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to-next-to-leading order in chiral effective field theory (EFT) are reported. A new local

regularization scheme is used for the pion-exchange contributions that has been recently

suggested and applied in a pertinent study of the NN force within chiral EFT. Furthermore,

an alternative strategy for estimating the uncertainty is utilized that no longer depends

on a variation of the cutoffs. The low-energy constants associated with the arising contact

terms are fixed by a fit to the phase shifts and inelasticities provided by a phase-shift anal-

ysis of p̄p scattering data. An excellent description of the N̄N amplitudes is achieved at

the highest order considered. Moreover, because of the quantitative reproduction of partial

waves up to J = 3, there is also a nice agreement on the level of p̄p observables. Specif-

ically, total and integrated elastic and charge-exchange cross sections agree well with the

results from the partial-wave analysis up to laboratory energies of 300 MeV, while differen-

tial cross sections and analyzing powers are described quantitatively up to 200–250 MeV.

The low-energy structure of the N̄N amplitudes is also considered and compared to data

from antiprotonic hydrogen.
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1 Introduction

The Low Energy Antiproton Ring (LEAR) at CERN has provided a wealth of data on

antiproton-proton (p̄p) scattering [1–3] and triggered a great number of pertinent inves-

tigations [4–11]. Its closure in 1996 has led to a noticeable quiescence in the field of

low-energy antiproton physics. However, over the last decade there has been a renewed

interest in antinucleon-nucleon (N̄N) scattering phenomena, prompted for the main part

by measurements of the p̄p invariant mass in the decays of heavy mesons such as J/ψ, ψ′,

and B, and of the reaction cross section for e+e− → p̄p. In several of those reactions a

near-threshold enhancement in the mass spectrum was found [12–15]. While those obser-

vations nourished speculations about new resonances, p̄p bound states, or even more exotic

objects in some parts of the physics community, others noted that such data could provide

a unique opportunity to test the p̄p interaction at very low energies [16–28]. Indeed, in the

aforementioned decays one has access to information on p̄p scattering at significantly lower

energies than it was ever possible at LEAR. In the future one expects a further boost of

activities related to the N̄N interaction due to the Facility for Antiproton and Ion Research
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(FAIR) in Darmstadt whose construction is finally on its way [29]. In the course of this

renewed interest new phenomenological N̄N potential models have been published [30, 31].

Moreover, an update of the Nijmegen partial-wave analysis (PWA) of antiproton-proton

scattering data [10] has been presented [32].

Over the same time period another important developement took place, namely the

emergence of chiral effective field theory (EFT) as a powerful tool for the derivation of

nuclear forces. This approach, suggested by Weinberg [33, 34] and first put into practice

by van Kolck and collaborators [35], is now at a stage where it facilitates a rather accurate

and consistent description of the NN interaction and nuclear few-body systems, as demon-

strated in several publications, see e.g. [36–38]. Its most salient features are that it exploits

the symmetries and symmetry-breaking pattern of QCD and that there is an underlying

power counting which allows one to improve calculations systematically by going to higher

orders in a perturbative expansion. With regard to the NN force the corresponding chiral

potential contains pion exchanges and a series of contact interactions with an increasing

number of derivatives. The latter represent the short-range part of the NN force and are

parameterized by low-energy constants (LECs), that need to be fixed by a fit to data.

The reaction amplitude is obtained from solving a regularized Lippmann-Schwinger equa-

tion for the derived interaction potential. For an overview we refer the reader to recent

reviews [39, 40]. A pedagogical introduction to the main concepts is given in [41].

The N̄N interaction is closely connected to that in the NN system via G-parity.

Specifically, the G-parity transformation (a combination of charge conjugation and a ro-

tation in the isospin space) relates that part of the N̄N potential which is due to pion

exchanges to the one in the NN case in an unambiguous way. Thus, like in the NN case,

the long-range part of the N̄N potential is completely fixed by the underlying chiral sym-

metry of pion-nucleon dynamics. Indeed, this feature has been already exploited in the

new PWA of ref. [32]. In this potential-based analysis the long-range part of the utilized

N̄N interaction consists of one-pion exchange and two-pion-exchange contributions derived

within chiral EFT.

In this paper we present a N̄N potential derived in a chiral EFT approach up to next-

to-next-to-next-to leading order (N3LO). Its evaluation is done in complete analogy to the

NN interaction published in ref. [38] and based on the Weinberg power counting employed

in that work. In ref. [42] we had already studied the N̄N force within chiral EFT up to

next-to-next-to leading order (N2LO). It had been found that the approach works very well.

Indeed, the overall quality of the description of the N̄N amplitudes achieved in ref. [42]

is comparable to the one found in case of the NN interaction at the same order [43]. By

going to a higher order we expect that we will be able to describe the N̄N interaction

over a larger energy range. Specifically, at N3LO contact terms with four derivatives arise.

Consequently, now there are also LECs that contribute to the D waves and can be used to

improve the description of the corresponding phase shifts.

Another motivation for our work comes from new developments in the treatment of the

NN interaction within chiral EFT. The investigation presented in ref. [38] suggests that the

nonlocal momentum-space regulator employed in the NN potentials in the past [37, 43],

but also in our application to N̄N scattering [42], is not the most efficient choice, since
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it affects the long-range part of the interaction due to pion exchange. In view of that a

new regularization scheme that is defined in coordinate space and, therefore, is local has

been proposed there. We adopt this scheme also for the present work. After all, according

to [38, 44] this new regularization scheme does not distort the low-energy analytic structure

of the partial-wave amplitudes and, thus, allows for a better description of the phase

shifts. Furthermore, in that work a simple approach for estimating the uncertainty due to

truncation of the chiral expansion is proposed that does not rely on cutoff variation. As

shown in ref. [45] this procedure emerges generically from one class of Bayesian naturalness

priors, and that all such priors result in consistent quantitative predictions for 68% degree-

of-believe intervals. We will adopt this approach for performing an analogous analysis for

our N̄N results.

Finally, at N3LO it becomes sensible to compute not only phase shifts but also observ-

ables and compare them directly with scattering data for p̄p elastic scattering and for the

charge-exchange reaction p̄p→ n̄n. Such calculations have to be performed in the particle

basis because then the Coulomb interaction in the p̄p system can be taken into account

rigorously as well as the different physical thresholds of the p̄p and n̄n channels.

The present paper is structured as follows: the elements of the chiral EFT N̄N poten-

tial up to N3LO are summarized in section 2. Explicit expressions for the contributions from

the contact terms are given while those from pion exchange are collected in appendix A.

The main emphasis in section 2 is on discussing how we treat the annihilation processes.

In this section we introduce also the Lippmann-Schwinger equation that we solve and the

parameterization of the S-matrix that we use. In section 3 we describe our fitting proce-

dure. The LECs that arise in chiral EFT, as mentioned above, are fixed by a fit to the

phase shifts and inelasticities provided by a recently published phase-shift analysis of p̄p

scattering data [32]. In addition we outline the procedure for the uncertainty analysis,

which is taken over from ref. [38]. Results achieved up to N3LO are presented in section 4.

Phase shifts and inelasticity parameters for S, P , D, and F waves, obtained from our

EFT interaction, are displayed and compared with those of the N̄N phase-shift analysis.

Furthermore, results for various p̄p → p̄p and p̄p → n̄n observables are given. Finally, in

section 5, we analyze the low-energy structure of the N̄N amplitudes and provide predic-

tions for S- and P -wave scattering lengths (volumes). We also consider n̄p scattering. A

summary of our work is given in section 6. The explicit values of the four-nucleon LECs

for the various fits are tabulated in appendix B.

2 Chiral potential at next-to-next-to-next-to-leading order

In chiral EFT the potential is expanded in powers of a quantity Q = q̃/Λb in accordance

with the employed power-counting scheme. Here, q̃ stands for a soft scale that is associated

with the typical momenta of the nucleons or the pion mass and Λb refers to the hard scale,

i.e. to momenta where the chiral EFT expansion is expected to break down. The latter

is usually assumed to be in the order of the rho mass. The chiral potential up to N3LO

consists of contributions from one-, two-, and three-pion exchange and of contact terms

with up to four derivatives [38]. For a diagrammatic representation see figure 1. Since the
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Q3
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Figure 1. Relevant diagrams up-to-and-including N3LO. Solid and dashed lines denote antinu-

cleons/nucleons and pions, respectively. The square and diamond symbolize contact vertices with

two and four derivatives, respectively. The dots denote a leading πN vertex, while the filled circle

and the ring symbolize subleading and sub-subleading πN vertices, respectively. Q denotes a small

parameter (external momentum and/or pion mass). From the iterated diagrams at NLO and N3LO,

only the irreducible contribution is part of the potential.

structure of the N̄N interaction is practically identical to the one for NN scattering, the

potential given in ref. [38] can be adapted straightforwardly for the N̄N case. However,

for the ease of the reader and also for defining our potential uniquely we summarize the

essential features below and we also provide explicit expressions in appendix A.

2.1 Pion-exchange contributions

The one-pion exchange potential is given by

V1π(q) =

(
gA

2Fπ

)2 (
1− p2 + p′2

2m2

)
τ 1 · τ 2

σ1 · qσ2 · q
q2 +M2

π

, (2.1)

where q = p′−p is the transferred momentum defined in terms of the final (p′) and initial

(p) center-of-mass momenta of the baryons (nucleon or antinucleon). Mπ and m denote

the pion and antinucleon/nucleon mass, respectively. In our initial study [42] relativistic
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1/m2 corrections to the static one-pion exchange potential were taken into account already

in the LO interaction, mainly because they have been found to be fairly important in

the proton-proton PWA [46]. Moreover, it is known from phenomenological studies that

observables of the charge-exchange reaction p̄p → n̄n are very sensitive to the one-pion

exchange tail of the potential [8–11]. Indeed, exploratory calculations with and without

those corrections performed by ourselves revealed that the latter leads to poorer results for

p̄p→ n̄n. Thus, in the present work we likewise include relativistic corrections of the one-

pion exchange potential from the beginning. It should be said, however, that formally 1/m

terms appear first at N3LO in the power counting of ref. [38] that we follow here, see also

appendix A. As in the work [38] we take the larger value gA = 1.29 instead of gA = 1.26

in order to account for the Goldberger-Treiman discrepancy. This value, together with

the used Fπ = 92.4 MeV, implies the pion-nucleon coupling constant gNNπ = 13.1 which

is consistent with the empirical value obtained from πN and NN data [47, 48] and also

with modern determinations utilizing the GMO sum rule [49]. The calculation of the N̄N

phase shifts is done in the isospin basis and here we adopt isospin-averaged nucleon and

pion masses, i.e. m = 938.918 MeV and Mπ = 138.039 MeV, respectively. However, in

the calculation of observables the physical masses of proton and neutron are used and the

corresponding values are taken from the PDG [50]. On the other hand, isospin-breaking in

the hadronic potential due to different masses of the π0 and π± is not taken into account

because its effect is only in the order of one percent or so.

Note that the contribution of one-pion exchange to the N̄N interaction is of opposite

sign as that in NN scattering. This sign difference arises from the G-parity transformation

of the NNπ vertex to the N̄N̄π vertex. The contributions from two-pion exchange to NN

and N̄N are identical. There would be again a sign differences for three-pion exchange.

However, since the corresponding contributions are known to be practically negligible, as

shown in the supplemental material to ref. [51], we do not take them into account here.

The underlying effective pion-nucleon Lagrangian is given in ref. [52]. For the LECs

ci and d̄i that appear in the subleading ππNN vertices we take the same values as in

ref. [38]. Specifically, for c1, c3, and c4 we adopt the central values from the Q3-analysis

of the πN system [53], i.e. c1 = −0.81 GeV−1, c3 = −4.69 GeV−1, c4 = 3.40 GeV−1, while

c2 = 3.28 GeV−1 is taken from the heavy-baryon calculation in ref. [54]. However, in the

future the more precise values of the ci determined from the Roy-Steiner analysis of pion-

nucleon scattering [55] should be used for the NN as well as the N̄N case. Note also

that different values for the ci were used in the N̄N PWA [32]. Therefore, the two-pion

exchange potential employed in our analysis differs from the one used for determining the

N̄N phase shifts. However, based on the uncertainty estimate given in ref. [32] we do not

expect any noticeable effects from that on the quality of our results. In any case, it has

to be said that our calculation includes also N3LO corrections to the two-pion exchange so

that the corresponding potentials differ anyway.

