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1 Introduction

Exact solutions of supergravity theories have been and continue to be instrumental in gain-

ing new insights into string theory and related areas of research. In particular asymptoti-

cally anti-de Sitter solutions, which occur naturally in gauged supergravity, are interesting

from the point of view of the AdS/CFT correspondence, since in that context they can

be viewed as gravitational duals of strongly coupled quantum systems living on the AdS

boundary.

Symmetry has always been one of the main tools in the search for exact solutions of

gravity theories, since requiring the invariance of the solution under some symmetry trans-

formation can dramatically simplify the usually formidable task of solving the equations

of motion.

In the supergravity setting it is natural to look for solutions with some unbroken

supersymmetry. This implies that the bosonic equations of motion are related through the

Killing Spinor Identities [1], reducing the problem of solving them to that of solving just

a small subset plus the first order supersymmetry equations. Besides the simplification in

the equations they entail, another motivation for the study of supersymmetric solutions

in AdS, specifically supersymmetric black holes, is that it should be possible to determine

their entropy by counting their microstates through the AdS/CFT correspondence (this is

still an open problem for rotating supersymmetric black holes in AdS5, see e.g. [2–4]).
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However, while assuming unbroken supersymmetry makes the problem more tractable,

it is usually not enough to find explicit solutions, and one has to make some additional

assumptions or to impose a specific ansatz in order to solve the equations.1

An approach that has proven to be very successful in ungauged 5-dimensional super-

gravity, with or without vector multiplets, is to assume that the 4-dimensional base space,

which for that theory has to be hyperKähler, admits one triholomorphic isometry. In this

case the base space has a Gibbons-Hawking metric [6, 7], and it turns out that the solu-

tions can be completely characterized in terms of a small number of building blocks, namely

harmonic functions on 3-dimensional flat space [8, 9]. The same ansatz has also been effec-

tive for N = 1, d = 5 supergravity with vector multiplets and non-Abelian gaugings [10],

but without Fayet-Iliopoulos terms, in which case the base space is again a 4-dimensional

hyperKähler space.

Recently [11] a similar ansatz was applied to the case of minimal d = 5 gauged su-

pergravity, where a U(1) subgroup of the SU(2) R-symmetry group is gauged by adding

a Fayet-Iliopoulos term to the bosonic action. In this case the base space is just Kähler,

instead of hyperKähler, and the ansatz consists in assuming that it admits a holomorphic

isometry. The metric of the base space can then be written in terms of two functions [12]

in a form that generalizes the Gibbons-Hawking metrics, and the problem of finding su-

persymmetric solutions is reduced to that of solving a system of fourth order differential

equations for these two functions plus a third one.

The aim of this paper is to apply the same ansatz in the case of N = 1, d = 5

supergravity with vector multiplets and Abelian Fayet-Iliopoulos gaugings, where a U(1)

subgroup of the SU(2) R-symmetry group is gauged with a linear combination of the vector

fields of the theory, in which case the base space is again Kähler.

The paper is organized as follows. Section 2 consists in a quick review of the theory

and the conditions to impose on the fields in order to obtain (timelike) supersymmetric

solutions. In section 3 we adapt the supersymmetry equations to the assumption that

the 4-dimensional Kähler base space of the solution admits a holomorphic isometry, after

writing the general form for a metric of this kind. In section 4, after making some ad-

ditional assumptions, we find several supersymmetric solutions for the special geometric

model ST[2, nv + 1] with an arbitrary number nv of vector multiplets. Among these are

three general classes of superficially asymptotically-AdS solutions2 that can be seen as

a generalization in the presence of vector multiplets of solutions found recently for pure

gauged supergravity [11]. They are studied in some detail in subsection 4.3, where the con-

served charges are computed for one of the families, and it is shown that they include as

particular cases black holes with compact or non-compact horizon, as well as static singular

solutions. In subsection 4.4 we give the explicit expression of the fields for supersymmetric

black holes not included in the solutions of subsection 4.3, despite being very similar to a

subcase of them. We conclude in section 5 with some final remarks.

1For a comprehensive review of supersymmetric solutions of supergravity theories with many references

see, e.g. ref. [5].
2By superficially asymptotically-AdS we mean that the metric components approach those of AdS in an

appropriate limit, which however does not guarantee that the solutions are globally asymptotically-AdS.
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2 Abelian gauged N = 1, d = 5 supergravity

In this section we give a brief description of the bosonic sector of a general theory of

N = 1, d = 5 supergravity coupled to nv vector multiplets in which a U(1) subgroup of the

SU(2) R-symmetry group has been gauged by the addition of Fayet-Iliopoulos (FI) terms.

The U(1) subgroup to be gauged and the gauge vector used in the gauging are determined

by the tensor PI
r, as we are going to explain.3 Our conventions are those in refs. [13, 14]

which are those of ref. [15] with minor modifications.

The supergravity multiplet is constituted by the graviton eaµ, the gravitino ψi
µ and the

graviphoton Aµ. All the spinors are symplectic Majorana spinors and carry a fundamental

SU(2) R-symmetry index. The nv vector multiplets, labeled by x = 1, . . . , nv consist of a

real vector field Ax
µ, a real scalar φx and a gaugino λi x.

