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1 Introduction

The average null energy condition (ANEC) states that

∫ ∞

−∞
dλ 〈Tαβ〉uαuβ ≥ 0 , (1.1)
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where the integral is over a complete null geodesic, and u is the tangent null vector. This

inequality plays a central role in many of the classic theorems of general relativity [1–4].

Matter violating the ANEC, if it existed, could be used to build time machines [5, 6]

and violate the second law of thermodynamics [7]. And, unlike most of the other energy

conditions discussed in relativity (dominant, strong, weak, null, etc.), the ANEC has no

known counterexamples in consistent quantum field theories (assuming also that the null

geodesic is achronal [8]).

Though often discussed in the gravitational setting, the ANEC is a statement about

QFT that is nontrivial even in Minkowski spacetime without gravity. In this context,

the first general argument for the ANEC in QFT was found just recently by Faulkner,

Leigh, Parrikar, and Wang [9]. (Earlier derivations [10–14], were restricted to free or

superrenormalizable theories, or to two dimensions.) The crucial tool in the derivation of

Faulkner et al. is monotonicity of relative entropy. Assuming all of the relevant quantities

are well defined in the continuum limit, the argument applies to a large (and perhaps dense)

set of states in any unitary, Lorentz-invariant QFT.

Separately, the ANEC for a special class of states in conformal field theory was derived

recently using techniques from the conformal bootstrap developed in [15, 16]. These special

cases of the ANEC, known as the Hofman-Maldacena conformal collider bounds [17], were

derived in [18, 19]. The derivation relied on causality of the CFT, in the microscopic sense

that commutators must vanish outside the lightcone, applied to the 4-point correlator

〈φ[T, T ]φ〉 where T is the stress tensor and φ is a scalar. However, it was not clear from the

derivation why the bootstrap agreed with the ANEC as applied by Hofman and Maldacena,

or whether there was a more general connection between causality and the ANEC in QFT.

In this paper, we simplify and extend the causality argument and show that it implies

the ANEC more generally. We conclude that any unitary, Lorentz-invariant QFT with

an interacting conformal fixed point in the UV must obey the ANEC, in agreement with

the information-theoretic derivation of Faulkner et al. The argument assumes no higher

spin symmetries at the UV fixed point, so it requires d > 2 spacetime dimensions and

does not immediately apply to free (or asymptotically free) theories. A byproduct of the

analysis is a sum rule for the integrated null energy in terms of a manifestly positive 4-point

function. Furthermore, we argue that the ANEC is just one of an infinite class of positivity

constraints of the form ∫
duXuu···u ≥ 0 (1.2)

where X is an even-spin operator on the leading Regge trajectory (normalized appropri-

ately) — i.e., it is the lowest-dimension operator of spin s ≥ 2. This implies new constraints

on 3-point couplings in CFT; we work out the example of spin-1/spin-1/spin-4 couplings.

Another interesting corollary is that, like the stress tensor, the minimal-dimension opera-

tor of each even spin must couple with the same sign to all other operators in the theory.

(There may be exceptions under certain conditions; see section 6 for a discussion of the

subtleties.) In analogy with the Hofman-Maldacena conditions on stress tensor couplings,

we conjecture that (1.2) evaluated in a momentum basis is optimal, meaning that the
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resulting constraints on 3-point couplings can be saturated in consistent theories. This

remains to be proven.1

The connection between causality and null energy is well known in the gravitational

context (see for example [20, 21] and the references above) and in AdS/CFT (see for

example [22, 23]). In a gravitational theory, null energy can backreact on the geometry in

a way that leads to superluminal propagation in a curved background. Our approach is

quite different, since we work entirely in quantum field theory, without gravity, and invoke

microcausality rather than superluminal propagation in curved spacetime. On the other

hand, in holographic theories, the derivation of the ANEC in [22] only relies on physics close

to the boundary, so it is natural to guess that it can be rephrased as a general derivation

using the OPE.

Causality vs. quantum information. Our derivation bears no obvious resemblance

to the relative entropy derivation of Faulkner et al., except that both seem to rely on

Lorentzian signature. (Our starting point is Euclidean, and we do not make any assump-

tions about the QFT beyond the usual Euclidean axioms, but we do analytically continue

to Lorentzian.) It is intriguing that causality and information-theoretic inequalities lead

to overlapping constraints in this context.

There are significant hints that this connection between entanglement and causality

is more general. This is certainly true in 2d CFT; see for example [24]. It is also clear

in general relativity; for example, both the second law and strong subadditivity of the

holographic entanglement entropy require the NEC [7, 25, 26]. But there are also hints in

higher-dimensional QFT for a deeper connection between entanglement and causality con-

straints. Recent work on the quantum null energy condition [14, 27, 28] is one example, and

they are also linked by c-theorems for renormalization group flows in various dimensions.

The F -theorem, which governs the renormalization group in three dimensions [29–32], was

derived from strong subadditivity of entanglement entropy but has resisted any attempt at

a derivation using more traditional tools. On the other hand, its higher-dimensional cousin,

the a-theorem in four dimensions, was derived by invoking a causality constraint [33] (and

in this case, attempts to construct an entanglement proof have been unsuccessful). So

causality and entanglement constraints both tie deeply to properties of the renormaliza-

tion group, albeit in different spacetime dimensions. Another tantalizing hint is that in

holographic theories, RG monotonicity theorems in general dimensions are equivalent to

causality in the emergent radial direction [29, 30].

These clues suggest that the two types of Lorentzian constraints — from causality

and from quantum information — are two windows on the same phenomena in quantum

field theory. It would be very interesting to explore this further. For instance, perhaps

the F -theorem can be understood from causality; after all, a holographic violation of the

1In free field theory our methods do not apply directly, but a simple mode calculation in an appendix

demonstrates that the inequality (1.2) holds also for free scalars. This appears to have escaped notice. It

may have interesting implications for coupling quantum fields to stringy background geometry, just as the

ANEC plays an important role in constraining physical spacetime backgrounds. The operators X generalize

the stress tensor to the full leading Regge trajectory of the closed string. A first step would be to confirm

that (1.2) holds for other types of free fields.
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F -theorem would very likely violate causality, too. It also suggests that the higher-spin

causality constraints (1.2) on the leading Regge trajectory could have an information-

theoretic origin, presumably involving non-geometric deformations of the operator algebra.

Comparison to previous methods. Both conceptually and technically, the argument

presented here has several advantages over previous bootstrap methods in [16, 18, 19].

First, it makes manifest the connection between causality constraints and integrated null

energy. Second, it produces optimal constraints (for example the full Hofman-Maldacena

bounds on 〈TTT 〉) without the need to decompose the correlator into a sum over composite

operators in the dual channel. This decomposition, accomplished in [19], was technically

challenging for spinning probes, and becomes much more unweildy with increasing spins

(say, for 〈TTTT 〉). The simplification here comes from the fact that the new approach

allows for smeared operator insertions, and these can be used to naturally project out an

optimal set of positive quantities. Finally, the new method produces stronger constraints

on the 3-point functions of non-conserved spinning operators. On the other hand, this

approach does not give us the solution of the crossing equation in the lightcone limit or

the anomalous dimensions of high-spin composite operators as in [19].

Outline. The main argument is given first, in section 2. The essential new ingredient

that it relies on is the fact that the null energy operator appears in the lightcone OPE; this

is derived in section 3. For readers already familiar with the chaos bound [15] and/or earlier

causality constraints [16], sections 2–3 give a complete derivation of
∫
duTuu ≥ 0. The sum

rule is derived in section 4, where we also review the methods of [15, 16]. In section 5, we

show how to smear operators to produce directly the conformal collider bounds in the new

approach — this section is in a sense superfluous because conformal collider bounds follow

from the ANEC, but it is useful to see directly how the two methods compare. In all cases

we are aware of, this particular smearing produces the optimal set of constraints on CFT

3-point couplings. Finally, in section 6, we generalize the argument to the ANEC in any

dimension d > 2, as well as to an infinite class of higher spin operators X.