In this context let us mention another difference to the analysis in ref. [32]. It con-

cerns the electromagnetic interaction where we consider only the (non-relativistic) Coulomb

interaction in the p̄p system, but we neglect the magnetic-moment interaction.
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2.2 Contact terms

The contact terms in partial-wave projected form are given by [38]

V (1S0) = C̃1S0
+ C1S0

(p2 + p′2) +D1
1S0
p2p′2 +D2

1S0
(p4 + p′4) , (2.2)

V (3S1) = C̃3S1
+ C3S1

(p2 + p′2) +D1
3S1
p2p′2 +D2

3S1
(p4 + p′4) , (2.3)

V (1P1) = C1P1
p p′ +D1P1

p p′(p2 + p′2) , (2.4)

V (3P1) = C3P1
p p′ +D3P1

p p′(p2 + p′2) , (2.5)

V (3P0) = C3P0
p p′ +D3P0

p p′(p2 + p′2) , (2.6)

V (3P2) = C3P2
p p′ +D3P2

p p′(p2 + p′2) , (2.7)

V (3D1 − 3S1) = Cε1 p
′2 +D1

ε1p
2p′2 +D2

ε1p
′4 , (2.8)

V (3S1 − 3D1) = Cε1 p
2 +D1

ε1p
2p′2 +D2

ε1p
4 , (2.9)

V (3D1) = D3D1
p2p′2 , (2.10)

V (1D2) = D1D2
p2p′2 , (2.11)

V (3D2) = D3D2
p2p′2 , (2.12)

V (3D3) = D3D3
p2p′2 , (2.13)

V (3F2 − 3P2) = Dε2pp
′3 , (2.14)

V (3P2 − 3F2) = Dε2p
3p′ , (2.15)

with p = |p | and p′ = |p ′|. Here, the C̃i denote the LECs that arise at LO and that

correspond to contact terms without derivates, the Ci arise at NLO from contact terms

with two derivates, and Di are those at N3LO from contact terms with four derivates. Note

that the Pauli principle is absent in case of the N̄N interaction. Accordingly, each partial

wave that is allowed by angular momentum conservation occurs in the isospin I = 0 and

in the I = 1 channel. Therefore, there are now twice as many contact terms as in NN ,

that means 48 up to N3LO.

The main difference between the NN and N̄N interactions is the presence of anni-

hilation processes in the latter. Since the total baryon number is zero, the N̄N system

can annihilate and this proceeds via a decay into multi-pion channels, where typically

annihilation into 4 to 6 pions is dominant in the low-energy region of N̄N scattering [1].

Since annihilation is a short-ranged process as argued in ref. [42], in principle, it could

be taken into account by simply using complex LECs in eqs. (2.2)–(2.15). Indeed, this has

been done in some EFT studies of N̄N scattering [56, 57]. However, with such an ansatz

it is impossible to impose sensible unitarity conditions. Specifically, there is no guarantee

that the resulting scattering amplitude fulfills the optical theorem, i.e. a requirement which

ensures that for each partial wave the contribution to the total cross section is larger than

its contribution to the integrated elastic cross section. Therefore, in ref. [42] we treated

annihilation in a different way so that unitarity is manifestly fulfilled already on a formal

level. It consisted in considering the annihilation potential to be due to an effective two-

body annihilation channel X for each partial wave,

Vann = VN̄N→XGXVX→N̄N , (2.16)
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with VN̄N→X the transition potential. Under the assumption that the threshold of X

is significantly below the one of N̄N the center-of-mass momentum in the annihilation

channel is already fairly large and its variation in the low-energy region of N̄N scattering

considered here can be neglected. Then the transition potential VN̄N→X can be represented

by contact terms similar to the ones for N̄N → N̄N , cf. eqs. (2.2)–(2.15), and the Green’s

function GX reduces to the unitarity cut, i.e. GX ∝ −i. Note that eq. (2.16) is exact

under the assumption that there is no interaction in and no transition between the various

annihilation channels.

The annihilation part of the N̄N potential is then of the form

V L=0
ann = −i (C̃a1S0

+ Ca1S0
p2 +Da

1S0
p4) (C̃a1S0

+ Ca1S0
p′2 +Da

1S0
p′4), (2.17)

V L=1
ann = −i (Caαp+Da

αp
3) (Caαp

′ +Da
αp
′3), (2.18)

V L=2
ann = −i (Da

β)2p2p′2, (2.19)

V L=3
ann = −i (Da

γ)2p3p′3, (2.20)

where α denotes the 3P0, 1P1, and 3P1 partial waves, β stands for 1D2, 3D2 and 3D3, and

γ for 1F3, 3F3 and 3F4. The superscript a is used to distinguish the LECs from those in

the elastic part of the N̄N potential. For the coupled 3S1−3D1 partial wave we use

V S→S
ann = −i (C̃a3S1

+ Ca3S1
p2 +Da

3S1
p4) (C̃a3S1

+ Ca3S1
p′2 +Da

3S1
p′4),

V S→D
ann = −i (C̃a3S1

+ Ca3S1
p2Da

3S1
p4)Caε1p

′2,

V D→S
ann = −i Caε1p

2 (C̃a3S1
+ Ca3S1

p′2 +Da
3S1
p′4),

V D→D
ann = −i [(Caε1)2 + (Ca3D1

)2]p2p′2 , (2.21)

and for 3P2−3F2

V P→P
ann = −i (Ca3P2

p+Da
3P2
p3) (Ca3P2

p′ +Da
3P2
p′3),

V P→F
ann = −i (Ca3P2

p+Da
3P2
p3)Da

ε2p
′3,

V F→P
ann = −iDa

ε2p
3(Ca3P2

p′ +Da
3P2
p′3),

V F→F
ann = −i [(Da

ε2)2 + (Da
3F2

)2]p3p′3 . (2.22)

In the expressions above the parameters C̃a, Ca, and Da are real. There is no restriction on

the signs of C̃a, Ca, Da because the sign of Vann as required by unitarity is already explicitly

fixed. Note, however, that terms of the form pip′j with higher powers n = i+ j than what

follows from the standard Weinberg power counting arise in various partial waves from

unitarity constraints and those have to be included in order to make sure that unitarity is

fulfilled at any energy. Still we essentially recover the structure of the potential that follows

from the standard power counting for N̄N → N̄N (cf. eqs. (2.2)–(2.15)) with a similar (or

even identical) number of counter terms (free parameters) for the annihilation part.

As one can see in eq. (2.20) and also in eq. (2.22) we allowed for contact terms in the

annihilation potential for F waves. This is motivated by two reasons. First, according

to the PWA there is a nonzero contribution of F waves to the annihilation cross section

and we wanted to be able to take this into account. Second, as can be seen in eq. (2.22),

– 7 –



J
H
E
P
0
7
(
2
0
1
7
)
0
7
8

terms proportional to p3p′3 appear anyway in the 3F2 partial wave because of unitarity

constraints. Moreover, transitions proportional to p3p′ (for 3F2 →3P2) are present in the

real part at N3LO, see eq. (2.15). This suggests that the analogous type of transitions

should be taken into account in the description of annihilation via eq. (2.16) from F waves,

i.e. V F
N̄N→X ≡ Da

F p
3. With regard to the real part of the N̄N (or NN) potential contact

terms proportional to p3p′3 would first appear at N5LO in the standard Weinberg counting

and here we do not depart from the counting.

Note that, in principle, there is a contribution from the principal-value part of the

integral in eq. (2.16). However, it is real and, therefore, its structure is already accounted

for by the standard LECs in eqs. (2.2)–(2.15).

2.3 Scattering equation

As first step a partial-wave projection of the interaction potentials is performed, following

the procedure described in detail in ref. [37]. Then the reaction amplitudes are obtained

from the solution of a relativistic Lippmann-Schwinger (LS) equation:

TL′′L′(p
′′, p′;Ek) = VL′′L′(p

′′, p′)

+
∑
L

∫ ∞
0

dpp2

(2π)3
VL′′L(p′′, p)

1

2Ek − 2Ep + i0+
TLL′(p, p

′;Ek). (2.23)

Here, Ek =
√
m2 + k2, where k is the on-shell momentum. We adopt a relativistic scatter-

ing equation so that our amplitudes fulfill the relativistic unitarity condition at any order,

as done also in the NN sector [37, 40]. On the other hand, relativistic corrections to the po-

tential are calculated order by order. They appear first at next-to-next-to-next-to-leading

order (N3LO) in the Weinberg scheme, see appendix A.

Analogous to the NN case we have either uncoupled spin-singlet and triplet waves

(where L′′ = L′ = L = J) or coupled partial waves (where L′′, L′, L = J − 1, J + 1). The

LECs of the N̄N potential are determined by a fit to the phase shifts and inelasticity param-

eters of ref. [32]. Those quantities were obtained under the assumption of isospin symmetry

and, accordingly, we solve the LS equation in the isospin basis where the I = 0 and I = 1

channels are decoupled. For the calculation of observables, specifically for the direct com-

parison of our results with data, we solve the LS equation in particle basis. In this case

there is a coupling between the p̄p and n̄n channels. The corresponding potentials are given

by linear combinations of the ones in the isospin basis, i.e. V p̄p = V n̄n = (V I=0 + V I=1)/2

and V p̄p↔n̄n = (V I=0 − V I=1)/2. Note that the solution of the LS equation in particle

basis no longer fulfills isospin symmetry. Due to the mass difference between p (p̄) and n

(n̄) the physical thresholds of the p̄p and n̄n channels are separated by about 2.6 MeV. In

addition the Coulomb interaction is present in the p̄p channel. Both effects are included

in our calculation where the latter is implemented via the Vincent-Phatak method [58].

Other electromagnetic effects like those of the magnetic-moment interaction, considered in

ref. [32] are, however, not taken into account in our calculation. Judging from the results

shown in ref. [59] those should have very little influence on the observables considered in

the present work.
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The relation between the S- and on-the-energy shell T -matrix is given by

SLL′(k) = δLL′ −
i

8π2
k Ek TLL′(k) . (2.24)

The phase shifts in the uncoupled cases can be obtained from the S-matrix via

SLL ≡ SL = e2iδL . (2.25)

For the S-matrix in the coupled channels (J > 0) we use the so-called Stapp parametriza-

tion [60](
SJ−1 J−1 SJ−1 J+1

SJ+1 J−1 SJ+1 J+1

)
=

(
cos 2εJ e

2iδJ−1 −i sin 2εJ e
i(δJ−1+δJ+1)

−i sin 2εJ e
i(δJ−1+δJ+1) cos 2εJ e

2iδJ+1

)
. (2.26)

In case of elastic scattering the phase parameters in eqs. (2.25) and (2.26) are real

quantities while in the presence of inelasticities they become complex. Because of that, in

the past several generalizations of these formulae have been proposed that still allow one

to write the S-matrix in terms of real parameters [32, 61]. We follow here ref. [62] and

calculate/present simply the real and imaginary parts of the phase shifts and the mixing

parameters obtained via the above parameterization. Note that with this choice the real

part of the phase shifts is identical to the phase shifts one obtains from another popular

parameterization where the imaginary part is written in terms of an inelasticity parameter

η, e.g. for uncoupled partial waves

SL = ηe2iδL . (2.27)

Indeed, for this case Im δL = −(log η)/2 which implies that Im δL ≥ 0 since η ≤ 1 because

of unitarity. Note that for simplicity reasons, in the discussion of the results below we

will refer to the real part of the phase shift as phase shift and to the imaginary part as

inelasticity parameter. Since our calculation implements unitarity, the optical theorem

Im aLL(k) ≥ k
∑
L′

|aLL′(k)|2 , (2.28)

is fulfilled for each partial wave, where aLL′(k) = (SLL′−δLL′)/(2ik) = −1/(4π)2·Ek TLL′(k).