It is convenient to combine the matter vector fields Ax
µ with the graviphoton Aµ ≡ A0

µ

into a vector (AI
µ) = (A0

µ, A
i
µ). It is also convenient to define a vector of functions of the

scalars hI(φ). N = 1, d = 5 supersymmetry requires that these nv + 1 functions of the nv

scalars satisfy a constraint of the form

CIJKhI(φ)hJ(φ)hK(φ) = 1 , (2.1)

where the constant symmetric tensor CIJK completely characterizes the ungauged theory

and the Special Real geometry of the scalar manifold. In particular, the kinetic matrix of

the vector fields aIJ(φ) and the metric of the scalar manifold gxy(φ) can be derived from

it as follows: first, we define

hI ≡ CIJKhJhK , ⇒ hIhI = 1 , (2.2)

and

hIx ≡ −
√
3hI ,x ≡ −

√
3
∂hI

∂φx
, hIx ≡ +

√
3hI,x , ⇒ hIh

I
x = hIhIx = 0 . (2.3)

Then, aIJ is defined implicitly by the relations

hI = aIJh
I , hIx = aIJh

J
x . (2.4)

It can be checked that

aIJ = −2CIJKhK + 3hIhJ . (2.5)

The metric of the scalar manifold gxy(φ), which we will use to raise and lower x, y

indices is (proportional to) the pullback of aIJ

gxy ≡ aIJh
I
xh

J
y = −2CIJKhIxh

J
yh

K . (2.6)

We will use the completeness relation

hIh
J + gxyhx Ihy

J = δI
J . (2.7)

3Although its origin is different, it can be understood as a particular example of embedding tensor.
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The FI gauging of any model of N = 1, d = 5 supergravity coupled to vector multiplets

is completely determined by the choice of PI
r, where r = 1, 2, 3 is a su(2) index. In the

Abelian case, this tensor can be factorized as follows:

PI
r = gcId

r ≡ gId
r , (2.8)

where g is the gauge coupling constant, dr (which we can normalize drdr = 1) chooses

a direction in S3 or, equivalently, a u(1) ⊂ su(2) to be gauged and cI (also normalized

cIcI = 1) dictates which linear combination of the vector fields, cIA
I
µ, acts as gauge field.

gI = gcI is a convenient combination of constants that we will use. We will not make any

specific choices for the time being.

The bosonic action is given in terms of aIJ , gxy and CIJK and PI
r

S =

∫

d5x
√
g

{

R+ 1
2gxy∂µφ

x∂µφy − V (φ)− 1
4aIJF

IµνF J
µν

+
CIJKεµνρσα

12
√
3
√
g

F I
µνF

J
ρσA

K
α

}

,

(2.9)

where the Abelian vector field strengths are F I
µν = 2∂[µA

I
ν] and the scalar potential V (φ)

is given by

V (φ) = −
(

4hIhJ − 2gxyhIxh
J
y

)

PI
r
PJ

r = −4CIJKhIPJ
r
PK

r . (2.10)

The equations of motion for the bosonic fields are

Gµν − 1
2aIJ

(

F I
µ
ρF J

νρ − 1
4gµνF

I ρσF J
ρσ

)

+1
2gxy

(

∂µφ
x∂νφ

y − 1
2gµν∂ρφ

x∂ρφy
)

+ 1
2gµνV = 0 , (2.11)

∇ν

(

aIJF
J νµ
)

+ 1
4
√
3

εµνρσα√
g

CIJKF J
νρF

k
σα = 0 , (2.12)

∇µ∂
µφx + 1

4g
xy∂yaIJF

I ρσF J
ρσ + gxy∂yV = 0 . (2.13)

2.1 Timelike supersymmetric solutions

The general form of the solutions of these theories admitting a timelike Killing spinor4 was

found in refs. [16–18]. In what follows we are going to review it using the notation and

results of ref. [14] in which general non-Abelian gaugings were considered,5 but restricting

to Abelian FI gaugings.

The building blocks of the timelike supersymmetric solutions are the scalar function

f̂ , the 4-dimensional spatial metric hmn,
6 an antiselfdual almost hypercomplex structure

Φ̂(r)
mn,

7 a 1-form ω̂m, the 1-form potentials ÂI
m and the scalars of the theory combined

4A timelike (commuting) spinor ǫi is, by definition, such that the real vector bilinear constructed from

it iVµ ∼ ǭiγµǫ
i is timelike.

5Even more general gaugings were considered in [19] with the inclusion of tensor multiplets.
6m,n, p = 1, · · · , 4 will be tangent space indices and m,n, p = 1, · · · , 4 will be curved indices. We are

going to denote with hats all objects that naturally live in this 4-dimensional space.
7That is: the 2-forms Φ̂(r)

mn r, s, t = 1, 2, 3 satisfy

Φ̂(r)mn = −
1

2
εmnpqΦ̂(r)

pq , or Φ̂(r) = − ⋆4 Φ̂
(r) , (2.14)

Φ̂(r)m
nΦ̂

(s)n
p = −δrsδmp + εrstΦ̂(t)m

p . (2.15)
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into the functions hI(φ). All these fields are defined on the 4-dimensional spatial manifold

usually called “base space”. They are time-independent and must satisfy a number of

conditions:

1. The antiselfdual almost hypercomplex structure Φ̂(r)
mn, the 1-form potentials ÂI

m

and the base space metric hmn (through its Levi-Civita connection) satisfy the

equation

∇̂mΦ̂(r)
np + εrstÂI

mPI
sΦ̂(t)

np = 0 . (2.16)

2. The selfdual part of the spatial vector field strengths F̂ I ≡ dÂI must be related to

the function f̂ , the 1-form ω̂ and the scalars of the theory by

hI F̂
I+ = 2√

3
(f̂dω̂)+ , (2.17)

3. while the antiselfdual part is related to the almost hypercomplex structure by8

F̂ I− = −2f̂−1CIJKhJPK
rΦ̂(r) . (2.19)

4. Finally, all the building blocks are related by the equation

∇̂2
(

hI/f̂
)

− 1

6
CIJK F̂ J · ⋆̂F̂K + 1

2
√
3

(

aIK − 2CIJKhJ
)

F̂K · (f̂dω̂)− = 0 , (2.20)

where the dots indicate standard contraction of all the indices of the tensors.

