

thereby defining the vev alignment angle α ∈ (0, π/2). Following the steps of appendix A, it

is now straightforward to write down the GW conditions for the model under consideration

and deduce the following identities which define the energy scale of spontaneous symmetry

breaking ΛGW

4λ1λ2 − κ2
1 = 0 , n2

1 =
κ1

κ1 − 2λ1
. (2.11)

We emphasize that all couplings in the above relations are to be understood as evaluated at

ΛGW. Furthermore, we have n2
2 = 1− n2

1 and we see that n2
1 can only be between zero and

one for positive λ1 if the portal coupling is negative. Combining eq. (2.10) and eq. (2.11),

we find the vev alignment angle in terms of scalar couplings at ΛGW, namely

tanα ≡
vφ
vχ

=

√
− κ1

2λ1
. (2.12)

We will use this formula in a moment to obtain information about the relative magnitude

of the two vevs.

First, however, let us remark that for finite vχ, the CP-even degrees of freedom σ and

h will in general mix and it is not clear a priori which mass eigenstate is to be identified

with the physical Higgs boson found at the LHC. To answer this question, we consider the

scalar mass matrix of the neutral, CP-even modes Φ̃ = (h, σ)ᵀ defined via V ⊇ 1
2 Φ̃ᵀM̃2Φ̃,

which can be computed from the potential in eq. (2.4) as

M̃2 =

(
6λ1v

2
φ + κ1v

2
χ 2

√
2κ1vφvχ

2
√

2κ1vφvχ 12λ2v
2
χ + 2κ1v

2
φ

)
. (2.13)

Since M̃2 is symmetric and real it can be diagonalized by an orthogonal matrix U , conve-

niently parametrized by a single mixing angle β. The two mass eigenstates (Φ1,Φ2)ᵀ = U Φ̃

can then be written as

Φ1 = cosβ · h− sinβ · σ ,
Φ2 = sinβ · h+ cosβ · σ ,

(2.14)
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one of which will have to be identified with the physical Higgs boson HLHC. To see which

one, note that we can assume β ∈ (−π/4, π/4) without loss of generality. But then we

immediately see the necessity of Φ1 ≡ HLHC, since low-energy phenomenology requires the

Higgs state to consist mainly of the SM doublet field [42, 43].

The mass matrix in eq. (2.13) has two distinct mass eigenvalues, which are given by

2m2
± = tr(M̃2)±

√[
tr(M̃2)

]2 − 4 · det(M̃2) .

As before, we can exploit the additional relations between the scalar couplings given in

eq. (2.11) together with the constraints λ1 > 0 and κ1 < 0 to obtain expressions for the

above tree-level masses at ΛGW, namely

m2
+ = 4(λ1 − κ1)v2

φ , m2
− = 0 . (2.15)

As expected, the spectrum in the broken phase still contains one scalar degree of freedom

with vanishing tree-level mass, the PGB of broken scale invariance. In contrast, m2
+ is

always positive. Which of the mass eigenstates Φi is now to be identified with the PGB

depends on the sign of the scalar mixing angle. The correct assignment procedure can be

deduced by simply calculating the diagonalized mass matrix for both cases. For positive β,

we obtain UM̃2Uᵀ = diag(m2
+,m

2
−) such that Φ2 is the PGB, whereas the diagonal entries

are exchanged for negative β and Φ1 corresponds to the PGB (cf. table 1).

Next, let us derive an expression for β in terms of model parameters by requiring the

matrix UM̃2Uᵀ to be diagonal. An explicit calculation yields

tan 2β =
4
√

2κ1 tanα

(12λ2 − κ1)− 2(3λ1 − κ1) tan2 α
,

where we used eq. (2.10) in order to introduce the vev alignment angle α. The above

identity shows that in a general theory the relation between the angles α and β explicitly

depends on the scalar couplings. In particular, experimental constraints for one angle do

not directly translate into bounds for the other one, unless all involved couplings are known.

In contrast, using the additional restrictions imposed on the scalar couplings by the GW

condition in eq. (2.11), we can rewrite the above equation as

tan 2β =
2
√

2 tanα

1− 2 tan2 α
, (2.16)

which has the two solutions listed in table 1. Combining the above identity with eq. (2.12),

we can deduce a relation between the sign of β and the relative magnitude of the two vevs,

see once more table 1.

In order to see whether we can construct a consistent conformal model in the present

set-up, let us now study the two cases β > 0 and β < 0 separately, starting with the

former. From table 1 we learn that for positive mixing angle the vev of the additional

SU(2)L multiplet is sizable, namely vχ >
√

2vφ. The presence of such a vev will in general

significantly shift away the ρ-parameter from its experimentally well-established SM-like

value of ρ ≈ 1 [45]. However, there are exceptions to this. Considering real multiplets,
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PGB tan β(α)
√

2vφ/vχ

β < 0 = HLHC −(
√

2 tanα)−1 > 1

β > 0 6= HLHC

√
2 tanα < 1

Table 1. Summary of differences between positive and negative scalar mixing angle β ∈
(−π/4, π/4). The assignment in the first column is done according to the discussion right after

eq. (2.15). The statements in the second (third) column follow from eq. (2.16) (and eq. (2.12)).

it is only the singlet which does not affect the ρ-parameter. Hence, for positive β we can

restrict the discussion of the additional real scalar with vev to this case.

Furthermore, a positive mixing angle implies m+ = mHiggs, i.e. the physical Higgs

cannot be identified with the PGB. Consequently, only the Higgs mass contributes to Badd

in eq. (2.6). But obviously, the LHC Higgs is not heavy enough to compensate the large,

negative top quark contribution to B and the PGB therefore obtains a negative mass-

square. In other words, the one-loop effective potential exhibits a maximum instead of a

minimum at the electroweak scale which is clearly unphysical and rules out this scenario.

Moving to negative scalar mixing angles, we now have
√

2vφ > vχ (cf. table 1). So

a priori vχ � vφ is allowed and the additional vev’s contribution to the ρ-parameter can

in principle be sufficiently small. For β < 0, we will therefore not only investigate the

singlet case, but also larger multiplets. Note at this point that for N > 1 a non-zero vev

in the χ-sector spontaneously breaks O(N) −→ O(N − 1). The theory’s spectrum in the

broken low-energy phase will thus contain N −1 Goldstone modes. Consequently, only one

component field of χ will acquire a non-vanishing mass term.

Furthermore, negative β implies that the physical Higgs is to be identified with the

PGB (cf. table 1) and the theory’s spectrum contains one additional scalar with unknown

mass m+. Correspondingly, we can calculate

Badd =
n4

1

4π2
(λ1 − κ1)2

and use eq. (2.6) to eventually arrive at the constraint

(125 GeV)2 !
= m2

Higgs =
2

π2
n2

1(λ1 − κ1)2v2
φ −K . (2.17)

The electroweak vev can generically be written as v2 =
(
2
√

2GF
)−1

= v2
φ + cv2

χ, with

a model-dependent non-negative constant c, implying vφ ≤ v. Hence, we can rewrite

eq. (2.17) as a condition on the unknown couplings evaluated at ΛGW

n2
1(λ1 − κ1)2 !

> π2 m
2
Higgs

2v2
=: r2 ,

which now depends on the empirically known quantities v and mHiggs. We have used again

that K is positive. Replacing the above inequality by an equality corresponds to the “best-

case approximation” in a similar sense as discussed right below eq. (2.9). Solving e.g. for

λ1, one obtains

λ1(κ1) =

(
r2 − κ2

1

)
±
√
r2
(
r2 − κ2

1

)
−κ1

, (2.18)
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where only the solution with the plus sign gives positive λ1 in the relevant κ1-range (small

and negative). Furthermore, general arguments allow to constrain the valid range for the

portal coupling. Firstly, λ1 is assumed to be real, which directly gives |κ1| ≤ r. Secondly,

as a consequence of eq. (2.12), negative scalar mixing angles imply λ1 ≤ −κ1. This, in turn,

is only satisfied for |κ1| ≥
√

3r/2. Using the numerical value for r, we can constrain κ1 to

1.38 ≤ |κ1| ≤ 1.60 . (2.19)

For the following study, we will choose again ΛGW = 500 GeV and vary κ1(ΛGW) in the

allowed range. The remaining initial conditions λ1(ΛGW) and λ2(ΛGW) are then fixed by

eq. (2.18) and eq. (2.11), respectively.