For the fitting procedure and for the comparison of our results with those of ref. [32]

we reconstructed the S-matrix based on the phase shifts listed in tables VIII-X of that

paper via the formulae presented in section VII of that paper and then converted them to

our convention specified in eqs. (2.25) and (2.26).

Before we continue let us mention that there is still a dispute about how regularization

should be done in the application of chiral EFT to NN scattering (and accordingly in

the N̄N case) and there is no generally accepted procedure, cf. refs. [39, 40] and references

therein. As already indicated in the Introduction, the nonperturbative character of the NN

interaction requires an iteration of the potential, evaluated in chiral EFT, up to infinite

order [33, 34] which is done by solving the Lippmann-Schwinger equation. An order-by-

order regularization as performed in perturbative treatments is, therefore, not possible. A
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commonly accepted procedure is the introduction of a cutoff into the Lippmann-Schwinger

equation or (equivalently) to the potential, cf. above. The controversial issue is, however,

how one should then proceed in detail in order to achieve the desired cutoff independence

of the results see, e.g. [63–67]. In the present work, we refrain from touching this certainly

important question. Rather we focus on the practical aspects and we follow strictly the

procedure adopted by Epelbaum et al. [38] described above. As already outlined there, in

this case the cutoff parameter Λ that appears in the regulator is typically in the order of

Λ ≈ 500 MeV. It is kept finite in the calculation. (Approximate) Cutoff independence is

achieved by going to higher orders in the perturbative expansion of the potential where the

sucessively arising contact terms allow one to absorb/remove the cutoff dependence more

and more efficiently.

3 Fitting procedure and estimation of the theoretical uncertainty

An important objective of the work of ref. [38] consisted in a careful analysis of the cutoff

dependence and in providing an estimation of the theoretical uncertainty. The reasoning

for making specific assumptions, and adopting and following specific procedures in order

to achieve that aim has been explained and thoroughly discussed in that paper and we

do not repeat this here in detail. However, we want to emphasize that whatever has been

said there for NN scattering is equally valid for the N̄N system. It is a consequence

of the fact that the general structure of the long-range part of the two interactions is

identical — though the actual potential strengths in the individual partial waves certainly

differ. Accordingly, the non-local exponential regulator employed in [37, 43] but also in

our N2LO study of N̄N scattering [42] will be replaced here by the new regularization

scheme described in section 3 of [38] in the evaluation of the one- and two-pion exchange

contributions. This scheme relies on a regulator that is defined in coordinate space and,

therefore, is local by construction. As demonstrated in that reference, the use of a local

regulator for the long-range part of the chiral interaction is superior at higher energies and,

moreover, produces a much smaller amount of artefacts over the whole considered energy

range. The contact interactions are non-local anyway, cf. eqs. (2.2)–(2.15). In this case we

use again the standard nonlocal regulator of Gaussian type. The explict form of the cutoff

functions employed in the present study is given by

f(r) =

[
1− exp

(
− r

2

R2

)]n
, f(p′, p) = exp

(
−p
′m + pm

Λm

)
. (3.1)

For the cutoffs we orientate ourselves by the range considered in ref. [38], i.e by

R = 0.8 fm to R = 1.2 fm. The cutoff in momentum-space applied to the contact in-

teractions is fixed by the relation Λ = 2R−1 so that the corresponding range is then

Λ ' 500, . . . , 300 MeV. Following [38], the exponent in the coordinate-space cutoff func-

tion is chosen to be n = 6, the one for the contact terms in momentum space to be m = 2.
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R=0.7 fm R=0.8 fm R=0.9 fm R=1.0 fm R=1.1 fm R=1.2 fm

Tlab ≤ 25 MeV 0.002 0.003 0.004 0.004 0.019 0.036

Tlab ≤ 100 MeV 0.032 0.023 0.025 0.036 0.090 0.176

Tlab ≤ 200 MeV 0.143 0.106 0.115 0.177 0.312 0.626

Tlab ≤ 300 MeV 2.855 2.012 2.171 3.383 5.531 9.479

Table 1. Resulting effective χ̃2 (see text) for different cutoffs R and different energy regions.

3.1 Fitting procedure

In the fitting procedure we follow very closely the strategy of ref. [38] in their study of

the NN interaction. The LECs are fixed from a fit to the N̄N phase shifts and mixing

parameters of ref. [32] where we take into account their results for plab ≤ 300 MeV/c

(Tlab ≤ 50 MeV) at LO, plab ≤ 500 MeV/c (Tlab ≤ 125 MeV) at NLO and N2LO, and

plab ≤ 600 MeV/c (Tlab ≤ 175 MeV) at N3LO. Exceptions are made in cases where the

phase shifts (or inelasticity parameters) exhibit a resonance-like behavior at the upper end

of the considered momentum interval. Then we extend or reduce the energy range slightly

in order to stabilize the results and avoid artefacts.

No uncertainties are given for the N̄N phase shifts and inelasticity parameters of the

PWA. Because of that we adopt a constant and uniform value ∆ for them for the evaluation

of the function to which the minimization procedure is applied. Thus, the uncertainty

is reduced simply to an overall normalization factor. Note, however, that in the actual

fitting procedure the least square fit minimization is done for each partial wave separately.

Different starting values, varying scaling factors, etc., are used in order to achieve optimal

results and to make sure that we reach the best fit. On top of that, additional weight

factors are introduced in a few cases where it turned out to be difficult to obtain stable

results. The χ̃2 values summarized in table 1 for orientation are, however, all calculated

with a universal ∆ which was set to ∆2 = 0.1. The tilde is used as a reminder that these

are not genuine chi-square values. The actual χ̃2 function in the fitting procedure for each

partial wave is |SLL′ − SPWA
LL′ |2/∆2 where the S-matrix elements SPWA

LL′ are reconstructed

from the phase shifts and inelasticity parameters given in tables VIII-X of ref. [32].

Table 1 reveals that the lowest values for the χ̃2 are achieved for hard cutoffs, namely

R = 0.8–0.9 fm. This differs slightly from the NN case where somewhat softer values

R = 0.9–1.0 fm seem to be preferred. Because of that we performed an exploratory fit for an

even harder cutoff, namely R = 0.7 fm. But then the overall quality of the reproduction of

the N̄N phase shifts clearly starts to deteriorate, as can be seen in table 1. Anyway, in N̄N

as well as in the NN case a strong increase in the χ̃2 is observed for the softest cutoff radius

considered, i.e. for R = 1.2 fm. For the illustration of our results we will use, in general, the

interaction with the cutoff R = 0.9 fm. That value was found to be the optimal cutoff choice

in the NN study [38]. Nominally, in terms of the χ̃2 value, R = 0.8 fm would be the optimal

cutoff choice for N̄N . But the differences in the quality of the two fits are so small, see

table 1, that we do not attribute any significance to them given that no proper chi-square

can be calculated. The numerical values of the LECs are compiled in tables in appendix B.
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3.2 Estimation of the theoretical uncertainty

The motivation and the strategy, and also the shortcomings, of the procedure for estimating

the theoretical uncertainty suggested in ref. [38] are discussed in detail in section 7 of that

reference. The guiding principle behind that suggestion is that one uses the expected size of

higher-order corrections for the estimation of the theoretical uncertainty. This is commonly

done, e.g. in the Goldstone boson and single-baryon sectors of chiral perturbation theory.

This approach is anticipated to provide a natural and more reliable estimate than relying

on cutoff variations, say, as done in the past, and, moreover, it has the advantage that it

can be applied for any fixed value of the cutoff R.

The concrete expression used in this approach to calculate an uncertainty ∆XN3LO(k)

to the N3LO prediction XN3LO(k) of a given observable X(k) is [38]

∆XN3LO(k) = max

(
Q5 ×

∣∣∣XLO(k)
∣∣∣, Q3 ×

∣∣∣XLO(k)−XNLO(k)
∣∣∣,

Q2 ×
∣∣∣XNLO(k)−XN2LO(k)

∣∣∣, Q× ∣∣∣XN2LO(k)−XN3LO(k)
∣∣∣) , (3.2)

where the expansion parameter Q is defined by

Q = max

(
k

Λb
,
Mπ

Λb

)
, (3.3)

with k the cms momentum corresponding to the considered laboratory momentum and Λb

the breakdown scale. For the latter we take over the values established in ref. [38] which

are Λb = 600 MeV for the cutoffs R = 0.8, 0.9 and 1.0 fm, Λb = 500 MeV for R = 1.1 fm and

Λb = 400 MeV for R = 1.2. Analogous definitions are used for calculating the uncertainty

up to N2LO, etc. Note that the quantity X(k) represents not only a “true” observable such

as a differential cross section or an analyzing power, but also a phase shift or an inelasticity

parameter.

As already emphasized in [38], such a simple estimation of the theoretical uncertainty

does not provide a statistical interpretation. Note, however, that this procedure can be

interpreted in a Bayesian sense [45]. Let us also mention that — like in [38] — we impose

an additional constraint for the theoretical uncertainties at NLO and N2LO by requiring

them to have at least the size of the actual higher-order contributions.

4 Results

4.1 Phase shifts

Let us first consider the influence of cutoff variations on our results. In figures 2–4 phase

shifts and inelasticity parameters for partial waves up to a total angular momentum of

J = 4 are presented. We use here the spectral notation (2S+1)LJ and indicate the isospin I

separately. Subscripts R and I are used for δ in order to distinguish between the real and

imaginary part of the phases and mixing angles. The cutoffs considered are R = 0.7, 0.8,

0.9, 1.0, 1.1, and 1.2 fm and the results are based on the chiral potential up to N3LO.
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Figure 2. Real and imaginary parts of various N̄N phase shifts at N3LO for cutoffs R = 0.7–1.2 fm.

The filled circles represent the solution of the p̄p PWA [32].
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Figure 3. Real and imaginary parts of various N̄N phase shifts at N3LO for cutoffs R = 0.7–1.2 fm.

The filled circles represent the solution of the p̄p PWA [32].

– 14 –



J
H
E
P
0
7
(
2
0
1
7
)
0
7
8

-15

-10

-5

0

0

5

10

15

0

1

2

3

0

2

4

-1

0

1

-8

-4

0

0

2

4

0

5

10

0

2

4

6

0

3

6

0

1

2

-0.1

0.0

0.1

0 100 200 300
-0.6

-0.3

0.0

0 100 200 300
-6

-3

0

0 100 200 300
-0.2

0.0

0.2

0 100 200 300
0

1

2

 

 

I=0 3F3

R
(d

eg
)

 

 

I=1 3F3

R
(d

eg
)

 

 

I=1 3F3

I(d
eg

)

 

 

I=0 1G4

R
(d

eg
)

 

 

I=1 1G4

R
(d

eg
)

 

 

I=0 3G4

R
(d

eg
)

 

 

I=1 3G4

R
(d

eg
)

 

 

I=0 3F4

R
(d

eg
)

I=0 3F4

 

 

I(d
eg

)

 

 

I=1 3F4

R
(d

eg
)

 

 

I=0 3H4

R
(d

eg
)

 

 

I=0 3H4

I(d
eg

)

 

 

I=1 3H4

R
(d

eg
)

Tlab (MeV)

 
 

I=0 4

R
(d

eg
)

Tlab (MeV)

 

 

I=0 4

I(d
eg

)

Tlab (MeV)

 

 

I=1 4

R
(d

eg
)

Tlab (MeV)

Figure 4. Real and imaginary parts of various N̄N phase shifts at N3LO for cutoffs R = 0.7–1.2 fm.

The filled circles represent the solution of the p̄p PWA [32].

One can see that for most partial waves the cutoff dependence is fairly weak for Tlab up

to 300 MeV (plab up to 800 MeV/c). Indeed, the small residual cutoff dependence that we

observe here is comparable to the likewise small variation reported in ref. [38] for the NN

interaction. Only in a few cases there is a more pronounced cutoff dependence of the results

for energies above 150–200 MeV. This has to do with the fact that the PWA [32] suggests a

resonance-like behavior of some phases in this region. This concerns most prominently the
1S0 partial wave with isospin I = 1 and the 3P0 partial wave with I = 1. In addition, also a

few other partial waves show a conspicuous behavior at higher energies in the sense that the

energy dependence changes noticeably. Typical examples are the inelasticity parameters

for the I = 0 3P0 and 3P2 partial wave, where the corresponding δI’s increase rapidly from

the threshold, but then level out at higher energies. Describing this behavior with the two

LECs at N3LO, that have to absorb the cutoff dependence at the same time, is obviously

only possible over a reduced energy region.