Once the building blocks that satisfy the above conditions have been found, the physical

5-dimensional fields can be built out of them9 as follows:

1. The 5-dimensional (conformastationary) metric is given by

ds2 = f̂ 2(dt+ ω̂)2 − f̂ −1hmndx
mdxn . (2.21)

2. The complete 5-dimensional vector fields are given by

AI = −
√
3hIe0 + ÂI , where e0 ≡ f̂(dt+ ω̂) , (2.22)

so that the spatial components are

AI
m = ÂI

m −
√
3hI f̂ ω̂m , (2.23)

and the 5-dimensional field strength is

F I = −
√
3d(hIe0) + F̂ I . (2.24)

8In this equation the indices of CIJK have been raised using the inverse metric aIJ and one has the

useful relations

CIJKhK = hIhJ −
1

2
gxyhI

xh
J
y =

3

2
hIhJ −

1

2
aIJ . (2.18)

9In the ungauged case the above conditions determine the quotients hI/f̂ from which f̂ can be found

by using the condition eq. (2.1).
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3. The scalar fields φx can be obtained by inverting the functions hI(φ) or hI(φ). A

parametrization which is always available is

φx = hx/h0 . (2.25)

As it has already been observed in refs. [16, 18] choosing dr = δr1 we see that eq. (2.16)

gives us additional information: it splits into

∇̂mΦ̂(1)
np = 0 , (2.26)

∇̂mΦ̂(2)
np = P̂mΦ̂(3)

np , (2.27)

∇̂mΦ̂(3)
np = −P̂mΦ̂(2)

np , (2.28)

where we have defined

P̂m ≡ gIÂ
I
m . (2.29)

The first equation means that the metric hmn is Kähler with respect to the complex

structure Ĵmn ≡ Φ̂(1)
mn. Taking this fact into account,10 the integrability condition of the

other two equations is11

R̂mn = −2∇̂[mP̂n] = −gI F̂
I
mn . (2.34)

This equation must be read as a constraint on the 1-form potentials ÂI
m posed by the

choice of base space metric.

Eq. (2.19) takes a simpler form as well:

F̂ I− = −2f̂−1CIJKhJgK Ĵ , ⇒
{

gI F̂
I− = 1

2 f̂
−1V (φ)Ĵ ,

hI F̂
I− = −2f̂−1gIh

I Ĵ .
(2.35)

Tracing the first of these equations and eq. (2.34) with Ĵmn one finds a relation between

the Ricci scalar of the base space metric, the scalar potential and the function f̂ :

R̂ = −2V/f̂ . (2.36)

10We use the integrability condition of eq. (2.26)

R̂mnpq = R̂mnrsĴ
r
pĴ

s
q , (2.30)

which leads to the relation between the Ricci and Riemann tensors

R̂mn = −
1

2
R̂mprqĴ

rqĴp
n . (2.31)

The Ricci 2-form, defined as

R̂mn ≡ R̂mpĴ
p
n , (2.32)

is, therefore, related to the Riemann tensor by

R̂mn =
1

2
R̂mnpqĴ

pq . (2.33)

11If Pm vanishes (for instance, in the ungauged case), then we have a covariantly constant hyper-Kähler

structure and, then, the base space is hyperKähler.
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The last equation to be simplified by our choice is eq. (2.20). Substituting in it

eq. (2.35) and using eqs. (2.18) and the completeness relation eq. (2.7) one finds

∇̂2
(

hI/f̂
)

− 1

6
CIJK F̂ J · ⋆̂F̂K +

1√
3
gI Ĵ · (dω̂) = 0 . (2.37)

In order to make progress one has to start making specific assumptions about the base

space metric. In the ungauged [8, 13] and the non-Abelian gauged cases [10] it has proven

very useful to assume that the base space metric has an additional isometry because, then,

it depends on a very small number of independent functions. Recently the same assumption

was made for pure gauged supergravity [11], where the base space can be a general Kähler

metric, allowing to reduce the problem of finding supersymmetric solutions to a system

of fourth order differential equations for three functions. In what follows we are going to

make the same assumption for the case at hand, in which vector multiplets are present, in

the attempt to simplify the task of finding supersymmetric solutions.