In complete analogy to figure 1 from the last subsection, figure 3 now illustrates the

results for the present case: the largest possible scale ΛUV at which at least one of the

model’s couplings develops a Landau pole is plotted as a function of N , the dimension

of the additional scalar SU(2)L representation. The most important result lies in the

fact that also within the present class of models, there is no representative which allows an

extrapolation all the way up to MPl. Except for the singlet case (N = 1), all models develop

a Landau pole at even lower scales compared to the corresponding case without vev.

The relative magnitudes of the calculated UV scales for different sets of beta functions

is very similar to those observed in figure 1 and the discussion there can be adopted.

Nevertheless, there are some qualitative differences between the two set-ups. Whereas, for

instance, figure 1 exhibits a peak for N = 5 in the case without vev, figure 3 shows a strict

decrease of ΛUV with N . This behavior can be easily understood as follows: eq. (2.18),

which fixes the valid initial parameter values in the present case, does not depend on the

number of added scalar degrees of freedom. Hence, for each N , the RG running starts

from the same hypersurface in parameter space. The RGEs, however, explicitly depend

on N and especially the scalar contributions tend to increasingly destabilize the running

for increasing N (cf. eq. (B.2)). In the situation without vev the initial hypersurface is

determined by eq. (2.9) showing that the initial value for the portal coupling decreases

with N . This can compensate the aforementioned destabilization for sufficiently low N .

Our findings generalize the analysis of [4] and are consistent with the conclusions of

Foot et al. This concludes our discussion of extensions of the conformal SM by one real

scalar multiplet. Since we have not found a consistent theory up to now, we move on to

the next class of models.

2.1.3 Complex multiplet with zero vacuum expectation value

In this section we drop the requirement of the additional scalar multiplet χ being real.

Correspondingly, all calculations will be based on the potential introduced in eq. (2.2)

and we can drop the restriction to only odd-dimensional SU(2)L multiplets. Note that a

complex scalar, as opposed to a real one, can carry non-zero hypercharge. If appropriate

quantum numbers are assigned to χ, one of the scalar’s components can be electrically

neutral and may therefore acquire a finite vev. We will discuss this case separately later.

After eq. (2.2) we argued that there exist additional operators for special configurations

of N and Y , but that it is reasonable to ignore them. For the analysis of the present class
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Figure 3. Largest possible UV scale in extensions of the conformal SM by one real SU(2)L N -plet

with finite vev vχ <
√

2vφ. The color code indicates which set of beta functions and couplings are

taken into account.

of models, however, we decided to include the special term

∆V1 = κ3

[
(φᵀετaφ)(χᵀCT aχ) + h.c.

]
, (2.20)

into the general potential. Here, C is a matrix in the SU(2) algebra satisfying the defining re-

lation CT aC−1 = −T aᵀ for all a, and ε is the two-dimensional representation of this matrix.

This term then forms a gauge singlet for arbitrary N as long as Y = −Yφ = −1
2 is fulfilled.

However, since the matrices CT a are anti-symmetric in all odd-dimensional irreps of SU(2),

the κ3-term is only present for even N . We decided to include ∆V1 into our analysis because

it is gauge-invariant not only for one special configuration, but, as we have just learned, for

all even-dimensional representations with a particular hypercharge. Nevertheless, it turns

out that the best RG running is obtained for a value of κ3 ≈ 0. This further fortifies our

assumption of choosing the special couplings close to zero. For better clarity, we will set κ3

to zero in all formulas (of this subsection), even though we include ∆V1 in our calculation.

As in the real case, we will first consider the situation in which only the SM doublet

acquires a finite vev, i.e. φ0 = vφ+h/
√

2, implying that the physical Higgs mode HLHC ≡ h
is to be identified with the PGB. The associated Gildener-Weinberg condition is again

λ1(ΛGW) = 0 so that the physical Higgs only becomes massive through quantum effects

with its one-loop mass squared given by eq. (2.6).

For generic values of the portal couplings κ1 and κ2, all (complex) component fields

χk will obtain some finite mass m2
k during EWSB. However, in contrast to the real case,

the presence of the κ2-term explicitly violates the formerly exact O(N) symmetry and thus
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leads to a mass splitting between the individual components, which is proportional to κ2.

An explicit calculation yields

m2
k =

1

4

[
4κ1 − (N − 2k + 1)κ2

]
v2 (2.21)

with k ∈ {1, . . . , N}. The portal couplings are to be understood as evaluated at ΛGW. One

can show that requiring real masses for all new scalar particles implies non-negative κ1 at

the Gildener-Weinberg scale. Using eq. (2.21), we can now compute

Badd = 2 · 1

64π2〈ϕ〉

N∑
k=1

m4
k =

4Nκ2
1 +Dκ2

2

128π2
,

where the overall factor of two takes into account the complex nature of the component

fields. The Dynkin index D of the representation under which χ transforms is defined in

appendix B. Anticipating K > 0, eq. (2.6) then implies√
4Nκ2

1 +Dκ2
2 > 4π

mHiggs

v
. (2.22)

Similar to the previous discussions, we are only interested in an upper bound for the location

of potential Landau poles and therefore employ the “best-case approximation”. Accord-

ingly, we replace the inequality in eq. (2.22) by an equality. Given N and e.g. κ2(ΛGW), we

can then simply compute the corresponding value of κ1(ΛGW) > 0.

Uniquely solving the given model’s RGEs requires to fix the remaining couplings at the

GW scale, namely λ2 and λ3, as well as the renormalization point itself. In the following, we

will assume ΛGW = 500 GeV and vary all unspecified parameters in the perturbative range.

The results of the RG running for one additional complex representation with vanishing

vev are shown in figure 4. The largest possible UV scale log(ΛUV/GeV) ≈ 7 is obtained for

N = 5 or N = 6 and small values of Y . The symmetry of the figure reflects the exchange

symmetry of the beta functions with respect to Y ↔ −Y . Note that the dots for even

numbers N on the Y = −1
2 axis were obtained including the κ3-term. This term could, in

principle, lead to differences in the UV scale for even-dimensional multiplets with Y = 1
2 and

Y = −1
2 . But as we see from figure 4, it has practically no effect on the RG running since the

optimal initial value for κ3 turns out to be close to zero and it is multiplicatively renormal-

ized. Also the other additional couplings with respect to the real case, λ3 and κ2, are best

chosen near zero at the initial scale. Note that these findings are consistent with our discus-

sion after eq. (2.2). Comparing figure 4 to the case of a real scalar without vev, figure 1, we

see that their features are very similar: they both support running up to about the same UV

scale, which reaches its maximum at approximately the same values of N and Y . In conclu-

sion we find that this model, by far, does not allow for RG running up to the Planck scale.

2.1.4 Complex multiplet with finite vacuum expectation value

After discussing the case of an additional real multiplet with finite vev in section 2.1.2,

the transfer to a complex representation is straightforward. First, we mention that for

a complex multiplet we naturally have a different normalization for the field modes, and
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Figure 4. Largest possible UV scale in extensions of the conformal SM by one complex SU(2)L
N -plet with hypercharge Y and vanishing vev.

especially χm0 = vχ+σ/
√

2 for the electrically neutral mode. As for the complex multiplet

without vev, we apply the Gildener-Weinberg formalism to the general potential eq. (2.2).

Introducing the following quantities

v′χ :=
√

2vχ , tanα′ :=
1√
2

tanα ,

λ′2 :=
1

4

[
λ2 + (1− δN,1)λ3Y

2
]
,

κ′1 :=
1

4

[
κ1 +

1

2
(1− δN,1)κ2Y

]
,

(2.23)

we obtain exactly the same equations as in the case with the additional real scalar (start-

ing from eq. (2.11)). We only need to use the primed quantities, defined in eq. (2.23),

instead of the unprimed ones. By this, for instance, the Gildener-Weinberg condition from

eq. (2.11) now reads 4λ1λ
′
2 − κ′ 21 = 0. The only new aspect is an additional GW condi-

tion, namely κ3(ΛGW) = 0. Using the aforementioned replacements, also the scalar mixing

phenomenology is the same as in section 2.1.2, which we summarized in table 1.

