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1 Introduction

Instantons in four dimensions are defined as solutions to the (anti-)self-dual equation F =

± ∗4 F . Here F is the field strength 2-form of the gauge field with a gauge group G

and the symbol ∗d is the Hodge dual operator in d-dimensional Euclidean space. It is

well known that instantons play important roles in the study of non-perturbative effects

in gauge theories [1, 2]. Through the Bianchi identity, instantons are solutions to the

equation of motion in the four-dimensional pure Yang-Mills theory. The instantons are,

moreover, characterized by the homotopy group π3(G), therefore we can classify these by

the second Chern number c2 = 1
8π2

∫
Tr[F ∧F ]. Of particular importance for the instantons

is its systematic generation method of solutions, known as the Atiyah-Drinfeld-Hitchin-

Manin (ADHM) construction [3]. The ADHM construction algebraically constructs all the

instantons in four dimensions, and the quaternion plays central roles on this algebraic side.

It is well known that the instantons are related to other lower dimensional solitons.

For instance, a caloron is the soliton solution that we take a periodic direction in the in-

stanton [4]. The dimensional reduction of the (anti-)self-dual equation to three dimensions

leads to the Bogomol’nyi equation, and the BPS monopoles are defined as the solutions

to this equation [5]. In the following, the monopoles mean the BPS monopoles. There is

the systematic construction, which is similar to the ADHM construction, of the monopoles

and the calorons. This construction is called the Nahm construction [6–8]. In three dimen-

sions, there is an another soliton, known as Skyrmion, which is the solution of the static
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Skyrme model. The Atiyah-Manton construction produces well-approximated solutions of

the Skyrmions from the instantons [9].

Naturally, we consider generalization of the four-dimensional instantons by generalizing

the (anti-)self-dual equation to higher dimensions. There are several kinds of “instantons”

in higher dimensions, and these have been studied in various contexts. One of the main

types of instantons is sometimes called a secular type instanton [10, 11]. The secular type

instantons are the solutions to the linear equation Fµν = λTµνρσF
ρσ, λ 6= 0, (µ, ν, ρ, σ =

1, . . . , d). Here d > 4 and the symbol Tµνρσ is an anti-symmetric constant tensor that

respects subgroups of the SO(d) Lorentz group. However, the Chern numbers that are

associated with the secular type instantons are not finite and quantized in general. In this

sense, the secular type instantons are not topological solitons. An ADHM construction of

the secular type instantons in 4n (n = 1, 2, 3, . . . ) dimensions has been studied in [12].

On the other hand, we can consider the another type equation which is the straightfor-

ward generalization of the four-dimensional (anti-)self-dual equation: F (n) = ± ∗4n F (n).

Here F (n) is the nth wedge products of the field strength 2-form F . This equation is

called the 4n-dimensional (anti-)self-dual equation and solutions to this equation are called

(anti-)self-dual instantons. One of the most important characters of the (anti-)self-dual in-

stantons is that these topological charges, which are defined by the 2n-th Chern number

c2n = 1
(2n)!(2π)2n

∫
TrF (2n), are finite and quantized when the homotopy group is non-

trivial: π4n−1(G) 6= 0. This type instanton was first studied by Tchrakian [13],1 and

he constructed a spherical symmetry SO(4n) instanton in 4n dimensions which is gen-

eralization of the four-dimensional Belavin-Polyakov-Schwartz-Tyupkin(BPST) instanton.

Furthermore, in 4n dimensions, an axially symmetric SO(4n) one-instanton was presented

explicitly in [15]. This instanton is the analogy of the axially symmetric Witten solution

in four dimensions. The existence of axially symmetric SO(4n) multi-instantons has been

proved analytically in [16, 17]. However, in 4n (n ≥ 2) dimensions, a SO(4n) instanton

of which symmetry less than axially symmetry does not exist [18]. From this fact, we

propose the following question. Can we construct higher-dimensional instantons of which

other gauge groups and symmetries? We will consider an approach of a higher-dimensional

ADHM construction to elucidate this question. In this paper, we treat only the case of

which the base manifold is Euclidean space R4n. Note that there are the (anti-)self-dual

instantons on other base manifolds also, for instance, the case of complex projective space

CPm was discussed in [19].

In this paper, we study an ADHM construction of the 4n-dimensional (n ≥ 2) (anti-)self-

dual instantons with the unitary gauge group U(N). The first non-trivial case (n = 2),

the eight-dimensional ADHM construction, has been studied in [20]. The 4n-dimensional

ADHM construction is generalization of the eight-dimensional one. We will show that

this is a general scheme to construct the (anti-)self-dual instantons and the known one-

instantons in 4n dimensions can be reproduced from this scheme.2 Moreover, we will dis-

cuss higher-dimensional multi-instantons by introducing specific ADHM data which solve

ADHM constraints, and we mention calorons and the monopole limit in higher dimensions.

1The special case of n = 2 was studied independently in [14].
2Note that the gauge group of this reproduced one-instanton expand to the unitary group U(22n−1).
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The organization of this paper is as follows. In the next section, we study the

model that gives the (anti-)self-dual equation in 4n dimensions and review the known

4n-dimensional one-instantons. We introduce, moreover, an (anti-)self-dual tensor which

is generalization of the ’t Hooft symbol in four dimensions. The (anti-)self-dual tensor is

constructed from the complex Clifford algebra and plays the central roles of the higher-

dimensional ADHM construction on the algebraic side. In section 3, we study the ADHM

construction of the U(N) (anti-)self-dual instantons in 4n dimensions (n ≥ 2). We find

that, in generally higher dimensions, there is an extra ADHM constraint in addition to the

respected four-dimensional one. This situation is same as the eight-dimensional case [20].

One of the most interest things is that the ADHM construction in more higher than twelve

dimensions does not require other new constraints. In section 4, we consider some ADHM

data in higher dimensions. We first show that our construction precisely reproduces the

well-known one-instanton profile of the solution. Next, we consider a multi-instanton

ADHM data which is generalization of the ’t Hooft data in four dimensions and show that

this data in the dilute instanton gas limit satisfies the ADHM constraints. In section 5, we

will discuss a 4n-dimensional Harrington-Shepard type caloron and this monopole limit.

The last section includes the conclusion and discussions. The explicit matrix representa-

tion of the complex Clifford algebra can be found in appendix A. We prove the existence

of the inverse matrices of the ADHM constraints in appendix B.