3 Timelike supersymmetric solutions of Abelian gauged N = 1, d = 5

supergravity with one additional isometry

Any four-dimensional Kähler metric with one holomorphic isometry can be written locally

as [12]:

ds2 = H−1 (dz + χ)2 +H
{

(dx2)2 +W 2[(dx1)2 + (dx3)2]
}

, (3.1)

with the functions H and W , and the 1-form χ, depending only on the three coordinates

xi and satisfying the constraints:

(dχ)12 = ∂3H ,

(dχ)23 = ∂1H ,

(dχ)31 = ∂2
(

W 2H
)

,

(3.2)

whose integrability condition is

D
2H ≡ ∂2

1H + ∂2
2

(

W 2H
)

+ ∂2
3H = 0 . (3.3)

In a frame defined by the Vierbein

e♯ = H−1/2 (dz + χ) , (3.4)

e2 = H1/2dx2 , (3.5)

e1,3 = H1/2Wdx1,3 , (3.6)

the conserved complex structure is given by

(Ĵmn) =

(

02×2 12×2

−12×2 02×2

)

. (3.7)

The Ricci tensor and Ricci scalar of the 4-dimensional metric can be expressed in terms of

the functions H and W 2 in a compact form,

R̂mn = ∇̂m∇̂n logW + Ĵm
pĴn

q∇̂p∇̂q logW , R̂ = ∇̂2 logW 2 , (3.8)

– 7 –
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where the 4-dimensional Laplacian acts on z-independent functions as

∇̂2f = H−1∇2
f =

1

HW 2

[

∂2
1f + ∂2

(

W 2∂2f
)

+ ∂2
3f
]

, (3.9)

and ∇2
is the Laplacian operator associated with the 3-dimensional metric

ds23 = (dx2)2 +W 2[(dx1)2 + (dx3)2] . (3.10)

The expression for the Ricci scalar should be compared with eq. (2.36).

We will take the base space metric hmndx
mdxn to be of the form (3.1), and we will

make the identification Φ̂(1) = Ĵ . We can solve for P̂m in eqs. (2.27) and (2.28) if we choose

a particular form for the complex structures Φ̂(2,3). Without loss of generality they can be

chosen to be

(Φ̂(2)
mn) =

(

iσ2 02×2

02×2 −iσ2

)

, (Φ̂(3)
mn) =

(

02×2 −iσ2
−iσ2 02×2

)

, (3.11)

where σ2 is the second Pauli matrix

σ2 =

(

0 −i

i 0

)

. (3.12)

Then we find that the flat components of P can be written in the compact form

P̂m = Ĵm
n ∂n logW . (3.13)

On the other hand, recalling the definition of P̂m eq. (2.29) we find for the gauge vector

and its field strength

gIÂ
I
m = Ĵm

n ∂n logW , (3.14)

gI F̂
I
mn = −Rmn = −2∇̂[m|∇̂p logWĴp

|n] . (3.15)

Every (anti-)selfdual 2-form F± on the four dimensional Kähler base space can be

written in terms of a 1-form living on the 3-dimensional space ϑ = ϑidx
i as

F± = (dz + χ) ∧ ϑ±H ⋆3 ϑ . (3.16)

The 2-forms we consider here are also z-independent and so will the components of the

corresponding 1-forms be. Thus, we introduce the z-independent 3-dimensional 1-forms

ΛI , ΣI , Ω± defined by

F̂ I+ = −1

2
(dz + χ) ∧ ΛI − 1

2
H ⋆3 Λ

I , (3.17)

F̂ I− = −1

2
(dz + χ) ∧ ΣI +

1

2
H ⋆3 Σ

I , (3.18)

(dω̂)± = (dz + χ) ∧ Ω± ±H ⋆3 Ω
± , (3.19)

– 8 –
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Comparing the expression of F̂ I− with eq. (2.35) and those of hI F̂
I+ and (dω)+ with

eq. (2.17) we conclude that

ΣI = 4f̂−1CIJKhJ gK dx2 , (3.20)

Ω+ = −
√
3

4
f̂−1hIΛ

I . (3.21)

Requiring the closure of the 2-forms F̂ I = F̂ I+ + F̂ I− one gets

d
(

ΛI +ΣI
)

= 0 , (3.22)

which means that, locally,

ΛI = d
(

KI/H
)

− ΣI , (3.23)

for some functions KI .

From the same condition, using eq. (3.3) and the definition of the operator D2 in that

equation, one also gets

D
2KI = 2 ∂2

(

HW 2ΣI
2

)

. (3.24)

Using eq. (3.15) and its full contraction with Ĵ one finds

2gIΣ
I
2 = ∇̂2 logW 2 , gIK

I = ∂2 logW
2 , (3.25)

where an integration constant reflecting the possibility of adding to the solutions KI of

eq. (3.24) solutions of the homogeneous equation has been set to zero without loss of

generality, since from (3.23) it is clear that the KI ’s are defined up to a constant times H.

Using these relations, eq. (3.24) contracted with gI is automatically satisfied, leaving nV

independent equations.

It is convenient to rewrite ω̂ as

ω̂ = ωz (dz + χ) + ω , ω = ωidx
i , (3.26)

in terms of which

Ω± = ±1

2
H−1 (ωz ⋆3 dχ+ ⋆3dω)−

1

2
dωz . (3.27)

From eqs. (3.21) and (3.23) we find that

Ω+ = −
√
3

4

hI

f̂

[

d
(

KI/H
)

− ΣI
]

, (3.28)

and, then, from eq. (3.27) we find that

Ω− = −Ω+ − dωz =

√
3

4

hI

f̂

[

d
(

KI/H
)

− ΣI
]

− dωz . (3.29)

Using either of the last two equations in eq. (3.27) one gets an equation for ω:

dω = H ⋆3 dωz − ωzdχ−
√
3

2

hI

f̂
H ⋆3

[

d
(

KI/H
)

− ΣI
]

. (3.30)

– 9 –
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Before calculating its integrability condition it is convenient to make a change of

variables (identical to the one made in the ungauged case) to (partially) “symplectic-

diagonalize” the right-hand side. Thus, we define LI and M through

hI/f̂ ≡ LI +
1
12CIJKKJKK/H ,

ωz ≡ M +
√
3
4 LIK

I/H + 1
24

√
3
CIJKKIKJKK/H2 .