For positive mixing angle, table 1 tells us that
√

2vφ/v
′
χ = vφ/vχ < 1. As a consequence

the additional vev is sizable and thus will in general tarnish the ρ-parameter. However, for

N ≤ 20, there exist three complex representations which leave the ρ-parameter invariant,

namely a singlet with Y = 0, a doublet with Y = 1/2 and a septet with Y = 2. The

description of one additional complex singlet with zero hypercharge is equivalent to the

description of two additional real singlets and will be covered in section 2.2 (see also

e.g. [46]). If χ is an SU(2)L doublet with Y = 1/2 it is a second Higgs boson and —
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without additional assumptions — would have Yukawa couplings to all of the SM fermions.

This contradicts our principle of minimality and we will not further consider this case here.

Finally, we investigated the septet model. In this case, due to the large dimensionality N

and the relatively large hypercharge Y = 2, the beta function of the U(1)Y gauge coupling

runs into a Landau pole before reaching the Planck scale (cf. eq. (B.6)). In summary, the

case of positive β does not provide us with a consistent, minimal conformal model with a

complex scalar multiplet that develops a finite vev.

For negative scalar mixing angle we have vφ > vχ and for not too large vχ the ρ-

parameter is safe. The Higgs boson HLHC is the PGB and its mass is generated by the

additional massive scalar modes at the one-loop level. In the case of a real multiplet the

potential possessed a global O(N) symmetry that was spontaneously broken and, by the

Goldstone theorem, guaranteed that all modes besides χm0 were massless. Here, the addi-

tional couplings λ3 and κ2 explicitly break this symmetry. Consequently, the masses of the

charged modes are proportional to the symmetry breaking parameters. However, as our

previous analysis as well as the analysis of [44] suggest, the couplings λ3 and κ2 are best

chosen close to zero for optimal RG running, and the symmetry of the potential is approx-

imately restored. With the additional masses close to zero, the results of the model with

complex multiplet acquiring a finite vev are comparable to the real case. This argument

is further substantiated by the observation — stated within the discussion of figure 4 —

that the results from section 2.1.1 and 2.1.3 are both qualitatively and quantitatively very

similar. Therefore, there is no reason to expect a large difference when going from real to

complex χ also in the case of a finite vev. We thus conclude that for negative β the case

of the complex multiplet with finite vev leads to similar results as in the real case shown

in figure 3. In particular, there will be no combination (N,Y ) for which the RG running

can be extended far beyond O(107 GeV).

This exhausts all reasonable possibilities in the case of the conformal SM plus a complex

multiplet that develops a finite vev. We have not found a consistent minimal conformal

model up to now.

Before we proceed to the next class of models with two additional scalar multiplets,

let us comment on the conformal SM with one additional scalar and additional fermionic

representation(s). One can easily see that this set-up will also fail to provide a consistent

conformal model, since additional fermions destabilize the RG running in two ways: firstly,

any massive fermionic particle will give negative contributions to Badd. In order to render

B positive, the scalar couplings therefore have to take larger initial values in comparison to

the model without fermion. Secondly, adding a fermion will ultimately destabilize the scalar

RGEs even more due to its positive contribution proportional to λy2 to the beta function

of a generic scalar coupling (cf. the discussion about figures 1 and 2). We conclude that,

if a given theory develops Landau poles well below the Planck scale, then the same theory

supplemented by fermions interacting via Yukawa couplings with the scalar sector will, too.

2.2 SM + two scalar representations

In complete analogy to our discussion in section 2.1, we now consider the case in which

two real scalar multiplets χ and ξ are added to the SM. In doing so, we will neglect all but
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Figure 5. Largest possible UV scale in extensions of the conformal SM by two real scalar SU(2)L
multiplets with vanishing vevs. The results were obtained using RGEs including Left : scalar con-

tributions only. Right : scalar and top-quark contributions.

the standard quartic and portal couplings, in accordance with our previous analyses (cf. in

particular section 2.1.3). This is also in line with our notion of minimality discussed earlier.

In effect, the aforementioned assumption introduces an additional global O(Nχ) × O(Nξ)

symmetry in the scalar sector. The associated scale-invariant tree-level potential then reads

V = λφ(φ†φ)2 + λχ(χ†χ)2 + λξ(ξ
†ξ)2 + κφχ(φ†φ)(χ†χ) + κφχ(φ†φ)(ξ†ξ) + κχξ(χ

†χ)(ξ†ξ) ,

(2.24)

where φ denotes the SM complex Higgs doublet as before and both χ and ξ are now

supposed to satisfy reality conditions like the one in eq. (2.3). For the model’s RGEs we

again refer to the formulas given in appendix B.

2.2.1 Two real multiplets with zero vacuum expectation value

Similar to our one-scalar discussion, we first assume that neither χ nor ξ acquires a finite

vev. In the GW formalism, this corresponds to the renormalization condition λφ(ΛGW) = 0.

Hence, the physical Higgs is necessarily the PGB of broken scale invariance. Electroweak

symmetry breaking then proceeds via φ0 = v+ h/
√

2 and induces the following masses for

all new scalar degrees of freedom:

m2
χ = 2κφχv

2 or m2
ξ = 2κφξv

2 . (2.25)

Since all physical masses have to be real, the two portal couplings κφχ and κφξ are nec-

essarily non-negative at the GW scale. The one-loop mass squared of the physical Higgs
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boson HLHC ≡ h is again given by equation eq. (2.6), but in the present situation we have

Badd =
Nχκ

2
φχ +Nξκ

2
φξ

16π2
. (2.26)

Combining the previous identity with equation eq. (2.6) and taking into account K > 0,

we arrive at √
Nχκ2

φχ +Nξκ
2
φξ >

√
2π
mHiggs

v
. (2.27)

For the purpose of finding out whether there exists a pair (Nχ, Nξ), for which consistent

radiative symmetry breaking is possible, explicit calculations of the RG running are in-

evitable. To facilitate those, we will again apply the “best-case approximation”, in which

the above inequality eq. (2.27) is replaced by an equation. Given Nχ, Nξ and e.g. κφχ(ΛGW),

we can then simply compute the corresponding value of κφξ(ΛGW).

Uniquely solving the given model’s RGEs requires to fix the three remaining couplings

at the GW scale, namely λχ, λξ and κχξ, as well as the renormalization point ΛGW itself.

For the following study, we will choose ΛGW = 500 GeV and vary all unspecified couplings

in the perturbative range. Whereas the quartic couplings are confined to positive values

due to the requirement of vacuum stability, the sign κχξ(ΛGW) is not constrained a priori.

Figures 5 and 6 summarize the findings for the largest possible UV scale ΛUV we obtain

working in the “best-case approximation”. In total, we show four plots, differing in the

particle sectors included in the computation of the RG running. It is instructive to compare

the present results to the outcome of the calculations with one extra scalar without vev

(cf. section 2.1.1). Thereby, each of the above panels corresponds to one set of points in

figure 1. On a qualitative level, each individual case gives results resembling those of its

one-scalar counterpart. The respective differences between the four cases are also similar

for both set-ups. In particular, comparing the panels on the right-hand side with the ones

on the left-hand side in figures 5 and 6, again exemplifies that including a generic Yukawa

coupling destabilizes the flow and thus decreases the maximal possible UV scale. On a

quantitative level, the Landau poles in the present study of two additional scalars develop

at somewhat higher scales compared to the corresponding divergences in the one-scalar case.

We furthermore find that for given dimensions of the scalar multiplets, the farthest

RG running is obtained for vanishing quartic couplings, λχ and λξ, as well as negative and

often sizable κχξ. As revealed by scrutinizing the RGEs in eq. (B.2), negative κχξ may

keep the scalar part of portal coupling beta functions under control by generating negative

contributions through mixed terms like in β
(1)
κφχ ⊇ 4Nξκφξκχξ. Accordingly, for negative

and sufficiently large κχξ, there can be cancellations already within the scalar sector. In ad-

dition, there exist combinations (Nχ, Nξ), for which also the other free portal coupling, κφχ
is of O(1). However, this is simply a consequence of the constraint derived from eq. (2.27).

