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1 Introduction

A physical theory can be represented by various equivalent action functionals. For example,

in the case of degenerate action functionals we can impose different gauge conditions. In

BRST-formalism infinitesimal Q-exact variation of action functional leads to equivalent

action functional. In BV-formalism the role of choice of gauge condition is played by the

choice of Lagrangian submanifold.

As an example one can consider topological quantum field theories of Witten type,

where the action functional in BRST-formalism depends on metric, but the variation of

this functional by an infinitesimal change of the metric (the energy-momentum tensor)

is Q-exact.

The first impression is that it is sufficient to consider only one functional from a

family of physically equivalent action functionals. As was noticed in [1] this is wrong. The

consideration of a family of equivalent action functionals or family of gauge conditions

labeled by points of (super) manifold Λ leads to a construction of a closed differential form
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Ω on Λ (a closed pseudodifferential form if Λ is a supermanifold). If our action functionals

are invariant with respect to some group H then the form Ω is H-invariant, but it does not

necessarily descend to Λ/H. Under some conditions we construct a closed H-equivariant

form ΩH and show that this equivariant form is homologous to a form descending to Ω/H.

This allows us to obtain interesting physical quantities integrating over cycles in Λ/H.

For example, we can start with topological quantum field theory on some manifold Σ.

One can apply our results to the family of equivalent action functionals labeled by metrics

on Σ. We obtain topological invariants of Σ this way; it would be interesting to calculate

them and compare with known invariants.

This machinery can be applied to string amplitudes. The worldsheet of bosonic string

can be considered as two-dimensional topological quantum field theory. Considering Λ as a

space of metrics and H as a group generated by diffeomorphisms and Weyl transformations

we get formulas for string amplitudes; for appropriate choice of Lagrangian submanifolds

these formulas coincide with the standard ones. Similar constructions work for other types

of strings.

Some remarks about terminology and notations. We are saying “manifold” instead

of “supermanifold”, “group” instead of “supergroup”, etc. We understand an element of

super Lie algebra as a linear combination
∑
εATA where TA are even or odd generators of

Z2 -graded Lie algebra and εA are even or odd elements of some Grassmann algebra; hence

in our understanding an element of super Lie algebra is always an even object (see [2, 3]

for the definitions of supermanifold, super Lie algebra, etc. that we are using).

We work in BV-formalism assuming that the BV action functionals are defined on

odd symplectic manifold M equipped with volume element (SP-manifold in terminology

of [4, 5]). In this situation the odd Laplacian ∆ is defined on the space of functions on M .

It was noticed in [6] that in the absence of the volume element the odd Laplacian is defined

on semidensities; this allows the reformulation of BV-formalism for any odd symplectic

manifold. In appendix C we show how to prove our main results in this more general

setting. Some basic formulas of BV-formalism are listed in appendix A.

The space of (smooth) functions on a supermanifold M is denoted Fun(M).This space

is Z2-graded: Fun(M) = Fun0̄(M) + Fun1̄(M). Functions on ΠTM (on the space of

tangent bundle with reversed parity of fibers) are called pseudodifferential forms (PDF) on

M . (Differential forms can be considered as polynomial functions on ΠTM .) Diff stands

for the group of diffeomorphisms, Vect for its Lie algebra (the algebra of vector fields),

Weyl for the group of Weyl transformations. As we have noticed an element of any super

Lie algebra (and hence a vector field) is considered an even object.

We use the term “canonical transformation” for a transformation of (odd) symplectic

manifold preserving the symplectic form (another word for this notion is “symplectomor-

phism”). On a simply connected manifold infinitesimal canonical transformations can be

characterized as Hamiltonian vector fields. Notice that in our terminology the Hamiltonian

on odd symplectic manifold is an odd function B; the first order differential operator cor-

responding to the Hamiltonian vector field with the Hamiltonian B is expressed in terms

of the odd Poisson bracket as an operator transforming a function G into {B,G}; this
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operator is even (parity preserving). The condition ∆B = 0 means that the Hamiltonian

vector field is volume preserving (= divergence free).

2 Families of equivalent action functionals

Let us consider a functional S defined on an odd symplectic manifold M with volume

element and satisfying the quantum master equation ∆eSBV = 0. (Here ∆ stands for

the odd Laplacian [23, BV-formalism/OddLaplace.html].) Then the physical quantities

corresponding to the BV action functional SBV can be expressed as integrals
∫
LAe

SBV

where L is a Lagrangian submanifold of M and the integral is taken with respect to

the volume element induced on this submanifold; A stands for quantum observable (i.e.

∆(AeSBV) = 0 or equivalently ∆A + {A,SBV} = 0). These integrals depend only on the

homology class of the Lagrangian submanifold.

Let us consider now a family of physically equivalent BV-action functionals Sλ, λ ∈ Λ

obeying {Sλ, Sλ} = 0, ∆Sλ = 0. We can consider S as a function on Λ ×M . We assume

that Λ is simply connected; then Sλ being physically equivalent for different values of λ is

equivalent to the existence of functions Ba such that:

∂

∂λa
Sλ = {Ba, Sλ} (2.1)

for some Ba ∈ Fun1(M), ∆Ba = 0 (one can describe Ba as Hamiltonians of infinitesimal

volume preserving canonical transformations giving equivalence of functionals Sλ for in-

finitesimally close λ). The eq. (2.1) implies that
{
∂Ba
∂λb
− ∂Bb

∂λa + {Ba, Bb} , Sλ
}

= 0. We

will assume a stronger condition:

dB − 1

2
{B,B} = 0 (2.2)

where B = dλaBa (2.3)

Then the following PDF on Λ is closed:

Ω(λ, dλ) =

∫
L

exp (Sλ +B) (2.4)

Indeed using eqs. (A.13) and (A.14) we obtain

dΩ(λ, dλ) =

∫
L

(
{B,S}+

1

2
{B,B}

)
eS+B =

∫
L

∆eS+B = 0 (2.5)

More generally, let us define:

Ω〈F 〉(λ, dλ) =

∫
L
FeS+B (2.6)

where F ∈ Fun(Λ×M) such that dF = {B,F} (2.7)

Then:

dΩ〈F 〉 = −Ω〈∆F + {S, F}〉 (2.8)

– 3 –
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Eq. (2.6) follows from the following chain of equalities:

dΩ =

∫
L

(
{B,F}+

1

2
{B,B}F + {B,S}F

)
eS+B = (2.9)

=

∫
L

∆
(
FeS+B

)
−
∫
L

(∆F + {S, F})eS+B (2.10)

and
∫
L ∆(. . .) = 0.

Notice that eq. (2.1) does not define Ba unambiguously; there is a freedom to add to Ba
a function {S,Aa} where ∆Aa = 0. One can use this freedom to obtain Ba satisfying (2.1)

and (2.2). This is not always possible globally, but always possible locally (in small pieces

of the parameter space Λ). To check this we consider a fiber bundle over Λ having as a fiber

over a point λ ∈ Λ the set of volume preserving canonical transformations transforming

Sλ0 in Sλ. (Here λ0 is a fixed point of Λ.) A continuous (even differentiable) section of

this bundle not necessarily exists globally, but always exists locally. It exists globally, in

particular, in the case when Λ is contractible. Differentiating the section Uλ we obtain

infinitesimal canonical transformations B̂a = ∂U
∂λaU

−1. Their Hamiltonians Ba obey (2.1)

and (2.2). (This is not quite correct: the operators B̂ = dλaB̂a obey dB̂ − 1/2[B̂, B̂] = 0,

but their Hamiltonians Ba specified via B̂a = {Ba, } are defined only up to a λ-dependent

constant and (2.2) is true only for an appropriate choice of these constants; see appendix C

for details.)