2 Derivation of the ANEC

In this section we outline the main argument. Various intermediate steps are elaborated

upon in later sections. Our conventions for points x ∈ R1,d−1 are

x = (t, y, ~x) or (u, v, ~x), u = t− y, v = t+ y . (2.1)

In expressions where some arguments are dropped, those coordinates are set to zero. ψ is

always a real scalar primary operator. Hermitian conjugates written as O†(x) act only on

the operator, not the coordinates, so [O(t, . . . )]† = O†(t∗, . . . ). To simplify the formulas

we set d = 4 in the first few sections, leaving the general case (d > 2) for section 6.

Define the average null energy operator

E =

∫ ∞

−∞
duTuu(u, v = 0, ~x = 0) . (2.2)
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u v

ψ

ψ

OO

Figure 1. Kinematics for the derivation of the ANEC. The leading correction to the ψψ OPE is the

null energy integrated over the red line, which in the limit of large u takes the form 〈O
∫
duTuuO〉.

This is then related to an expectation value by a Euclidean rotation.

The goal is to show that this is positive in any state, 〈Ψ|E|Ψ〉 ≥ 0. We first discuss

conformal field theories. In CFT, it is sufficient to show that

〈O†(t = iδ, y = 0) E O(t = −iδ, y = 0)〉 ≥ 0 (2.3)

for an arbitrary local operator O (not necessarily primary). The insertion of O in imaginary

time creates a state on the t = 0 plane so that this 3-point function can be interpreted as an

expectation value 〈O|E|O〉. And, in a conformal field theory, a dense subset of normalizable

states can be created this way.2

In section 3, we show that the non-local operator E makes a universal contribution

to correlation functions in the lightcone limit. The key observation is that the operator

product expansion of two scalars in the lightcone limit can be recast as

ψ(u, v)ψ(−u,−v) ≈ 〈ψ(u, v)ψ(−u,−v)〉(1 + λT vu
2E) , (2.4)

where λT =
10∆ψ

cT π2 (cT is the coefficient of the TT two-point function). This is the leading

term in the regime

|v| � 1

|u| � 1 (with uv < 0) . (2.5)

The result (2.4) is an operator equation that can be used inside correlation functions

(subtleties are discussed below). It sums the usual lightcone OPE (studied for example

in [36, 37]) including the contributions of all minimal-twist operators, (∂u)nTuu for n ≥ 0.

We have assumed that the theory is interacting, so there are no conserved currents of spin

> 2 [38], and that there are no very low-dimensions scalars in this OPE. (The second

2On the sphere, these states are complete by the state-operator correspondence. On the plane, therefore,

any state the consists of local operators smeared over some finite region can be created this way, and by

the Reeh-Schlieder theorem, such states are dense in the Hilbert space [34, 35].

– 5 –
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assumption is not necessary for the derivation of the sign constraints since we can project

onto stress tensor exchange; see section 6.)

Now consider the normalized 4-point function

G =
〈O(y = δ)ψ(u, v)ψ(−u,−v)O(y = δ)〉
〈O(y = δ)O(y = δ)〉〈ψ(u, v)ψ(−u,−v)〉

, (2.6)

in the regime (2.5), as illustrated in figure 1. O denotes the Rindler reflection of the

operator O. For scalars, O(t, y, ~x) ≡ O†(−t,−y, ~x); see section 4.2 for the action on

spinning operators. The OPE (2.4) gives

G = 1 +
λT
Nδ

vu2〈O(y = δ) E O(y = δ)〉 (2.7)

with Nδ = 〈O(y = δ)O(y = δ)〉 > 0. The correction term, 〈O(y = δ) E O(y = δ)〉, is

computed by a residue of the null line integral, and is purely imaginary.

Although the correction in (2.7) is small, it is growing with u. Corrections of this

form were studied by Maldacena, Shenker, and Stanford in [15], and in the CFT context

in [16, 18], where it was shown that if such a term appears, it must have a negative

imaginary part.3 Therefore

i〈O(y = δ) E O(y = δ)〉 ≥ 0 . (2.8)

This conclusion relies on a number of analyticity and positivity conditions that the corre-

lator must satisfy; we check these conditions and review the argument in detail below. It

can be understood as a causality constraint. If the correction has the wrong sign, then it

requires the correlator to have singularities in a disallowed regime, and these singularities

lead to non-vanishing commutators at spacelike separation.

This is not yet (2.3), since in one case the operators are inserted in Minkowski space

and in the other case offset in imaginary time. In fact, these are equivalent, by acting with

a rotation R that rotates by π
2 in the Euclidean yτ -plane (with τ = it):

i〈O(y = δ) E O(y = δ)〉 = 〈(R·O)†(t = iδ) E R·O(t = −iδ)〉 . (2.9)

(The null contour defining E is also trivially rotated in relating these two expressions.) The

ANEC, in an arbitrary state in CFT, then immediately follows from (2.8).

For comparison to previous work, we note that the arguments in [15, 16, 18] were

phrased in terms of conformal cross ratios, and it was important that the correlator was

evaluated on the ‘2nd sheet’, i.e. after a particular analytic continuation in the cross ratios.

The current approach is equivalent. The analytic continuation is entirely captured by the

choice of contour that defines E in the formulas above, implicit in the way we have ordered

the operators, as we will discuss in detail in section 3.

3The chaos bound of MSS refers to large-N theories, and the interest in [15] was in a different regime

of the correlator (the Regge regime). Here, as in [16], we are applying similar methods to the lightcone

regime of a small-N theory. In the Regge/chaos regime, the small parameter that controls the OPE is

1/N , whereas here it is the expansion in v as we approach the lightcone. These limits do not, in general,

commute, even in large N theories, so the physics of the two classes of constraints is different.
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It was previously noted in [40] that the ANEC would follow if E appears as the leading

term in a reflection-positive OPE. This is similar in some ways to our argument, but the

details are different. The lightcone OPE invoked in the first step actually produces not 〈E〉
but ∼ 1 + i〈E〉, and because of the crucial factor of i, the argument for positivity is more

intricate.

Conformal invariance was used several times in the derivation above, but under mild

assumptions the conclusions apply also to non-conformal QFTs with an interacting fixed

point in the UV. The approach to the lightcone is controlled by the UV fixed point, so

if the fixed point is an interacting CFT, then the OPE formula (2.4) still applies. (This

would not be true if the UV fixed point were free, since then an infinite tower of higher

spin currents would contribute to the lightcone OPE at leading order.) One might worry

that in the limit u� 1, some pairs of operators in the 4-point function are at large timelike

separation, so perhaps there are significant infrared effects. We do not have a complete

argument that it is impossible, so leave this as an open question. A similar OPE argument

was used in [39] to derive Bousso’s covariant entropy bound, and it was argued that such

effects should be absent — the same arguments apply here, so we consider this a mild

assumption. See section 4.6 for further discussion.

3 Average null energy in the lightcone OPE

In this section, we will derive the universal contribution of the null energy operator E ,

defined in (2.2), to n-point correlation functions in (3 + 1)−dimensions. The general case

(d 6= 4 and/or spin > 2) is in section 6.