2 (Anti-)self-dual instantons in 4n dimensions

In this section, we study (anti-)self-dual instantons in 4n-dimensional Euclidean space with

the flat metric. The 4n-dimensional (anti-)self-dual equation is defined as the generalization

of the usual four-dimensional (anti-)self-dual equation:

F (n) = ± ∗4n F (n), (2.1)

where ∗4n is the 4n-dimensional Hodge dual operator, F (n) = F ∧ · · · ∧ F (n times) and

F = 1
2!Fµνdx

µ ∧ dxν is the gauge field strength 2-form of which component is defined by

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]. Here Aµ is the anti-hermite gauge field (A†µ = −Aµ) which

takes value in a Lie algebra G. The Lie algebra G is associated with the non-Abelian gauge

group G and the greek indices µ, ν, · · · = 1, 2, . . . , 4n are the 4n-dimensional Euclidean

space indices. The component expression of the (anti-)self-dual equation (2.1) is

F[µ1µ2 . . . Fµ2n−1µ2n] = ± 1

(2n)!
εµ1µ2...µ2n−1µ2nν1ν2...ν2n−1ν2nFν1ν2 . . . Fν2n−1ν2n , (2.2)

where εµ1µ2...µ2n−1µ2nν1ν2...ν2n−1ν2n is the anti-symmetric tensor in 4n dimensions and the

bracket [µ1µ2 . . . µ2n] means the anti-symmetrization of indices with the weight 1/(2n)!.

The 4n-dimensional (anti-)self-dual instantons are defined as the solutions to the 4n-

dimensional (anti-)self-dual equations (2.2).

The action that gives the 4n-dimensional (anti-)self-dual equation (2.1) is given by

S = (−1)nNn
∫

Tr [F (n) ∧ ∗4nF (n)] . (2.3)
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We call this action as the generalized Yang-Mills action. Here Nn is the normalization

constant in 4n dimensions which will be determined on the last in this section. If we

choose the hermite gauge field (A†µ = Aµ) then the action coefficient signature is replaced

1 instead of (−1)n. We easily show that the Bogomol’nyi completion of the action is

S = (−1)n
Nn
2

∫
Tr
[
(F (n)∓ ∗4nF (n))2 ± 2F (2n)

]
≥ ±(−1)nNn

∫
TrF (2n), (2.4)

where we have defined

(F (n)∓ ∗4nF (n))2 = (F (n)∓ ∗4nF (n)) ∧ ∗4n (F (n)∓ ∗4nF (n)) . (2.5)

The Bogomol’nyi bound of the action (2.3) is saturated when the solutions satisfy the 4n-

dimensional (anti-)self-dual equation (2.1). Then the action is bounded from below by the

2n-th Chern number S = ±(−1)nNn
∫

TrF (2n).

The 4n-dimensional Belavin-Polyakov-Schwartz-Tyupkin(BPST) type instanton was

discussed in [13, 14, 21]. We review this type instanton in the following. The gauge field

of the BPST type instanton is

Aµ(x) = −1

2

x̃ν

λ2 + ‖x̃‖2
Σ(±)
µν , (2.6)

where we have defined x̃µ = xµ − aµ, aµ ∈ R is the position of the instanton, λ ∈ R is

the instanton size and ‖x̃‖2 = (xµ − aµ)(xµ − aµ). The symbol Σ
(±)
µν is a 4n-dimensional

(anti-)self-dual tensor, and this is an analogy of the ’t Hooft symbol in four dimensions.

The (anti-)self-dual tensor in 4n dimensions is given by

Σ(+)
µν = e†µeν − e†νeµ, Σ(−)

µν = eµe
†
ν − eνe†µ, (2.7)

with ei, e
†
i , which we call the (anti-)self-dual basis in 4n dimensions, are defined by

eµ = δµ#122n−1+δµiΓ
(−)
i , e†µ = δµ#122n−1+δµiΓ

(+)
i , (i = 1, . . . , 4n−1, # = 4n), (2.8)

where Γ
(±)
i are 22n−1× 22n−1 matrices that satisfy the relation {Γ(±)

i ,Γ
(±)
j } = −2δij122n−1 ,

and 122n−1 is the identity matrix. The element Γ
(±)
i is defined by Γ

(±)
i = 1

2(1±ω)Γi and we

choose Γ
(±)
i that satisfies the relation: Γ

(+)
i = −Γ

(−)
i . Here Γi is the matrix representation

of the (4n−1)-dimensional complex Clifford algebra: Γi ∈ C`4n−1(C), and ω is the chirality

element which is defined by

ω = (−1)n+1Γ1Γ2 . . .Γ4n−1. (2.9)

The explicit matrix representation of the (4n − 1)-dimensional complex Clifford algebras

can be found in appendix A. The (anti-)self-dual basis eµ is the generalization of the

quaternion basis in four dimensions and is normalized as Tr
[
eµe
†
ν

]
= 22n−1δµν . The

relation of convenient for calculations is

eµe
†
ν + eνe

†
µ = e†µeν + e†νeµ = 2δµν122n−1 . (2.10)
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The (anti-)self-dual tensor Σ
(±)
µν satisfies the 4n-dimensional (anti-)self-dual relation:

Σ
(±)
[µ1µ2

. . .Σ
(±)
µ2n−1µ2n]

= ± 1

(2n)!
εµ1µ2...µ2n−1µ2nν1ν2...ν2n−1ν2nΣ(±)

ν1ν2 . . .Σ
(±)
ν2n−1ν2n , (2.11)

where the upper script sign of Σ
(±)
µν corresponds to the sign in the r.h.s. of (2.11). For later

convenience, we calculate the following quantities:

Σ
(±)
12 . . .Σ

(±)
(4n−1)(4n) = ±(−1)n22n122n−1 ,

Σ(±)
µ1µ2 . . .Σ

(±)
µ4n−1µ4n = εµ1µ2...µ4n−1µ4nΣ

(±)
12 . . .Σ

(±)
(4n−1)(4n) = ±(−1)n22nεµ1µ2...µ4n−1µ4n122n−1 .