3 Families of Lagrangian submanifolds in BV phase space

We will show that one can construct some interesting quantities (including string am-

plitudes) considering families of Lagrangian submanifolds instead of families of action

functionals.

Let us fix a connected family Λ of simply connected Lagrangian submanifolds. In other

words we assume that L depends on parameters λ1, . . . , λk, . . . (these parameters can be

odd, but for simplicity we assume that they are even). Let G be the group of canonical

transformations of M (transformations preserving the odd symplectic structure), and g its

Lie algebra. Elements of g correspond to odd functions on M (Hamiltonians).

Tentative definition of the closed form Ω. We want to define a closed pseudo-

differential form Ω on the space LAG of all simply-connected Lagrangian submanifolds:

Ω ∈ Fun(Π T LAG) (3.1)

Roughly speaking, the value of Ω at a point v ∈ Π T LAG is computed as follows. Notice

that v corresponds to a pair (L, σ) where L ∈ LAG and σ ∈ Fun(L) is an odd function

on L describing the tangent vector.1 The variation of L can be described by infinitesimal

1As in Classical Mechanics, a function on Lagrangian manifold L specifies a tangent vector to LAG

(an infinitesimal deformation of L). In our case the symplectic form is odd, hence the correspondence is

parity reversing. These functions are called “infinitesimal gauge fermions”. We have assumed that L is

simply-connected, in this case the map of functions to infinitesimal deformations is surjective and its kernel

consists of constant functions.
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canonical transformation; one can say that σ is a restriction to L of the Hamiltonian of this

transformation. (Notice that the canonical transformation is not unique, but the restriction

of its Hamiltonian to L is well defined up to a constant summand.) In other words, for any

vector field v inducing a tangent vector to LAG at L we have:

dσ = − (ιvω)|L . (3.2)

The function σ depends on v ∈ Π TL LAG (on odd tangent vector to LAG at L) linearly,

hence it can be considered as a one-form on LAG.

By definition:

Ω(L, v) =

∫
L
eSBV+σ (3.3)

More generally, for every function F on M we define:

Ω〈F 〉(L, v) =

∫
L
FeSBV+σ (3.4)

As a complication, the one-form σ is defined only up to a constant:

σ 7→ σ + const (3.5)

Therefore the definition of Ω by eq. (3.3) is strictly speaking ambiguous. We will prove

that it is always possible to resolve this ambiguity in such a way, that the form Ω is closed.

Moreover,

dΩ〈F 〉 = −Ω〈∆F + {S, F}〉 (3.6)

It is enough to prove this formula for restriction to any finite-dimensional submanifold

Λ ⊂ LAG (i.e. a family of Lagrangian submanifolds). Let us parameterize Λ by coordinates

λ1, . . . , λn. This means that we have a family of Lagrangian submanifolds (L(λ)).

Let us find a family of volume preserving canonical transformations g(λ) such that:

L(λ) = g(λ)L0 (3.7)

(locally this is always possible). The introduction of such g(λ) is essentially a trick. It does

not participate in any way in the definition of Ω; we will use it just to compute dΩ. Using

g(λ) we can construct a family of physically equivalent action functionals Sλ obeying∫
L0

eSλ =

∫
Lλ

eS .

Here Sλ is obtained from S by means of the transformation gλ. It is easy to check that the

form Ω introduced in present section coincides with the form constructed in the section 2

for the family Sλ and denoted by the same symbol; hence it is closed. (The second sum-

mand in the definition of Ω in section 2 is a Hamiltonian H of the infinitesimal canonical

transformation governing the variation of Sλ. The Hamiltonian governing the variation of

Lλ enters the definition of Ω in present section. These two Hamiltonians coincide up to a

constant; resolving the ambiguity in the definition of second Hamiltonian in appropriate

way we can say that the Hamiltonians coincide.)

If we know the precise definition of Ω we can give also a precise definition of Ω〈F 〉.
The formula (3.6) follows from (2.6).

A more formal proof of the results of this section is given in appendix C.

– 5 –



J
H
E
P
0
7
(
2
0
1
7
)
0
6
3

4 Gauge symmetries

Form Ω is not necessarily base with respect to gauge symmetries. We assume

that the action functional S, the observable A, the volume element on M , and the family

Λ are invariant under a subgroup H ⊂ G (or Lie algebra h ⊂ g).2 We denote by ĥ the set

of Hamiltonians of elements of h; then the h-invariance of S,A and volume element means

that for every h ∈ ĥ we have {S, h} = 0, {A, h} = 0 and ∆h = 0. (It is enough to impose

a weaker requirement:

∆h+ {SBV, h} = 0, (4.1)

see [7].) It follows from these assumptions that the form Ω is also H-invariant (or h-

invariant). In general the form Ω is not horizontal, and therefore does not descend to

Λ/H [23, omega/Descent To Double Coset.html]. However, in some important cases, in

particular in string theory, the form Ω does descend to Λ/H for appropriate choice of the

family of Lagrangian submanifolds.

We will now construct a modified form Ω which is base.

Under the assumptions of previous section, let us make the following additional as-

sumption [23, introduction/Proof of equivariance.html]. Suppose that there exists a map

Φ : ĥ→ Fun(M) such that every Hamiltonian h ∈ ĥ satisfies:

h = {SBV,Φ(h)}+ ∆Φ(h) +
1

2
{Φ(h),Φ(h)} (4.2)

(Notice that the Hamiltonian h is odd, but Φ(h) is even.) We will also require that Φ

satisfies the following “equivariance” property. For any two elements h ∈ ĥ and h̃ ∈ ĥ:

{h,Φ(h̃)} = Φ({h, h̃}) (4.3)

Let us suppose that the action of h on Λ comes from a free action of the corresponding

Lie group H (this Lie group is not necessarily connected). Then we can construct [23,

omega/Descent To Double Coset.html#(part. .Modified .P.D.F)] closed form ΩH , which

descends to Λ/H. (In other words this is a base form, i.e. H-invariant and H-horizontal

form.)

Technically, we use the formalism of equivariant cohomology [23, equivariant-

cohomology/index.html]. The conditions we impose on the map Φ allow us to prove that

the form

ΩC
H(λ, dλ, h) =

∫
Lλ

eSBV+σ+Φ(h) (4.4)

represents a class of H-equivariant cohomology of Λ in the Cartan model [23, equivariant-

cohomology/Equivariant Cohomology.html]. (We consider here σ as a one-form on Λ.)

Recall that in this model an equivariant cohomology class is represented by a differen-

tial form depending on an element of h and belonging to the kernel of Cartan differential

d− ιh where h ∈ h. (The dependence of h should agree with the action of the group H.)

2Notice, that H is not necessarily the full group of automorphisms. In string worldsheet theory, typically

H is the group of diffeomorphisms.
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We modify the definition allowing pseudodifferential forms instead of differential forms.

We do not impose the condition of polynomial dependence of h.

The proof of the fact that eq. (4.4) is equivariantly closed uses (3.6) and the relation [23,

omega/As Intertwiner.html]

ιrΩ〈F 〉 = Ω〈RF 〉 (4.5)

where r ∈ g and R stands for the corresponding Hamiltonian. This formula immediately

follows from:

ιrσ = R|L (4.6)

which is essentially the definition of σ.