Finally, the most important result from the present paragraph is the following: the

calculation based on the full set of RGEs with all terms included shows that none of the

investigated models can be extrapolated all the way up to the Planck scale. Hence, we do

not find a consistent conformal model in this class of theories.
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Figure 6. Largest possible UV scale in the set-up described in figure 5. The results were obtained

using Left : RGEs including scalar and SM gauge contributions. Right : full RGEs.

2.2.2 The minimal conformal model

As in the previous section, we will discuss the situation of two real scalar multiplets being

added to the conformal SM. However, whereas earlier both additional scalars were sup-

posed to have a trivial vacuum expectation value, we will now relax this assumption and

investigate cases in which one of the multiplets has a component that acquires a finite vev.

In the following, we will demonstrate that already for the simplest case with two ad-

ditional scalar gauge singlets S and R, the model allows for an extrapolation all the way

up to the Planck scale, while giving rise to the correct phenomenology at the electroweak

scale. Since this time our goal is to actually prove that the largest possible UV scale is at

least the Planck scale, it is no longer sufficient to calculate an upper bound for ΛUV as we

did before. In particular, we will not apply the previously introduced “best-case approxi-

mation”. Instead, we will use a two-step procedure: first, we determine the hypersurface in

the model’s parameter space on which the given low-energy phenomenology requirements

are satisfied. In particular and in contrast to our analyses before, we perform a fully con-

sistent calculation of the Gildener-Weinberg scale in the way outlined in appendix A.2.

Second, we will numerically solve the full set of RGEs towards the UV starting from the

solution manifold from step one. At each RG step, we check if basic perturbativity and

stability requirements are met by all running couplings.

Furthermore, we test whether no GW condition is satisfied at any intermediate energy

scale Λ > ΛGW. During the evolution of the early universe, the tree-level potential would

have developed a non-trivial minimum before reaching the original ΛGW if such a scale Λ
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existed. Hence, SSB would already have taken place at Λ which would render our initial

assumption inconsistent.

Let us now first concentrate on the conformal SM extended by two real scalar gauge

singlets (CSM2S), one of which (say S) acquires a finite vev during EWSB, i.e. S = vS +σ.

The most general scalar potential which is consistent with the SM gauge symmetries and

classical scale invariance can be written as

V = λφ(φ†φ)2 + λSS
4 + λRR

4 + κφS(φ†φ)S2 + κφR(φ†φ)R2

+ κSRS
2R2 + κ4SR(φ†φ)2 + κ5S

3R+ κ6SR
3 .

(2.28)

In order to reduce the number of free parameters, we impose an additional global Z2

symmetry in the following way

R
Z2−→ −R , (2.29)

with all other fields in the theory left invariant. The three terms in the last line of eq. (2.28)

are odd under the above transformation and are thus forbidden. Note, furthermore, that

the definition in eq. (2.29) implies absolute stability of R which therefore might be a viable

dark matter candidate.3

As R does not acquire a finite vev, it does not mix with the other CP-even scalar

modes. With φ0 = vφ + h/
√

2 as usual, we then obtain the following tree-level mass

m2
R = 2

(
κφRv

2
φ + κSRv

2
S

)
.

Furthermore, the 2×2 mass matrix of (h, σ) is the same as before in section 2.1.2, eq. (2.13),

upon replacing
λ1 → λφ , λ2 → λS ,

κ1 → κφS , vχ → vS .

Using the above replacement rules, it is moreover straightforward to show that all formulas

given in eq. (2.10) to eq. (2.16) apply to the present situation. In particular, we again have

to distinguish positive and negative scalar mixing angle β (cf. table 1).

Here, we concentrate on the case in which the physical Higgs boson HLHC is not iden-

tified with the PGB of broken scale invariance. In this situation, the Higgs mass is given

by m+ from eq. (2.15). For given portal coupling κφS(ΛGW), we can therefore directly

calculate the value of λφ at the GW scale, namely

λφ(κφS) = κφS +
m2

Higgs

4v2
at ΛGW .

We set vφ ≡ v = 174 GeV in accordance with the fact that S is a gauge singlet whose vev

does not contribute to the electroweak scale. The above equation can furthermore be used

to determine the range of portal couplings consistent with positive β, namely |κφS | < 0.065.

Next, we use the assumed vev configuration in form of the GW condition in eq. (2.11)

to further reduce the number of free parameters at the initial scale:

λS(κφS) =
κ2
φS

4λφ
at ΛGW .

3If we want the Z2 symmetry to be exact, it must be R rather than S which transforms non-trivially

under it. Otherwise, Z2 would be spontaneously broken by vS = 〈S〉 6= 0.
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Figure 7. Largest possible UV scale in the CSM2S. (Case in which the physical Higgs is not the

PGB, i.e. β > 0.) The white arrow marks the example point from eq. (2.30).

The determination of the remaining parameters’ initial values in terms of κφS and mPGB is

presented in appendix A.2. In particular, we will show there how to consistently calculate

the GW scale.

Next, we need to clarify whether the model can be consistently extended all the way

up to the Planck scale without any intermediate scale appearing. We do so by solving

the theory’s complete one-loop RGEs. In each RG step, we check basic perturbativity and

stability criteria of the model’s couplings and abandon the given parameter point as soon

as any inconsistency occurs below MPl. The beta functions for the CSM2S can be obtained

from the general formulas given in appendix B by setting Nχ = Nξ = 1.

Our calculation for positive scalar mixing angle gives the plot shown in figure 7. As

discussed above, we vary one of the portal couplings, κφS , and the PGB mass. In accordance

with the discussion after eq. (2.8), we immediately discard those parameter points, which

imply a large separation between ΛGW and the electroweak scale v (grey area on the left).

Since the effective potential’s perturbative expansion is no longer reliable if ln(〈ϕ〉/ΛGW)

is too large, we additionally exclude points, for which the hierarchy between the GW scale

and the condensate 〈ϕ〉 becomes sizable (grey area on the top). For small portal couplings

|κφS | and sufficiently low PGB masses, mPGB . 15 GeV, we then find a viable region of

parameter space (red area). In this regime, a fully consistent extrapolation of the model up

to the Planck scale is possible, while reproducing the correct low-energy phenomenology.

The available parameter space can be further narrowed down by noting that the

mixing in the Higgs sector will effect the signal strength of Higgs events observed at

the LHC. The currently measured signal strength constrains the scalar mixing angle to
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sinβ ≤ 0.44 [42, 43]. By including this limit in figure 7, we can rule out all points below

the dashed black curve. Another type of constraint comes from the electroweak precision

measurements performed at LEP. However, as all new particles are scalar SM singlets,

their contributions to the oblique S parameter are necessarily both loop-suppressed and

proportional to the small mixing angle β [47]. Corrections to the T parameter are ex-

pected to be negligible as well since the model’s scalar potential does not violate custodial

symmetry. A further interesting phenomenological aspect is the existence of exotic Higgs

decays. The Higgs boson can decay into two PGBs, which then further decay to SM

particles. In this decay chain possible final states contain, H → 4 jets, H → 4 leptons,

H → 4γ, H → 2 jets 2γ, H → 2 jets 2 leptons, H → 2 leptons 2γ. While the hadronic

decays have a large background at the LHC, the final states containing leptons can be

well distinguished. In particular the leptons are pairwise boosted in contrast to a decay

mediated by the electroweak gauge bosons. Furthermore, the H → 4γ can provide a very

clean signature and only has the background coming from highly suppressed Higgs self

interactions. This opens a window of opportunity to test a symmetry implemented close

to the Planck scale, directly at the TeV scale.

Let us now try to gain further insight on how the scalar couplings can remain free

of Landau poles in the present model. In analogy to our analysis in section 2.1.1, we

therefore compare the different contributions to the Higgs self-coupling beta function. The

corresponding results presented in figure 8 were obtained for the example point marked in

figure 7, namely

mPGB = 3 GeV , κφS = −0.0018 . (2.30)

Requiring the correct vev implies mR = 313 GeV. Stable RG running up to the Planck

scale is then e.g. possible for λR = 0.015 and κSR = 0.01.