(2.12)

The field strength Fµν of the BPST type instantons is evaluated to be

Fµν =
λ2

(λ2 + ‖x̃‖2)2
Σ(±)
µν . (2.13)

Then the field strength (2.13) manifestly satisfies the 4n-dimensional (anti-)self-dual equa-

tion (2.2) by using (2.11). The (anti-)self-dual tensor Σ
(±)
µν satisfies the commutation

relation: [
Σ(±)
µν ,Σ

(±)
ρσ

]
= 4

(
δνρΣ

(±)
µσ − δνσΣ(±)

µρ + δµρΣ
(±)
σν − δµσΣ(±)

ρν

)
. (2.14)

Hence, we find that Σ
(±)
µν is the spinor-representation of the SO(4n) Lie algebra. Therefore

the gauge group of the 4n-dimensional BPST type instanton is the special orthogonal group

SO(4n) and its homotopy group is π4n−1(SO(4n)) = Z⊕ Z. Note that it is sufficient that

the homotopy group contains at least one Z factor to classify instantons by the integer

topological charge.

Next, we determine the normalization constant Nn. This is defined by the condition

that the topological charge of the BPST instanton (2.13) becomes one. The topological

charge Q of the 4n-dimensional instantons is defined by the 2n-th Chern number:

Q = (−1)nNn
∫
R4n

TrF (2n)

= (−1)nNn
∫
R4n

d4nxTr

[(
1

2

)2n

εµ1µ2...µ4n−1µ4nFµ1µ2 . . . Fµ4n−1µ4n

]
.

(2.15)

We easily calculate the topological charge of the BPST type instantons (2.13) by us-

ing (2.12). The result is

Q = (−1)nNn
1

22n

∫
R4n

d4nx

(
λ2

(λ2 + ‖x̃‖2)2

)2n

Tr
[
εµ1µ2...µ4n−1µ4nΣ(±)

µ1µ2 . . .Σ
(±)
µ4n−1µ4n

]
= ±22n(4n)!nπ2n

Γ(2n+ 1)
B(2n, 2n)Nn = ±(2n)!(2π)2nNn, (2.16)

where B(2n, 2n) is the beta function and we have used the following relation:∫ ∞
0

dr
r4n−1

(1 + r2)4n
=

1

2
B(2n, 2n). (2.17)

– 5 –



J
H
E
P
0
7
(
2
0
1
7
)
1
1
0

We define that the topological charge of the instantons is a positive number when the

instantons satisfy the self-dual equation, i.e. the plus sign in (2.2). Therefore the 4n-

dimensional normalization constants Nn is determined to be

Nn =
1

(2n)!(2π)2n
. (2.18)

3 U(N) ADHM construction in 4n dimensions (n ≥ 2)

In this section, we study an ADHM construction of the (anti-)self-dual instanton in the

4n-dimensional Euclidean space with the flat metric. In the following, we choose the anti-

self-dual solutions to the equation (2.2) and we use the matrix representation of the Clifford

algebra C`4n−1(C). This explicit form can be found in appendix A. We first introduce the

4n-dimensional Weyl operator:

∆ = C(x⊗ 1k) +D, (3.1)

where x = xµeµ, the symbol⊗means the tensor product, C andD are (N+22n−1k)×22n−1k

constant matrices which are called the ADHM data, and N corresponds to the rank of the

unitary group, we will show this fact for later. If we consider self-dual solutions then

we must choose the basis e†µ instead of eµ. In the next section, we will show that the

integer k corresponds to the instanton number which is defined by the 2n-th Chern number

k = |Nn
∫

TrF (2n)|. Now we demand that the Weyl operator satisfies the first ADHM

constraint:

∆†∆ = 122n−1 ⊗ E(1)
k , (3.2)

and the second ADHM constraint:

C†∆
(

∆†∆
)−1

∆†C = 122n−1 ⊗ E(2)
k , (3.3)

where ∆† is the Hermitian conjugate matrix of ∆, E
(1)
k and E

(2)
k are invertible k×k matrices.

The first ADHM constraint (3.2) is the natural generalization of the four-dimensional

one [3]. On the other hand, the second ADHM constraint (3.3) is the analogy of the

eight-dimensional one [20]. In addition, the Weyl operator requires the non-degeneracy

condition: rank ∆ = 22n−1k, and the existence of the inverse E
(a)
k (a = 1, 2) is guaranteed

by this condition (this proof is shown in appendix B). Here rank A means the rank of

the matrix A, and the non-degeneracy condition of the Weyl operator is satisfied if and

only if the ADHM data C,D satisfy the condition: rank C = rank D = 22n−1k. For

later convenience, let us analyze the ADHM constraints in more detail. For (3.1), the first

ADHM constraint (3.2) becomes(
x† ⊗ 1k

)
C†C(x⊗1k)+

(
x† ⊗ 1k

)
C†D+D†C(x⊗1k)+D†D = 122n−1⊗E(1)

k (x). (3.4)

– 6 –
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The ADHM constraints hold for all x ∈ R4n, hence we can decompose the first ADHM

constraint to three x-independent conditions:

C†C = 122n−1 ⊗ E(1,1)
k , (3.5a)

C†D = eµ ⊗ E(1,2)
k,µ , (3.5b)

D†D = 122n−1 ⊗ E(1,3)
k , (3.5c)

where E
(1,2)
k,µ is a hermite matrix and E

(1)
k = x2E

(1,1)
k + 2xµE

(1,2)
k,µ + E

(1,3)
k . Similarly, the

second ADHM constraint (3.3) expands to

C†C(x⊗1k)(122n−1⊗f)
(
x†⊗1k

)
C†C + C†C(x⊗1k)(122n−1⊗f)D†C

+C†D(12n−1 ⊗ f)
(
x†⊗1k

)
C†C + C†D(122n−1⊗f)D†C = 122n−1⊗E(2)

k (x),

(3.6)

where f−1 = E
(1)
k . When we discuss the x-independent conditions of the second ADHM

constraint, we can ignore the x that is included in f because the matrix f is already placed

in the r.h.s. for the tensor product. For (3.5a) and x†x = xx† = x2122n−1 , the x2 term

in (3.6) automatically satisfies the constraint. The x1 terms in (3.6) expands to

C†C(x⊗ 1k)(122n−1 ⊗ f)D†C + C†D(12n−1 ⊗ f)
(
x† ⊗ 1k

)
C†C

= xν
(
eνe
†
µ ⊗ E

(1,1)
k fE

(1,2)
k,µ + eµe

†
ν ⊗ E

(1,2)
k,µ fE

(1,1)
k

)
. (3.7)

These terms satisfy the constraint for all x if and only if the following condition holds:

E
(1,1)
k fE

(1,2)
k,µ = E

(1,2)
k,µ fE

(1,1)
k . (3.8)

Next we consider the x0 term in (3.6). This term becomes

C†D(122n−1 ⊗ f)D†C =
(
δµν122n−1 + Σ(−)

µν /2
)
⊗ E(1,2)

k,µ fE
(1,2)
k,ν , (3.9)

here we have used eµe
†
ν = δµν122n−1 + Σ

(−)
µν /2. For this equation, we obtain the following

condition for the x0 term:

Σ(−)
µν ⊗ E

(1,2)
k,µ fE

(1,2)
k,ν = 0. (3.10)

Therefore we obtained the two x-independent conditions of the second ADHM constraint,

namely (3.8) and (3.10).