In the case when H is a conventional group the Poisson bracket corresponds to usual

commutator hence {h, h} = 0; combining this with eq. (4.3) we get:

{h,Φ(h)} = 0 (4.7)

(this also can be derived just from eqs. (4.1) and (4.2)).

From Cartan to base. If the action of H on Λ is free the H-equivariant cohomology is

isomorphic to the cohomology of Λ/H. An explicit formula for a base form belonging to

the same class of equivariant cohomology as ΩC
h can be written as follows ( [23, equivariant-

cohomology/Direct Computation.html#(elem. .Def.Underline.Alpha)]). We need to choose

a connection θ on Λ (the cohomology class of the resulting base form will not depend on the

choice of θ). Then we have to replace σ with the horizontal projection of σ, and substitute

the curvature f = dθ − 1
2θ

2 for h (see [8] for a review):

Ωbase =

∫
Lλ

exp

[
SBV + (σ − ι(θ)σ) +

(
dθ − 1

2
θ2

)
Φ

]
(4.8)

The second term σ − ι(θ)σ is the horizontal projection of θ. The third term
(
dθ − 1

2θ
2
)

Φ

should be understood as follows. Consider the curvature dθ − 1
2θ

2 of the connection in

the fiber bundle Λ → Λ/H; this is an H-equivariant h-valued 2-form on Λ. Composing it

with our map Φ we get a two-form with values in Fun(M), which is denoted
(
dθ − 1

2θ
2
)

Φ

in eq. (4.8).

The considerations above are rigorous in finite-dimensional case, however, we will

use them in infinite-dimensional case where they can be justified in the framework of

perturbation theory. Notice in the case when the dimension is infinite one should impose

some additional conditions. In particular, the quadratic part of the BV action functional

restricted to the Lagrangian submanifold should be non-degenerate. This condition (non-

degeneracy condition) is necessary to have well defined perturbation theory. It is not

needed in finite-dimensional case when the integral has a definition independent of the

perturbation theory and the integral of degenerate functional makes sense. The situation

with the completeness condition is similar: it is necessary only in infinite-dimensional case.

The conditions of irreducibility and completeness are discussed in more details in [16].

The odd Laplacian ∆ is ill-defined in the infinite-dimensional case unless we are working

in the framework of perturbation theory when we can apply the methods of [9] or [10].
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However the equation ∆S = 0 does make sense; it just means that the nilpotent vector

field Q corresponding to the first order differential operator transforming a function f

into {f, S} is volume preserving. (There exist standard ways to check that an operator

in infinite-dimensional space is volume preserving; for example a method based on the

calculation of Seeley coefficients is explained in [11].) Replacing S by exp
[
S
~
]

we can write

the quantum master equation ∆e
S
~ = 0 as {S, S} + ~∆S = 0; in infinite-dimensional case

we assume that both summands vanish: {S, S} = 0 (classical classical master equation)

and ∆S = 0. Similarly, we assume that in (4.2) ∆Φ = 0. In infinite-dimensional case we

require that a quantum observable A satisfies the equations ∆A = 0 and {A,S} = 0.

5 From BRST to BV

Let us suppose that we have a functional S(ψ) with an odd symmetry QBRST (BRST

symmetry) that is nilpotent off-shell (i.e. nilpotent without using the equations of motion).

Then we can construct an odd symplectic manifold adding antifields ψ∗ and solution to

the classical Master Equation given by the formula

SBV = S(ψ) + (QBRSTψ
i)ψ?i (5.1)

In the case when QBRST is volume preserving (divergence-free) SBV obeys also quantum

master equation ∆SBV = 0. This statement is rigorous in finite-dimensional situation; it

remains true also in the infinite-dimensional case.

A special case of this construction comes from the “standard” BRST formalism. It

works for gauge theories as Yang-Mills/QCD or Chern-Simons, and also for the bosonic

string worldsheet theory [23, bosonic-string/index.html] and the RNS superstring [23,

Heterotic-RNS/index.html].

One starts from the “classical action” Scl(ϕ), which is invariant with respect to group

H, hence with respect to its Lie algebra H with generators TA (”gauge symmetry”). Then

one introduces additional variables cA (“the ghosts”) with the quantum numbers of the

symmetry parameter, but opposite statistics.

The nilpotent symmetry Q is defined by the following formulas [23, BRST-

formalism/Construction.html]:

QBRSTϕ
i = T iAc

A , QBRSTc
A =

1

2
fABCc

BcC (5.2)

where fABC are structure constants of the Lie algebra H. To continue from BRST to

BV [23, BRST-formalism/BV from BRST.html], we define an odd symplectic manifold

adding to ϕi, cA their antifields ϕ∗i , c
∗
A having opposite parity (geometrically this means

that we consider cotangent bundle with reversed parity of fibers). Here ϕi is the collective

notation for the “old fields”. In such a situation, a solution of the classical Master Equation

(a special case of (5.1)) can be written in the form:

SBV = Scl(ϕ) +
1

2
fABCc

BcCc∗A + T iAc
Aϕ?i = Scl(ϕ) + (QBRSTc

A)c?A + (QBRSTϕ
i)ϕ?i (5.3)

– 8 –



J
H
E
P
0
7
(
2
0
1
7
)
0
6
3

Our goal will be to solve the eq. (4.2) for BV action functional (5.3). Notice that this

action functional is invariant with respect to the action of the group H and its Lie algebra

H; the hamiltonian of the element ξ = ξATA ∈ H has the form h = T iAξ
Aϕ?i + [ξ, c]Ac?A.

There exists a solution mapping this Hamiltonian into Φ(h) = ξAc?A; it satisfies the

conditions {Φ(h),Φ(h)} = ∆Φ(h) = 0.

To check (4.2) it is sufficient to notice that

{SBV, ξ
Ac?A } = T iAξ

Aϕ?i + [ξ, c]Ac?A (5.4)

A solution of (4.2) should obey (4.3). To verify this condition we notice that {T iAξAϕ?i +

[ξ, c]Ac?A, ξ̃
Ac?A} = fABCξ

B ξ̃Cc?A = [ξ, ξ̃]Ac?A.

Physically meaningful quantities should be obtained from integrating eSBV over a suit-

ably chosen Lagrangian submanifold. However, a suitable choice of Lagrangian submanifold

is not completely trivial. The most straightforward guess would be to put all antifields to

zero, i.e. ϕ? = c? = 0. But this is a wrong choice, because the restriction of SBV to

such a Lagrangian submanifold would be just Scl, a degenerate functional. The next guess

would be to consider some deformation of ϕ? = c? = 0, such that the restriction of SBV

be nonzero. But this also does not quite work, for the following reason: we want to keep

the ghost number symmetry. It turns out that in the class of Lagrangian submanifolds

respecting the ghost number symmetry, the one given by ϕ? = c? = 0 is typically rigid. It

has no deformations, because there are no fields with negative ghost number.

In fact there are several solutions to this problem. One solution is to consider a

family [23, BRST-formalism/Family of Lagrangian submanifolds.html] of Lagrangian sub-

manifolds. Each individual member of a family may be not ghost-number-invariant, but we

require that the family as a whole be closed under the action of the ghost number symme-

try. Another solution is to add a field/antifield quartet, in other words non-minimal fields,

with some non-minimal fields carrying negative ghost number. (In finite-dimensional case

this gives the same answer [23, omega/As integration over single L.html] as considering

a family.) Yet another approach is to start with a Lagrangian submanifold [23, BRST-

formalism/Family of Lagrangian submanifolds.html] where some antifields and some fields

are zero. Schematically:

ϕ?1 = ϕ2 = c?1 = c2 = 0 (5.5)

In the particular case of bosonic string worldsheet theory in section 6, where H is the group

of diffeomorphisms, we will use this third method.