3.1 Lightcone OPE

Consider a scalar primary ψ. In general, two nearby operators can be replaced by their

operator product expansion,

ψ(x2)ψ(x1) =
∑

i

Cµν···i (x1 − x2)Oiµν···(x2) . (3.1)

In the limit that x2 − x1 becomes null, the OPE is organized as an expansion in twist,

∆i− `i, where ∆ is scaling dimension and ` is spin. For now we will assume that the stress

tensor Tµν is the unique operator of minimal twist. (This assumption is not necessary

for the ANEC, as long as the theory is interacting and the stress tensor is the only spin-

2 conserved current; see section 6.) Then the leading contributions to the OPE in the

lightcone limit v → 0 are

ψ(u, v)ψ(−u,−v) = 〈ψ(u, v)ψ(−u,−v)〉
[

1 + vu3
∞∑

n=0

cn(u∂u)nTuu(0) + · · ·
]
, (3.2)

with corrections suppressed by powers of v. We have inserted the operators symmetrically

in the uv-plane with ~x = 0, and expanded about the midpoint. Other descendants of T

are subleading because they must come with powers of v in order to contract indices.

– 7 –
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The constants cn can be determined by plugging (3.2) into the 3-point function 〈ψψTµν〉
and comparing to the known answer, which can be found in [41]. However it is more

elucidating to rewrite the lightcone OPE as an integral, rather than a sum. In fact (3.2) is

exactly equivalent to

ψ(u, v)ψ(−u,−v)

〈ψ(u, v)ψ(−u,−v)〉 =


1− 15cψψT

cT
vu2

∫ u

−u
du′

(
1− u′2

u2

)2

Tuu(u′, v = 0) + · · ·


 . (3.3)

This is derived by assuming an ansatz with an arbitrary kernel inside the integral, plugging

into 〈ψψTµν〉, and designing the kernel to reproduce the known answer. Alternatively, we

can expand the integrand as Tuu(u′) = Tuu(0)+u′∂uTuu(0)+ · · · , do the integral, and check

that (3.3) reproduces (3.2) with the correct cn’s. The OPE coefficient cψψT is fixed by the

conformal Ward identity to cψψT = −2∆ψ

3π2 .

In (3.3), the lightcone OPE is expressed as an integral of Tuu over the null ray con-

necting the two ψ’s. It is an operator equation, meaning it can be used inside correlation

functions, though we must be careful about convergence (or, equivalently, coincident point

singularities).4

In the limit u → ∞, the integration kernel is trivial, so the lightcone OPE produces

the integrated null energy operator:

ψ(u, v)ψ(−u,−v) ≈ 〈ψ(u, v)ψ(−u,−v)〉(1 + λT vu
2E) , (3.4)

where λT =
10∆ψ

cT π2 . This equation holds in the limit where we first take v → 0, then u→∞,

assuming that all other operator insertions are confined to some finite region. Corrections

are subleading in 1/u or v.

3.2 Contribution to correlators

Now consider the correlator

〈ψ(x1)ψ(x2)O(x3) · · ·O(xn)〉 . (3.5)

(O may have spin; its indices are suppressed.)

If all points are spacelike separated, then the ψψ OPE is convergent. If, on the other

hand, for instance x1 − x3 is spacelike but x2 − x3 is timelike, then the full ψψ OPE may

diverge. Still, we expect that any finite number of terms in the lightcone OPE produce

a reliable asymptotic expansion in the limit v2 → v1. This is argued in detail for 4-point

functions in section 4.5 of [16] by comparing to a different, convergent OPE channel. (More

heuristically, it is reasonable to trust a divergent expansion in v as v → 0 so long as sub-

sequent terms are highly suppressed, just as in ordinary perturbation theory.) For n-point

functions, a similar argument holds. The conclusion is that (3.4) can be used inside arbi-

trary correlation functions, as long as we take the limits with all other quantities held fixed.

4See [42] for recent progress in writing general OPEs by integrating over causal diamonds. The OPE (3.2)

can also be derived using shadow operators, as described in appendix B of that paper. It is interesting to

note the similarity to the formula for the vacuum modular Hamiltonian of an interval in 1+1 dimensions,

H ∼
∫ L
−L(1 − x2/L2)Ttt, and also to the recent derivation of the Bousso bound [39], which relied on an

integral expression for the null OPE of twist line operators.
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u v

O(x3) O(x4)

O(x5) O(x6)

ψ

ψ

Figure 2. Operator insertions in Minkowski spacetime. In the limit where the two ψ’s become null,

but are widely separated in u, the leading non-identity term in the ψψ OPE is
∫
duTuu, integrated

over the red null line.

Operators are ordered by the standard prescription (reviewed in detail in [16]): to

compute

〈O1(x1)O2(x2) · · ·On(xn)〉 , (3.6)

shift ti → ti−iεi with ε1 > ε2 > · · · > εn, and define the correlator by analytic continuation

from the Euclidean. In the domain with a fixed imaginary time ordering, the function is

analytic, and sending εi → 0, it produces the Lorentzian correlator with operators ordered

as written in (3.6). When we apply the lightcone OPE (3.4), this translates into a choice of

contour for the u-integral. For concreteness, set n = 6 and suppose the O’s are all at t = ~x =

0, with two O’s in each Rindler wedge, as in figure 2. (Generalizing to arbitrary Minkowski

insertions x3,...,n ∈ R1,d−1 with x2
i > 0 is straightforward.) Suppressing coordinates set to

zero, first consider the ordering

〈ψ(u1, v1)ψ(−u1,−v1)O(y3)O(y4)O(y5)O(y6)〉 (3.7)

with v1 < 0 < u1. In the limit |v1| � 1
|u1| � 1, the OPE gives the leading terms

〈ψ(u1, v1)ψ(−u1,−v1)〉〈
[
1 + λT v1u

2
1

∫ ∞

−∞
duTuu(u, v = 0)

]
O(y3)O(y4)O(y5)O(y6)〉 .

(3.8)

The integral has singularities at −u = y3, . . . , y6. The iε prescription says that to compute

– 9 –
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the correlator ordered as in (3.7), the contour in the complex u-plane goes below the poles:

−y3−y4

u

u

−y5−y6

yyyy

(3.9)

As |u| → ∞, applying the OPE to all the O’s implies that the integrand falls off the same

as (or faster than) 〈Tuu(u)Tαβ(x)〉 ∼ u−6, so we can deform the contour and the integral

vanishes. (This does not mean that the stress tensor contribution to the lightcone OPE

vanishes, only that it has no terms ∼ v1u
2
1. The first non-zero contribution is actually

∼ v1/u
3
1, using (3.3).) Other orderings are obtained by deforming the contour across poles.

For example, the time-ordered correlator

〈ψ(u1, v1)O(y3)O(y4)O(y5)O(y6)ψ(−u1,−v1)〉 (3.10)

is again computed by (3.8), but now integrating on the following contour:

u

−y3−y4−y5−y6
(3.11)

The integral is equal to the sum of residues at u = −y5,−y6 or at u = −y4,−y3, so this

ordering does have terms ∼ v1u
2
1.

3.3 Scalar example

In the language of [15, 16], the trivial contour (3.9) is the 1st sheet (or Euclidean) correlator,

while the non-trivial contour (3.11) produces the correlator on the 2nd sheet.

As a simple application, let us reproduce the well known hypergeometric formula for

the four-point conformal block in the lightcone limit. Consider the four-point function of

identical scalars,

Gscalar(z, z̄) = 〈φ(0)φ(z, z̄)φ(1)φ(∞)〉 . (3.12)

With these kinematics, the cross ratios are simply the lightcone coordinates of the second

insertion. For z, z̄ ∈ (0, 1), all points are spacelike. Plugging in the lightcone OPE (3.3)
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gives an integral that is easily recognized as a hypergeometric function, and we reproduce

the well known formula for the stress tensor lightcone block (see [36, 37]):

z̄z3
2F1(3, 3, 6, z) = −30z̄

z2

[
−3(−2 + z)z + (6− 6z + z2) log(1− z)

]
. (3.13)

This is regular as z → 0. But after going to the second sheet, i.e. sending log(1 − z) →
log(1−z)−2πi, the behavior near the origin is ∼ iz̄/z2. This growing term, with the correct

coefficient, is what is captured by the approximation where we replace the full lightcone

OPE by just the null energy operator, as in (3.4). So what we have shown is that these

growing terms, responsible for all the results in [16, 18, 19], are precisely the contributions

of the null energy operator E .