Let us show that how to obtain the gauge field of the anti-self-dual instanton from the

ADHM data. Following the ADHM construction in four dimensions [3], we first consider

zero modes of the Weyl operator ∆. The null-space of the Hermitian conjugate matrix ∆† is

N -dimensional, as it has N fewer rows than columns. The basis vectors for this null-space

can be assembled into an (N + 22n−1k) × N matrix V (x), which is sometimes called the

zero mode. This fact means that the zero mode V (x) is the solution to the Weyl equation:

∆†V (x) = 0, (3.11)

– 7 –
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and the zero mode V (x) is normalized as V †V = 1N . The zero mode V and the Weyl

operator ∆ satisfy the following relation which is called the completeness relation:

1N+22n−1k − V V † = ∆
(

∆†∆
)−1

∆†. (3.12)

We can easily prove this relation by using a (N + 22n−1k) × (N + 22n−1k) matrix

W =
(

∆ V
)

. Because of the non-degeneracy condition, the Weyl equation (3.11) and

the normalization: V †V = 1N , the columns of W are linearly independent. There-

fore the matrix W is invertible, and the following equation is an identity equation:

W (W †W )−1W † = 1N+22n−1k. We can obtain the completeness relation by expanding the

l.h.s. term W (W †W )−1W † with ∆ and V . We employ the ansatz of the gauge field Aµ(x)

is given by the pure gauge form:

Aµ(x) = V †(x)∂µV (x). (3.13)

Next we confirm that the field strength Fµν from the ansatz (3.13) automatically sat-

isfies the anti-self-dual equation (2.2). For the Weyl equation (3.11) and the completeness

relation (3.12), the field strength becomes

Fµν = V †C (eµ ⊗ 1k)
(

∆†∆
)−1 (

e†ν ⊗ 1k

)
C†V − (µ↔ ν). (3.14)

Now we use the first ADHM constraint (3.2) then the factor (∆†∆)−1 commutes with the

basis eµ ⊗ 1k. Hence the field strength becomes

Fµν = V †C(∆†∆)−1
(

Σ(−)
µν ⊗ 1k

)
C†V. (3.15)

Therefore the multi-product of the field strengths is

Fµ1µ2 . . . Fµ2n−1µ2n =

(
V †C

(
∆†∆

)−1(
Σ(−)
µ1µ2⊗1k

)
C†V

)
. . .

(
V †C

(
∆†∆

)−1(
Σ(−)
µ2n−1µ2n⊗1k

)
C†V

)
.

(3.16)

We order that Σ
(−)
µν ⊗ 1k commute with C†V V †C in (3.16), thus we demand the following

condition:

eµ ⊗ 1k

(
C†V V †C

)
=
(
C†V V †C

)
eµ ⊗ 1k. (3.17)

Now we use the completeness relation (3.12) then the condition (3.17) is decomposed as

eµ⊗1k

(
C†C

)
=
(
C†C

)
eµ⊗1k, eµ⊗1k

(
C†∆

(
∆†∆

)−1
∆†C

)
=

(
C†∆

(
∆†∆

)−1
∆†C

)
eµ⊗1k.

(3.18)

For (3.5a), the first condition is automatically satisfied when the first ADHM con-

straint (3.2) holds. On the other hand, the second condition is just the second ADHM

constraint (3.3). We find that the condition (3.17) is satisfied when the first and second

ADHM constraints hold. Therefore, for the condition (3.17), the multi-product of the field

strengths becomes

Fµ1µ2 . . . Fµ2n−1µ2n = V †C
(
∆†∆

)−1(
Σ(−)
µ1µ2 . . .Σ

(−)
µ2n−1µ2n⊗1k

)
C†V

(
V †C

(
∆†∆

)−1
C†V

)n−1
.

(3.19)
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Since Σ
(−)
µ1µ2 . . .Σ

(−)
µ2n−1µ2n satisfies the anti-self-dual relation (2.11), we have shown that

the field strengths Fµν that are constructed from the 4n-dimensional ADHM construction

satisfy the anti-self-dual equation in 4n dimensions (2.2).

We show that the ADHM data can transform more simplify form without loss of

generality. It is easy to find that the Weyl equation (3.11), the normalization condition

V †V = 1N , the first and second ADHM constraints (3.2), (3.3) are invariant under the

following transformations:

C 7→ C ′ = UCR, D 7→ D′ = UDR, V 7→ V ′ = UV, (3.20)

where U ∈ U(N + 22n−1k) and R = 122n−1 ⊗ Rk ∈ 122n−1 ⊗ GL(k;C). Using this

U(N + 22n−1k) × GL(k;C) transformation, we can fix the ADHM data to the so-called

a canonical form:

C =

(
0[N ]×[22n−1k]

122n−1k

)
, D =

(
S[N ]×[22n−1k]

T[22n−1k]×[22n−1k]

)
. (3.21)

Here the matrix subscript [a] × [b] means the matrix size, and the symbol S[N ]×[22n−1k]

stands for
(
S1 [N ]×[k] . . . S22n−1 [N ]×[k]

)
. The existence of the canonical form is guaranteed

by the non-degeneracy condition. In the canonical form, all the ADHM data are included

in the matrices S and T . Let us now rewrite the x-independent conditions of the first

and second ADHM constraints (3.5), (3.8), (3.10) in the canonical form. In this case,

C†C = 122n−1k = 122n−1 ⊗ 1k thus the condition (3.5a) is automatically satisfied. The

condition (3.5b) means that the matrix C†D is written with the (anti-)self-dual basis eµ.