Comment about antifields. If φ is a scalar field, we will consider φ? a density (i.e. a

volume form, or an area form in the two-dimensional case). This is very natural:

• The odd symplectic form is given by the integral of the density (−1)φ̄δφ ∧ δφ?, i.e.

ω =
∫

(−1)φ̄δφ ∧ δφ?

• A local infinitesimal field redefinition φ 7→ φ+ εV (φ) is generated by the odd Hamil-

tonian
∫
V (φ)φ? (in order for this integral to make sense, φ? should be a density).

In the same sense, we actually think of the “variational derivative” δ
δφ as a density; it is

“generated by” φ? in terms of odd Poisson bracket.
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6 Topological quantum field theories. Bosonic strings

In BRST formalism a topological quantum field theory is defined by a family of action

functionals depending on riemannian metric on some manifold X and satisfying the con-

dition that the variation of the action functional by infinitesimal variation of the metric

is BRST exact (topological quantum field theories of Witten type). In BV formalism we

should have solutions to the master equation {S, S} = 0 depending on riemannian metric

and obeying dS = {b, S} where d is the de Rham differential on the space MET of all

metrics and b is a 1-form on this space. (If V is a vector field on the space of metrics

we can write dS/dV = {b(V ), S}.) Alternatively we can assume that the solution to the

master equation is fixed, but the Lagrangian submanifold depends on the choice of metric.

We can construct an n-form Ωn on MET integrating b(V1) . . . b(Vn)eS over some La-

grangian submanifold L in the space of fields. Summing the forms Ωn we can get an

inhomogeneous closed form Ω that can be obtained by integrating eS+b over L. Under

certain conditions (see section 2) one can prove that this form is closed and descends to the

quotient space of MET with respect to the action of the group Diff of diffeomorphisms of

X. We obtain a closed form on the quotient MET/Diff; integrating this form over a cycle

we can get new invariants. In particular, applying these ideas to Chern-Simons theory one

obtains invariants constructed by Kontsevich [12]; see [1] for detail. (Another construction

of these invariants was given in [13].)

In the rest of this section we will outline applications of these ideas to string pertur-

bation theory. The target of string theory can be regarded as two-dimensional topological

quantum field theory; the above considerations can be applied to this TQFT. We will show

that string amplitudes are particular cases of new invariants we have mentioned. Instead

of formalism of families of equivalent action functionals we will use more flexible formalism

of families of Lagrangian submanifolds.

Bosonic string. Master action in terms of world sheet metric. The construction

outlined in section 5 works for both bosonic string [23, bosonic-string/index.html] and RNS

superstring [23, Heterotic-RNS/index.html].

Let us consider bosonic string. For definiteness we are writing formulas for bosonic

string in flat space. (To avoid anomalies we should assume that we work in the dimension

26.) We start with the action functional

Smat[g, x] =
1

2

∫
√
ggαβ ∂αx

m∂βx
md2ξ (6.1)

We integrate here over a compact surface of genus h with metric gαβ . We always assume

that h > 1. The subindex mat stands for “matter”, although this action also involves

the dynamical metric gαβ . This functional is invariant with respect to diffeomorphisms

and Weyl transformations g′αβ = eφgαβ ; hence we can construct a BV action functional

introducing diffeomorphism ghosts c, Weyl ghosts ζ and antifields to gαβ , xm and ghosts.3

3BV formalism was previously applied to bosonic string in [14].
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Following the general scheme outlined in section 5 we obtain:

SBV = Smat[g, x] + (6.2)

+

∫ (
(Lcg)αβg

?αβ + ζgαβg
?αβ + ((cα∂α)xm)x?m +

1

2
[c, c]αc?α + (Lcζ)ζ?

)
Here Lc is the Lie derivative along the vector field cα∂α.

We now choose the Lagrangian submanifold in the following way:

gαβ = g
(0)
αβ , x

? = c? = ζ? = 0 (6.3)

where g
(0)
αβ is a fixed metric (6.4)

The family (6.3) of Lagrangian submanifolds is closed under the action of diffeomorphisms.

On Lagrangian submanifold (6.3) the action is quadratic and the form Ω is equal to:4

Ω(g(0), δg(0)) =

∫
[DxDg?DcDζ] exp

(
SBV +

∫
δg

(0)
αβg

?αβ

)
(6.5)

=

∫
[DxDg?DcDζ] exp

(
Smat +

∫ (
(Lcg)αβg

?αβ + ζt+ δg
(0)
αβg

?αβ
))

(6.6)

=

∫
[DxDbDc ] exp

(
Smat +

∫ (
(∇αcβ +∇βcα)bαβ + δg

(0)
αβ b

αβ
))

. (6.7)

We introduced the notation t = gαβg
?αβ , bαβ = traceless part of g?αβ , i.e. g?αβ = bαβ +

1
2 tg

αβ . In the transition to the last line we integrated over ζ and t.

Non-degeneracy. The exponential in (6.5) is non-degenerate. (The restriction

of SBV to the Lagrangian submanifold of eq. (6.3) is non-degenerate [23, BRST-

formalism/Family of Lagrangian submanifolds.html#%28part. .Non-degeneracy%29]

modulo a finite-dimensional space of zero modes of bαβ . This finite-dimensional

degeneracy is removed by the second term in the exponential of (6.5).)

Symmetries. The form Ω is invariant with respect to diffeomorphisms; moreover on the

family (6.3) it is a base form, because for any worldsheet vector field ξ:

ιξΩ =

∫
[DxDg?DcDζ]

(∫
d2z(Lξgαβ)g?αβ

)
exp

(
SBV +

∫
δg

(0)
αβ g

?αβ

)
= (6.8)

=

∫
[DxDg?DcDζ]

∫
d2z ξα

∂

∂cα
exp

(
SBV +

∫
δg

(0)
αβ g

?αβ

)
= 0 (6.9)

To check that the last line is zero we notice that the derivative with respect to cα under

the sign of two-dimensional integral can be replaced be variational derivative under the

sign of infinite-dimensional integral.

Let us study the behavior of this form with respect to Weyl transformations g′αβ =

eφgαβ . The 0-th component Ω0 of inhomogeneous form Ω can be regarded as a partition

function of conformal field theory. The variation of partition function by infinitesimal Weyl

4We denote the de Rham differential on the infinite-dimensional space of metrics by δ instead of d.
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transformation is governed by trace anomaly δZ/δφ = (− cR
12 + const)Z where c stands for

the central charge and R denotes the curvature of the worldsheet. In our case the central

charge vanishes (we are working in critical dimension d = 26; in general the central charge

is equal to d − 26). We see that Ω0 does not change by Weyl transformations. The k-

th component of the form Ω can be expressed in terms of correlation functions of the

same conformal theory. The behavior of correlation functions by Weyl transformations is

governed by conformal dimensions ∆i of fields Ψi:

< Ψ′1(ξ1) . . .Ψ′k(ξk) >g′= e−
∑

∆iΨi(ξi) < Ψ1(ξ1) . . .Ψk(ξk) >g (6.10)

([22], formula (13,50)). To check the Weyl invariance of Ω we notice that the dimension of

bαβ is 2 (it coincides with conformal dimension) and the dimension of gαβ is −2.