For a more quantitative assessment of the residual cutoff dependence of the phase

shifts and inelasticity parameters in a given channel we follow the procedure described

in refs. [38, 68]. In these works the quantity |1 − cot δ(R1)(k)/ cot δ(R2)(k)| is considered

as function of the cms momentum k, where R1 and R2 are two different values of the
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Figure 5. Error plot for the real part of the phase shifts for the isospin I = 1 partial waves
1S0, 3S1 and for the I = 0 3P1, 3P2 partial waves. Here R1 = 0.9 fm and R2 = 1.0 fm. The

black/solid line is at N3LO, the blue/dashed line at N2LO, the magenta/dotted line at NLO, and

the green/dash-double-dotted line corresponds to the LO result.

cutoff. Since in the N̄N case the phase shifts are complex, we examine that quantity

for the real part of δ (δR) and for the imaginary part (δI) separately, i.e. we evaluate

|1− cot δ
(R1)
R (k)/ cot δ

(R2)
R (k)| and |1− cot δ

(R1)
I (k)/ cot δ

(R2)
I (k)|. Corresponding results for

selected partial waves can be found in figure 5 for the particular choice of R1 = 0.9 fm and

R2 = 1.0 fm.

According to ref. [38] the residual cutoff dependence can be viewed as an estimation

of effects of higher-order contact interactions beyond the truncation level of the potential.

Given that there are no new contact terms when going from the chiral orders NLO and

N2LO, cf. section 2.2, one expects that the residual cutoff dependence reduces only when

going from LO to NLO and then again from N2LO to N3LO. Indeed, the results presented

in figure 5 demonstrate that the cutoff dependence at NLO and N2LO is comparable. Fur-

thermore, there is a noticeable reduction of the cutoff dependence over a larger momentum

range when going from LO to NLO/N2LO and (in case of the P -waves) from NLO/N2LO

to N3LO. Thus, despite certain limitations, overall the behavior we observe here for the

N̄N phase shifts is similar to that in the NN case [38]. This applies roughly also to the

breakdown scale Λb at N3LO, that is to the momentum where the N3LO curves cross the

ones of lower orders. In the NN section it was argued that Λb is about ∼ 500 MeV for

S-waves and even higher for P -waves [38]. Based on the results in figure 5 we would draw

a similar conclusion for the N̄N interaction.
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In any case, we want to emphasize that caution has to be exercised in the inter-

pretation of the error plots. Specifically, one should not forget that they provide only

a qualitative guideline [38]. In this context we want to comment also on the dips or

other sharp structures in the error plots. Those appear at values of k where the function

1 − cot δ(R1)(k)/ cot δ(R2)(k) changes its sign or where one of the phase shifts crosses 0 or

90 degrees. As already pointed out in ref. [38] those have no significance and should be

ignored. Indeed, a notable number of N̄N phase shifts exhibit a strong energy dependence

and, thus, cross 0 or 90 degrees, cf. figures 2–4. Because of that the kind of artefacts

mentioned above occur more often in N̄N , especially in S-waves. Accordingly, those dis-

tort the error plots more than what happened for the NN phase shifts and make their

interpretation more delicate.

The phase shifts and mixing angles for the cutoff R = 0.9 fm are again presented in

figures 6–8. However, now results at N3LO (solid curves), N2LO (dashed curves), NLO

(dotted curves), and LO (dash double-dotted curves) are shown and, in addition, the uncer-

tainty estimated via eq. (3.2) is indicated by bands: N3LO (magenta), N2LO (cyan), NLO

(yellow), and LO (green). Notice that we will use these notations for all the observables,

too. The results of the N̄N PWA [32] are displayed by circles. There is a clear convergence

visible from the curves in those figures for most partial waves. Moreover, in case of S- and

P -waves the N3LO results are in excellent agreement with the PWA over the whole consid-

ered energy range, i.e. up to Tlab = 300 MeV. This is particularly remarkable for channels

where there is a resonance-like behavior like in the isospin I = 1 1S0 and 3P0 states, see

figure 6. Note that even for higher partial waves the phase shifts and inelasticities are well

described at least up to energies of 200 to 250 MeV at the highest order considered, as can

be seen in figures 7 and 8.

Overall, the convergence pattern is qualitatively similar to the one for the correspond-

ing NN partial waves reported in ref. [38]. Exceptions occur, of course, in those N̄N

waves where the PWA predicts a resonance-like behavior. Furthermore, also with regard

to the uncertainty estimate, represented by bands in figures 6–8, in general, the behavior

resembles the one observed in the application of chiral EFT to NN scattering. Specifically,

it is reassuring to see that in most cases for N̄N the uncertainty as defined in eq. (3.2)

also fulfills the conditions and expectations discussed in section 7 of ref. [38]. Thus, we

conclude that the approach for error estimation suggested in ref. [38] is well applicable for

the N̄N case, too.

Some more detailed observations: it is interesting to see that in the 1S0, 3P0 and 3S1

partial waves with I = 0 the uncertainty is very small, even at Tlab = 300 MeV, just like

what was found for the corresponding NN states. On the other hand, and not unexpected,

there is a much larger uncertainty in the I = 1 state, in particular in the 1S0 and 3P0 waves.

Again this has to do with the resonance-like behavior. As noted above, these structures can

be reproduced quantitatively only at the highest order and the poorer convergence in this

case is then reflected in a larger uncertainty - as it should be according to its definition, see

eq. (3.2). Such a resonance-like behavior and/or an “unusually” strong energy dependence

at higher energies of phase shifts is also the main reason why for some cases the uncertainty

estimate fails to produce the desired results, i.e. where the bands do not show a monotonic
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Figure 6. Real and imaginary parts of N̄N phase shifts for the potential with cutoff R = 0.9 fm.

Notations are described in the text. The filled circles represent the solution of the p̄p PWA [32].
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Figure 7. Real and imaginary parts of various N̄N phase shifts for the potential with cutoff

R = 0.9 fm. Notations are described in the text.
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Figure 8. Real and imaginary parts of various N̄N phase shifts for the potential with cutoff

R = 0.9 fm. Notations are described in the text.

behavior, where they do not overlap for different orders, or where the PWA results lie

outside of the uncertainty bands. Examples for that are the inelasticity for 1S0 with I = 1,

the inelasticity for 3P0 with I = 1, or the 3P2 and 3F2 phase shifts and the mixing angle ε2
with I = 0. Similar shortcomings that can be seen in the 3D3 partial waves are, however,

due to their coupling to the 3G3 partial waves. Here the first LEC for fitting the 3D3 and
3G3 phase shifts and the ε3 mixing angle and for absorbing the cutoff dependence arises at

N3LO, cf. eq. (2.13). Accordingly, convergence is very slow. In any case, it is re-assuring

to see that at least the uncertainty estimate at N3LO overlaps with the empirical phase

shifts. Note that in many cases there is a larger uncertainy for the inelasticity than for the

phase shift itself. Again this is not unexpected. For P - and higher partial waves nonzero

results for the inelasticity are only obtained from NLO onwards in the power counting we

follow so that the convergence is slower. Finally, let us mention that in some F -, G-, and

H-waves the inelasticity is zero or almost zero [32]. We omitted the corresponding graphs

from figure 8.

4.2 Observables

In our first study of N̄N scattering within chiral EFT [42] we focused on the phase shifts

and inelasticities. Observables were not considered. One reason for this was that, at that
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time, our computer code was only suitable for calculations in the isospin basis. A sensible

calculation of observables, specifically at low energies where chiral EFT should work best,

has to be done in the particle basis because the Coulomb interaction in the p̄p system has

to be taken into account and also the mass difference between proton and neutron. The

latter leads to different physical thresholds for the p̄p and n̄n channels which has a strong

impact on the reaction amplitude close to those thresholds.

Another reason is related directly to the dynamics of N̄N scattering, specifically to the

presence of annihilation processes. Annihilation occurs predominantly at short distances

and yields a reduction of the magnitude of the S-wave amplitudes. Because of that, higher

partial waves start to become important at much lower energies as compared to what one

knows from the NN interaction [3]. Thus, already at rather moderate energies a realistic

description of higher partial waves, in particular of the P - as well as D-waves, is required

for a meaningful confrontation of the computed amplitudes with scattering data.

In the present paper we extended our chiral EFT N̄N potential to N3LO. At that

order the first LECs in the D-waves appear, cf. eq. (2.15), and can be used to improve

substantially the reproduction of the corresponding partial-wave amplitudes of the N̄N

PWA, cf. figures 6 and 7. Thus, it is now timely to perform also a calculation of observables

and compare those directly with measurements. Integrated cross sections are shown in

figure 9. Results are provided for the total reaction cross section, for the total annihilation

cross section, and for the integrated elastic (p̄p → p̄p) and charge-exchange (p̄p → n̄n)

cross sections. Similar to the presentation of the phase shifts before, we include curves for

the NLO (dotted lines), N2LO (dashed lines), and N3LO (solid lines) results and indicate

the corresponding uncertainty estimate by bands for the cutoff R = 0.9 fm. The LO

calculation is not shown because it provides only a very limited and not realistic description

of observables. Instead we include a variety of experimental results.

Before discussing the results in detail let us make a general comment on the data.

We display experimental information primarily for illustrating the overall quality of our

results. Thus, we choose specific measurements at specific energies which fit best to that

purpose, and we use the values as published in the original papers. This differs from the

procedure in the PWA [32] where data selection is done and has to be done. After all, one

cannot do a dedicated PWA without having a self-consistent data set. Thus, normalization

factors are introduced for the data sets in the course of the PWA and some data have been

even rejected. For details on the criteria employed in the PWA and also for individual

information on which data sets have been renormalized or rejected we refer the reader to

ref. [32]. In view of this it is important to realize that there can be cases where our EFT

interaction reproduces the PWA perfectly but differs slightly from the real data (when a

renormalization was employed) or even drastically (when those data were rejected). Of

course, in the latter case we will emphasize that in the discussion.

Our results for the integrated cross sections at N3LO, indicated by solid lines in figure 9,

agree rather well with the ones of the PWA (filled circles), even up to plab = 800 MeV/c.

Indeed, also the charge-exchange cross section is nicely reproduced, though it is much

smaller than the other ones. The amplitude for this process is given by the difference of

the I = 0 and I = 1 amplitudes and its description requires a delicate balance between
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Figure 9. Total (σtot) and integrated elastic (σel), charge-exchange (σcex), and annihilation (σann)

cross sections for p̄p scattering. The filled circles represent the solution of the p̄p PWA [32]. Data

are taken from refs. [69–72] (σtot), [73–75] (σann), [76–78] (σcex), and [79–81] (σel).

the interactions in the corresponding isospin channels. This concerns, in particular, the

contribution from one-pion exchange and because of that we have included relativistic cor-

rections already at leading order, see eq. (2.1). Without those corrections to the longest

ranged part of the potential convergence in the charge-exchange cross section at higher

momenta is noticeably slower, as we confirmed by an explicit calculation. Note that there

are inconsistencies in the charge-exchange measurements at low energies and some of the

data in question have not been taken into account in the PWA, cf. table III in [32]. Con-

sidering the bands presenting the estimate of the uncertainty, one can see that there is a

clear convergence of our results for all cross sections when going to higher orders. Finally,

as a further demonstration of the quality of our N3LO results we summarize partial-wave

cross sections for p̄p elastic and charge-exchange scatting in table 2. Obviously, there is

nice agreement with the values from the PWA for basically all S- and P -waves.