(3.31)

Substituting these two expressions into eq. (3.30) and using the relation between the

1-form χ and the functions H and W , eqs. (3.2), the equation for ω takes the form12

dω = ⋆3

{

HdM −MdH +

√
3

4

(

KIdLI − LIdK
I
)

−H
(

ωz∂2 logW
2 − 2

√
3hIgI f̂

−2
)

dx2
}

,

(3.32)

and its integrability equation is just13

H∇2
M −M∇2

H +

√
3

4

(

KI∇2
LI − LI∇2

KI
)

− 1

W 2
∂2

{

HW 2
(

ωz∂2 logW
2 − 2

√
3hIgI f̂

−2
)}

= 0 .

(3.33)

This equation can be simplified by using the equations satisfied by the functions H and

KI (3.3) and (3.24), respectively. We postpone doing this until we derive the equation for

the functions LI , which follows from eq. (2.37). First of all, observe that, with our choice

of complex structure eq. (3.7)

Ĵ · (dω̂) = 4(dω̂)−02 = 4Ω−
2 =

√
3
hI

f̂

[

∂2
(

KI/H
)

− ΣI
2

]

− ∂2ωz . (3.34)

On the other hand, we have

∇̂2
(

hI/f̂
)

=
1

H
∇2
(

hI/f̂
)

,

F̂ J · ⋆̂F̂K = ΛJ
mΛK

m − ΣJ
mΣK

m = ∂m
KJ

H
∂m

KK

H
− 2∂m

K(J

H
ΣK)
m , (3.35)

CIJKH∂m
KJ

H
∂m

KK

H
= CIJK

[

∇2
(

KJKK

2H

)

+
KJKK

2H2
∇2

H − KJ∇2
KK

H

]

,

and, using all these partial results into eq. (2.37), and (not everywhere, for the sake of

simplicity) the new variables eqs. (3.31), we arrive at

∇2
LI − CIJK

[

1

12

KJKK

H2
∇2

H +
1

6

KJ∇2
KK

H
+

1

3
H∂2

(

KJ/H
)

ΣK
2

]

+gIH

{

hL

f̂

[

∂2(K
L/H)− ΣL

2

]

− 4√
3
∂2ωz

}

= 0 .

(3.36)

12We have left one ωz in order to get a more compact expression.
13One has ⋆3d ⋆3 d = ∇

2
.
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We can now use the relation between the 3-dimensional Laplacian and the D2 operator

and the equations for the functions H and KI (3.3) and (3.24)

∇2
H =

D
2H

W 2
− ∂2H

∂2W
2

W 2
−H

∂2
2W

2

W 2
= −∂2H

∂2W
2

W 2
−H

∂2
2W

2

W 2
,

∇2
KI =

D
2KI

W 2
− ∂2K

I ∂2W
2

W 2
−KI

∂2
2W

2

W 2

=
2

W 2
∂2(HW 2ΣI

2)− ∂2K
I ∂2W

2

W 2
−KI

∂2
2W

2

W 2
,

(3.37)

and the equation for LI becomes

∇2
LI +

CIJK

3W 2
∂2

(

W 2KJΣK
2 − 1

4
H−1KJKK∂2W

2

)

+gIH

{

hL

f̂

[

∂2(K
L/H)− ΣL

2

]

− 4√
3
∂2ωz

}

= 0 .

(3.38)

This equation, once substituted in eq. (3.33), gives

∇2
M = − CIJK

48
√
3W 2

∂2
(

H−2KIKJKK∂2W
2
)

+
CIJK

8
√
3
H−1KIKJ∂2Σ

K
2

−
√
3

2
ΣI
2∂2LI −

√
3

4

∂2W
2

W 2
ΣI
2

(

LI −
1

12
CIJKKJKK/H

)

.

(3.39)

3.1 Summary

In this subsection we summarize for convenience the recipe to find a solution. One has to

solve the system of equations given by (3.3), (3.24), (3.38) and (3.39),

D
2H ≡ ∂2

1H + ∂2
2

(

W 2H
)

+ ∂2
3H = 0 , (3.40)

D
2KI = 2 ∂2

(

HW 2ΣI
2

)

, (3.41)

∇2
LI +

CIJK

3W 2
∂2

(

W 2KJΣK
2 − 1

4
H−1KJKK∂2W

2

)

+ gIH

{

hL

f̂

[

∂2(K
L/H)− ΣL

2

]

− 4√
3
∂2ωz

}

= 0 , (3.42)

∇2
M = − CIJK

48
√
3W 2

∂2
(

H−2KIKJKK∂2W
2
)

+
CIJK

8
√
3
H−1KIKJ∂2Σ

K
2

−
√
3

2
ΣI
2∂2LI −

√
3

4

∂2W
2

W 2
ΣI
2

(

LI −
1

12
CIJKKJKK/H

)

, (3.43)

with hI

f̂
and ωz given by (3.31),

hI/f̂ ≡ LI +
1

12
CIJKKJKK/H ,

ωz ≡ M +

√
3

4
LIK

I/H +
1

24
√
3
CIJKKIKJKK/H2 , (3.44)
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for the functions H, W 2, KI , ΣI
2, LI and M while imposing the constraints (3.20)

and (3.25),

ΣI = 4f̂−1CIJKhJ gK dx2 , (3.45)

2gIΣ
I
2 = ∇̂2 logW 2 , gIK

I = ∂2 logW
2 . (3.46)

This is still a very difficult problem, in particular because the constraint (3.45) involves

the symmetric tensor CIJK with raised indices, which in general is not constant and cannot

be written in a simple way in terms of, for instance, the functions hI

f̂
.