We have proved that in critical theory Ω is Weyl invariant. Moreover, it descends not

only to MET/Diff, but also to MET/Diff o Weyl, that can be identified with the moduli

space of complex structures on a compact surface of genus h. (A formal proof of the fact

that Ω is a base form for the Weyl group repeats the proof of similar statement for Diff.)

We can get the partition function of bosonic string integrating the form over this moduli

space. (Notice that we are working with inhomogeneous forms, but the integration singles

out one component of this form.)

We can solve eq. (4.2) using the general considerations [23,

omega/Case Of Standard BRST.html] of section 5. Namely, we should take a map

sending a worldsheet vector field ξα(z, z̄) plus infinitesimal Weyl transformation ϕ(z, z̄)

to:

Φ(ξ, ϕ) =

∫
ξαc?α + ϕζ? (6.11)

Then the functional {S,Φ(ξ, ϕ)} can be considered as a Hamiltonian of infinitesimal trans-

formation of fields corresponding to the vector field ξ and Weyl factor ϕ. This means

eq. (6.11) defines a solution of eq. (4.2) for the Lie algebra of the group Diff oWeyl acting

on the space of fields. This allows us to construct an equivariant form

ΩC
Lie(DiffoWeyl)(ξ, ϕ) =

∫
gL

exp

(
SBV + σ +

∫
ξαc?α + ϕζ?

)
(6.12)

We can then construct the corresponding base form [23, omega/Base Form.html] which

descends to Λ/(Diff oWeyl). On the standard family of Lagrangian submanifolds given by

eq. (6.3) c? = ζ? = 0. Therefore ΩC
Lie(DiffoWeyl)(ξ, ϕ) becomes essentially Ω of eq. (6.5).

Singular metrics. Notice that in the action functional (6.1) we can allow slightly singu-

lar metrics. We say that the worldsheet metric on a surface of genus h is slightly singular

if on some real curves one of the eigenvalues of the metric gαβ vanishes and another eigen-

value remains positive. More precisely we suppose that g = det gαβ vanishes on a family

of closed real curves and in the neighborhood of one of these curves it takes the form ρ2σ

where ρ = 0 is the equation of the curve and σ is a positive function.5 It is easy to check

5The simplest example of this picture is a cylinder with coordinates (ρ, φ) and metric ds2 = dρ2 +ρ2dφ2.

Here −a < ρ < a, 0 ≤ φ < 2π.
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that under these conditions the action functional (6.1) is finite if we make an additional

assumption that xm is constant on every closed curve where the metric is singular. The

formulas for BV action (6.2) and Lagrangian submanifold (6.3) can be applied to slightly

singular metrics. We obtain a family of Lagrangian manifolds labelled by these metrics.

Factorizing the topological space Λ of slightly singular metrics with respect to diffeomor-

phisms and Weyl transformations we obtain the space Λ/Diff oWeyl. Points of this space

can be identified with complex curves having simplest singularities (nodes). (Every closed

curve where the metric is singular should be contracted to a point; the metric specifies a

complex structure in the complement to these points.) A part of this space that consists of

stable curves (curves having only finite number of automorphisms) can be identified with

Deligne-Mumford compactification of the moduli space of algebraic curves of genus h. This

is a good topological space (an orbifold). The remaining part is a “bad” (non-separable)

space, but it does not play any role (a heuristic explanation of this fact is the remark

that its contribution to the partition function is suppressed by the infinite volume of the

automorphism group). The form of eq. (6.5) descends to Deligne-Mumford space as a form

having some singularities. To obtain physical quantities we should integrate the form over

a cycle in Deligne-Mumford space; to obtain the partition function we should integrate over

the fundamental cycle. (Of course, this is only a formal calculation-due to the tachyon in

the spectrum of bosonic string the integral is divergent.)

Master equation in terms of complex structures. A worldsheet complex structure

can be specified by a field of linear operators I acting on tangent spaces and obeying

I2 = −1. Another way to specify a complex structure is to fix a complex vector field e such

that the complex conjugate vector field ē together with e specifies a basis of complexified

tangent space. (To relate these descriptions we define e as the eigenvector of I having

eigenvalue i.) Notice that e is only defined up to multiplication: e ∼ ue, where u is a

complex function on the worldsheet.

Due to Weyl invariance one can express the functional (6.1) in terms of complex struc-

tures. We obtain the following functional:

Smat[I, x] =

∫
eα∂αx ē

β∂βxdµ (6.13)

where the measure µ on the worldsheet is specified by the condition the vectors e, ē span

a parallelogram of measure 1 in tangent space. The functional is invariant with respect to

diffeomorphisms. We can now follow the standard procedure by first introducing the diffeo-

morphism ghosts [23, BRST-formalism/Construction.html] c (BRST formalism) and then

adding antifields [23, BRST-formalism/BV from BRST.html]. The result is the Master

Action of the following form:

SBV = Smat[I, x] +

∫ (
(LcI)βαI

?α
β + (Lcx)x? +

1

2
[c, c]αc?α

)
(6.14)

In the expression for the action we integrate over a worldsheet. In the h-loop contribution

the worldsheet is a surface of genus h.
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Notice that one can introduce a notion of slightly degenerate complex structure as-

suming that the vectors e and ē can be linearly dependent on a family of closed curves on a

worldsheet. (In a neighborhood of such a curve we should have a relation ē = λe+ρf + . . .

where tangent vectors e and f are linearly independent, ρ = 0 is the equation of the curve

and . . . are higher order terms with respect to ρ.)

7 String amplitudes

7.1 String amplitudes for critical string

To represent the string theory in BV form we have applied the general constructions of the

section 5 to the action functional Smat[g, x]. This functional depends on the metric gαβ on

the worldsheet (on a compact surface of genus h) and a map x(ξ) = xm(ξ) of this surface to

Rd. This functional is invariant with respect to diffeomorphisms and Weyl transformations.

We applied the standard BRST construction in this setting and used (5.1) to get the BV

action. To describe string amplitudes we should add marked points (punctures) (ξ1, . . . , ξn)

on the worldsheet to this picture. Following [14] we will consider ξi as dynamical variables

on equal footing with the metric.

Using again the constructions of the section 5 we get the new BV action S′BV with an

extra term cα(ξi)ξ
i?
α :

S′BV = SBV + cα(ξi)ξ
i?
α (7.1)

where SBV is defined by (6.14). As was noticed in section 5 this functional obeys quantum

master equation in the case when the volume is Q-invariant; this remark forces us to use

the diffeomorphism invariant measure
√
g(ξ1)d2ξ1 · · ·

√
g(ξn)d2ξn on the space of marked

points.

Let us consider functionals Vi(ξi) (vertices) which are invariant under diffeomorphisms.

The typical examples of such vertices are tachyoinic vertex eipx(ξ) and graviton vertex

εklg
αβ∂αx

k(ξ)∂βx
l(ξ)eipx(ξ). We can introduce a new action functional

S′′BV = S′BV +
∑

εiVi(ξi) (7.2)

where εi are infinitesimally small.