4 Sum rule for average null energy

Now we will fill in the details of the ANEC derivation in section 2. Most of this discussion

is a review of [15] and [16], some of it from a different perspective. First, we will collect

some facts about position-space correlation functions, which hold in any unitary, Lorentz-

invariant QFT. Then we put them together to derive the sum rule and positivity condition.

4.1 Analyticity in position space

The point of view taken throughout the paper is that a QFT can be defined by its Euclidean

n-point correlation functions [34, 35]. These are single-valued, permutation invariant func-

tions of x1,...,n ∈ Rd, i.e. there are no branch cuts in Euclidean signature. This ensures that

in the Lorentzian theory, non-coincident local fields at t = 0 commute with each other.

The Euclidean correlators can be analytically continued to complex xi. However, there

are branch points when one operator hits the lightcone of another. (See [34, 35] for details

or section 3 of [16] for a review.) When we encounter one of these branch points, we must

choose whether to go around it by deforming t → t + iε or t → t − iε, and this selects

whether the two operators are time-ordered or anti-time-ordered. Thus the iε prescription

to compute a Minkowski correlator ordered as

〈φ1(x1)φ2(x2)φ3(x3) · · · 〉 (4.1)

is to gives each ti a small imaginary part, with

Im t1 < Im t2 < Im t3 < · · · . (4.2)

The resulting function is analytic as long as we maintain (4.2), so once we’ve specified the

iε prescription, the analytic continuation from Euclidean is unambiguous.

In fact, the domain of analyticity of the n-point correlator G(xi), viewed as a function

on (a subdomain of a cover of) n copies of complexified Minkowski space, is larger than

indicated by (4.2). It is also analytic on the domain defined by the covariant version of (4.2):

Im x1 C Im x2 C Im x3 C · · · , (4.3)
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where x C y means ‘x is in the past lightcone of y’.5 (Actually, it is analytic on an even

larger domain, but (4.3) is all we need.6)

4.2 Rindler positivity

Correlation functions in Minkowski space restricted to the left and right Rindler wedges

obey a positivity property analogous to reflection positivity in Euclidean signature. This

is derived in [43]7 and also in [15].

Define the Rindler reflection

x = (t, y, ~x) = (−t∗,−y∗, ~x) . (4.4)

The transverse coordinate ~x is taken to be real. For real (t, y), this reflects a point in the

right Rindler wedge to the left Rindler wedge. Acting on a spinning operator O,

Oµν···(t, y, ~x) = (−1)PO†µν···(−t∗,−y∗, ~x) (4.5)

where P is the number of t-indices plus y-indices. (The Hermitian conjugate on the right-

hand side acts only on the operator, not the coordinates.) This operation is CPT together

with a rotation by π around the y-axis: O = JOJ with J = U(R(y, π))CPT [43].

We will insert points in a complexified version of the left and right Rindler wedges.

The complexified right wedge is defined as

RC =

{
(u, v, ~x) : uv < 0, arg v ∈

(
−π

2
,
π

2

)
, ~x ∈ Rd−2

}
, (4.6)

and the complexified left wedge is

LC = RC =

{
(u, v, ~x) : uv < 0, arg v ∈

(
π

2
,

3π

2

)
, ~x ∈ Rd−2

}
. (4.7)

The positivity condition for 2n-point correlators is

〈O1(x1)O2(x2) · · ·On(xn)O1(x1)O2(x2) · · ·On(xn)〉 > 0 , (4.8)

for x1,...,n ∈ RC and

Im t1 ≤ Im t2 ≤ · · · ≤ Im tn . (4.9)

5We define the imaginary part of a complexified point by the convention that a point in Minkowski space

R1,d−1 has xi = Re xi. Thus the real and imaginary parts each live in a copy of Minkowski space, not

Euclidean space.
6The full domain is described as follows [34, 35]. First act on the domain (4.3) by all possible complex

Lorentz transformations; this defines the extended tube. Then, permute the n points and a repeat this

procedure, to define the permuted extended tube. In the theory of multiple complex variables, the domain

of analyticity cannot be an arbitrary shape — once we know a function is analytic on some domain, it

must actually be analytic on a (generally larger) domain called the envelope of holomorphy. The domain of

analyticity of the correlator G(xi) is the envelope of holomorphy of the union of permuted extended tubes.
7What we call Rindler positivity is not, however, quite the same as ‘wedge reflection positivity’ referred

to in the title of the paper [43]. The difference is discussed in section 3 of [43].
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Note that for product operators, the order does not reverse under reflection:

O1O2 = O1 O2 . (4.10)

For real insertions, Im ti = 0, the operators in (4.8) are ordered as written, which we will

refer to as ‘positive ordering’. They are not time ordered. For complex insertions, the

correlator is defined by analytic continuation from Euclidean within the domain (4.2). The

reflected operators have

Im − t∗1 ≤ Im − t∗2 ≤ · · · ≤ Im − t∗n , (4.11)

which explains why they must be ordered as in (4.8).

Positivity applies also to smeared operators, and products of smeared operators, with

support in a single complexified Rindler wedge. That is,

〈ΘΘ〉 > 0 , (4.12)

for

Θ =

∫
f (1)(x1)O1(x1) +

∫ ∫
f (2)(x1, x2)O1(x1)O2(x2) + · · · , (4.13)

where the smearing functions f have support in some localized region of RC , and the

operator ordering in Θ is the same as in Θ.

These positivity conditions hold in any unitary, Lorentz-invariant QFT [15, 43]. We

will not repeat the derivation, but an intuitive way to understand this is as follows. To be

concrete, consider a case of particular interest for the ANEC and the Hofman-Maldacena

constraints that will be used below:

Θ0 = ψ(t0, y0)

∫ ∞

0
dτ

∫ ∞

0
dy

∫
dd−2~xf(τ, y, ~x)O(t = −iτ, y, ~x) (4.14)

with t0, y0 > 0, and assume f is non-zero in some finite region. ψ and O may be timelike

separated, in the sense that Re (x0− x) ∈ R1,d−1 lies in the forward lightcone for points of

the integral. We want to understand why 〈Θ0Θ0〉 > 0. First, we can evolve ψ(t0, y0) back

to the t = 0 slice; it becomes non-local, but with support only in the right Rindler wedge.

The same can be done in Θ0, evolving ψ(−t0,−y0) forward to the t = 0 slice. Then in the

τy-plane, the 4-point function 〈Θ0Θ0〉 is smeared over the regions shown in figure 3. These

insertions are symmetric under y → −y together with complex conjugation; therefore, re-

flection positivity of the Euclidean theory guarantees that this correlator is positive. Keep-

ing track of Lorentz indices on O leads to the same conclusion. For a more precise derivation

we refer to [43] for real insertions, and [15] for insertions in the complexified wedge RC .

To recap, although 〈ΘΘ〉 does not look like a norm in the theory quantized on the

τ = 0 plane — since Θ|0〉 is not normalizable, and Θ 6= Θ† — it is a norm in the theory

quantized on the y = 0 plane. These two different quantizations correspond to two different

ways of analytically continuing a Euclidean theory to Minkowski space as shown in figure 4.

In conformal field theory, the positivity properties discussed here follow from the fact

that the conformal block expansion has positive coefficients (in the appropriate channel), as
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τ

y

ψ

Z
fO

Z
f∗O

ψ

Figure 3. Operator insertions on the τy-plane defining the smeared 4-point function 〈Θ0Θ0〉.