Differential cross sections, analyzing powers and the spin-correlation parameters Dnn

for p̄p elastic scattering are shown in figure 10. Results for further spin-dependent ob-

servables can be found in figure 11. We selected results at the momenta 100, 300, 500,

and 700 MeV/c (Tlab = 5.32, 46.8, 125, and 232 MeV) for the presentation because that
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p̄p→ p̄p p̄p→ n̄n

plab (MeV/c) 200 400 600 800 200 400 600 800

1S0
N3LO 15.9 8.0 4.1 2.0 0.7 0.1

PWA 15.7 7.9 4.1 2.1 0.7 0.1

3S1
N3LO 66.6 25.9 13.1 8.0 2.9 0.9 0.5 0.3

PWA 66.1 26.0 13.2 8.8 3.0 1.0 0.5 0.2

3P0
N3LO 4.9 5.4 5.1 3.6 1.5 0.8 0.1

PWA 4.9 5.4 5.0 3.5 1.5 0.8 0.1

1P1
N3LO 1.0 2.5 4.4 5.6 0.8 0.1

PWA 0.9 2.5 4.5 5.6 0.8 0.1

3P1
N3LO 1.8 5.0 4.1 3.6 5.1 3.0 0.2 0.1

PWA 1.8 4.9 4.0 3.5 4.9 2.9 0.2 0.1

3P2
N3LO 7.0 17.1 14.1 9.9 1.0 1.5 0.4 0.1

PWA 7.0 17.0 13.9 9.6 0.9 1.4 0.4 0.1

Table 2. Partial-wave cross sections (in mb) predicted by the chiral potential at N3LO with

R = 0.9 fm in comparison to results from the N̄N partial wave analysis [32].

allows us to compare with some existing measurements (for dσ/dΩ, Aon) and it allows us

also to document how the quality of the description of N̄N scattering observables by our

EFT interaction develops with increasing energy. The results of the N̄N PWA [32] are

indicated by dash-dotted lines. Since only N̄N partial waves up to J = 4 are tabulated in

ref. [32] we supplemented those by amplitudes from our N3LO interaction for higher an-

gular momenta in the evaluation of differential observables. As already emphasized above,

those amplitudes differ to some extent from the ones used in the PWA itself. But we do

not expect that those differences have a strong influence on the actual results. Note that

contributions from J ≥ 5 become relevant for momenta above 400 MeV/c, but primarily

at backward angles.

In principle, at the lowest energy considered, Tlab = 5.32 MeV, we expect excellent

agreement of our calculation with the PWA. However, one has to keep in mind that we

fitted to the phase shifts and inelasticies in the isospin basis. The observables are calculated

from partial-wave amplitudes in the particle basis. The latter are obtained by solving the

corresponding LS equation where then the hadronic interaction is modified due to the

presence of the Coulomb interaction, and there are additional kinematical effects from

the shift of the n̄n threshold to its physical value. Therefore, it is not trivial that we

agree so well with the PWA results, that are generated from the S-matrix elements in the

particle basis as listed in ref. [32]. Actually, in case of the differential cross section one

cannot distinguish the corresponding (solid, dash-dotted) lines in the figure. The estimated

uncertainty is also rather small at least for the differential cross section. Spin-dependent

observables involve contributions from higher partial waves from the very beginning and

because of that the uncertainties are larger, especially for the lower-order results. There is

no experimental information on differential observables at such low energies.
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Figure 10. Differential cross sections, analyzing powers and spin correlation parameters Dnn

for p̄p elastic scattering. Notations are described in the text. The red/dash-double dotted line

represents the result of the PWA [32]. Data are taken from refs. [74, 80, 82–87] (differential cross

sections), [86, 88, 89] (analyzing powers), and [90] (Dnn).
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Figure 11. Spin correlation parameters Knn, Axx, Ayy, and Azz for p̄p elastic scattering. Notations

are described in the text.

Naturally, when we go to higher energies the uncertainty increases. In this context

we want to point out that the differential cross section exhibits a rather strong angular

dependence already at plab = 300 MeV/c. Its value drops by more than one order of

magnitude with increasing angles, cf. figure 10. This means that at backward angles there

must be a delicate cancellation between many partial-wave amplitudes and, accordingly,

a strong sensitivity to the accuracy achieved in each individual partial wave. Note also

that a logarithmic scale is used that optically magnifies the size of the uncertainty bands

for small values. The behavior of dσ/dΩ for the p̄p reaction differs considerably from the

one for NN scattering where the angular dependence is relatively weak, even at higher

energies [38]. In fact the features seen in p̄p scattering are more comparable with the ones

for nucleon-deuteron (Nd) scattering, see e.g. the results in ref. [44].

Also with regard to the analyzing power A0n the uncertainty bands look similar to

the pattern one observes in Nd scattering. As already said above, for spin-dependent

observables higher partial waves play a more important role and the uncertainty in their

reproduction is also reflected more prominently in the results for the observables. Inter-

estingly, the uncertainty exhibits a strong angular dependence. It seems that the angles

where it is small are strongly correlated with the zeros of specific Legendre polynomials
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where then the contributions of, say, D-waves are zero and likewise their contribution to

the uncertainty. For A0n and also for other spin-dependent observables there is a visible

difference between our N3LO results (solid curve) and the PWA (dash-dotted curve) at the

highest energy displayed in figures 10 and 11.

Differential cross sections, analyzing powers and the spin-correlation parameters Dnn

for the charge-exchange reaction p̄p→ n̄n are shown in figure 12. Results for further spin-

dependent observables can be found in figure 13. The quality of the reproduction of the

PWA results by our EFT interaction at N3LO but also the convergence properties with

increasing order and the uncertainties are similar to those observed for p̄p elastic scattering.

However, visible deviations from the PWA start already at somewhat smaller energies. This

is most obvious in case of the analyzing power Aon where noticeable differences of our N3LO

results to those of the PWA occur already from plab ∼ 500 MeV (Tlab ∼ 125 MeV) onwards,

cf. figure 12. Note that the lowest momentum is very close to the n̄n threshold, which is

at plab = 98.70 MeV, so that the kinetic energy in the n̄n system is only of the order of a

few keV. Despite of that the spin-dependent observables exhibit already a distinct angular

dependence and A0n is clearly nonzero.

In any case, overall we can conclude that chiral EFT at N3LO not only allows for an

excellent reproduction of the PWA results but also of the actual observables for energies

below plab ∼ 500 MeV (Tlab ∼ 125 MeV) and it still provides a good description of the data

at energies of the order of plab ∼ 700 MeV (Tlab ∼ 230 MeV)

5 Predictions

The lowest momentum for which results of the PWA are provided in ref. [32], and accord-

ingly are taken into account in our fitting procedure, is plab = 100 MeV/c corresponding

to Tlab = 5.32 MeV. As can be seen in table III of ref. [32] no data below 100 MeV/c have

been included in the analysis, and only a few below 200 MeV/c. In view of this we consider

results of our N̄N potential at momenta below 100 MeV/c as genuine predictions. First of

all this concerns the low-energy structure of the amplitudes given in terms of the effective

range expansion. Results for the scattering lengths (for 1S0 and 3S1) and for scattering

volumes (for the P waves) are summarized in table 3. These are complex numbers because

of the presence of annihilation. The pertinent calculations were done in the isospin basis

and the isospin I is included here in the spectral notation, i.e. we write (2I+1)(2S+1)LJ .

As one can see in table 3 the results for the 1S0 partial waves are very stable and change

very little with increasing order. There is a slightly larger variation in case of the 3S1.

Somewhat stronger variations occur in the P waves where those in the 3P2 partial waves

are by far the most dramatic ones. This is not surprising in view of the coupling of the
3P2 to the 3F2 and the fact that there is only a single (complex-valued) LEC at NLO and

N2LO that can be used in the fit to the 3P2 and 3F2 phase shifts and the mixing angle ε2.

In order to keep table 3 compact we refrain from including the uncertainty estimate

according to eq. (3.2). However, we confirmed by an actual evaluation that the differences

one sees in the table between the values for the different orders are well within this un-

certainty. Indeed, for S-waves the variations are small and the uncertainty can be readily
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Figure 12. Differential cross sections, analyzing powers and spin correlation parameters Dnn for

charge-exchange scattering. Notations are described in the text. Data are taken from refs. [78, 87,

91–93] (differential cross sections), [93–95]. (analyzing powers), and [95] (Dnn). Note that the data

for Aon are for 546 and 656 MeV/c, respectively.
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Figure 13. Spin correlation parameters Knn, Axx, Ayy, and Azz for charge-exchange scattering.

For notations, see figure 10.

estimated from the results in table 3 employing eq. (3.2). For example, for ∆a13S1
we get

(±0.01± i0.01) fm3 (N3LO), (±0.03± i0.01) fm3 (N2LO), (±0.09± i0.04) fm3 (NLO). Con-

sidering P -waves, for the states with the strongest variations we get (±2.29 ± i1.85) fm3

(N3LO), (±9.96 ± i8.05) fm3 (N2LO), (±43.3 ± i35.0) fm3 (NLO), for ∆a13P0
, (±0.52 ±

i0.23) fm3 (N3LO), (±0.52 ± i0.47) fm3 (N2LO), (±0.52 ± i2.05) fm3 (NLO), for ∆a33P1
,

and (±0.84± i0.43) fm3 (N3LO), (±0.84± i0.96) fm3 (N2LO), (±0.84± i4.18) fm3 (NLO),

for ∆a13P2
. Note that scattering volumes (i.e. the P -wave effective range parameters) are

kinematically suppressed and, accordingly, the uncertainty is enhanced by a factor 1/Q2.

Table 3 contains also scattering lengths and volumes predicted in our earlier study

of the N̄N interaction within chiral EFT based on a momentum-space cutoff [42]. We

include here the results at N2LO and for the cutoff combination (Λ,Λ̃) = (450,500) MeV.

It is reassuring to see that in most partial waves the predictions are very similar or even

identical. More noticeable differences occur only in P waves, and in particular in the 3P2

— for the reasons discussed in the preceding paragraph.

There is some experimental information that puts constraints on these scattering

lengths. Measurements of the level shifts and widths of antiproton-proton atoms have

been used to infer values for the spin-averaged p̄p scattering lengths. Corresponding re-

sults can be found in ref. [96], together with values for the imaginary part of the scattering
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NLO N2LO N3LO N2LO [42]

a11S0
(fm) −0.21 − i 1.20 −0.21 − i 1.22 −0.20 − i 1.23 −0.21 − i1.21

a31S0
(fm) 1.06 − i 0.57 1.05 − i 0.60 1.05 − i 0.58 1.03 − i0.58

a13S1
(fm) 1.33 − i 0.85 1.39 − i 0.89 1.42 − i 0.88 1.37 − i0.88

a33S1
(fm) 0.44 − i 0.92 0.45 − i 0.95 0.44 − i 0.96 0.44 − i0.91

a13P0
(fm3) −3.62 − i 8.05 −3.18 − i 8.02 −2.83 − i 7.82 −3.76 − i7.16

a33P0
(fm3) 2.22 − i 0.31 2.16 − i 0.32 2.18 − i 0.19 2.36 − i1.14

a11P1
(fm3) −2.72 − i 0.34 −2.76 − i 0.35 −2.87 − i 0.36 −2.87 − i0.25

a31P1
(fm3) 0.97 − i 0.29 0.87 − i 0.31 0.80 − i 0.34 0.86 − i0.20

a13P1
(fm3) 4.65 − i 0.07 4.60 − i 0.07 4.61 − i 0.05 4.77 − i0.02

a33P1
(fm3) −1.81 − i 0.47 −1.92 − i 0.50 −2.04 − i 0.55 −2.02 − i0.39

a13P2
(fm3) −0.42 − i 0.96 −0.55 − i 1.03 −0.74 − i 1.13 −0.45 − i0.57

a33P2
(fm3) −0.29 − i 0.37 −0.38 − i 0.38 −0.48 − i 0.34 −0.28 − i0.23

ācsS,p̄p (fm) 0.78 − i 0.71 0.80 − i 0.73 0.80 − i 0.74 0.79 − i 0.72

ācsP,p̄p (fm3) −0.05 − i0.74 −0.12 − i 0.77 −0.19 − i 0.77 −0.10 − i0.55

Table 3. Scattering lengths and volumes for different partial waves for the chiral potentials with

R = 0.9 fm. ācsS,p̄p and ācsP,p̄p are spin-averaged results obtained from a calculation in particle basis

including the Coulomb force. For comparison N2LO predictions of our previous chiral potential are

included, based on the cutoff combination (Λ, Λ̃) = (450,500) MeV [42].

lengths that are deduced from measurements of the n̄p annihilation cross section in com-

bination with the ones for p̄p annihilation. Here we prefer to compare our predictions

directly with the measured level shifts and widths [97–100], see table 4. For that the True-

man formula [101] was applied to the theory results with the second-order term taken into

account for the S-waves. It has been found in ref. [102] that values obtained in this way

agree rather well with direct calculations. In this context let us recall that the results in

table 4, including those for the N2LO interaction from ref. [42], are deduced, of course,

from a calculation in particle basis. In particular, the Coulomb force in p̄p is taken into ac-

count and likewise the p-n mass difference that leads to separated thresholds for the p̄p and

n̄n channels. The corresponding results given in our earlier study of the N̄N interaction

within chiral EFT [42] are from a calculation in the isospin basis.