To define string amplitudes it is convenient to work with BV-action functional that is

obtained from (7.2) by means of “integrating out” Weyl ghosts.6 We obtain the new BV

action S̃BV given by the formula

eS̃BV = e
Smat[g,x] +

∫ (
(Lcg)αβg?αβ+((cα∂α)xm)x?m+ 1

2
[c,c]αc?α−cα(ξi)ξ

i?
α +

∑
εiVi(ξi)

)
δ(g?αβgαβ)

Denoting the traceless part of g?αβ by bαβ we can represent this action functional in the form

S̃BV = ŜBV +
∑

εiVi(ξi) (7.3)

6If a solution A of the equation ∆A = 0 is defined on direct product of two odd symplectic manifolds

Y ′ and Y ′′ we can obtain a solution of similar equation on Y ′ integrating over Lagrangian submanifolds

L ∈ Y ′′. (See for example [10].) In our case we integrate over Lagrangian submanifold ζ∗ = 0 of manifold

with coordinates ζ, ζ∗.
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where

ŜBV = Smat[g, x] +

∫ (
(Lcg)αβb

αβ + ((cα∂α)xm)x?m +
1

2
[c, c]αc?α − cα(ξi)ξ

i?
α

)
(7.4)

Now we can use the standard construction of the form Ω starting with the action functional

S̃BV. However, we prefer to construct the form Ω starting with the functional ŜBV and

including the factor V1 . . . Vn into defining integral. (The form coming from the second

construction can be obtained from the first one by means of differentiation with respect to

parameters.) We consider a family of Lagrangian submanifolds parameterized by g
(0)
αβ , ξ

(0)
i

taking

gαβ = g
(0)
αβ , ξi = ξ

(0)
i , x? = c? = 0 (7.5)

The form Ω, restricted to one of these Lagrangian submanifolds looks as follows:

Ω(g
(0)
αβ , ξ

(0)
i δg

(0)
αβ , dξ

(0)
i ) =

=

∫
[DxDbDξ∗iDc]

√
g(ξ

(0)
1 )V1(ξ

(0)
1 ) · · ·

√
g(ξ

(0)
n )Vn(ξ(0)

n ) × (7.6)

× exp

(
Smat +

∫
(∇αcβ +∇βcα)bαβ +

+

∫
δg

(0)
αβ b

αβ + ξ∗i(c(ξi)− dξ(0)
i )

)
(7.7)

Using this formula we can get an expression of Ω in terms of correlation functions of

conformal field theory. This allows us to analyze the behavior of Ω with respect to Weyl

transformations. It is easy to see that in our case of critical string this form is Weyl invariant

if conformal fields corresponding to vertices Vi have conformal dimension 2 (dimension

(1, 1) in the language of complex geometry). In this case the form descends to the moduli

spaceMh,n of compact complex curves of genus h with n marked points and to its Deligne-

Mumford compactification M̄h,n. Integrating over the fundamental cycle of M̄h,n we obtain

the h-loop contribution to string amplitudes. To check this we notice that after integration

over dξ? (and omitting indices (0) for brevity) we get:∫
[DxDbDc]Πj

(√
g(ξj)(−dξ1

j + c1(ξj))(−dξ2
j + c2(ξj))Vj(ξj)

)
× (7.8)

× exp

(
Smat +

∫
(∇αcβ +∇βcα)bαβ + δgαβb

αβ

)
(7.9)

This result is equivalent to the standard expression for the string amplitude [15]. To see

this we notice that Πj(dξ
1
j +c1(ξj))(dξ

2
j +c2(ξj)) consist on 2n summands; one of them gives

the standard expression for string amplitudes with non-integrated vertices, another gives

the standard expression with integrated vertices, and the rest correspond to the situation

when some vertices are integrated and some are non-integrated. All these summands are

equal, hence we obtain the standard answer up to a factor 2n.

Another way to calculate the string amplitudes is to work with infinitesimal defor-

mations of BV action functional. Such deformations can be identified with (classical or
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quantum) observables. In string theory they can be considered as integrated vertices. Ap-

plying our approach to the deformation of BV action we obtain the standard expression of

string amplitudes in terms of integrated vertices (see [16] for detail).

An important method of calculation of scattering amplitudes in string theory is based

on the consideration of off-shell string amplitudes. This is the best method to calcu-

late amplitudes when the mass gets quantum corrections.The off-shell amplitudes should

be defined in such a way that the particle masses correspond to their poles (in momen-

tum representation) and scattering amplitudes should be expressed in terms of residues in

these poles.

To define off-shell string amplitudes for critical string one can consider surfaces with

marked points and local coordinate systems in the neighborhoods of these points [17], [18].

This is equivalent to consideration of surfaces with boundary. The BV formalism on mani-

folds with boundary was analyzed in [10]. It should be possible to combine our approach [23,

boundary/index.html] with BV-BFV formalism of [10]; these would lead to generalization

of definitions given in [17, 18].

For non-critical strings very nice definition of off-shell amplitudes was suggested by A.

Polyakov [19]; it works well in our setting. Polyakov considers maps x(ξ) = xm(ξ) of a

surface with marked points ξ1, . . . , ξk into Rd and includes the factor

Πi

∫
δ(xi − x(ξi))

√
g(ξi)d

2ξi (7.10)

in the functional integral that defines the partition function. Geometrically this means

that we integrate over all surfaces in Rd that contain the points x1, . . . ,xk ∈ Rd(surfaces

with pinned points {xi} in Polyakov’s terminology). Doing the functional integral we

obtain a function G(x1, . . . ,xk) that can be interpreted as off-shell amplitude in coordinate

representation. The off- shell amplitude in the momentum representation G(p1, . . . ,pk)

can be defined as Fourier transform of G(x1, . . . ,xk) or directly as a functional integral for

partition function with insertion

Πj

∫
eipjx(ξj)

√
g(ξj)d

2ξj (7.11)

Polyakov considers off-shell amplitudes only at tree level (genus zero surfaces), however

they can be considered also in multi-loop case.

8 Pure spinor superstring

We hope that our ideas will lead to better understanding of pure spinor formalism in

superstring theory and to simplified expressions for amplitudes in this formalism.

The worldsheet sigma-model of the pure spinor sigma-model has different versions

which are quasiisomorphic to each other, as usual in the topological field theory. There is

a “minimal version”, which (in case of Type II theory7) describes matter fields (x, θL, θR)

and “ghost fields” λL, λR constrained to live on the pure spinor cone:

(λLΓmλL) = (λRΓmλR) = 0 (8.1)

7For the heterotic string the right-moving variables are those of the heterotic RNS formalism.
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The flat space sigma-model [24] requires introduction of the momenta pL+ and pR− conjugate

to θL and θR, and the fermionic part of the action is of the first order in derivatives:∫
d2z

(
pL+∂−θL + pR−∂+θR

)
(8.2)

The action for pure spinors is, schematically:∫
d2z (wL+∂−λL + wR−∂+λR) (8.3)

where the “conjugate momenta” wL+, w
R
− take values in the cotangent bundle of the pure

spinor cone.8 The bosonic part of the action is the usual
∫
d2z ∂+x

m∂−x
m.

The model is invariant under a fermionic nilpotent symmetry Q. Importantly, it splits

(for Type II case) into the sum of left and right symmetries:

Q = QL +QR (8.4)

such that the conserved currents corresponding to QL and QR are holomorphic and anti-

holomorphic, respectively.

In the case of flat target space, it is easy to obtain the corresponding BV action

functional: for every field Φ one should add its antifield Φ∗ and a term in the action having

the form (QΦ) · Φ∗. (This is a special case of general construction described in Sec 5;

see (5.1).)