Figure 4. Two different ways to interpret the same Euclidean theory. The Euclidean Rd (horizontal

orange plane, parameterized by (τ, y, ~x)) is the same in both pictures, but the definition of states

and corresponding notion of Minkowski spacetime (vertical blue planes) is different in the two cases.

On the left, the continuation to Lorentzian is τ → it, states of the theory are defined on the plane

τ = 0, and y is a space direction. On the right, the continuation to Lorentzian is y → it′, states

are defined at y = 0, and τ = y′ is a space direction. The two theories are identical, since they

are determined by the same set of Euclidean correlators, but the map of observables and matrix

elements from one description to the other is nontrivial.

described in [16, 18]. We have chosen a different but conformally related kinematics in the

present paper because (i) it makes the positivity conditions more manifest, (ii) positivity

in the new kinematics does not require conformal invariance, and (iii) it allows us to smear

operators while easily maintaining positivity properties needed to derive the constraints.

4.3 Bound on the real part

With operators inserted symmetrically across the Rindler horizon, the positive-ordered

correlator is real and positive. The time-ordered correlator is generally complex, but it

inherits from (4.8) bounds on its magnitude and real part. This was derived in [15] by

interpreting the correlator as a Rindler trace and applying Cauchy-Schwarz inequalities.
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The positivity condition for CFT shockwaves derived in [16, 18] using the decomposition

into conformal partial waves can also be restated in this way.

Here we repeat the Cauchy-Schwarz derivation, but in Minkowski language. Let A, B

be operators (possibly nonlocal) with support in the right wedge RC . The positive-ordered

correlator defines a positive inner product (A,B) ≡ 〈AB〉. Therefore the Cauchy-Schwarz

inequality applies,

|〈AB〉|2 ≤ 〈AA〉〈BB〉 . (4.15)

In the derivation of the ANEC in section 2 we considered

Ganec = 〈Oψ(u, v)ψ(−u,−v)O〉 . (4.16)

(There O was local, but for the present purposes it can also be smeared.) Applying Cauchy-

Schwarz with A = Oψ(−u,−v), B = ψ(−u,−v)O,

Re Ganec ≤ |Ganec| ≤
(
〈OψOψ〉〈ψOψO〉

)1/2
(4.17)

where ψ ≡ ψ(−u,−v), ψ ≡ ψ(u, v). Note that both of the correlators on the right-hand

side are positive-ordered.

4.4 Factorization

In the limit u→∞ (with everything else held fixed or v ∼ 1/u), positive-ordered correlators

factorize into products of two-point functions. In a CFT, this follows from the OPE. In this

limit, we can replace O by a local operator, and the conformal cross ratios of the 4-point

function 〈OψOψ〉 are z, z̄ ∼ 0. Positive ordering means that we do not cross any branch

cuts to reach this regime [15, 16], so the correlator can be computed by the usual Euclidean

OPE and is dominated by the identity term. Thus

〈OψOψ〉 ∼ 〈ψOψO〉 ∼ 〈OO〉〈ψψ〉 (4.18)

and (4.17) becomes

Re Ganec ≤ |Ganec| ≤ 〈OO〉〈ψ(u, v)ψ(−u,−v)〉+ ε . (4.19)

The correction term ε on the right is necessary because the positive-ordered correlator does

not exactly factorize. It has corrections from subleading operator exchange. But ε is sup-

pressed by positive powers of v and 1/u, so it can be neglected everywhere in the derivation.

This argument relied on conformal invariance, but factorization is expected to hold

in a general interacting theory (possibly excluding integrable theories). This is motivated

on physical grounds in [15] by relating it to thermalization of finite temperature Rindler

correlators.

4.5 Sum rule

Now we use the method of [16] to derive a manifestly positive sum rule for averaged null

energy, 〈O|E|O〉. Let

v = −ησ, u = 1/σ , (4.20)

with 0 < η � 1 and consider the function G defined in (2.6) as a function of complex σ,

with all other coordinates fixed. The function G(σ) obeys two important properties:
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(i) G(σ) is analytic on the lower-half σ plane in a region around σ ∼ 0. This follows

from (4.3) with complexified points labeled as x1 = (−u,−v), x2 = (y = δ), x3 =

(y = −δ), x4 = (u, v).

(ii) For real σ with |σ| < 1,

Re G ≤ 1 + ε , (4.21)

where the correction ε is suppressed by positive powers of both η and σ. This follows

directly from (4.19).

Equipped with these facts, the sum rule is derived by integrating G(σ) over the boundary

of a half-disk, just below σ = 0:

σ

u

ψ

(4.22)

The radius R of the semicircle does not matter, as long as it is in the regime (2.5), i.e.,

η � R� 1. The integral over a closed contour vanishes,

Re

∮
dσ(1−G(σ)) = 0 . (4.23)

We split this into the contribution from the semicircle and from the real line, then use the

OPE (2.7) to evaluate the correlator on the semicircle and do the integral. The result is

i〈O(y = δ) E O(y = δ) =
Nδ

πηλT

∫ R

−R
dσRe (1−G(σ)) . (4.24)

The right-hand side is positive by property (ii) above. Using (2.9), the sum rule can be

written as a manifestly positive integral for the expectation value of average null energy:

〈O|E|O〉 =
1

πηλT

∫ R

−R
Re

(
1−G

(
u =

1

σ
, v = −ησ

))
(4.25)

where |O〉 ≡ 1√
Nδ
O(t = −iδ)|0〉 (and if O is not a scalar, the operator is rotated by π/2 in

the Euclidean τy-plane).

Note that two distinct positivity conditions came into play. First, there was Rindler

positivity, property (ii). Applied to the correlator G in the lightcone regime, this would

imply Re 〈O(y = δ)EO(y = δ)〉 ≥ 0. However, this 3-point function is purely imaginary,

so this constraint is trivial. Rindler positivity is nontrivial only near the origin of the

σ-plane (the Regge-like limit), where the OPE is not dominated by the low-dimension (or

low-twist) operators. Second, there is the positivity condition on the imaginary part of

the OPE correction, coming from the sum rule. It is this second, less direct consequence

of reflection positivity that leads to the ANEC. This is similar to the use of dispersion

relations for scattering amplitudes in momentum space — the optical theorem gives a

positivity condition on the forward amplitude, and sum rules relate this positive quantity

to the amplitude in other regimes (see for example [44]).
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4.6 Non-conformal QFTs

As mentioned in section 2, we expect the main conclusions and the sum rule to hold even in

non-conformal QFTs as long as there is an interacting UV fixed point. This is essentially

because it is a UV argument. The applicability of the lightcone OPE was discussed at the

end of section 2. Conformal symmetry was used again when we invoked the state-operator

correspondence to claim that any normalizable state can be created by inserting a local

operator at t = −iδ. This made the derivation simpler, since we could restrict to local op-

erator insertions O(y = δ, t = 0, ~x = 0). But in fact this restriction was not necessary. The

ingredients that go into the sum rule — positivity, etc — still apply if O is a non-local op-

erator defined by smearing local operators (and their products) over a complexified version

of the Rindler wedge. In any QFT a dense set of states can be created in this way [34, 35].