Experimental evidence on level shifts and widths in antiprotonic hydrogen was not

taken into account in the PWA [32]. Anyway, it should be said that additional assumptions

have to be made in order to derive the splitting of the 1S0 and 3S1 level shifts from the

experiment [100, 103]. This caveat has to be kept in mind when comparing the theory

results with experiments. Notwithstanding, there is a remarkable agreement between our

predictions and the experimental values, with the only exception being the level shift in

the 3P0 partial wave.
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NLO N2LO N3LO N2LO [42] Experiment

E1S0
(eV) −448 −446 −443 −436 −440(75) [98]

−740(150) [97]

Γ1S0
(eV) 1155 1183 1171 1174 1200(250) [98]

1600(400) [97]

E3S1
(eV) −742 −766 −770 −756 −785(35) [98]

−850(42) [99]

Γ3S1
(eV) 1106 1136 1161 1120 940(80) [98]

770(150) [99]

E3P0
(meV) 17 12 8 16 139(28) [100]

Γ3P0
(meV) 194 195 188 169 120(25) [100]

E1S (eV) −670 −688 −690 −676 −721(14) [98]

Γ1S (eV) 1118 1148 1164 1134 1097(42) [98]

E2P (meV) 1.3 2.8 4.7 2.3 15(20) [100]

Γ2P (meV) 36.2 37.4 37.9 27 38.0(2.8) [100]

Table 4. Hadronic shifts and broadenings in hyperfine states of p̄H for the chiral potentials with

R = 0.9 fm. For comparison N2LO predictions of our previous chiral potential are included, based

on the cutoff combination (Λ, Λ̃) = (450,500) MeV [42]. The experimental information is taken

from refs. [97–100].

There are measurements of the p̄p annihilation cross section at very low en-

ergy [104–107]. Also those experiments were not taken into account in the PWA [32].

We present our predictions for this observable in figure 14, where the annihilation cross

section multiplied by the velocity β of the incoming p̄ is shown. Results based on the

amplitudes of the PWA are also included (filled circles). An interesting aspects of those

data is that one can see the anomalous behavior of the reaction cross section near thresh-

old due to the presence of the attractive Coulomb force [108]. Usually the cross sections

for exothermic reactions behave like 1/β so that βσann is then practically constant, cf.

figure 14 for plab ≈ 100–300 MeV/c. However, the Coulomb attraction modifies that to a

1/β2 behavior for energies very close to the threshold.

Finally, for illustration we show our predictions for n̄p scattering, see figure 15. The n̄p

system is a pure isospin I = 1 state so that one can test the I = 1 component of the N̄N

amplitude independently. Note that the PWA results displayed in figure 15 include again

partial-wave amplitudes from our N3LO interaction for J ≥ 5. However, for integrated

cross sections the contributions of those higher partial waves is really very small, even at

plab = 800 MeV/c.
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Figure 14. p̄p annihilation cross section multiplied by the velocity β of the incoming p̄. Notations

are described in the text. The results of the PWA [32] are indicated by circles. Data are taken

from [104–107].
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Figure 15. Total (σtot) and integrated annihilation (σann) cross sections for n̄p scattering. Nota-

tions are described in the text. Data are taken from refs. [109–111].

6 Summary

In ref. [38] a new generation of NN potentials derived in the framework of chiral effective

field theory was presented. In particular, a new local regularization scheme was introduced

and applied to the pion-exchange contributions of the NN force. Furthermore, an alter-

native scheme for estimating the uncertainty was proposed that no longer depends on a

variation of the cutoffs. In the present paper we adopted those suggestions and applied

them in a study of the N̄N interaction. Specifically, a N̄N potential has been derived up to

N3LO in the perturbative expansion, thereby extending a previous work by our group that
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had considered the N̄N force up to N2LO [42]. Like before, the pertinent low-energy con-

stants have been fixed by a fit to the phase shifts and inelasticities provided by a recently

published phase-shift analysis of p̄p scattering data [32].

We could show that an excellent reproduction of the N̄N amplitudes can be achieved

at N3LO. Indeed, in many aspects the quality of the description is comparable to that one

has found in case of the NN interaction at the same order [38]. To be more specific, for

the S-waves excellent agreement with the phase shifts and inelasticities of [32] has been

obtained up to laboratory energies of about 300 MeV, i.e. over the whole energy range

considered. The same is also the case for most P -waves. Even many of the D-waves are

described well up to 200 MeV or beyond. Because of the overall quality in the reproduction

of the individual partial waves there is also a nice agreement on the level of N̄N observables.

Total and integrated elastic (p̄p→ p̄p) and charge-exchange (p̄p→ n̄n) cross sections agree

well with the PWA results up to the highest energy considered while differential observables

(cross sections, analyzing powers, etc.) are reproduced quantitatively up to 200–250 MeV.

Furthermore, and equally important, in most of the considered cases the achieved results

agree with the ones based on the PWA within the estimated theoretical accuracy. Thus,

the scheme for quantifying the uncertainty suggested in ref. [38] seems to work well and can

be applied reliably to the N̄N interaction as well. Finally, the low-energy representation

of the N̄N amplitudes derived from chiral EFT compares well with the constraints derived

from the phenomenology of antiprotonic hydrogen.
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A The chiral potential up to N3LO

The one-pion exchange potential (OPEP) is given in eq. (2.1). Up to N3LO, the chiral

expansion of the two-pion exchange potential (TPEP) can be found in refs. [37, 38, 112].

For the reader’s convenience we summarize the expressions below. The TPEP can be

written in the form

V2π = VC + τ 1 · τ 2WC + [VS + τ 1 · τ 2WS ] σ1 · σ2 + [VT + τ 1 · τ 2WT ] σ1 · q σ2 · q
+ [VLS + τ 1 · τ 2WLS ] i(σ1 + σ2) · (q × k) , (A.1)

where q = p′ − p, k = (p′ + p)/2, and τ i is the isospin Pauli matrix associated with

the nucleon (antinucleon) i. V denotes the isoscalar part and W the isovector part where

the subscripts C, S, T , LS refer to the central, spin-spin, tensor, and spin-orbit terms,
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respectively. Each component of V and W is given by a sum V = V (0) +V (2) +V (3) +V (4)

(analogous for W ) where the superscript in the bracket refers to the chiral dimension. The

order-Q2 contributions take the form

W
(2)
C = − L(q)

384π2F 4
π

[
4M2

π(5g4
A − 4g2

A − 1) + q2(23g4
A − 10g2

A − 1) +
48g4

AM
4
π

4M2
π + q2

]
,

V
(2)
T = − 1

q2
V

(2)
S = −

3g4
A

64π2F 4
π

L(q) ,

V
(2)
C = V

(2)
LS = W

(2)
S = W

(2)
T = W

(2)
LS = 0 . (A.2)

The loop function L(q) is defined in dimensional regularization (DR) via

L(q) =

√
4M2

π + q2

q
ln

√
4M2

π + q2 + q

2Mπ
. (A.3)

Notice that all polynomial terms are absorbed into contact interactions, as given in

eqs. (2.2)–(2.15). The corrections at order Q3 giving rise to the subleading TPEP have

the form

V
(3)
C = −

3g2
A

16πF 4
π

[
2M2

π(2c1 − c3)− c3q
2

]
(2M2

π + q2)A(q) ,

W
(3)
T = − 1

q2
W

(3)
S = −

g2
A

32πF 4
π

c4(4M2
π + q2)A(q) ,

V
(3)
S = V

(3)
T = V

(3)
LS = W

(3)
C = W

(3)
LS = 0 , (A.4)

where the loop function A(q) is given in DR by

A(q) =
1

2q
arctan

q

2Mπ
. (A.5)

At order Q4, i.e. N3LO, the contributions of one-loop “bubble” diagrams to the TPEP are

V
(4)
C =

3

16π2F 4
π

L(q)

{[c2

6
(4M2

π + q2) + c3(2M2
π + q2)− 4c1M

2
π

]2
+
c2

2

45
(4M2

π + q2)2

}
,

W
(4)
T = − 1

q2
W

(4)
S =

c2
4

96π2F 4
π

(4M2
π + q2)L(q) . (A.6)

Since the regularization is done in coordinate space the potentials have to be Fourier

transformed. For the contributions above this can be done analytically and the correspond-
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ing expressions (up to N2LO) have been given in [113, 114].

W
(0)
S (r) =

g2
Ax

2e−x

48πF 2
πr

3
, (A.7)

W̃
(0)
T (r) =

g2
Ae
−x(x2 + 3x+ 3)

48πF 2
πr

3
, (A.8)

V
(2)
S (r) =

g4
Ax
(
(2x2 + 3)K1(2x) + 3xK0(2x)

)
32π3F 4

πr
5

, (A.9)

Ṽ
(2)
T (r) = −

g4
Ax
(
(4x2 + 15)K1(2x) + 12xK0(2x)

)
128π3F 4

πr
5

, (A.10)

W
(2)
C (r) = − x

128π3F 4
πr

5

[
x
(
g4
A(4x2 + 23)− 10g2

A − 1
)
K0(2x)

+
(
g4
A(12x2 + 23)− 2g2

A(2x2 + 5)− 1
)
K1(2x)

]
, (A.11)

V
(3)
C (r) =

3g2
Ae
−2x

(
2c1x

2(x+ 1)2 + c3(x4 + 4x3 + 10x2 + 12x+ 6)
)

32π2F 4
πr

6
, (A.12)

W
(3)
S (r) =

c4g
2
Ae
−2x(x+ 1)(2x2 + 3x+ 3)

48π2F 4
πr

6
, (A.13)

W̃
(3)
T (r) = −

c4g
2
Ae
−2x(x+ 1)(x2 + 3x+ 3)

48π2F 4
πr

6
, (A.14)

where x = Mπr, Ki(x) is the modified Bessel function of the second kind and the superscript

in the bracket refers to the chiral dimension. Note that the tensor parts of the potentials

in coordinate space (ṼT , W̃T ) are written with a tilde as a reminder that they are defined

in terms of the irreducible tensor operator S12 = 3(σ1 · r̂ σ2 · r̂)− σ1 · σ2 where r̂ = r/r.