Now, the key difference with respect to figure 2 is that the pure scalar contribution

no longer dominates over the whole energy range. Rather, it is exceeded by the stabilizing

contribution from the Yukawa coupling for energies up to 1014 GeV so that the Higgs

coupling first decreases. At larger scales, the portal terms start to dominate. The coupling

will hence ultimately develop a Landau pole. However, our calculation shows that λφ stays

small up to the Planck scale.

We attribute this improved behavior of the scalar contribution to two features. First,

compared to the models in section 2.1, there is now a larger number of independent scalar

degrees of freedom (multiplets). Positivity of B therefore no longer implies that one cou-

pling must be particularly large at the initial scale: whereas e.g. equations (2.8) and (2.19)

require κ1 to be of order one, the corresponding portal coupling in the CSM2S, κφS , is

preferably of O(10−2) or smaller. Second, since all scalar couplings can now be of the

same order of magnitude, there exists the possibility of cancellations between different

scalar contributions. Those cancellations may help to keep the beta functions of the portal

couplings small.

Now that we have understood how a stable RG running is realized in the minimal

conformal model, let us look for means to achieve larger PGB masses. To that end, we

briefly discuss a non-minimal extension of the conformal SM very similar to the CSM2S.
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Figure 8. Running of the relative contributions to the beta function of the Higgs self-coupling for

the example point in eq. (2.30). The different contributions from the scalar, Yukawa and gauge

sectors are displayed in blue, red and green, respectively (cf. also caption of figure 2).

Here, the singlet scalar R is exchanged for a real SU(2)L triplet with vanishing vev.4 The

resulting model will be referred to as CSMTS in the following. Figure 9 demonstrates

that compared to the minimal conformal model an extended region of PGB masses up to

mPGB ≈ 35 GeV becomes accessible in the CSMTS. With respect to the minimal model,

two heavy scalar degrees of freedom are added to the theory’s spectrum. According to

eq. (A.7) and eq. (A.5), a given PGB mass can now be produced for smaller initial values

of the scalar couplings (cf. appendix A). Consequently, potential Landau poles will develop

at higher scales. A straightforward and minimally invasive way to generate even larger

PGB masses would be to replace the triplet by a higher-dimensional real SU(2)L multiplet,

e.g. a septet. Note that in this case the dark matter stability does not need to be enforced

by any additional global symmetry.

Let us finally comment on the robustness of our results under inclusion of higher

loop orders in the RG running. Since higher-order terms come with an additional loop

suppression factor of 1/16π2, their contributions can only have a significant impact, if

the one-loop beta functions are anomalously small. Hence, in all the cases that failed to

provide a perturbative evolution up to MPl, two-loop effects will be negligible, since the

one-loop beta functions are already sizable. In contrast, as there are mild cancellations in

the RGEs of the minimal conformal model, two-loop contributions may change our results

quantitatively. If two-loop contributions turned out to be sizeable in some areas of param-

4The imposed Z2 symmetry from eq. (2.29) is replaced by a global O(3) symmetry in the triplet sector.
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Figure 9. Largest possible UV scale in the CSMTS. (Case in which the physical Higgs is not the

PGB, i.e. β > 0).

eter space with mild cancellations between the one-loop contributions, the former might

destabilize the RGE running. In such cases the affected parameter space would need to be

excluded. However, we expect our findings to remain valid from a qualitative perspective.

3 Matching to the semiclassical regime in gravity

In this section we sketch how our scenario might be embedded in a broader context in-

cluding effects from gravity. We choose here the semi-classical approach to quantum fields

in curved space-time as it is the most conservative method currently available and only

requires concepts of general relativity and quantum field theory. We have seen in the

previous section that small or even vanishing self interactions in the scalar sector lead to

stable RG trajectories. Motivated by this observation we consider a free scalar field in

the gravitational background. As a model system we consider de-Sitter geometry as we

assume that it is a good description for the early state of our universe. The metric ansatz is

conveniently parametrized by ds2 = a(t)2(dη2 − d~x2) where dη = dt/a(t) is the conformal

time coordinate. The governing equation in this highly symmetric system is the trace of

the Einstein equation, given by

R
M2

Pl

8π
= −〈Tµµ〉 . (3.1)

where R denotes the Ricci curvature scalar, which represents the gravitational field. The

vacuum expectation value of the scalar-field EMT sources the gravitational field and is
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given in four space-time dimensions by

Tµµ =
1

2
m2φ2 +

3

2

(
ξ − 1

6

)
�
(
φ2
)
. (3.2)

As we assume conformal initial conditions with m = 0 and the coupling of the scalar φ

to the curvature ξ = 1/6, this quantity is zero at tree level and we need to compute its

vacuum expectation value quantizing the scalar field φ. We will only sketch the slightly

technical calculation at this point and make reference to the literature for a more peda-

gogical description [48, 49]. The basic idea is that we construct the field operators as

φ(x) =
∑
~k

(
A~kf~k(x) +A†~k

f∗~k (x)
)
. (3.3)

In the above equation the mode functions f~k(x) are the solutions to the equation of motion

for the scalar field in curved background. The ladder operators A~k, A
†
~k

define the vacuum

by A~k|0〉 = 0 for all ~k. This vacuum state is called the adiabatic vacuum as it is assumed

that the components of the metric tensor change in such a way that we can define a sensible

expansion in the components’ derivatives. In our case of de-Sitter geometry this translates

into an assumption about the scale factor and its time derivatives. We begin with a general

form of the solution for the sclar field equation of motion

fk =
1√
2V

g(a)hk e
i~k·~x. (3.4)

The rescaling function g(a) will drop out of the vacuum expectation values of operators

quadratic in fields and thus has no physical meaning. This includes the vacuum expectation

value of the EMT, which we will compute below. At the same time g(a) can be chosen

such that the friction term in the general equation of motion is not present and transforms

it into a harmonic oscillator equation with time-varying mass. So choosing conformal time

coordinate η, the rescaling needs to be g(a) = 1/a(η) in order to cancel out the friction

term. We find that with this parametrization the equation for h(η) is as follows

h′′k + Ω2
khk = 0 , (3.5)

where the oscillation frequency is defined as

Ω2
k = k2 +

(
m2 +

(
ξ − 1

6

)
R

)
a(η)2 ≡ k2 +m2

eff a(η)2 . (3.6)

In the above equation, R is the Ricci scalar of the Friedmann-Robertson-Walker (FRW)

spacetime and we have introduced the effective mass parameter meff. This parametriza-

tion shows immediately the special case of the de-Sitter spacetime: if R is constant the

curvature-induced term amounts to a mass correction.

The solution to the equation of motion for each mode f~k can be found in an adiabatic

series. When substituted in the equation for the EMT between two vacuum states and
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summing over all modes, it leads after renormalization to an expression in the de-Sitter

background5

〈0|Tµµ |0〉 =
1

16π2

(
− 1

2160
R2 +

m2

18
R+

1

3
(ξ − 1/6)m2R+

1

2
(ξ − 1/6)2 R2

)
. (3.7)

As discussed, our initial conditions were chosen to be m = 0 and ξ = 1/6. Thus

16π2 〈0|Tµµ |0〉 = − 1
2160 R

2, which is called the gravitational conformal anomaly.6

From eq. (3.1) it is clear that this vacuum set-up leads to an inflationary solution with

a constant space-time curvature and a scale factor time evolution a(t) ∝ exp (H t), where

H =
√
R/12 is the Hubble rate. At first glance this might seem as inflation would continue

forever, but as the space-time expands the temperature drops, which changes the energy

scale and induces a running of the parameters. As we discussed in the introduction, even

at vanishing quartic interaction of the scalar the running of the gauge couplings translates

into a running of ξ at higher orders, leading to a deviation of ξ from the value 1/6.