5 Hofman-Maldacena bounds

The conformal collider bounds of Hofman and Maldacena [17] are constraints on CFT

3-point functions that come from imposing

lim
v→∞

v2〈ε∗ ·O(P )†
∫ ∞

−∞
duTuu(u, v)ε·O(P )〉 ≥ 0 . (5.1)

Here O(P ) is a wave packet with timelike momentum P = ωt̂, created by inserting a

spinning operator near the origin:

ε·O(P ) =

∫
dtdydd−2~x e−(t2+y2+~x2)/D2

e−iωtεµν···Oµν···(t, y, ~x) , ωD � 1 . (5.2)

The positivity condition (5.1) was an assumption in [17], motivated by the fact that this

computes the energy measured in a far-away calorimeter if we prepare a CFT in the state

ε·O(P )|0〉. It leads to constraints on the 3-coupling constants that appear in 〈OTO〉.
Since we have shown that E is a positive operator, the inequality (5.1) follows from

the above analysis. But it is instructive to see how constraints in this particular state are

related to our discussion of Minkowski scattering and the ANEC sum rule. That is the

goal of this section. In particular, we will show exactly how to smear the probe operators

in the previous analyses [16, 18, 19] to produce the Hofman-Maldacena inequalities. This

avoids the step of decomposing the correlator into the crossed channel, used in [19] in order

to improve upon the bounds derived in [18].

5.1 Conformal collider redux

First we will restate the Hofman-Maldacena condition in a way that makes all of the inte-

grals trivial. We perform the Fourier transform over t first. In the regime ωD � 1 it is dom-

inated by a saddlepoint at t = − i
2ωD

2. Therefore, instead of viewing this as a wavepacket

with frequency ω, we can replace it by an operator inserted at a fixed, imaginary value of t:

ε·O(P ) ≈
∫
dydd−2~x e−(y2+~x2)/D2

εµν···Oµν···(t = −iδ, y, ~x) (5.3)

– 17 –



J
H
E
P
0
7
(
2
0
1
7
)
0
6
6

with δ > 0. Also, in this limit, we only need to integrate over the position of one of the O

insertions, since the other integral gives an overall factor. The remaining gaussian can be

dropped, and the final d− 1 integrals are done by residues.8

In (5.1), the state is created near the origin of Minkowski space, and the average null

energy is evaluated near future null infinity. For comparison to the rest of the paper, it

is more convenient to shift coordinates so that the null energy is integrated over a ray at

v = 0, and O is inserted near spatial infinity. That is, (5.1) is equivalent to

lim
λ→∞

λ2〈ε·Oλ| E |ε·Oλ〉 ≥ 0 (5.4)

where E is integrated over v = 0 as in (2.2), and

|ε·Oλ〉 ≡
∫
dỹdd−2~x ε·O(t = −iδ, y = λỹ, ~x)|0〉 . (5.5)

In (5.4), the wavepacket is implemented by the order of limits: first we do the u-integral

(by residues) to compute E , then take λ→∞, then perform the integrals over ~x, ỹ.

To recap, the Hofman-Maldacena constraints are restated as:

∫
dỹdd−2~x lim

λ→∞
λ2〈ε∗ ·O(t = iδ, y = λ,~0) E ε·O(t = −iδ, y = λỹ, ~x)〉 ≥ 0 . (5.6)

This expression is a convenient way to compute the explicit constraints in terms of the

3-point coupling constants.

5.2 Relation to scattering with smeared insertions

The state (5.5) is most naturally created by smearing an operator near spatial infinity, but

like any localized state in a CFT, it can also be created by inserting a single, non-primary

operator at t = −iδ, y = ~x = 0.9 It is straightforward to find the operator explicitly by

a series expansion of the wavepacket integral,
∫
dydd−2~xO(t = −iδ, y, ~x)e−((y−λ)2+~x2)/D2

.

Applying section 2 to this particular operator is one way to derive the Hofman-Maldacena

inequalities directly from the causality of the 4-point function. However, we would need

to be more careful about the order of limits in the series defining the operator and various

other steps of the calculation, especially since we are expanding a wavepacket about a point

very far from its center.

This problem is avoided if we instead apply the causality argument directly to a corre-

lator with smeared operator insertions, corresponding to wavepackets offset far into imagi-

nary time. As explained around figure 4, the interpretation of the ANEC as an expectation

8Dropping the gaussian can lead to unphysical divergences in the remaining integrals, depending on the

dimensions of the operators. These are dealt with by dimensional regularization in the transverse directions,

d− 2→ d− 2 + ε with ε→ 0 at the end [45].
9Everywhere in this section, the limit λ → ∞ should be interpreted as large but finite λ, with |v| �

1
|u| �

1
λ
� 1 and δ ∼ 1. As we move the wavepacket further, the constraints obtained this way approach

arbitrarily close to the Hofman-Maldacena type constraints. (And, in the version of the argument with

smeared insertions, we put a hard cutoff on the wavepacket at some distance where it is exponentially

suppressed, in order to avoid coincident point singularities.)
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value and the interpretation of the ANEC as it appears in the lightcone OPE differ by a

π/2 rotation in the Euclidean τy-plane. Therefore, after the rotation, in order to make

contact with section 2 we are led to study the correlator

GHM =
〈OHMψ(u, v)ψ(−u,−v)OHM 〉
〈OHMOHM 〉〈ψ(u, v)ψ(−u,−v)〉 (5.7)

where

OHM = lim
λ→∞

∫
dτdd−2~x ε·O(t = iτ, y = δ, ~x)e−((τ−λ)2+~x2)/D2

(5.8)

The insertions are now symmetric under Rindler reflection, and the wavepacket is centered

at large imaginary time. We could of course map the centers to real points in Minkowski,

but the smearing procedure in this frame would be more complicated.

As in the discussion of the Hofman-Maldacena calculation above, the wavepacket can

be implemented by instead taking

OHM =

∫
dτdd−2~x ε·O(t = −iλ+ iτ, y = δ, ~x) , (5.9)

OHM =

∫
dτ ′dd−2~x′ ε·O†(t = −iλ+ iτ ′, y = −δ, ~x′) , (5.10)

where εµν = (−1)P (εµν)∗ and P is the number of t-indices plus y-indices; the integral in E
is done first, then the limit λ→∞, then the remaining integrals.

The leading correction to (5.7) in the lightcone limit comes, as usual, from the inte-

grated null energy:

δG ∼ 〈OHM E OHM 〉 . (5.11)

The operator ordering here and in (5.7) is subtle: we do not follow the usual prescription

of analytic continuation (4.2) which orders operators by imaginary time. If we did, then

the u-contour (in the integral defining E) would not circle any poles, and the constrained

term would vanish as in (3.9). Instead we define the correlator in (5.7) with the u-contour

as follows:
u

OHM OHM

λ
(5.12)

The black circles indicate the wavepacket insertions. This picture can be interpreted two

ways: first, it shows the path of analytic continuation that defines GHM , ie the route

taken by the ψ’s as we push ψ(u, v) forward in time starting from the Euclidean correlator.
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Second, it is the contour of integration used when E appears in the OPE.10 The correlator

defined in this way has the same properties as Ganec in section 2, so the sum rule (4.25)

still applies; thus the correction (5.11) has a positive imaginary part, and this inequality is

identical to the conformal collider constraints.

5.3 Relation to the shockwave kinematics

In earlier work [16, 18, 19] a different kinematics was used for the four-point function in

order to derive causality constraints. There, the kinematics corresponded to expectation

values of OO in a shockwave state created by ψ inserted near the origin. Although the

conformal cross ratios are the same in the two setups, the advantage of the scattering

kinematics used here is that positivity conditions are now manifest, using Rindler reflections

as in [15]. This makes it easy to generalize the argument to non-primary, smeared insertions,

which does not appear to be straightforward using the kinematics of [16, 18, 19].

6 New constraints on higher spin operators

So far we have discussed constraints on the integrated stress tensor. As in many other

contexts (for example [16, 18, 19, 36, 44, 46], the positive sum rules for spin-2 exchange

readily generalize to the exchange of higher spin operators. Let X be the lowest-dimension

operator of spin s, where s > 2 is even. This operator is the dominant spin-s exchange in

the lightcone limit [36]. We will argue that

Es =

∫ ∞

−∞
duXuuu···u(u, v = 0, ~x = 0) (6.1)

is positive in any state. The resulting constraints agree in many cases with other meth-

ods, but are generally stronger for non-conserved operators. It would be interesting to

check them in known conformal field theories, for example by numerical bootstrap or other

methods. Although our OPE method does not apply to free theories, it is shown by direct

calculation in appendix C that (6.1) holds for free scalars.