To simplify the task one could assume that CIJK is constant, as is the case for several

interesting models, in which case (3.45) and (3.44) allow to write ΣI
2 in terms of H, KI

and LI . One could then proceed as follows: first choose two functions H and W 2 solving

equation (3.40), which amounts to choosing a base space, and subsequently solve the system

of second order equations given by (3.41), (3.42) and (3.43) for KI , LI and M , subject to

the algebraic constraints (3.46).

Once all these functions are known, eq. (3.44) gives hI

f̂
and ωz, equations (3.2)

and (3.30) can be integrated to give respectively χ and ω, ω̂ is given by (3.26) and f̂ can be

obtained from the functions hI

f̂
using the special geometric constraint CIJKhIhJhK = 1.

At this point one has all the ingredients to write explicitly the metric (2.21), the scalar

fields (2.25) and the gauge field strengths (2.24), using equations (3.17), (3.18) and (3.23).

4 Solutions

4.1 Ansatz

Assume14 for simplicity that H only depends on the ̺ coordinate, H = H(̺), and that W 2

factorizes as W 2 = Ψ(̺)Φ(x1, x3). Then from (3.40)

H =
a̺+ b

Ψ
. (4.1)

We will also assume a 6= 0,15 in which case one can set a = 1 and b = 0 by shifting and

rescaling the coordinate ̺, so that

H =
̺

Ψ
. (4.2)

Inspired by the pure supergravity case [11] we will take Ψ to be a third order polynomial

in ̺. In particular eq. (3.46), which implies

gIK
I =

∂̺Ψ

Ψ
, (4.3)

14In what follows we will rename the coordinate x2 to ̺, both for improved readability and for the natural

interpretation as “radial” coordinate.
15For pure supergravity taking a = 0 leads to Gödel-like solutions [11]. We expect that for the

ST[2, nv + 1] model we will be considering in this paper, which admits a truncation to pure supergrav-

ity, this choice would give a generalization of those solutions. We will leave the study of this possibility for

future work.
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suggests to introduce nv + 1 polynomials

ΨI ≡
3
∑

n=0

cn
I̺n (4.4)

such that Ψ = gIΨ
I and

KI =
∂̺Ψ

I

Ψ
. (4.5)

Eq. (3.41) can be integrated to give

ΣI
2 =

1

2̺

(

−αI + ∂2
̺Ψ

I
)

, (4.6)

where αI are integration constants, which we will take to be independent of x1 and x3.

Eq. (3.46) implies then that Φ must be a solution of Liouville’s equation

(

∂2
1 + ∂2

3

)

log Φ = −2kΦ , (4.7)

with k given by

2k = gIα
I . (4.8)

It is possible to choose without loss of generality k = 0,±1 and

Φ = Φ(k) ≡
4

{1 + k [(x1)2 + (x3)2]}2
. (4.9)

Equation (3.2) then determines χ up to a closed 1-form,

dχ = Φ dx3 ∧ dx1 =⇒ χ = χ(k) ≡
2
(

x3dx1 − x1dx3
)

1 + k [(x1)2 + (x3)2]
. (4.10)

We now focus our attention on special geometric models for which the totally symmetric

tensor with raised indices CIJK is constant.16 Comparing the expression for ΣI in (4.6)

with the one in (3.45) it seems a natural choice to introduce nv +1 first order polynomials

in ̺, QI , such that
hI

f̂
=

QI

8̺
, QI ≡ q0I + q1I̺ , (4.11)

with eq. (4.6) implying the constraints

c3
I =

1

6
CIJKgJq1K

c2
I =

1

2

(

αI + CIJKgJq0K
)

. (4.12)

One can then, after computing the functions LI from the definition (3.44), use equa-

tion (3.42) to obtain an expression for ∂̺M . Since the expression must be the same for

16This is the case for instance when the scalar manifold is a symmetric space.
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each of the nv + 1 equations (one for each value of I), the following proportionality condi-

tions must be met:

CIJKc3
Jc3

K ∝ gI

4CIJKc3
J(αK − 2c2

K) + gJc3
Jq0I ∝ gI

4CIJK(αJ − 2c2
J)c1

K + 3gJc1
Jq0I ∝ gI

2CIJKc1
Jc1

K − 3gJc0
Jq0I ∝ gI . (4.13)

After this, all that remains to do is to substitute ∂̺M in eq. (3.43) (we also assume for

simplicity M = M(̺)) and solve the resulting algebraic equation.