The relativistic, i.e. the 1/m, corrections are given by

V
(4)
C,m(r) =

3g4
Ae
−2x(x5 + 10x4 + 28x3 + 46x2 + 48x+ 24)

1024π2F 4
πmr

6
, (A.15)

V
(4)
S,m(r) = −

g4
Ae
−2x(6x4 + 22x3 + 43x2 + 48x+ 24)

512π2F 4
πmr

6
, (A.16)

Ṽ
(4)
T,m(r) =

g4
Ae
−2x(6x4 + 31x3 + 76x2 + 96x+ 48)

1024π2F 4
πmr

6
, (A.17)

V
(4)
LS,m(r) = −

3g4
Ae
−2x(x+ 1)(x2 + 2x+ 2)

64π2F 4
πmr

6
, (A.18)

W
(4)
C,m(r) =

g2
Ae
−2x

512π2F 4
πmr

6

(
g2
A(3x5 + 10x4 + 36x3 + 82x2 + 96x+ 48)

− 4(x4 + 4x3 + 10x2 + 12x+ 6)
)
, (A.19)

W
(4)
S,m(r) = −

g2
Ae
−2x

(
g2
A(2x4+10x3+21x2+24x+12)−4(2x3+5x2+6x+3)

)
768π2F 4

πmr
6

, (A.20)

W̃
(4)
T,m(r) =

g2
Ae
−2x

(
g2
A(2x4+13x3+36x2+48x+24)−8(x3+4x2+6x+3)

)
1536π2F 4

πmr
6

, (A.21)

W
(4)
LS,m(r) =

g2
A(g2

A − 1)e−2x(x+ 1)2

32π2F 4
πmr

6
. (A.22)
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The subleading order corrections to the πN vertex are given by

V
(4)
C,sl(r) = −

g2
Ax

128π3F 4
πmr

7

[
K0(2x)

(
48x3(6c1 + c2 − 3c3) + 24x5(2c1 + c3)

−48x(c2 − 6c3)(2x2 + 5)
)
− 2K1(2x)

(
−16x4(6c1 + c2 − 3c3)

−24x2(6c1+c2−3c3)+6x4(c2−2c3)+4(c2−6c3)(4x4+27x2+30)
)]
, (A.23)

V
(4)
LS,sl(r) =

3c2g
2
Ax
(
(2x2 + 5)K1(2x) + 5xK0(2x)

)
8π3F 4

πmr
7

, (A.24)

W
(4)
C,sl(r) =

c4x

32π3F 4
πmr

7

[
2x
(
g2
A(8x2 + 25) + x2 + 5

)
K0(2x)

+
(
g2
A(4x4 + 41x2 + 50) + 7x2 + 10

)
K1(2x)

]
, (A.25)

W
(4)
S,sl(r) = − c4x

48π3F 4
πmr

7

[
x
(
g2
A(4x2 + 35)− 5

)
K1(2x)

+ 2
(
5g2
A(2x2 + 7)− x2 − 5

)
(xK0(2x) +K1(2x))

]
, (A.26)

W̃
(4)
T,sl(r) =

c4x

192π3F 4
πmr

7

[
2x
(
g2
A(4x2 + 59)− 8

)
K1(2x)

+
(
g2
A(52x2 + 245)− 4x2 − 35

)
(xK0(2x) +K1(2x))

]
, (A.27)

W
(4)
LS,sl(r) = − c4x

16π3F 4
πmr

7

[
x
(
g2
A(4x2 + 25) + 5

)
K0(2x)

+
(
g2
A(16x2 + 25) + 2x2 + 5

)
K1(2x)

]
. (A.28)

The one loop ‘bubble’ diagrams corrections to the TPEP potential amount to

V
(4)
C,b (r) = − 3x

32π3F 4
πr

7

[
K1(2x)

(
4
(
4c2

1x
4 + 4c1c3x

2(x2 + 3) + c2
3(x4 + 21x2 + 30)

)
+ 8c2

(
c1x

2 + c3(3x2 + 5)
)

+ 3c2
2(x2 + 2)

)
+ 2xK0(2x)

(
2c2(2c1x

2+c3x
2+10c3)+12c3(2c1x

2+c3x
2+5c3)+3c2

2

)]
, (A.29)

W
(4)
S,b (r) =

c2
4x
(
2x(x2 + 5)K0(2x) + (7x2 + 10)K1(2x)

)
24π3F 4

πr
7

, (A.30)

W̃
(4)
T,b(r) = −

c2
4x
(
x(4x2 + 35)K0(2x) + 5(4x2 + 7)K1(2x)

)
96π3F 4

πr
7

. (A.31)

There are further contributions to the TPEP at N3LO where one cannot get analytical

forms in coordinate space. Most conveniently one can write those in the (subtracted)

spectral representation

VC,S(q) = −2q6

π

∫ ∞
2Mπ

dµ
ρC,S(µ)

µ5(µ2 + q2)
, VT (q) =

2q4

π

∫ ∞
2Mπ

dµ
ρT (µ)

µ3(µ2 + q2)
,

WC,S(q) = −2q6

π

∫ ∞
2Mπ

dµ
ηC,S(µ)

µ5(µ2 + q2)
, WT (q) =

2q4

π

∫ ∞
2Mπ

dµ
ηT (µ)

µ3(µ2 + q2)
, (A.32)

where ρi and ηi denote the corresponding spectral functions which are related to the po-

tential via ρi(µ) = ImVi(iµ), ηi(µ) = ImWi(iµ). For the spectral functions ρi(µ) (ηi(µ))
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one finds [112]:

ρ
(4)
C (µ) = −

3g4
A(µ2 − 2M2

π)

πµ(4Fπ)6

{
(M2

π − 2µ2)

[
2Mπ +

2M2
π − µ2

2µ
ln
µ+ 2Mπ

µ− 2Mπ

]
+ 4g2

AMπ(2M2
π − µ2)

}
,

η
(4)
S (µ) = µ2η

(4)
T (µ) = −

g4
A(µ2 − 4M2

π)

π(4Fπ)6

{(
M2
π −

µ2

4

)
ln
µ+ 2Mπ

µ− 2Mπ
+ (1 + 2g2

A)µMπ

}
,

ρ
(4)
S (µ) = µ2ρ

(4)
T (µ) = −

{
g2
Ar

3µ

8F 4
ππ

(d̄14 − d̄15)−
2g6
Aµr

3

(8πF 2
π )3

[
1

9
− J1 + J2

]}
,

η
(4)
C (µ) =

{
rt2

24F 4
πµπ

[
2(g2

A − 1)r2 − 3g2
At

2
]

(d̄1 + d̄2)

+
r3

60F 4
πµπ

[
6(g2

A − 1)r2 − 5g2
At

2
]
d̄3 −

rM2
π

6F 4
πµπ

[
2(g2

A − 1)r2 − 3g2
At

2
]
d̄5

− 1

92160F 6
πµ

2π3
ln

2r + µ

2Mπ

[
− 320(1 + 2g2

A)2M6
π + 240(1 + 6g2

A + 8g4
A)M4

πµ
2

− 60g2
A(8 + 15g2

A)M2
πµ

4 + (−4 + 29g2
A + 122g4

A + 3g6
A)µ6

]
− r

2700µ(8πF 2
π )3

[
− 16(171 + 2g2

A(1 + g2
A)(327 + 49g2

A))M4
π

+ 4(−73 + 1748g2
A + 2549g4

A + 726g6
A)M2

πµ
2

− (−64 + 389g2
A + 1782g4

A + 1093g6
A)µ4

]
+

2r

3µ(8πF 2
π )3

[
g6
At

4J1 − 2g4
A(2g2

A − 1)r2t2J2

]}
, (A.33)

where the abbreviations are

r =
1

2

√
µ2 − 4M2

π , t =
√
µ2 − 2M2

π , (A.34)

and

J1 =

∫ 1

0
dx

{
M2
π

r2x2
−
(

1 +
M2
π

r2x2

)3/2

ln
rx+

√
M2
π + r2x2

Mπ

}
,

J2 =

∫ 1

0
dxx2

{
M2
π

r2x2
−
(

1 +
M2
π

r2x2

)3/2

ln
rx+

√
M2
π + r2x2

Mπ

}
. (A.35)

The LECs d̄1, d̄2, d̄3, d̄5, d̄14 and d̄15 are discussed in section 2.1. This part of the

potential is Fourier transformed numerically.

After regularization in coordinate space, we need to transform the potential back to

momentum space where we solve the Lippmann-Schwinger equation. For that we employ
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the master formulae given in ref. [115] and obtain:

VC(q) = 4π

∫ ∞
0

f(r)VC(r)j0(qr)r2dr ,

VS(q) = 4π

∫ ∞
0

f(r)
(
VS(r)j0(qr) + ṼT (r)j2(qr)

)
r2dr ,

VT (q) = −12π

q2

∫ ∞
0

f(r) ṼT (r)j2(qr)r2dr ,

VSL(q) =
4π

q

∫ ∞
0

f(r)VLS(r)j1(qr)r3dr . (A.36)

Here f(r) is the regulator function given in eq. (3.1). The same relations apply also to the

isovector part W .

B Values of the low-energy constants

Values of the LECs obtained in our fit to the N̄N phase shifts of the PWA [32] at N3LO

are collected in tables 5 and 6 for the cutoffs R = 0.7–1.2 fm. Values of the LECs obtained

in our fit to the N̄N phase shifts of the PWA [32] at LO, NLO, N2LO for the cutoffs

R = 0.9 fm and R = 1.0 fm are collected in table 7.
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LEC R=0.7 fm R=0.8 fm R=0.9 fm R=1.0 fm R=1.1 fm R=1.2 fm