In the canonical form, C†D = T thus (3.5b) becomes

T = eµ ⊗ Tµ, (3.22)

where Tµ is a k × k hermite matrix. The condition (3.5c) is rewritten as

S†S + T †T = 122n−1 ⊗ E(1,3)
k . (3.23)

This x-independent condition is the natural generalization of four-dimensional one which

is usually called the ADHM equation. On the other hand, the x-independent conditions of

the second ADHM constraint lead to new type ADHM equations. In the canonical form,

E
(1,1)
k = 1k and δµνE

(1,2)
k,ν = Tµ thus the condition (3.8) becomes

fTµ = Tµf. (3.24)

For this condition, the condition (3.10) is rewritten as

Σ(−)
µν ⊗ TµT ν = 0. (3.25)

In higher dimensions, the ADHM data must satisfy the new type ADHM equations (3.24)

and (3.25) in addition to the standard type one (3.23). Finally, we note that there are

residual symmetries which leave the canonical form (3.21) invariant. The transformations

are given by

Sa 7→ S′a = QSaR, T µ 7→ T ′µ = R†TµR, (3.26)

where the index a runs from 1 to 22n−1, Q ∈ SU(N) and R ∈ U(k).
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Next, we study the gauge group of the instantons that are generated from the ADHM

construction. The transformation of the zero mode which preserves the normalization

condition V †V = 1N is given by

V (x) 7→ V (x)g(x), g(x) ∈ U(N). (3.27)

Note that this transformation is independent of the transformation (3.20). This zero mode

transformation leads to a gauge field transformation through (3.13). Indeed, the gauge

field is transformed to

Aµ 7→ g−1(x)Aµg(x) + g−1(x)∂µg(x). (3.28)

This transformation is same as the ordinary gauge transformation. Hence, the instantons

that are generated from the ADHM construction possess the unitary gauge group U(N).

Because of this fact, in the special case k = 0, we find that the ansatz (3.13) gives a pure

gauge, namely, it automatically solves the (anti-)self-dual equation (2.2) in the vacuum

sector. We are interested in instantons that are characterized by the instanton number

k, but the homotopy groups become trivial when the rank of the unitary group is small.

Therefore the rank of the gauge group N is restricted by the condition that the homotopy

group π4n−1(U(N)) is non-trivial. The non-trivial homotopy groups of the (special) unitary

group are

π4n−1(U(N)) = π4n−1(SU(N)) = Z, N ≥ 2n. (3.29)

From this fact, we demand the condition N ≥ 2n when we consider the topological instan-

tons. In addition, we note that the ADHM construction does not impose the speciality

condition on the gauge group in general, namely the gauge group is not the special unitary

group SU(N). We can decompose the group U(N) into the special group SU(N) part and

U(1) part: U(N) = SU(N) n U(1). Here the symbol n means the semidirect product of

the group. Usually, we must fix the element of U(1) by hand when we consider SU(N)

instantons in the ADHM construction.

For later convenience, we show a formula of the topological charge density. The topo-

logical charge Q for the 4n-dimensional instantons is defined by the 2n-th Chern number

Q = Nn
∫

TrF (2n). Now we define the charge density Q as Q = Nn
∫
d4nxQ, then using

the expression (3.19), the ADHM constraints (3.2), (3.3), and the multi-product of the

(anti-)self-dual tensors (2.12), we obtain the charge density formula:

Q = ±(−1)n(4n)!Tr

(
V †C

(
∆†∆

)−1
C†V

)2n

. (3.30)

Here ± corresponds to the (anti-)self-dual solution (tensor) respectively. When the ADHM

data is the canonical form (3.21), we can rewrite (3.30) as

Q = ±(−1)n22n−1(4n)!Trk

((
E

(1)
k

)−1 (
1k − E

(2)
k

))2n

. (3.31)

Now we have introduced the ADHM construction of the (anti-)self-dual instantons

in 4n dimensions. Here we have some comments on the higher dimensional ADHM con-

struction. Compared with the four-dimensional ADHM construction, the first ADHM
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constraints (3.2) is the natural generalization of the four-dimensional one. On the other

hand, the second ADHM constraint (3.3) is an essentially new constraint and this new

constraint corresponds to the non-linearity of the (anti-)self-dual equation (2.2). It is diffi-

cult to construct the multi-instantons in higher dimensions, because of the non-linearity of

the (anti-)self-dual equations. In the higher dimensional ADHM construction is similar to

this situation, namely the constructions of the multi-instantons are difficult by the second

ADHM constraint. We will discuss this fact in more detail in the next section.

4 Higher-dimensional ADHM data with U(22n−1) gauge group

In this section, we introduce explicit ADHM data in higher dimensions (n ≥ 2). However,

it is hard that we find an essentially new ADHM data, hence we will consider the data

type that is generalizing the well known four-dimensional one and choose the rank of the

gauge group to N = 22n−1. Here we recall that the first ADHM constraint is the natural

generalization of the four-dimensional one. Therefore the data type that is generalizing

the four-dimensional ADHM data already satisfies the first ADHM constraint, and we call

this data type as an ADHM “ansatz”.

The second ADHM constraint (3.3) contains the inverse matrix (∆†∆)−1, hence the

calculation of this constraint is hard in general. Therefore we use the following constraint

instead of the second ADHM constraint to confirm that the ADHM ansatz is well-defined

as a higher-dimensional ADHM data:

C†V V †C = 122n−1 ⊗ E(3)
k , (4.1)

where E
(3)
k is an invertible k×k matrix. The existence of the inverse E

(3)
k is guaranteed by

that E
(1)
k and E

(2)
k are invertible. Although this constraint contains the zero mode V , the

calculation of the Weyl equation (3.11) is more easily than the calculation of the inverse

matrix (∆†∆)−1 in general, namely we can calculate the constraint (4.1) more easily than

the second ADHM constraint. This constraint is same as the condition (3.17), therefore

the ADHM ansatz satisfy the first ADHM constraint then this constraint is same as the

second ADHM constraint for (3.18).

4.1 BPST type one-instanton

In the case of k = 1, the ADHM ansatz in the canonical form is the simplest one:

C =

(
0

122n−1

)
, D =

(
λ122n−1

−aµeµ

)
, (4.2)

where λ ∈ R is the size modulus and aµ ∈ R is the position modulus of the instanton. The

solution to the Weyl equation (3.11) is

V =
1
√
ρ

(
x̃†

−λ122n−1

)
, (4.3)
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where x̃† = (xµ − aµ)e†µ and ρ = λ2 + ‖x̃‖2. The l.h.s. of the constraint (4.1) that is

associated with the BPST type ADHM ansatz (4.2) is proportional to the identity 122n−1 :

C†V V †C =
λ2

ρ
122n−1 . (4.4)

Hence, this ansatz (4.2) is well-defined as the ADHM data of the anti-self-dual one-

instanton. Indeed, we easily confirm that this ADHM data reproduces the BPST type

gauge field (2.6) by using (3.13).