Since the contribution of the non-minimal coupling ξ to the trace of the EMT is positive

definite [cf. eq. (3.7)], it unavoidably cancels the contribution of the gravitational conformal

anomaly. This ends the inflationary epoch and allows therefore the universe to enter its

later FRW evolution. It is important to evaluate the scale evolution of the effective mass

parameter of the scalar field during this process. As mentioned, at the beginning m = 0

and ξ = 1/6 which means that meff = 0. Then, once ξ deviates by a value ε from 1/6 we can

use eq. (3.1) to infer that meff ≈ 2Mpl

√
πε (1080−1 − ε2)−1. This is a valid approximation

for a non-vanishing trace of the EMT. At the same time in the limit 〈Tµµ〉 → 0 eq. (3.1)

shows that R → 0 and thus meff → 0. This point in the evolution is special, as the trace

of the EMT vanishes even at quantum level. Therefore, at the end of inflation a transition

to the FRW radiation-dominated epoch takes place and meff ≈ 0 with corrections of order

εHreheating. Under the reasonable assumption that at reheating the space-time curvature

scale Hreheating is much smaller than the electroweak scale the boundary condition of vanish-

ing explicit masses is a good approximation for our study of the electroweak sector and scale

invariance turns out to be an approximative symmetry with corrections of order εHreheating.

We argue that this cosmological scenario is a good motivation for our field theory set-

up with a classically vanishing mass and asymptotically small quartic self interactions of

the scalar fields. Note that we did not rely on a loop expansion to arrive at this conclusion,

but rather used the adiabatic expansion in metric derivatives.

4 Discussion

The present study contains the analysis of simple conformal extensions of the Higgs sector

in which radiative symmetry breaking within the Coleman-Weinberg mechanism can take

5The general form of the trace of the energy-momentum tensor can for example be found in [50]. Their

eq. (3.2) reduces to our expression assuming the de-Sitter symmetries.
6Note that we provide here a toy example of a scalar coupled to gravity in order to demonstrate our

proposed mechanism. In a full SM context the contribution to the EMT due to the non-vanishing beta

function of the hypercharge — proportional to 〈FµνFµν〉 — is present and would have to be canceled by

the gravitational conformal anomaly as well.
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place. As a consequence of non-linearly realized conformal symmetry implemented at a

much higher scale, the usual gauge hierarchy problem is avoided. For this scenario to be

consistent, the vanishing of the trace anomaly at the high scale is necessary. We discuss

how this scenario can be realized by a semiclassical matching to gravity in section 3.

As simple extensions of the Standard Model (SM), we consider theories with the same

gauge group. Hence, there is always the beta function of the Abelian gauge coupling

which can only vanish in the UV once gravity contributions become significant. Thus,

our necessary condition is that the renormalization-group (RG) running remains stable

and does not develop Landau poles below the Planck scale. We have used the Gildener-

Weinberg formalism, ensuring the perturbative nature of our expansion, and have taken

into account the complete one-loop RG equations. In particular, we include contributions

from field renormalization.

We find that none of the conformal extensions of the Higgs sector by one scalar SU(2)L
multiplet meets the stability criteria. The additional scalar can be either real or complex

and acquire a vacuum expectation value or not. In all cases the models develop a Landau

pole far below the Planck scale. The reason is that in all parameter points the phenomeno-

logical requirement that the Higgs boson mass is roughly half its vacuum expectation value,

leads to large portal couplings κ in the potential. The RG running is then highly unstable,

since the beta function for the Higgs quartic coupling λ contains terms proportional to λ2

and κ2 with positive coefficients. Contributions from gauge bosons can decelerate the run-

ning, as they contain negative terms of the form −λg2, where g is a generic gauge coupling.

However, with growing scalar couplings the scalar sector dominates and the system is still

unstable.

In particular, the simple model discussed in [2], in which the SM is extended by one real

SU(2)L-singlet scalar and right-handed sterile neutrinos, turns out to be unstable. Indeed,

even though a Yukawa coupling y gives a negative contribution proportional to −y4 to

the beta function of the Higgs self-coupling, the scalar field wave function renormalization

unavoidably introduces positive terms scaling as +λy2. Therefore, it is obvious that, with

growing λ, the fermionic contributions always destabilize the system even more.7

Other extensions of the Higgs sector by one SU(2)L scalar representation turn out to

be unstable as well, as for example the conformal inert doublet model [24].8

Having excluded those simplest theories, we find the minimal model, which leads to

correct radiative breaking of electroweak symmetry and is RG stable, among the extensions

of the Higgs sector by two scalars. To be precise, our analysis shows that the minimal model

is the SM augmented by two scalar gauge singlets, one of which has to obtain a non-zero

vacuum expectation value. In this system a light Higgs boson can be realized without

fine-tuning. In addition, the theory contains a pseudo-Goldstone boson (PGB) with its

mass being strongly suppressed with respect to the vacuum expectation value of the new

7The different treatment of the wave function renormalization leads to deviations with respect to the

results of [2].
8In order to check this, we have performed a fully consistent analysis as presented in section 2.2.2. In

particular, we have taken into account the complete scalar potential including the term ∆V2 = κ4

[
(φ†χ)2 +

h.c.
]
, which is only present for χ ∼ (1, 2, 1

2
).
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singlet scalar. This turns out to be a natural set-up with no need for large couplings in the

potential. Furthermore, in the three-scalar potential the portal term contributions to the

RG running can be negative and thus mutually stabilize their beta functions. Those are

the two reasons why the system remains stable up to the Planck scale.

Our study raises the general question about the stability of a Standard Model extension

under RG translations. A general observation is that the top-quark Yukawa coupling runs

towards a stable value between 0.4 and 0.6 in the far ultraviolet, depending indirectly on

the SU(2)L scalar content. This is due to the fact that the top Yukawa beta function at

one-loop depends on itself and the three gauge couplings, which only show a mild running

in the ultraviolet regime. As can be seen from the appropriate RG equations, the Higgs

quartic coupling can have a regime of RG-flow stability at finite values given a large top

Yukawa and small portal couplings to the new scalars. It is an interesting and non-trivial

observation that in the SM there are no Landau poles below the Planck scale and the Higgs

self-coupling approaches a constant (yet negative) value in the UV. In our extensions of

the Higgs sector portal couplings are necessarily present. Their positive contributions to

the Higgs beta function lead to vacuum stability at all energy scales. Additionally, if the

portal couplings are sufficiently small, the near vanishing of the Higgs beta function in the

UV is maintained.9 Accordingly, in the RG-stable region of parameter space the scalar

beta functions have very small values at the Planck scale. This is the desired behavior

to achieve the necessary anomaly matching, thus indicating that conformal symmetry is

realized at the quantum level.

Within the minimal model, we find that one of the scalar singlets is an excellent dark

matter candidate, since it does not develop a vacuum expectation value. Its effective

phenomenology is similar to the Higgs portal model, see for example [52–54] and references

therein. We observe the dark matter mass to be confined to a rather small region between

300 GeV and 370 GeV. Furthermore, we checked that the parameter space considered by

us is consistent with cosmological observations, i.e. the scalar field abundance does not

overclose the universe. However, a detailed study of the dark matter phenomenology goes

beyond the scope of this article. We stress again that the stability of the DM candidate

crucially relies on the assumed Z2 symmetry. In contrast, if the second scalar is a septet

its stability does not need to be enforced by any additional symmetry.

Another important phenomenological consequence is that the mass of the pseudo-

Goldstone boson is found to be always below half the Higgs mass and is preferably as light

as a few GeV. This necessarily leads to additional Higgs decays and therefore to a larger

Higgs width than in the SM.

Furthermore, the points of the parameter space in which we find stable RG running

predict sizable singlet scalar admixtures to the physical Higgs state with sines of the mixing

angle between 0.12 and 0.48. The mixing can be compared to the SM prediction which leads

to a constraint on the mixing angle. The current LHC upper limit of sin β ≤ 0.44 [42, 43]

therefore already rules out a certain fraction of the parameter space. The complete model

might be tested by the LHC in the ongoing run.