However, the solution of eq. (4.2) requires different methods. As a first step, let us

restrict ourselves to the left sector.9 The explicit form of eq. (4.2) for the left sector of the

pure spinor string is:

{SBV , a(ξ)}+
1

2
{a(ξ), a(ξ)} = H〈ξ〉 (8.5)

where H〈ξ〉 = (ξz∂zx
m)x?m + (ξz∂zθ)θ

? + (Lξp+)p?+ +

+ (ξz∂zλL)λ?L + (Lξw+)w?+ (8.6)

— this has to be solved for the unknown a(ξ); notice that H〈ξ〉 is linear in ξ, but a(ξ) does

not have to be linear in ξ. (We have assumed that ∆a(ξ) = 0; otherwise we should add

an ill-defined term ∆a(ξ).) One solution can be obtained as follows. Since the worldsheet

theory is conformal, a holomorphic vector field ξ+ is symmetry; it is generated by ξ+T++. It

was shown by Berkovits that the energy-momentum tensor is BRST-trivial: T++ = QLb++

(even off-shell) where b++ is a composite b-ghost. This means that one should expect

that the worldsheet action can be included into topological conformal field theory. A

rigorous proof of this statement is still unknown; the most convincing treatment of this

problem was given in [20].10 Notice that ξ+b++ is a holomorphic current and therefore also

8One way of describing the pure spinor system is to cover the cone with patches. On each patch, both

λL and wL take values in flat 11-dimensional space.
9Applying this to the “full” sigma-model, i.e. left plus right sector, is work in progress in collaboration

with R. Lipinski Jusinskas.
10That paper contains also the calculation of superstring amplitudes in the framework of BV-formalism;

some ideas of this calculation can be used in our approach.
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corresponds to some symmetry. We can identify a(ξ) = Φ〈ξ〉, a BV Hamiltonian generating

the infinitesimal action of that symmetry. Then the second term in (8.5) vanishes and

this equation is satisfied. However we hope that there exist simpler solutions of eq. (8.5)

with non-vanishing second term; we leave this question for future work. We believe, that

applying the techniques described above one can not only justify the pure spinor formalism,

but also simplify the formulas (hopefully we can avoid using the complicated and not very

well defined “composite b-ghost”).

A Some useful formulas

BV phase space [23, BV-formalism/index.html] is an odd symplectic supermanifold M with

a nondegenerate closed odd 2-form ω. For any F ∈ Fun(M) we can define its Hamiltonian

vector field. We will think of this vector field as a first order linear differential operator,

acting on Fun(M):

G 7→ {F,G} = F

←
∂

∂ZA
πAB(Z)

∂

∂ZB
G (A.1)

and denote this operator {F, }. (Here πAB(Z) is a matrix inverse to ωAB(Z).) By defi-

nition:

dF = (−)F+1ι{F, }ω (A.2)

where ι is the operator of contraction, satisfying [ιV , d] = LV . This implies:

{F,G} = ι{F, }dG = (−)Ḡ+1ι{F, }ι{G, }ω (A.3)

In coordinates:

ω = dZAdZBωAB (A.4)

ωAB = (−1)(Ā+1)(B̄+1)ωBA (A.5)

d = dZA
∂

∂ZA
(A.6)

ιV =V A ∂

∂dZA
(A.7)

πAB = (−1)1+(Ā+1)(B̄+1)πBA (A.8)

Locally it is possible to choose the Darboux coordinates:

{F,G} =F

 ←
∂

∂φ?A

∂

∂φA
−

←
∂

∂φA
∂

∂φ?A

G (A.9)

ω = (−1)AdφAdφ?
A

(A.10)

If the manifold M is equipped with a volume element (with a density) we can define

the odd Laplacian acing on functions by the formula

∆F = div{F, } (A.11)
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where div stands for the divergence of vector field with respect to the volume element.

The volume element should be chosen in such a way that ∆2 = 0. The relation between

odd Laplace operator [23, BV-formalism/OddLaplace.html] and { , } is:

∆(XY ) =(∆X)Y + (−)X̄∆Y + (−)X̄{X,Y } (A.12)

∆eΦ =

(
∆Φ +

1

2
{Φ,Φ}

)
eΦ (A.13)

In Darboux coordinates ∆ is:

∆ = (−1)Ā+1 ∂

∂φ?A

∂

∂φA
(A.14)

One can prove that ∆X given by this formula does not depend on the choice of Darboux

coordinates if X transforms as a semidensity (recall that semi-densities transform as square

roots of densities= volume elements). Hence for any odd symplectic manifold one can define

∆ on semi-densities (volume element is not necessary), see [6].

B Definition of Ω using marked points

Let LAG+ denote the space of Lagrangian submanifolds with marked points. A point of

LAG+ is a pair (L, a) where L ∈ LAG and a ∈ L. This defines the double fibration:

M
p←− LAG+

π−→ LAG (B.1)

Given v ∈ ΠT(L,a)LAG+, we can consider two projections π∗v ∈ ΠTLLAG and p∗v ∈
ΠTaM . We will define Ω is a pseudo-differential form, i.e. a function of L, a, v. It will

depend on v only through π∗v. We can characterize π∗v as a section of ΠTM |L modulo

ΠTL. We then define σ as follows:

σ ∈ Fun(L)

dσ =− (ιπ∗vω)|L (B.2)

σ(a) = 0 (B.3)

This definition specifies σ as a linear function of v, i.e. as a one-form on LAG+ In order

to make sense of ιπ∗vω we must think of π∗v as a section of ΠTM ; the fact that it is only

defined up to tangent to TL does not matter because L is isotropic. Eq. (B.3) eliminates

the ambiguity, and we can now safely define a function Ω on ΠTLAG+ (a pseudodifferential

form on LAG+) as in eq. (3.3):

Ω(L, a, v) =

∫
L
eSBV+σ (B.4)

More generally, for every function F on M we define:

Ω〈F 〉(L, a, v) =

∫
L
FeSBV+σ (B.5)

We will now prove the following formula:

(d− p∗ω) Ω〈F 〉 = −Ω 〈∆F + {SBV , F}〉 (B.6)
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Comment. As a straightforward generalization, we can consider a product of Ω with the

pullback under p of any differential or pseudo-differential form ν on M . It satisfies: [23,

omega/Descent To LAGs.html#(part. .Upgrade to )]

d (p∗ν Ω〈F 〉) = (−)|ν|+1p∗ν Ω 〈∆F + {SBV , F}〉 + p∗ (dν + ων) Ω 〈F 〉 (B.7)

Notice the appearance of the nilpotent operator d+ ω which was studied in [21].

Proof. We take a family of Lagrangian submanifolds with marked points (L(λ), a(λ))

and represent it in the form

L(λ) = g(λ)L0 (B.8)

a(λ) = g(λ)a0 (B.9)

where g(λ) are volume preserving canonical transformations (locally this is always possible).

It is sufficient to analyze the restriction Ω〈F 〉(λ, dλ) of the form (B.5) to this family.

As in section 3 using the canonical transformations g(λ) we can construct a family

of action functionals Sλ and corresponding forms that will be denoted by Ω̃ and Ω̃〈F 〉.
These forms do not coincide with the forms Ω〈F 〉(λ, dλ) constructed by means of family of

Lagrangian submanifolds with marked points, but they are closely related. As we noticed

in section 3 the second summand in the exponential in the formula defining Ω̃〈F 〉(λ, dλ) is

the Hamiltonian of the infinitesimal canonical transformation governing the variation of Sλ.