4.2 ’t Hooft type ansatz

We next consider the ADHM data with higher charges. A natural candidate for multi-

instanton ADHM data is generalization of the ’t Hooft type one. However, in the case of

n = 2 (i.e. eight dimensions), it was shown that the simple generalization of the ’t Hooft

type ADHM ansatz is not well-defined as the higher-dimensional ADHM data in [20]. In

the following, we will show that the cases in more higher dimensions are same situations

as the eight-dimensional case. The ’t Hooft type ADHM ansatz is given by

Tµ = diagkp=1

(
−aµp

)
, S = 122n−1 ⊗

(
λ1 λ2 . . . λk

)
, (4.5)

with aµp ∈ R is the instanton position and λp ∈ R is the instanton size moduli respectively.

The Weyl operator that is associated with the ’t Hooft type ADHM ansatz is

∆† =
(
S† e†µ ⊗ (xµ1k + Tµ)

)
, (4.6)

therefore the solution to the Weyl equation (3.11) is

V =
1√
φ

(
−122n−1(

eµ ⊗ diagkp=1

(
x̃µp
‖x̃p‖2

)
S†
)) . (4.7)

Here we have defined φ = 1 +
∑k

p=1
λ2p
‖x̃p‖2 , x̃µp = xµ − aµp and ‖x̃p‖2 = x̃µp x̃

µ
p (p is not

summed). For the constraint (4.1) that is associated with ’t Hooft type ADHM ansatz, we

obtain the following condition with the moduli λm and aµm:

λmλn (xµ − aµm) (xν − aνn) Σ(−)
µν = 0, (4.8)

where the indices m,n run from 1 to k and are not summed. This condition is trivially

satisfied in the case of k = 1, however, for arbitrary moduli parameters λm, am, this is not

satisfied in the higher charges k ≥ 2. Therefore the simple generalization of the ’t Hooft

type ADHM ansatz is not well-defined as the ADHM data with higher charges (k ≥ 2).

Let us now demand the following condition for moduli parameters to satisfy the con-

dition (4.8):

‖aµm − aµn‖2 � λmλn, (4.9)
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for all m and n. This condition means that each instanton is well-separated, hence we

call this condition as the well-separated limit or the dilute instanton gas limit (approxima-

tion) [22]. In the well-separated limit (4.9), we neglect all the off-diagonal components of

the matrix E
(1)
k in (3.2):

E
(1)
k =

λ
2
1 + ‖x̃1‖2 . . . λ1λk

...
. . .

...

λkλ1 . . . λ2k + ‖x̃k‖2

 '
λ

2
1 + ‖x̃1‖2 . . . 0

...
. . .

...

0 . . . λ2k + ‖x̃k‖2

 . (4.10)

Thus the second ADHM constraint becomes

C†∆(∆†∆)−1∆†C ' 122n−1 ⊗ diagkp=1

[
‖x̃p‖2

λ2p + ‖x̃p‖2

]
. (4.11)

Therefore the ’t Hooft type ADHM ansatz (4.5) in the well-separated limit satisfies the

second ADHM constraint (3.3).

Some comments are in order. First, we can find exact solutions to the condition (4.8),

but these solutions are unsuitable data for multi-instantons. The condition is exactly solved

by λm = 0 (for all m), but this solution makes the pure gauge field, namely, it is a vacuum

configuration. On the other hand, we find another exact solution am = an (m 6= n) which

means that all the instantons are localized at the same point. However, this solution is

equivalent to the one-instanton’s one.

Second, we will show that the topological charge of the ’t Hooft type k-instantons in

the well-separated limit is an integer. For k = 1, the charge density is calculated with

using (3.31):

Q(k=1)
’t Hooft = −(−1)n22n−1(4n)!

(
λ2

(λ2 + ‖x̃‖2)2

)2n

. (4.12)

This is same as the BPST one anti-instanton charge density, hence we find that |Q(k=1)
’t Hooft| =

1. In the case of k ≥ 2, for the charge density formula (3.31), the charge density of the ’t

Hooft type in the well-separated limit is given by

Q’t Hooft ' −(−1)n22n−1(4n)!

k∑
p=1

(
λ2p(

λ2p + ‖x̃p‖2
)2
)2n

. (4.13)

This is the summation of the above mentioned one-instanton charge density, therefore we

obtain |Q’t Hooft| = k.

Finally, we mention a higher-dimensional Jackiw-Nohl-Rebbi (JNR) type ADHM data.

The JNR type ADHM data in four dimensions [23] is well known as multi-instantons

data which is different from the ’t Hooft type. We can give generalization of the higher-

dimensional JNR type ansatz, for instance, an eight-dimensional case in [20]. However, the

second ADHM constraint requires the same condition as ’t Hooft one (4.8). Therefore the

JNR type ADHM data is well-defined only if we assume the well-separated limit.
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5 Calorons in 4n dimensions and the monopole limit

In this section, we consider higher-dimensional calorons and the monopole limit. It is well

known that the Harrington-Shepard (HS) one-caloron in the four dimensions can be gen-

erated by the ’t Hooft multi-instantons that are periodic in one of the four coordinates [4].

Can we generate a higher-dimensional HS type one-caloron with the same method in the

four dimensions? Let us discuss this question in the following. We will use the multi-

instantons to produce the HS type caloron. However, the ’t Hooft type multi-instantons

in the higher dimensions are well-defined only if we assume the well-separated limit (4.9).

Therefore we use the ’t Hooft type multi-instanton with well-separated on the periodic

coordinate direction t = x4n to produce the higher-dimensional caloron.

We consider the situation that same size ’t Hooft type one-instantons are lined up on

the x4n-direction with well-separated. This gauge field is given by

Aµ(x) =
1

4
Σ(±)
µν ∂ν lnφ’t Hooft(x), (5.1)

where

φ’t Hooft(x) = 1 +
P∑

p=−P

λ2

‖x− ax‖2 +
(
x4n − a4np

)2 . (5.2)

Here λ ∈ R is the instanton size, x = xi (i = 1, 2, . . . , 4n−1), ax ∈ R4n−1 is the instanton’s

position (without the x4n-direction) and a4np ∈ R is the positions on the x4n-direction.