4.2 Solutions for the ST[2, nv + 1] model

In order to find explicit solutions we will consider a specific model, namely the ST[2, nv + 1]

model defined by

C0xy = C0xy =

√
3

2
ηxy , (4.14)

where x, y = 1, . . . , nv, ηxy is the Minkowski nv-dimensional metric, and the other compo-

nents of CIJK vanish. This model reduces to pure supergravity for nv = 1 and h1 = h0,

and includes as a special case the STU model for nv = 2. In what follows x-type indices

will be raised and lowered with ηxy and their contraction will be denoted by a dot (e.g.

g ·c1 ≡ gxc1
x). The constraints (4.12) become

c3
0 = 1

4
√
3
g ·q1 c3

x = 1
4
√
3
(gxq10 + g0q1

x)

c2
0 = α0

2 +
√
3
4 g ·q0 c2

x = αx

2 +
√
3
4 (gxq00 + g0q0

x) .
(4.15)

The conditions (4.13) and equation (3.43) are satisfied for an arbitrary choice of gauging

constants gI only if one of the following sets of conditions is met:

1. q00 =
√
3
4

gIc0
I

(c10)2
q0 ·q0 , c1

x =
√
3
2

gIc0
I

c10
q0

x , q1x = q10
g0

gx

2. q1x = q10
g0

gx , c1
0 = g ·q0 = g ·c1 = q0 ·c1 = c1 ·c1 = gIc0

I = 0

3. q1x = − q10
g0

gx , q0I = 0 ∀I , c1
x = 0 ∀x

4. q1x = − q10
g0

gx , q0I = 0 ∀I , c1
0 = c1 ·c1 = 0

5. q1 ·q1 = −( q10g0
)2 g ·g , g ·q1 = 0 , q0I = 0 ∀I , c1

x = 0 ∀x

6. q1 ·q1 = −( q10g0
)2 g ·g , g ·q1 = 0 , q0I = 0 ∀I , c1

0 = c1 ·c1 = 0

7. q00 =
√
3
4

gIc0
I

(c10)2
q0 ·q0 , c1x =

√
3
2

gIc0
I

c10
q0

x , q10 = g ·q0 = g ·q1 = q0 ·q1 = q1 ·q1 = 0

8. q10 = c1
0 = g ·q0 = g ·q1 = q0 ·q1 = q1 ·q1 = g ·c1 = q0 ·c1 = c1 ·c1 = gIc0

I = 0

For special choices of the gauging there are some other possibilities.
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If g ·g = 0:

1. q00 =
√
3
4

gIc0
I

(c10)2
q0 ·q0 , c1

x =
√
3
2

gIc0
I

c10
q0

x , q1x = βgx

2. q00 =
√
3
4

gIc0
I

(c10)2
q0 ·q0 , c1

x =
√
3
2

gIc0
I

c10
q0

x , g ·q0 = g ·q1 = q0 ·q1 = q1 ·q1 = 0

3. c1
0 = g ·q0 = g ·q1 = q0 ·q1 = q1 ·q1 = g ·c1 = q0 ·c1 = c1 ·c1 = gIc0

I = 0

If g0 = 0:

1. q00 =
√
3
4

g·c0
(c10)2

q0 ·q0 , c1
x =

√
3
2

g·c0
c10

q0
x , q10 = 0

2. q10 = c1
0 = g ·q0 = g ·c1 = q0 ·c1 = c1 ·c1 = g ·c0 = 0

If g0 = g ·g = 0:

1. q00 =
√
3
4

g·c0
(c10)2

q0 ·q0 , c1
x =

√
3
2

g·c0
c10

q0
x

2. c1
0 = g ·q0 = g ·c1 = q0 ·c1 = c1 ·c1 = g ·c0 = 0

If gx = 0 ∀x:

1. q00 =
√
3
4

g0c00

(c10)2
q0 ·q0 , c1

x =
√
3
2

g0c00

c10
q0

x

2. c1
0 = q0 ·c1 = c1 ·c1 = c0

0 = 0

The function f̂ can be computed from (4.11) using the special geometric con-

straint (2.1), giving

f̂−1 =
3
√

CIJKQIQJQK

8̺
=

√
3

8̺

[

1

2
(q00 + q10̺)

(

q0 ·q0 + 2q0 ·q1̺+ q1 ·q1̺2
)

]1/3

. (4.16)

We are interested in particular in asymptotically anti-de Sitter solutions. Given that the

line element of AdS5 (with radius ℓ) can be written in standard supersymmetric form as [11]

ds2 =

[

dt+
2

ℓ
̺
(

dz + χ(k)

)

]2

− ̺

(

k +
4

ℓ2
̺

)

(

dz + χ(k)

)2

− d̺2

̺
(

k + 4
ℓ2
̺
) − ̺Φ(k)

[

(dx1)2 + (dx3)2
]

,

(4.17)

one expects that for such solutions as ̺ → ∞ f̂ tends to a constant and Ψ diverges like ̺3.

These conditions translate to

q10 q1 ·q1 6= 0 and gIc3
I =

1

4
√
3
(2g0g ·q1 + q10g ·g) 6= 0 , (4.18)

excluding all the solutions above except the first six for arbitrary gauging. Out of these,

however, only the first two are actually asymptotically AdS, at least locally, since in the

other cases ωz does not present the correct behavior, being proportional to ̺−1 (one can

also check that their scalar curvature does not tend to a constant as ̺ → ∞). In the

following we will analyze some properties of these two cases.
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4.3 Case 1

We will now analyze in detail the solutions with parameters satisfying the conditions

q00 =

√
3

4

gIc0
I

(c10)2
q0 ·q0 , c1

x =

√
3

2

gIc0
I

c10
q0

x , q1x =
q10
g0

gx . (4.19)

The functions f̂ and Ψ become

f̂−1=

√
3

8̺

[

1

2

(√
3

4

gIc0
I

(c10)2
q0 ·q0 + q10̺

)(

q0 ·q0 + 2
q10
g0

g ·q0 ̺+
(

q10
g0

)2

g ·g ̺2
)]1/3

, (4.20)