The second summand in the formula defining Ω〈F 〉(λ, dλ) is the Hamiltonian H(λ, dλ) of

the infinitesimal canonical transformation11 governing the variation of Lλ. They coincide

up to a constant summand. This constant can be calculated from (B.2). We obtain [23,

omega/Descent To LAGs.html#(part. .Upgrade to )]

Ω〈F 〉(λ, dλ) = CΩ̃〈F 〉(λ, dλ) (B.10)

where C = e−H(λ,dλ)(g(λ)a0). (One can say that C is expressed in terms of the value of the

Hamiltonian of the infinitesimal canonical transformation at the marked point.)

We have calculated already the differential of Ω̃〈F 〉(λ, dλ). But we also have to evaluate

dΛ of the prefactor C. Using eq. (A.3), appendix, and p∗ω = 1
2

(
ι
(
dλk ∂a

A

∂λk
∂
∂aA

))2
ω we get:

dΛ e
−H(λ,dλ)(ga0) = (B.11)

= e−H(λ,dλ)(ga0) (−(dΛH(λ, dλ))(ga0)− {H(λ, dλ) , H(λ, dλ)}(ga0)) = (B.12)

= − 1

2
e−H(λ,dλ)(ga0){H(λ, dλ) , H(λ, dλ)}(ga0) = (B.13)

=
1

2
e−H(λ,dλ)(ga0)((ι{H(λ,dλ) , })

2ω)(ga0) = (B.14)

=
1

2
e−H(λ,dλ)(ga0)(ι{H(λ,dλ) , aA}∂/∂aA)2ω(a)|a=ga0 = (B.15)

=
1

2
e−H(λ,dλ)(ga0)(ιdλk(∂kaA)∂/∂aA)2ω(a)|a=ga0 = e−H(λ,dλ)(ga0)p∗ω (B.16)

11It is related to the Ba used in section 2 as follows: H(λ, dλ)(g(λ)x) =
∑
dλaBa(λ, x).
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This concludes the proof.

Given a “symplectic potential” α satisfying dα = ω we can construct a closed form as

follows:

Ω+ = (p∗e−α)

∫
L
eσ (B.17)

We will choose the following ansatz for the equivariantly closed analogue of Ω:

ΩC
+ = (p∗ν)

∫
L
eS+σ+Φ(h) (B.18)

where ν is of the same formal type as a Cartan cochain:

ν ∈ Fun ((ΠTM)× h) (B.19)

The expression defined in eq. (B.18) is a cocycle of the Cartan complex of equivariant

cohomology of LAG+ if in addition to (4.2) we have(
d+ ω − ι{h, } + h

)
ν = 0 (B.20)

Even though ν lives in the same space as cochains of the Cartan complex, the differ-

ential defined by eq. (B.20) is different. (The Cartan differential would be d− ι{h, }.)

Comment. In particular, when we can choose an H-invariant “symplectic potential” α

such that dα = ω, eq. (B.20) has a simple solution:

ν = eα (B.21)

Proof of ΩC
+ being equivariantly closed. We have to prove that:(

d− ι{h, }
)

ΩC
+ = 0 (B.22)

where d is the de Rham differential on LAG+. The action of d is given by eq. (B.7). The

action of ι{h, } on σ is essentially as in eq. (4.6), but we have to remember to subtract the

compensating constant to make sure that σ vanishes at the marked point; therefore:

ι{h, }σ = h− h(a) (B.23)

The vanishing of (d− ι{h, })ΩC
+ when eqs. (4.2) and (B.20) are satisfied follows from direct

computation.

C Central extension of the group of canonical transformations

In this section we will give a precise definition of Ω using a well-defined closed PDF Ω̂ on

a central extension Ĝ of the group of canonical transformations.12 This group is infinite-

dimensional, however, in this section we will keep the notation d for the de Rham differential

on the group and on the space of Lagrangian submanifolds LAG.

12The existence of a central extension of the group of canonical transformations (symplectomorphisms) of

odd symplectic manifold M can be proven in the same way as for an even symplectic manifold. Namely, as in

the even case one constructs a bundle with connection over M , the fiber of this bundle is a one-dimensional

odd vector space. The group Ĝ can be defined as a group of transformations of the total space of the bundle

that are compatible with the fibration (transform fibers into fibers), induce canonical transformation on

the base and are compatible with connection.
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C.1 Definition of Ω̂

Let us consider the Lie superalgebra ΠFun(M) with the commutator given by the odd

Poisson bracket. It is a central extension of the Lie superalgebra of Hamiltonian vector

fields which we denote g; therefore we denote it ĝ:

ĝ = ΠFun(M) (C.1)

We consider the central extension of the group of canonical transformations Ĝ, whose Lie

algebra is ĝ.

As a variation on our theme, we will now construct a map from LAG to the space of

closed PDFs on Ĝ, which we will call Ω̂:

Ω̂ ∈ Fun(LAG×ΠTĜ) (C.2)

Ω̂(L, ĝ, dĝ) =

∫
gL

exp
(
SBV + dĝĝ−1

)
(C.3)

Here following [6] we consider exp(SBV) as a semidensity, dĝĝ−1 is the right-invariant form

on Ĝ taking values in the Lie algebra (Maurer-Cartan form),and g stands for an element

of G corresponding to ĝ ∈ Ĝ. In eq. (C.3) we consider dĝĝ−1 as a function on M , using

the fact that the Lie algebra of Ĝ is ΠFun(M). This form satisfies the Maurer-Cartan

equation:

d(dĝĝ−1) +
1

2
{dĝĝ−1 , dĝĝ−1} = 0 (C.4)

This Ω̂ is closed as a PDF on Ĝ, i.e.:

dΩ̂ = 0 (C.5)

where d = dĝ
∂

∂ĝ
(C.6)

The proof of eq. (C.5) is a straightforward computation [23, omega/Definition.html] very

similar to the computations in section 2.

We must stress that this Ω̂ is well-defined (does not contain any ambiguities).

C.2 How to build a form on LAG starting from Ω̂

Since G (and therefore Ĝ) acts on LAG, there is a natural projection:

π̂ : LAG×ΠTĜ→ ΠTLAG (C.7)

However, it is not true that Ω̂ is constant along the fibers of π̂. Indeed, for a ξ ∈ Lie(St(L0)),

where St(L0) stands for the stable subgroup of L0 ∈ LAG in Ĝ one can check that the

restriction of ξ on L0 is a constant c. Using ĝξ̂ĝ−1 = ξ̂ ◦ g−1 we get:

Ω̂(L0, ĝ, dĝ + ĝξ̂) = kΩ̂(L0, ĝ, dĝ) (C.8)

where k is some number. Therefore Ω̂ does not automatically provide a PDF on LAG.
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We could impose some additional restrictions, such as ghost number symmetry,13 which

would guarantee that k = 0.

Let us suppose now that a subset of LAG is represented in the form g(λ)L0 where

g(λ) ∈ G,λ ∈ Λ. Assume that we can find a “lift” ĝ(λ) of g(λ) to Ĝ. Then we can define

a closed form

Ω(L, dL) = Ω̂(L0, ĝ(λ), d(ĝ(λ))) (C.9)

This coincides with the “tentative” definition of section 3, because the restriction of

dĝĝ−1 to gL0 gives σ. This is a general fact, true both in classical mechanics and in BV

formalism. In classical mechanics it is essentially the Hamilton-Jacobi equation, which

describes the evolution of a Lagrangian submanifold (specified by a generating function

usually called S) under the Hamiltonian flow. It says that ∂S
∂t equals the restriction of H

on L plus a constant (which can depend on t).

Notice that by the variation of ĝ(λ) the form Ω(L, dL) obviously remains in the same

cohomology class.
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