9The exact value of the Higgs quartic coupling at which its beta function vanishes is sensitive to the top

quark mass and can have a small positive value or even vanish for some top mass values [51].
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Finally, we would like to remark that in the minimal conformal extension of the SM neu-

trino masses can easily be accommodated. Once we introduce right-handed neutrino fields

as SM gauge singlets they naturally possess a conformal and gauge-invariant, Majorana-

type Yukawa coupling to the scalar singlet S.10 Additionally, we obtain Dirac-type Yukawa

couplings with the SM lepton and Higgs doublet. After electroweak symmetry breaking

the Yukawa couplings lead to a neutrino mass matrix that realizes a type-I seesaw mech-

anism [15]. Of course, it remains to be checked whether including the Majorana Yukawa

coupling negatively influences the RG running. Based on our observations regarding the

effects of the top quark Yukawa coupling on the RGEs, we expect changes due to yM to be

controllable.

To summarize our results, we found that it is necessary to add at least two scalar fields

to the Standard Model, one of which has to develop a non-vanishing vacuum expectation

value to have a model which is stable under RG translations. Thus the minimal model we

discuss is an extension of the SM Higgs sector by two real singlet scalar fields. We have

found that the minimal model contains a viable dark matter candidate and predicts sizable

mixing in the Higgs sector, which might be a powerful tool to rule out or get a hint about

the realization of conformal models.
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A The Gildener-Weinberg formalism

In this appendix, we review the Gildener-Weinberg formalism introduced in [40]. Within

the framework of the Coleman-Weinberg mechanism, it allows to systematically minimize

a potential in a theory with multiple scalar fields without having to resort to numerical

brute-force algorithms. It can be considered the analogue of the RG-improved potential in

the one-scalar case. Furthermore, the formalism allows us to derive conditions on the scalar

couplings and ensures the applicability of the loop expansion of the effective potential.

After discussing the formalism’s basic principles in section A.1, we present our method

to consistently calculate the scale of spontaneous symmetry breaking ΛGW in section A.2.

A.1 Basics

Gildener and Weinberg start by introducing a general tree-level scalar potential of the form

V (~Φ) =
1

24
fijk` φi φj φk φ` , (A.1)

where ~Φ denotes the collection of all real scalar degrees of freedom in a given theory.

Note that the coupling constants f = f(Λ) are subject to RG running, where Λ is the

10Note that the right-handed neutrinos, however, do not couple to R due to the Z2 symmetry. Even if such

a coupling existed, it still would not lead to a Majorana mass term because R does not develop a finite vev.

– 30 –



J
H
E
P
0
7
(
2
0
1
7
)
1
1
3

renormalization scale. The potential eq. (A.1) is assumed to develop a continuous set of

degenerate minima at a specific scale ΛGW, the Gildener-Weinberg scale. These minima lie

on a ray through the origin of field space, henceforth referred to as the flat direction.

In order for V to develop a flat direction, the scalar couplings must satisfy certain

conditions which can generically be written as

R(f)
∣∣∣
Λ=ΛGW

= 0 , (A.2)

thereby determining the GW scale. We will refer to conditions of this type as Gildener-

Weinberg conditions. The flat direction can be parametrized as

~Φflat = ~nϕ , (A.3)

where ~n is a unit vector and ϕ gives the position on the ray. Whereas the tree-level po-

tential is minimal for each ϕ, loop corrections will in general bend the potential along

the flat direction. Thus, a particular value 〈ϕ〉 is singled out as the actual minimum.

Equation (A.3) then implies that the scalar fields corresponding to the non-vanishing com-

ponents of ~n acquire finite vevs, the relative magnitudes of which are given by the entries

of ~n. Depending on which of the scalar modes acquire a finite vev, the relevant set of

conditions R is different.

The one-loop effective potential along the flat direction can be written as [40]

V
(1)

eff (~nϕ) = Aϕ4 +Bϕ4 ln

(
ϕ2

Λ2
GW

)
, (A.4)

where ΛGW is the renormalization point.11 The functions A and B are given by

A =
1

64π2〈ϕ〉4
∑
i

(−1)2sidi ·m4
i (~n〈ϕ〉)

(
ln
m2
i (~n〈ϕ〉)
〈ϕ〉2

− ci
)
,

B =
1

64π2〈ϕ〉4
∑
i

(−1)2sidi ·m4
i (~n〈ϕ〉) .

(A.5)

A few comments on the notation are in order. First, the index i in the above sums runs over

all particles in the given theory. For each particle mi(~nϕ) is given by its field-dependent

tree-level mass evaluated along the flat direction. Note that mi implicitly depends on the

renormalization point ΛGW. The coefficient di counts the particle’s real degrees of freedom

and si denotes its spin. The constants ci depend on the actual renormalization scheme.

Here, we will use the MS scheme, for which one finds ci = 5
6 in the case of gauge bosons

and ci = 3
2 for scalars or fermions. Finally, as mentioned before, 〈ϕ〉 is the value of the

parameter ϕ along the flat direction at which the one-loop effective potential develops an

extremum. This extremum is a minimum if and only if B is positive. In particular, it

11Notice that due to dimensional transmutation all dimensional quantities, and in particular masses,

will be proportional to the symmetry breaking scale. Hence, it is only reasonable to take ΛGW as the

renormalization point in eq. (A.4).
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is straightforward to show that the minimum of the one-loop effective potential eq. (A.4)

along the flat direction lies at

〈ϕ〉 = ΛGW · exp

(
−1

4
− A

2B

)
. (A.6)

The above equation shows that 〈ϕ〉 is of the same order as ΛGW if A is of the same order as

B. This is a necessary condition to control the loop expansion in powers of ln(〈ϕ〉/ΛGW).

The excitation along the flat direction ~Φflat defined in eq. (A.3) is the pseudo-Goldstone

boson of broken scale invariance. Massless at tree level, its mass is generated radiatively

only after SSB. The mass of the PGB at one-loop level is given by

m2
PGB =

d2V
(1)

eff (~nϕ)

dϕ2

∣∣∣∣∣
ϕ=〈ϕ〉

= 8B〈ϕ〉2 . (A.7)

Note that in models, in which the PGB is identified with the Higgs boson measured at the

LHC, HLHC, the loop function B has to match the Higgs mass according to this equation.

A.2 Calculating the Gildener-Weinberg scale

In this part, we enlarge upon certain aspects of the Gildener-Weinberg formalism intro-

duced in the previous section. Thereby, we concentrate on the consistent computation of

the GW scale, which we need in our treatment of the minimal conformal model in sec-

tion 2.2.2. There, we have already described how to express λφ(ΛGW) and λS(ΛGW) in

terms of κφS(ΛGW). Now, we show how to calculate ΛGW and mR in a way consistent with

the empirically known values of v and mHiggs for given κφS and mPGB.

The crucial quantity in determining a viable parameter point is the loop function B

introduced in eq. (A.5). It is particularly important since it relates the PGB mass to the

other particles’ masses and the condensation scale via eq. (A.7). As a first step, we isolate

the contributions due to SM fermions and gauge bosons,

B = BSM +Badd ,

where Badd contains all additional contributions from the scalar sector, including the one

from the SM Higgs doublet.

Before we proceed let us remark that the models we consider in section 2.2.2 are special

in the following sense: in addition to the usual Higgs doublet only gauge singlets obtain non-

vanishing vevs. Hence the electroweak scale originates from the doublet sector only, v =

vφ = n1〈ϕ〉, and we can therefore parametrize all SM fermion and gauge boson masses as

mi = m̃i n1〈ϕ〉 for i ∈ SM∗ (A.8)

with appropriate dimensionless coefficients m̃i. The set SM∗ contains all massive SM

gauge bosons and fermions. Defining the function

B̃SM =
1

64π2

∑
i∈SM∗

(−1)2sidi · m̃4
i ,
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and using eq. (A.8), we can write

B(ΛGW) = n4
1B̃SM(ΛGW) +Badd . (A.9)

The above partition is particularly convenient, because n1 and Badd only depend on the

scalar couplings whose values are defined at the GW scale. We suppress this implicit

dependence on ΛGW in the above equation. In contrast, B̃SM depends on SM gauge and

Yukawa couplings, which are only known at the electroweak scale. However, we can use

the RGEs to evolve the gauge and Yukawa couplings to any scale Λ < MPl.