For the well-separated limit (4.9), the x4n-direction position a4np satisfies the condition:

(a4np − a4nq )2 � λ2 (p 6= q).

Now we choose the x4n-direction positions a4np = at − pβ (at, β ∈ R), and we take

the limit P → ∞ and the x4n-direction to periodic direction with the periodicity β as

R4n → R4n−1×S1. This situation replace the well-separated limit ((a4np − a4np+1)
2 � λ2 for

all p) to the condition of the size λ and the periodicity β:

β � λ. (5.3)

In addition, φ’t Hooft(x) becomes

lim
p→∞

φ’t Hooft(x) = 1 +

∞∑
p=−∞

λ2

‖x− ax‖2 + (t− (at − pβ))2

= 1 + µ2λ2
∞∑

p=−∞

1

µ2‖x− ax‖2 + (µ(t− at) + 2πp)2
, (5.4)

where µ = 2π/β. Note that we demand the condition 2π � µ2λ2 from β2 � λ2, but this

condition does not have an influence on that we take the factor µ−2 from the dominator.

Now we use the formula:

∞∑
p=−∞

1

a2 + (b+ 2πp)2
=

sinh a

2a(cosh a− cos b)
, (5.5)
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then a gauge field of the HS type one-caloron in the higher dimensions (n ≥ 2) is given by

Aµ =
1

4
Σ(±)
µν ∂ν ln

(
1 +

πλ2 sinh(2πr/β)

βr
(
cosh(2πr/β)− cos(2πt̃/β)

)) , with β � λ. (5.6)

Here r =
√

(xi − ai)2, t̃ = x4n − a4n, for any a4n ∈ [0, β) and the index i = 1, . . . , 4n− 1.

The condition β � λ means that the caloron’s size modulus λ is much smaller than the

periodic coordinate size β, hence we call this condition (5.3) as the small size limit.

In four dimensions, the HS one-caloron becomes the gauge-equivalent to the BPS one-

monopole when we take the limit β/2πλ → 0 [24, 25]. On the other hand, in the higher

dimensions, the HS type one-caloron requires the small size limit β/λ � 1, hence the

monopole limit β/2πλ→ 0 is evidently inconsistent with this limit. Therefore we can not

take the monopole limit for the HS type one-caloron in higher dimensions.

6 Conclusion and discussions

In this paper, we have studied the ADHM construction of the 4n-dimensional (anti-)self-

dual instantons with the unitary group U(N). This scheme is the straightforward general-

ization of the eight-dimensional one [20]. The (anti-)self-dual basis eµ which is the gener-

alization of the quaternion basis plays important roles in this scheme. We have shown that

the 4n-dimensional (anti-)self-dual basis can be produced from the (4n − 1)-dimensional

complex Clifford algebra C`4n−1(C). Moreover, we have explicitly constructed this ba-

sis by giving the explicit representation of the complex Clifford algebras. We have found

that there are two ADHM constraints, one of these is the straightforward generalization

of four-dimensional one. The another ADHM constraint, which is the new constraint, cor-

responds to the non-linearity of the higher-dimensional (anti-)self-dual equation. One of

the most interesting things is that the more non-linearity of the (anti-)self-dual equations

is according as dimensions increase but the ADHM construction does not need essentially

new constraints more than what is shown in this paper.

We have shown that our construction reproduces the known BPST type one-instantons

in higher dimensions. Furthermore, we have discussed the multi-instantons ADHM ansatz

by generalizing the four-dimensional ’t Hooft multi-instantons ADHM data. However,

we have found that this ansatz does not satisfy the second ADHM constraint in general

and approximately satisfies this constraint only if we take the well-separated limit. From

this fact, we found that the higher-dimensional HS type one-caloron needs the small size

limit and can not take the monopole limit to this caloron. Note that this fact does not

mean that the higher dimensional monopoles do not exist. Indeed, the higher dimensional

monopoles are studied in various context [26–28]. However, only the one-monopoles are

(anti-)self-dual in higher dimensions because the first-order equations, which correspond

to the generalization of the Bogomol’nyi equation to higher dimensions, in (4n − 1) ≥ 7

being overdetermined. Hence, the relation between instantons, monopoles, and calorons in

higher dimensions is an interesting topic.

We mention the relation between instantons and Skyrmions. In four dimensions,

Atiyah and Manton pointed out that the holonomy of the Yang-Mills instantons gives

– 15 –



J
H
E
P
0
7
(
2
0
1
7
)
1
1
0

a well approximated Skyrmion solutions [9]. This scheme is known as the Atiyah-Manton

construction, although the origin of this approximation was not transparent. Sutcliffe

has shown that a systematic derivation of the energy functional for the Skyrme model

from the Yang-Mills action in four dimensions and elucidated the origin of the Atiyah-

Manton construction [29]. In higher dimensions, we can derive the energy functional for

the higher-dimensional Skyrme model from the generalized Yang-Mills action (2.3) by the

same method with Sutcliffe. Since the Derrick’s theorem, we show that there are soliton

solutions which we call the higher-dimensional Skyrmion in the model. In the context [30],

we have found the numerical solution of the above mentioned Skyrmion in eight dimensions.

Moreover, we have calculated a field through the Atiyah-Manton construction applied to

the eight-dimensional ’t Hooft type one-instanton and have found that this gave a good

approximation to the numerical solution of the Skyrmion. These results strongly suggest

that the instanton/Skyrmion correspondence holds even in 4n dimensions and this relation

is a universal property.

Finally, many open problems of the higher-dimensional ADHM construction remain,

and we list a few of these problems in the following.

• We have obtained the multi-instantons ADHM data in the well-separated limit, but

these moduli parameters were restricted. Can we construct a strict multi-instantons

ADHM data in higher dimensions?

• In this paper, we have only treated the ADHM data of which the rank of unitary

group is N = 22n−1. What are forms ADHM data of which the other ranks of the

unitary group?

• Similarly, can we construct an ADHM construction with other classical groups, for

instance, SO(N), Sp(N)?

• In higher dimensions, how many numbers of the moduli parameters does the (anti-

)self-dual k-instanton have in general? Moreover, can we show the one to one corre-

spondence between instanton moduli space and ADHM moduli space?

• In four dimensions, there is the general scheme to construct the monopoles and

calorons, known as the Nahm constructions. Can we construct a Nahm construction

in higher dimensions?