C̃11S0
(GeV−2) 0.3663 0.1816 0.0734 0.0293 0.0007 -0.0089

C11S0
(GeV−4) -0.2093 -0.2134 0.0032 0.1353 0.1754 0.2188

D1
11S0

(GeV−6) -0.9095 -2.8614 -3.8012 -4.5883 -3.7943 -0.0746

D2
11S0

(GeV−8) 1.4889 2.1256 2.2443 3.0715 4.5639 6.4500

C̃a11S0
(GeV−1) -0.6394 -0.5809 -0.5437 -0.5326 -0.5173 -0.5007

Ca11S0
(GeV−3) 0.6454 0.5993 0.1067 -0.5747 -1.5894 -2.7102

C̃31S0
(GeV−2) 0.7690 0.3960 0.1870 0.1189 0.0889 0.0737

C31S0
(GeV−4) 0.3698 0.0966 -0.0702 -0.0796 -0.1356 -0.1228

D1
31S0

(GeV−6) 4.9997 2.8886 1.4143 -1.3774 -5.0372 -9.9353

D2
31S0

(GeV−8) 0.2028 1.4470 1.7541 3.2624 6.6055 9.9568

C̃a31S0
(GeV−1) -0.2630 -0.5768 -0.5102 -0.5078 -0.5251 -0.5293

Ca31S0
(GeV−3) 2.0739 0.4809 0.3750 0.1227 -0.3239 -0.7031

C̃13S1
(GeV−2) 2.9999 1.6589 0.8795 0.5625 0.3402 0.2346

C13S1
(GeV−4) -0.7922 -1.4947 -1.3232 -1.2473 -1.2201 -1.3363

D1
13S1

(GeV−6) -0.4479 -1.0563 -4.1331 -8.2720 -13.3684 -22.8316

D1
13S1

(GeV−8) -3.1895 -2.3730 -5.0615 -8.3651 -13.4933 -17.9644

C̃a13S1
(GeV−1) -1.8251 -1.1612 -0.9880 -0.9724 -1.0715 -1.0846

Ca13S1
(GeV−3) 1.3204 1.4455 1.8999 2.8473 4.0483 5.3069

C̃33S1
(GeV−2) 0.2197 0.2214 0.2537 0.2621 0.1740 0.0984

C33S1
(GeV−4) -1.0383 -0.8849 -0.7500 -0.1184 -0.0442 -0.0864

D1
33S1

(GeV−6) 0.7525 -0.9113 -2.5135 -3.1696 -2.5085 -0.2544

D2
33S1

(GeV−8) 5.2000 5.8826 7.0499 8.2400 9.5785 10.9252

C̃a33S1
(GeV−1) 3.2975 1.7798 1.0938 0.7817 0.6102 0.5040

Ca33S1
(GeV−3) 1.2424 1.6053 2.0396 2.0031 2.3243 2.9964

C1ε1
(GeV−4) -1.4037 -1.2873 -1.0422 -1.0352 -1.1118 -1.2042

D1
1ε1

(GeV−6) 0.2958 1.5672 2.4207 3.1532 4.1075 4.9037

D2
1ε1

(GeV−8) 7.1155 8.9117 9.0537 10.8574 14.7047 17.9407

Ca1ε1 (GeV−3) -0.3184 -0.1132 -0.3203 -0.7550 -1.1708 -1.7234

C3ε1
(GeV−4) -1.5527 -0.8700 -0.3729 -0.0271 0.1361 0.4158

D1
3ε1

(GeV−6) -0.0761 0.0661 -0.4703 -2.3147 -6.4892 -9.1563

D2
3ε1

(GeV−8) 10.4510 9.9717 9.9728 9.1269 9.9530 9.9987

Ca3ε1 (GeV−3) 0.2966 0.5098 0.2399 -0.3413 -0.9511 -1.1465

C13P0
(GeV−4) -0.1528 -0.7131 -1.2874 -1.7249 -2.1000 -2.9288

D1
13P0

(GeV−6) 0.6802 0.8404 0.4728 -1.3347 -5.4425 -9.5526

Ca13P0
(GeV−2) -0.5572 -0.5149 -0.4760 -0.4338 -0.3411 -0.6103

Da
13P0

(GeV−4) -0.7682 -1.4175 -2.5931 -4.2633 -7.0558 -8.8683

C33P0
(GeV−4) -0.2009 -0.2927 -0.2364 -0.2263 -0.0486 0.1721

D1
33P0

(GeV−6) 0.2221 -0.4391 -1.8988 -3.6350 -6.7300 -10.8920

Ca33P0
(GeV−2) 0.4740 0.4600 0.4023 0.4034 0.3466 0.2792

Da
33P0

(GeV−4) 0.0047 0.6467 1.8980 3.5552 6.1373 9.6870

C11P1
(GeV−4) 0.6713 0.3393 0.3290 0.3235 0.1592 -0.0480

D1
11P1

(GeV−6) -0.3912 0.2221 1.2951 2.7015 5.1788 8.2461

Ca11P1
(GeV−2) -1.0123 -1.0467 -1.0598 -1.0268 -1.0098 -0.9880

Da
11P1

(GeV−4) 0.6188 -0.7349 -1.6834 -2.5470 -3.5875 -4.7692

Table 5. LECs at N3LO for different cutoffs. The superscript a indicates parameters that are

related to the annihilation part, cf. eqs. (2.17)–(2.22). Note that all parameters are in units of 104.
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LEC R=0.7 fm R=0.8 fm R=0.9 fm R=1.0 fm R=1.1 fm R=1.2 fm

C31P1
(GeV−4) 1.0110 0.4044 0.2913 0.2541 0.0031 -0.2178

D1
31P1

(GeV−6) -0.1428 0.7746 2.1280 3.4240 5.9236 8.7283

Ca31P1
(GeV−2) -1.0191 -1.1010 -1.1208 -1.0835 -1.0868 -1.0770

Da
31P1

(GeV−4) 0.5262 -0.8621 -1.6859 -2.2918 -3.2685 -4.4792

C13P1
(GeV−4) -0.0127 -0.0481 0.0110 0.1200 0.3533 0.5733

D1
13P1

(GeV−6) 0.2629 -0.1271 -0.7636 -1.5221 -2.8235 -3.8502

Ca13P1
(GeV−2) -0.4651 -0.4559 -0.4482 -0.4599 -0.4020 -0.3643

Da
13P1

(GeV−4) 0.1118 -0.4160 -1.2190 -2.2506 -4.1153 -6.3484

C33P1
(GeV−4) 0.6816 0.2907 0.1157 -0.0195 -0.3544 -0.5406

D1
33P1

(GeV−6) 0.1881 0.8531 2.0920 3.3395 5.6829 6.6607

Ca33P1
(GeV−2) 1.0534 1.0588 1.0661 1.0414 1.0537 1.0059

Da
33P1

(GeV−4) -0.1723 0.9332 1.7228 2.4337 3.4801 4.8833

C13P2
(GeV−4) -0.6326 -0.8469 -0.9706 -1.0649 -1.2138 -1.2308

D1
13P2

(GeV−6) 0.0654 0.3952 0.2482 -0.3207 -1.5914 -3.1043

Ca13P2
(GeV−2) 0.4775 0.6605 0.7363 0.7913 0.8053 0.8707

Da
13P2

(GeV−4) 1.4486 1.8307 2.6057 3.7346 5.7949 7.7493

C33P2
(GeV−4) 0.4753 0.1264 -0.1083 -0.2666 -0.3997 -0.4734

D1
33P2

(GeV−6) 0.3186 0.4147 0.3267 0.0475 -0.4968 -1.2914

Ca33P2
(GeV−2) 0.6947 0.6398 0.6177 0.6184 0.6079 0.6372

Da
33P2

(GeV−4) 0.1648 0.9179 1.8514 2.9132 4.5059 5.9872

D1ε2
(GeV−6) -0.0421 -0.4631 -1.1534 -2.1726 -3.4707 -5.7668

Da
1ε2

(GeV−4) -0.1891 -0.3377 -0.4064 -0.3548 -0.4562 -0.1701

D3ε2
(GeV−6) -0.1302 0.1114 0.4043 0.8166 1.3557 2.0829

Da
3ε2

(GeV−4) 0.4249 0.3512 0.3201 0.2310 0.1717 0.0662

D13D1
(GeV−6) 0.4792 -0.4469 -1.4452 -2.5109 -4.0544 -5.5814

Da
13D1

(GeV−3) 0.4899 0.7330 0.8074 0.9080 1.0382 1.1982

D33D1
(GeV−6) 0.5545 0.6502 0.3119 -0.3121 -1.1332 -2.0036

Da
33D1

(GeV−3) -0.6720 -0.6839 -0.8382 -0.9446 -1.0763 -1.1376

D11D2
(GeV−6) -0.0856 0.1535 0.2645 0.2236 0.0899 -0.2041

Da
11D2

(GeV−3) 1.2583 1.4617 1.6196 1.7957 1.9952 2.2209

D31D2
(GeV−6) 0.9000 1.1000 1.1738 1.1897 1.1904 1.1901

Da
31D2

(GeV−3) 1.2741 1.5223 1.6776 1.8608 2.0602 2.2818

D13D2
(GeV−6) 0.0106 0.0385 0.2183 0.5820 1.2472 2.2921

Da
13D2

(GeV−3) 0.6597 0.7547 0.8248 0.9059 0.9811 1.0547

D33D2
(GeV−6) 1.1031 0.8531 0.4431 -0.1465 -0.9415 -2.0262

Da
33D2

(GeV−3) 0.9497 1.0468 1.1852 1.3522 1.5445 1.7653

D13D3
(GeV−6) -1.2312 -1.9596 -2.9471 -4.2752 -5.9646 -8.1915

Da
13D3

(GeV−3) 0.7962 1.0617 1.3561 1.6726 2.0161 2.4035

D33D3
(GeV−6) 0.5608 0.0403 -0.5623 -1.2899 -2.1695 -3.2530

Da
33D3

(GeV−3) 0.4809 0.5867 0.6915 0.8157 0.9481 1.0945

Da
13F2

(GeV−4) 0.0497 0.0275 0.0027 -0.2935 -0.5429 -1.6646

Da
33F2

(GeV−4) 1.4046 1.5887 1.8414 2.0667 2.3631 2.6138

Da
11F3

(GeV−4) 1.2010 1.4174 1.6372 1.8492 2.1002 2.3750

Da
31F3

(GeV−4) 0.7841 0.8281 0.9437 1.0480 1.1818 1.3226

Da
33F3

(GeV−4) 0.6318 0.7244 0.8419 0.9617 1.1091 1.3167

Da
13F4

(GeV−4) 1.1209 1.4364 1.8230 2.0347 2.3687 2.6703

Table 6. LECs at N3LO for different cutoffs. The superscript a indicates parameters that are

related to the annihilation part. Note that all parameters are in units of 104.
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LEC
R=0.9 fm R=1.0 fm

LO NLO N2LO LO NLO N2LO

C̃11S0
(GeV−2) 0.0200 -0.0726 -0.0293 0.0150 -0.0571 -0.0278

C11S0
(GeV−4) - 0.1624 0.1644 - 0.3056 0.2802

C̃a11S0
(GeV−1) -0.4500 -0.4067 -0.4328 -0.4500 -0.4252 -0.4373

Ca11S0
(GeV−3) - -0.9403 -0.6266 - -1.2876 -1.0742

C̃31S0
(GeV−2) -0.0075 -0.0210 0.1218 0.0074 -0.0161 0.0769

C31S0
(GeV−4) - 0.2930 -0.0128 - 0.3382 0.1738

C̃a31S0
(GeV−1) 0.3547 -0.4365 -0.4626 0.3859 -0.4425 -0.4704

Ca31S0
(GeV−3) - 0.2317 0.8382 - 0.0029 0.4391

C̃13S1
(GeV−2) -0.1114 -0.1719 -0.1076 -0.1052 -0.2016 -0.1608

C13S1
(GeV−4) - -0.1932 -0.2336 - -0.2354 -0.3287

C̃a13S1
(GeV−1) 0.3762 0.3471 0.3681 0.4154 0.4075 0.3943

Ca13S1
(GeV−3) - 0.9711 0.8904 - 1.5316 1.5600

C̃33S1
(GeV−2) -0.0500 -0.1065 0.0112 -0.0116 -0.0795 -0.0002

C33S1
(GeV−4) - 0.1539 0.2132 - 0.4228 0.3774

C̃a33S1
(GeV−1) 0.4200 0.3577 0.4317 0.3250 0.3939 0.4240

Ca33S1
(GeV−3) - 1.5860 0.7752 - 1.5899 1.0812

C1ε1
(GeV−4) - -0.2161 -0.1561 - -0.4420 -0.3025

Ca1ε1 (GeV−3) - -1.0121 -0.5084 - -1.1932 -0.8302

C3ε1
(GeV−4) - 0.1946 0.1926 - 0.2989 0.2950

Ca3ε1 (GeV−3) - 0.1793 -0.0675 - 0.1037 -0.0907

Ca13D1
(GeV−3) - 0.0047 0.0061 - -0.0514 -0.6735

Ca33D1
(GeV−3) - 0.7722 0.0008 - 0.8389 0.0096

C13P0
(GeV−4) - -1.4210 -0.6686 - -2.0451 -1.3926

Ca13P0
(GeV−2) - -0.7734 -0.7830 - -1.1055 -1.0913

C33P0
(GeV−4) - -0.9448 -0.6822 - -0.9678 -0.7343

Ca33P0
(GeV−2) - 0.7298 0.7532 - 0.8808 0.8977

C11P1
(GeV−4) - 0.2666 0.4396 - 0.3388 0.4880

Ca11P1
(GeV−2) - -0.8808 -0.9129 - -0.8863 -0.9032

C31P1
(GeV−4) - 0.0132 0.5938 - 0.0786 0.5748

Ca31P1
(GeV−2) - -0.8616 -0.9454 - -0.9090 -0.9541

C13P1
(GeV−4) - -0.5135 -0.1235 - -0.3593 -0.0221

Ca13P1
(GeV−2) - -0.5375 -0.5704 - -0.6041 -0.6258

C33P1
(GeV−4) - -0.0296 0.4602 - -0.0244 0.3859

Ca33P1
(GeV−2) - 0.8612 0.9263 - 0.9137 0.9481

C13P2
(GeV−4) - -0.9858 -0.4097 - -1.0905 -0.6203

Ca13P2
(GeV−2) - -0.8514 -0.9091 - -0.9919 -1.0219

C33P2
(GeV−4) - -0.5386 -0.1399 - -0.6099 -0.2712

Ca33P2
(GeV−2) - 0.6813 0.7159 - 0.7784 0.7992

Ca11D2
(GeV−3) - 1.5335 1.5509 - 1.6924 1.7002

Ca31D2
(GeV−3) - 1.5558 1.6436 - 1.7238 1.7697

Ca13D2
(GeV−3) - 0.7062 0.7562 - 0.8087 0.8227

Ca33D2
(GeV−3) - 1.1532 1.1551 - 1.3171 1.2937

Ca13D3
(GeV−3) - 1.5684 1.4289 - 1.8667 1.7359

Ca33D3
(GeV−3) - 0.7430 0.6654 - 0.8528 0.7784

Table 7. LECs at LO, NLO, and N2LO for the cutoffs R=0.9 fm and 1.0 fm. The superscript a

indicates parameters related to the annihilation part. Note that all parameters are in units of 104.
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