The formulas in this section also hold for s = 2, so this generalizes the discussion in

the rest of the paper to the ANEC in any spacetime dimension d > 2.

6.1 Es in the lightcone OPE

First let us derive the contribution of the operator X and its descendants to the operator

product expansion of two scalars in the lightcone limit. Repeating the steps in section 3,

10An equivalent prescription is to define the correlator by first expanding each wavepacket in a series ex-

pansion around t = 0, then compute the usual time-ordered correlator. Yet another equivalent prescription

is to first compute the time-ordered correlator at λ ∼ 0 as we did in previous sections, then analytically

continue to finite λ.
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we find the lightcone OPE can be written as the integral

ψ(u, v)ψ(−u,−v)|X = 〈ψ(u, v)ψ(−u,−v)〉
2∆X cψψXΓ

(
∆X+s+1

2

)

√
πcXΓ

(
∆X+s

2

) (−v)τX/2

u
∆X+s

2
−1

×
∫ u

−u
du′
(
u2 − u′2

)∆X+s

2
−1
Xuu···u(u′, 0) (6.2)

where cψψX is the OPE coefficient, cX > 0 is the coefficient of the XX two-point function,

and τX = ∆X − s is the twist. (Conventions for the constants follow [47]). The notation

(· · · )|X means the contribution of the operator X, and the expression in (6.2) is the full

contribution of the operators (∂u)nXuu···u(0) for n ≥ 0. Other descendants are subleading

in the lightcone limit.

The OPE in the regime relevant to the ANEC is a divergent asymptotic series, orga-

nized by twist τ schematically as

ψψ ∼ 1 + ητ1/2σ1−s1(1 +O(σ)) + ητ2/2σ1−s2(1 +O(σ)) + · · · (6.3)

where v = −ησ, u = 1/σ. Let us focus on a particular power σ1−s. Contributions of this

form come from operators with spin s′ ≥ s, so in the lightcone limit η → 0, the dominant

contribution is the lowest-twist operator satisfying s′ ≥ s. Denote by τ∗s the twist of the

spin-s operator with smallest dimension. It was argued in [36] that τ∗s is a monotonically

increasing, convex function of spin, with τ∗s ≤ 2(d−2).11 This guarantees that at the order

1/σs−1, the leading contribution to the OPE indeed comes from X, which we defined to

be the lowest dimension operator with spin s.

If ∆ψ < d−2, an additional subtlety arises because there is an accumulation point in the

twist spectrum at τ ∼ 2∆ψ [36, 37]. It is unclear whether the asymptotic lightcone OPE can

be applied at orders in η beyond the accumulation point. Therefore in what follows we as-

sume the probe satisfies ∆ψ > τX/2 (and that any other light scalars in the OPE that would

lead to accumulation points are absent). Note that this restriction was not necessary for the

ANEC, since it is already enforced by the unitarity bound when X is a conserved operator.

6.2 Sum rule and positivity

We can now simply repeat the argument of section 4, inserting a factor of σs−2 into the sum

rule integral to project onto the spin-s contribution:
∮
dσ(1 − G) →

∮
dσσs−2(1 − G).12

The other steps are identical, leading to

− i cψψX〈O(y = δ) EsO(y = δ)〉 =
Nδ

πλXητs/2
lim
R→0

lim
η→0

Re

∫ R

−R
dσ σs−2(1−G(σ)) (6.4)

11There, the argument held only above some unknown minimum spin, s ≥ smin. An identical argument

can be made using the position-space sum rules, following the same logic. In this case we know that the

sum rule is convergent for spin-2, so this establishes monotonicity and convexity for s ≥ 2.
12Here we have followed [19] to project onto a given spin. This method assumes that lower spin operators

have integer dimensions, to avoid additional non-analytic contributions to the OPE which are subleading

in σ but leading in η, so can spoil the projection. However the method can be generalized by subtracting

these terms as well [48].
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for any s ≥ 2 where λX =
2∆XΓ

(
∆X+s+1

2

)
√
πcXΓ

(
∆X+s

2

) . When s is an even integer, Rindler positivity

ensures that the right hand side of the above sum rule is non-negative. Finally by acting

with a rotation R that rotates by π
2 in the Euclidean yτ -plane, we can generalize (2.9) for

arbitrary spinning operators:

〈O(y = δ) EsO(y = δ)〉 = is+1〈(R·O)†(t = iδ)Es(R·O)(t = −iδ)〉 . (6.5)

This is derived in appendix A. Therefore, there is a constraint on the lowest dimensional

operator at each even spin:

(−1)
s
2 cψψXEs ≥ 0 . (6.6)

Note that by taking X → −X it is always possible to choose (−1)
s
2 cψψX > 0, and in

that case we have a positivity condition similar to the ANEC. However, once this choice

has been made for some coupling 〈ψψX〉 we do not have the freedom to flip the sign for

a different probe, 〈ψ′ψ′X〉. This means that, like the stress tensor, the lowest-dimension

operator of each spin must couple with the same sign to all possible probes.

In fact these conclusions apply to the tower of operators appearing in any given ψψ

OPE. In theories with global symmetries, different probes may lead to different infinite

families of constraints.

6.3 Comparison to other constraints and spin-1-1-4 example

In many cases, this sum rule implies the same sign constraints on CFT 3-point couplings

that have already been deduced by other methods:

• For s = 2, the same results can be obtained from the ANEC using conformal col-

lider methods [17]. Therefore these constraints follow from monotonicity of relative

entropy [9].

• For s > 2 with transverse polarizations ε·n = 0, where n is the null direction separating

the wavepacket insertion from the insertion of E , the results agree with deep inelastic

scattering [46]. In examples where the results are available, these also agree with the

lightcone bootstrap [18, 19]. If O is a conserved current, then we can always choose

a gauge where the polarizations are transverse.

For s = 2 and ε·n 6= 0 — assuming O is not a conserved current — it was shown in [46]

that the ANEC is stronger than deep inelastic scattering and the lightcone bootstrap.

Therefore, analogously at higher spin, we expect the condition Es ≥ 0 to produce new

constraints, stronger than any of these other methods, when s > 2 and O is not conserved.

The simplest such case is s = 4 with O taken to be a spin-1, nonconserved operator J

of dimension ∆J > d − 1. We will work out this example in detail and confirm that the

sign constraints are indeed new.

The most general 3-point function 〈JXJ〉 consistent with conformal symmetry is writ-

ten in appendix B, following [47]. It has four free numerical constants, α1,2,3,4. To derive

the constraints, we apply the Hofman-Maldacena analysis to this 3-point function. In
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practice, this amounts to computing the integral (5.6), with O → J and Tuu → Xuuuu.

Requiring this to be positive gives a constraint of the form

ε†Aε ≥ 0 , (6.7)

where ε = (ε+, ε−, ~ε⊥) and A is a block diagonal matrix which depends on ∆X , ∆J and the

αi. The explicit formula can be found in (B.3). It follows that A must be a positive semi-

definite matrix. Requiring the eigenvalues to be non-negative gives quadratic inequalities

on the αi; the explicit form is unilluminating, so we will not write it explicitly, but it is

easily found from (B.3).

Now let us compare to deep inelastic scattering [46]. Repeating their calculation for

the present example, we find that the DIS constraints are

cψψX(2α4 − α1) ≥ 0 (6.8)

cψψX(α1 + (2 + 2∆J −∆X)α4) ≥ 0 .