Motivated by combining eq. (A.9) with the formula for the PGB mass, eq. (A.7), we

define the function

G(Λ) := n4
1B̃SM(Λ) +B′add +

n4
1

64π2

m4
Higgs

v4︸ ︷︷ ︸
=Badd

−n
2
1

8

m2
PGB

v2
.

(A.10)

Then the Gildener-Weinberg scale consistent with a given set of scalar couplings and a

particular PGB mass is defined via the condition12

G(ΛGW)
!

= 0 . (A.11)

In addition, we must check whether ΛGW and v are reasonably close to each other (cf. our

discussion after eq. (2.8)).

In our previous discussion, we have already assumed the electroweak scale to attain its

proper value, v = 174 GeV. For a fully consistent calculation, we must therefore ascertain,

if our one-loop effective potential, indeed, possesses an appropriate minimum, i.e. whether

v = n1ΛGW · exp

(
−1

4
− A

2B

)
(A.12)

yields the correct number (cf. eq. (A.6)).

Solving eq. (A.11) and eq. (A.12) self-consistently, eventually fixes two more variables

at the GW scale, namely ΛGW itself and B′add. Of course, the particular form of B′add

depends on the model under investigation. An explicit calculation in the minimal conformal

model from section 2.2.2, for instance, gives

B′add =
κφRn

2
1 + κSRn

2
2

16π2
.

B One-loop beta functions

In this appendix, we collect the renormalization group equations used throughout this work.

For the perturbative expansion of a given beta function, we adopt the following notation

β(g) =
β(1)(g)

16π2
+
β(2)(g)

(16π2)2
+ . . . .

In the following we list the one-loop beta functions for two real scalars (B.1) and one

complex scalar (B.2). The beta functions for one real scalar are obtained from the

two-scalar functions by dropping every term with a ξ.

12The uniqueness of the root of eq. (A.11) is guaranteed, since B̃SM(Λ) is a strictly monotonously in-

creasing function of the energy scale Λ.
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B.1 SM + real scalar representation(s)

Here, we consider the scalar sector of the SM supplemented by up to two real scalar SU(2)L
multiplets, denoted as χ and ξ, respectively. For the following, recall the definition of the

quadratic Casimir C and the Dynkin index D, which are, respectively, given by

C =
1

4
(N2 − 1) , D =

1

3
NC =

1

12
N(N2 − 1) (B.1)

for an SU(2) N -plet. For the calculation of the RGEs, we will assume that the scalar

potential is of the form given in eq. (2.24), i.e. it is not only classically scale-invariant but

additionally enjoys a global O(4)×O(Nχ)×O(Nξ) symmetry. The one-loop scalar-sector

beta functions then turn out to be

β
(1)
λφ

= 24λ2
φ + 2Nχκ

2
φχ + 2Nξκ

2
φξ ,

β
(1)
λχ

= 8(Nχ + 8)λ2
χ + 2κ2

φχ + 2Nξκ
2
χξ ,

β(1)
κφχ

= 8κφχ

[
3

2
λφ + (Nχ + 2)λχ + κφχ

]
+ 4Nξκφξκχξ ,

β(1)
κχξ

= 8κχξ

[
(Nχ + 2)λχ + (Nξ + 2)λξ + 2κχξ

]
+ 4κφχκφξ .

(B.2)

The beta functions of λξ and κφξ can be obtained from the ones of λχ and κφχ by exchanging

χ↔ ξ as well as identifying κχξ ≡ κξχ.

Taking into account the scalars’ interactions with the electroweak gauge bosons, the

above RGEs obtain the following additional contributions

∆β
(1)
λφ

= −3λφ(g2
1 + 3g2

2) +
3

8
(g4

1 + 3g4
2 + 2g2

1g
2
2) ,

∆β
(1)
λχ

= −12Cχλχg
2
2 +

3

32

[
T (Nχ, Nχ) + 8δNχ,3

]
g4

2 ,

∆β(1)
κφχ

= −3

2
κφχ

[
g2

1 + (4Cχ + 3)g2
2

]
+

3

2
Cχg

4
2 ,

∆β(1)
κχξ

= −6(Cχ + Cξ)κχξg
2
2 +

3

16
T (Nχ, Nξ)g

4
2 .

(B.3)

where Cχ and Cξ denote the Casimir invariants of the scalar multiplets χ and ξ, respectively

(cf. the definition in eq. (B.1)). Furthermore, we use the abbreviation

T (Nχ, Nξ) = (Nχ − 1)(Nξ − 1)
[
NχNξ − (Nχ +Nξ) + 3

]
.

The only other sizable SM coupling is the top-quark Yukawa coupling y, which enters the

scalar RGEs in the following way

∆β
(1)
λφ

= 6(2λφ − y2)y2 , ∆β(1)
κφχ

= 6κφχy
2 . (B.4)

Besides the Higgs beta function, the only SM RGE which changes in the presence of χ and

ξ is that of g2, namely

β(1)
g2 =

[
1

6
(Dχ +Dξ)−

19

6

]
g3

2 (B.5)

with the Dynkin indices Dχ and Dξ given in eq. (B.1).
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B.2 SM + one complex scalar representation

As in section 2.1, let χ be a complex scalar representation with χ ∼ (1, N, Y ) and let the

scalar interactions be described by the potential in eq. (2.2). Note that we present the

RGEs including κ3, since we used them in our analysis in section 2.1.3. The scalar sector

beta functions are then calculated to be

β
(1)
λ1

= 24λ2
1 +Nκ2

1 +
1

4
Dκ2

2 + 2Dκ2
3 ,

β
(1)
λ2

= 4(N+4)λ2
2 + 8Cλ2λ3+

1

2
(N−1)2

[
N(10−N)−13

]
λ2

3+2κ2
1+

(
δN,2+

9

2
δN,4

)
κ2

3 ,

β
(1)
λ3

=
1

3
(N − 2)

[
N(N + 20)− 33

]
λ2

3 + 24λ2λ3 +
1

2
κ2

2 − 2δN,4κ
2
3 ,

β(1)
κ1 = 4κ1

[
3λ1 + (N + 1)λ2 + Cλ3 + κ1

]
+ Cκ2

2 + 8Cκ2
3 ,

β(1)
κ2 = 4κ2

[
λ1 + λ2 + (D + C − 1)λ3 + 2κ1

]
− 16κ2

3 ,

β(1)
κ3 = 4κ3

[
λ1 + λ2 − (C − 1)λ3 + 8κ1 − 4κ2

]
,

where N , C and D refer to dimension and invariants of the representation under which χ

transforms. The scalar sector is coupled both to SM fermions and to the electroweak gauge

bosons. The corresponding contributions to the scalar RGEs are given by

∆β
(1)
λ1

= 6(2λ1 − y2)y2 , ∆β(1)
κi = 6κiy

2 ,

and

∆β
(1)
λ1

= −3λ1

(
g2

1 + 3g2
2

)
+

3

8
g4

1 +
9

8
g4

2 +
3

4
g2

1g
2
2 ,

∆β
(1)
λ2

= −3λ2

[
4Y 2g2

1 + (N2 − 1)g2
2

]
+ 6Y 4g4

1 +
3

8
(N − 1)2

[
N(10−N)− 13

]
g4

2 ,

∆β
(1)
λ3

= −3λ3

[
4Y 2g2

1 + (N2 − 1)g2
2

]
+ 12Y 2g2

1g
2
2 + 3

[
(N − 3)2 − 1

]
g4

2 ,

∆β(1)
κ1 = −3

2
κ1

[
(4Y 2 + 1)g2

1 + (N2 + 2)g2
2

]
+ 12Y 4g4

1 + 3Cg4
2 ,

∆β(1)
κ2 = −3

2
κ2

[
(4Y 2 + 1)g2

1 + (N2 + 2)g2
2

]
+ 24Y 2g2

1g
2
2 ,

∆β(1)
κ3 = −3

2
κ3

[
(4Y 2 + 1)g2

1 + (N2 + 2)g2
2

]
.

The modified one-loop gauge RGEs are

β(1)
g1 =

(
41

6
+

1

3
NY 2

)
g3

1 , β(1)
g2 =

[
1

3
D − 19

6

]
g3

2 . (B.6)
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