• In four dimensions, the noncommutative ADHM construction is an interesting

topic [31–33]. Can we construct a noncommutative ADHM construction in higher

dimensions?
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A Matrix representation of the complex Clifford algebras

The m-dimensional complex Clifford algebra is defined as the algebra that satisfies the rela-

tion {Γi,Γj} = ±2δij (i, j = 1 . . . ,m). In this paper, we choose the minus sign of the above

relation to constructing the (anti-)self-dual basis. In the section 2, we have shown that

the 4n-dimensional (anti-)self-dual basis eµ is constructed from the (4n − 1)-dimensional

complex Clifford algebra C`4n−1(C). Therefore we need the matrix representation of the

complex Clifford algebras C`4n−1(C) to obtain the explicit representation of (anti-)self-

dual basis eµ. The matrix representation of the complex Clifford algebras is similar as the

gamma matrix in the physics, thus we can obtain this matrix representation by using the

well known following representation of the gamma matrices:

Γ
(±)
1 = ±iσ(1)1 ⊗ σ

(2)
3 ⊗ · · · ⊗ σ

(2n−1)
3 , Γ

(±)
2 = ±iσ(1)2 ⊗ σ

(2)
3 ⊗ · · · ⊗ σ

(2n−1)
3 ,

Γ
(±)
3 = ±iσ(1)0 ⊗ σ

(2)
1 ⊗ · · · ⊗ σ

(2n−1)
3 , Γ

(±)
4 = ±iσ(1)0 ⊗ σ

(2)
2 ⊗ · · · ⊗ σ

(2n−1)
3 ,

...
...

Γ
(±)
4n−3 = ±iσ(1)0 ⊗ σ

(2)
0 ⊗ · · · ⊗ σ

(2n−1)
1 , Γ

(±)
4n−2 = ±iσ(1)0 ⊗ σ

(2)
0 ⊗ · · · ⊗ σ

(2n−1)
2 ,

Γ
(±)
4n−1 = ±iσ(1)3 ⊗ σ

(2)
3 ⊗ · · · ⊗ σ

(2n−1)
3 , (A.1)

where σi are the Pauli matrices and σ0 = 12. In addition, we can use the real Clifford

algebra C`4n−1(R) instead of the complex one to construct the (anti-)self-dual basis eµ.

However, it is difficult in general that we construct the matrix representations of the real

Clifford algebras in higher dimensions.3 If we use the real Clifford algebra then the hermite

conjugate is replaced the transpose in this paper, and the gauge group of the ADHM

instantons becomes the special orthogonal group. This discussion in more detail in [20].

We note that the representation of Γ
(±)
i is not uniqueness because there is the following

transformation that holds the relation {Γ(±)
i ,Γ

(±)
j } = −2δµν122n−1 :

Γ(±)
µ 7→ Γ̃

(±)
i = MΓ

(±)
i M−1, (A.2)

where M ∈ U(22n−1). Therefore we find that the (anti-)self-dual basis eµ has the following

freedom for the representations:

eµ 7→ ẽµ = MeµM
−1, e†µ 7→ ẽ†µ = Me†µM

−1. (A.3)

B The poof that the existence of the inverse E
(a)
k (a = 1, 2)

We show again the ADHM constraints for convenience.

∆†∆ = 122n−1 ⊗ E(1)
k , (B.1)

C†∆(∆†∆)−1∆†C = 122n−1 ⊗ E(2)
k . (B.2)

3In the case of n = 1, 2, we can explicit construction the matrix representations of the real Clifford

algebra [20].
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Lets the Weyl operator satisfy the non-degeneracy condition:

rank ∆ = 22n−1k. (B.3)

First, we show the existence of the inverse E
(1)
k . Because of the property of the rank:

rank ∆ = rank ∆†∆ = 22n−1k. We recall that ∆ is the (N + 22n−1k)× 22n−1k matrix thus

dim ∆†∆ = 22n−1k, and we use the rank-nullity theorem: dim ∆†∆ = rank ∆†∆+Ker ∆†∆,

then we obtain

Ker ∆†∆ = 0, (B.4)

where Ker A means the dimension of the kernel of A. If the kernel dimension of the matrix

A is zero then the inverse matrix of A is existence, hence there is (∆†∆)−1 for (B.4). This

is just the assurance of the existence of the inverse E
(1)
k .

Next, we will prove the existence of the inverse E
(2)
k . The Weyl operator ∆ contains

the coordinate parameter x, therefore the non-degeneracy condition (B.3) holds for all x.4

Because of this fact and ∆ = C(x⊗ 1k) +D, we obtain

rank ∆(∞) = rank C(x⊗ 1k) = 22n−1k (B.5)

Now we recall that x⊗ 1k = xµeµ ⊗ 1k is the 22n−1k × 22n−1k invertible matrix, since we

can give the inverse of x as x−1 = xµ

‖x‖2 e
†
µ explicitly. Hence,

rank C = rank C(x⊗ 1k) = 22n−1k. (B.6)

We can also obtain the rank of D: rank D = rank ∆(0) = 22n−1k. These facts give that

rank ∆ = 22n−1k ⇒ rank C = rank D = 22n−1k, and the inverse fact: rank C = rank D =

22n−1k ⇒ rank ∆ = 22n−1k is trivial. Therefore we obtain rank ∆ = 22n−1k ⇐⇒
rank C = rank D = 22n−1k. We take the 22n−1k × 22n−1k matrix C†∆ to the same

situations as (B.5) and (B.6), and we use the expansion C†∆ = C†C(x⊗ 1k) + C†D then

rank C†∆(x) = rank C†∆(∞) = rank C†C(x⊗ 1k) = rank C†C = rank C = 22n−1k.

(B.7)

From this fact and the rank-nullity theorem, we obtain Ker C†∆ = Ker ∆†C = 0. This

means that the maps C†∆ : C22n−1k → C22n−1k and ∆†C : C22n−1k → C22n−1k are bijective,

and the map (∆†∆)−1 : C22n−1k → C22n−1k is also bijective from the above proof. Therefore,

using the bijective map composition, we find that the map C†∆◦(∆†∆)−1◦∆†C : C22n−1k →
C22n−1k becomes bijective. If a map is bijective then the existence of the inverse map, thus

the matrix C†∆(∆†∆)−1∆†C is invertible. Therefore we have shown the existence of the

inverse E
(2)
k .

4Technically speaking, ∆(x) does not have to satisfy the non-degeneracy condition at the instantons

positions.
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