The constraints (6.8) are identical to the constraint (6.7) only if we set ε− = 0. The

constraints from the ε− 6= 0 polarizations in (6.7) are stronger, so these are new — they

do not follow from any of the known methods based on conformal collider bounds, the

ANEC, relative entropy, DIS, or the lightcone bootstrap. The special role played by ε−

polarizations is analogous to the situation for the integrated null energy as described in [46].
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A Rotation of three-point functions

In this appendix, we will derive equation (6.5). Let us start with the three-point function

〈O(y = δ) EsO(y = δ)〉, where O(y = δ) is some arbitrary operator

O(y = δ) =
∑

n

cn ε
n.On(y = δ) , O(y = δ) =

∑

n

c∗n ε
n.On†(y = −δ) . (A.1)

On’s are (not necessarily a primary) operators with any spin and Es is defined in equa-

tion (6.1). ε is defined in the usual way εµν... = (−1)P (εµν...)∗, where P is the total
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number of t and y indices. Let us now look at one of the terms of this three point func-

tion: 〈ε1.O†1(−iε,−δ) Es ε2.O2(iε, δ)〉. Before performing the u-integral, this three point

function, in general has the following branch cut structure:

u

(A.2)

Now, using the integration contour shown in red in the above figure, one can show that

〈ε1.O†1(−iε,−δ)Es ε2.O2(iε, δ)〉 = i〈ε1.O†1(0,−δ)
∫ ∞

−∞
duXuuu···u(iu) ε2.O2(0, δ)〉 . (A.3)

There is no ambiguity in the right hand side correlator and hence the iε has been removed.

Let us now look at the three point function 〈ε1.O†1(0,−δ)Xuuu···u(iu) ε2.O2(0, δ)〉. This

three-point function can be obtained by starting with some appropriate correlator in the Eu-

clidean space: (x0, x1, ~x) and performing an analytic continuation x0 = it, x1 = y. On the

other hand, we can start with the same Euclidean correlator and perform a different analytic

continuation: x1 = it, x0 = y to obtain a different Lorentzian correlator. Hence, these two

Lorentzian correlators should be related to each other. More explicitly, one can show that

〈ε1.O†1(y = −δ)Xuuu···u(iu) ε2.O2(y = δ)〉
= is〈ε̃∗1.O†1(t = iδ)Xuuu···u(−u) ε̃2.O2(t = −iδ)〉 , (A.4)

where,

ε̃µν... =
(
ΛµαΛνβ . . .

)
εαβ... , Λµα =




0 −i 0

−i 0 0

0 0 1


 . (A.5)

Therefore, finally we can write,

〈ε1.O†1(y = −δ)Es ε2.O2(y = δ)〉 = is+1〈ε̃∗1.O†1(t = iδ)Es ε̃2.O2(t = −iδ)〉 . (A.6)

B Normalized three point function for 〈JXJ〉

Here we write the matrix A and two point function of states we used in the paper explicitly.

The three point function involving two same operators with spin one and another operator
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with spin 4 is given by

〈J(x1, ε1)X(x2, ε2)J(x3, ε3)〉 =
1

(x2
12)

∆X
2

+2(x2
23)

∆X
2

+2(x2
31)∆J+

∆X
2
−1
{α1V1V3V

4
2 +

+α2V
3

2 (V3H12+H23V1)+α3V
2

2 H12H23+α4V
4

2 H13}
(B.1)

In which conformal building blocks are expressed by

Hij = −2xij · εjxij · εi + x2
ijεi · εj

Vi ≡ Vi,jk =
1

x2
jk

(x2
ijxik · εi − x2

ikxij · εi)
(B.2)

For state defined in 5.5 expectation value of spin 4 operator X is given by

cψψX〈ε∗ · J |
∫ ∞

∞
duXuuuu(0, u)|ε · J〉 =

= (Vol)cψψX
2∆X−4∆J−3π

5
2 Γ(2∆J)Γ(3+∆X

2 )

δ2∆JΓ(3 + ∆J − ∆X
2 )Γ(3 + ∆X

2 )Γ(1 + ∆J + ∆X
2 )
×

× {|ε+|2(4 + ∆X)(2∆J + ∆X)(∆X + 2∆J − 2)(∆X + 2∆J)(2α4 − α1)

+ |ε−|2(4(4 + 2∆J −∆X)(12−∆2
X + 2∆J(4 + ∆X))α2+

+ 2(4 + ∆X)(−2− 2∆J + ∆X)((8 + 4∆J − 2∆X)α3 + (∆X − 2∆J)α4)

− (96 + 16∆J(4 + ∆J) + 4∆J(1 + ∆J)∆X − 2(3 + 2∆J)∆2
X + ∆3

X)α1)+

+ 2(ε+ε−
∗

+ ε−ε+∗)(2∆J + ∆X)((16 + 4∆X −∆2
X + 2∆J(2 + ∆X))α1

− 2(4 + 2∆J −∆X)(2 + ∆X)α2 − 4(4 + ∆X)α4)

+ |ε⊥|2(4 + ∆X)(2∆J + ∆X)(α1 + (2 + 2∆J −∆X))α4}

(B.3)

By imposing unitarity ∆J ≥ d−1 and the convexity condition for the twist of a spin-4

operator d− 2 ≤ ∆X − 4 ≤ 2(d− 2) [36] (in d = 4), all gamma functions are positive.

The volume term in three point function is canceled out by the same factor in the two

point function, which is always positive:

〈ε∗ · J |ε · J〉 = (B.4)

= (Vol)
23−2∆J cJΓ(∆1− 3

2)

δ2∆J−3Γ(1+∆J)
{(|ε+|2+|ε−|2)(2∆J−4)−2(ε+ε−

∗
+ε−ε+∗)+|ε⊥|2(∆J−1)}

C Free scalars

In this appendix, we show that the inequality Es =
∫
duXuuu···u ≥ 0 holds also for free

scalar fields, with s ≥ 2 an even spin. For s = 2, this is the ANEC, proved for free scalars

in [10, 11]. The OPE methods in the body of the paper do not immediately apply, because

the expansion in twist has an infinite number of contributions already at leading order.

Instead we will follow the derivation of the ANEC in [10].
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The all-null components of the conserved, symmetric, traceless spin-s current in the

theory of a free scalar takes the form

Xu···u =

s∑

i=0

asi : (∂u)iφ(∂u)s−iφ : (C.1)

where asi are known coefficients. (The explicit formula is equation (4.99) in [49] but will

not be needed.) Therefore after integration by parts, the generalization of the averaged

null energy, up to an overall constant, is

Es ∼
∫
du : (∂u)s/2φ(∂u)s/2φ : . (C.2)

The overall coefficient does not matter, since we only need to show that Es has a definite sign

— if it is non-positive, we can defined X → −X to make it non-negative. Classically, (C.2)

is obviously sign-definite because the integrand is positive, but quantum mechanically this

is true only after doing the integral. To proceed, we use the standard mode expansion for

the scalar field operator φ =
∫
dd−1~k[u~ka~k + h.c.] with u~k ∼ e−ikx to write the integrand

of (C.2) as

∫
dd−1~k

∫
dd−1~k′

[
2(−iku)s/2(ik′u)s/2u~ku

∗
~k′
a†~k′
a~k (C.3)

+ (−iku)s/2(−ik′u)s/2u~ka~ku~k′a~k′ + (iku)s/2(ik′u)s/2u∗~ka
†
~k
u∗~k′a

†
~k′

]

The first term is obviously a non-negative operator, since it is
∫
dd−1~ku~ka~k times its Her-

mitian conjugate. The other terms can be negative (for example in squeezed states), but

disappear upon integrating over the null ray in (C.2), leaving only non-negative contribu-

tions. See [10] for details of these integrals, as well a careful demonstration that exchanging

the order of the u-integral and k-integrals is justified in states with a finite number of par-

ticles and finite energy.
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