Ψ =

√
3

4
q10g ·g ̺3 +

[

k +

√
3

4

(

2g0g ·q0 +
√
3

4

gIc0
I

(c10)2
q0 ·q0g ·g

)]

̺2

+

(

g0c1
0 +

√
3

2

gIc0
I

c10
g ·q0

)

̺+ gIc0
I , (4.21)

while ωz can be obtained from eq. (3.44) after integrating ∂̺M ,

ωz =
3

64

(

q0 ·q0
gIc0

I

c10
1

̺2
+

(q10)
2

g0
g ·g ̺

)

+ d

+

(

q0 ·q0 +
4√
3

q10
g0

c1
0

)(

2g0 +
√
3
gIc0

I

(c10)2
g ·q0

)

3

256̺

(4.22)

where d is an arbitrary constant, and ω from eq. (3.30)

ω =

[

3

64

q10
g0

(

2g0g ·q0 +
√
3

4

gIc0
I

(c10)2
q0 ·q0g ·g

)

− d

]

χ(k) . (4.23)

Since ω is of the form ω̃χ with ω̃ constant, it is always possible to reabsorb ω in ωz with a

shift in the t coordinate, t → t+ ω̃z, leading to ω = 0 and

ωz =
3

64̺2

[

(q10)
2

g0
g ·g ̺3 + q10

g0

(

2g0g ·q0 +
√
3

4

gIc0
I

(c10)2
q0 ·q0g ·g

)

̺2

+

(

q0 ·q0 +
4√
3

q10
g0

c1
0

)(

2g0 +
√
3
gIc0

I

(c10)2
g ·q0

)

̺

4
+ q0 ·q0

gIc0
I

c10

]

.

(4.24)

The full solution is invariant under the rescaling t → t/α, ̺ → α̺, q10 → q10/α,

c1
I → αc1

I , c0
I → α2c0

I . Since we are assuming q10 6= 0 we can use this freedom to set

q10 =
8√
3
g0ℓ , (4.25)

where we introduced for convenience the constant ℓ defined by17

ℓ3g0 g ·g = 2 , (4.26)

so that f̂ → 1 for ̺ → ∞.

17The solutions presented here are superficially asymptotically AdS5, with AdS radius |ℓ|.

– 16 –



J
H
E
P
0
7
(
2
0
1
7
)
0
5
9

The line element is then

ds2 = f̂2
[

dt+ ωz

(

dz + χ(k)

)]2

− f̂−1

{

Ψ

̺

(

dz + χ(k)

)2
+

̺

Ψ
d̺2 + ̺Φ(k)

[

(dx1)2 + (dx3)2
]

}

,
(4.27)

with

f̂−3 =

(

1 +
3

32g0ℓ

gIc0
I

(c10)2
q0 ·q0
̺

)

(

1 +

√
3

4g ·gℓ
g ·q0
̺

+
3

64g ·gℓ2
q0 ·q0
̺2

)

, (4.28)

Ψ =
4

ℓ2
̺3 +

[

k +

√
3

4

(

2g0g ·q0 +
√
3

4

gIc0
I

(c10)2
q0 ·q0g ·g

)]

̺2

+

(

g0c1
0 +

√
3

2

gIc0
I

c10
g ·q0

)

̺+ gIc0
I , (4.29)

ωz =
2

ℓ
̺+

3

64̺2

[

8ℓ√
3

(

2g0g ·q0 +
√
3

4

gIc0
I

(c10)2
q0 ·q0g ·g

)

̺2

+

(

q0 ·q0 +
32ℓ

3
c1

0

)(

2g0 +
√
3
gIc0

I

(c10)2
g ·q0

)

̺

4
+ q0 ·q0

gIc0
I

c10

]

. (4.30)

Using the parametrization (2.25) the physical scalars are given by

φx =
hx
h0

=
hx/f̂

h0/f̂
=

8gxℓ̺+
√
3q0x

8g0ℓ̺+
3
4
gIc0I

(c10)2
q0 ·q0

. (4.31)

The full gauge potentials are given, according to eq. (2.22), by

AI = −
√
3hI f̂

[

dt+ ωz

(

dz + χ(k)

)]

+ ÂI , (4.32)

where the 4-dimensional part ÂI can be obtained from (3.17), (3.18), (3.23),

Â0 =

(

g ·gℓ̺+
√
3

4
g ·q0 +

1

2

c1
0

̺

)

(

dz + χ(k)

)

, (4.33)

Âx =

(

2g0g
xℓ̺+

3

16

gIc0
I

(c10)2
q0 ·q0gx +

√
3

4
g0q0

x +

√
3

4

gIc0
I

c10
q0

x

̺

)

(

dz + χ(k)

)

, (4.34)

while since hI = CIJKhJhK ,18

h0f̂ =
8̺√

3(8g0 ℓ̺+
3
4
gIc0I

(c10)2
q0 ·q0)

, hxf̂ =
16̺√
3

8gxℓ̺+
√
3q0

x

(8gyℓ̺+
√
3q0y)2

. (4.35)

Pure supergravity is recovered by choosing gx = g0δ
1
x, q0x = q00δ

1
x and q1x = q10δ

1
x.

With this choice one recovers the class of asymptotically AdS solutions of minimal gauged

N = 1, d = 5 supergravity found in [11].

For each value of k the solutions are determined by nv + 2 parameters, q0x, c1
0 and

gIc0
I . The metric however only depends on the q0x’s through the combinations g ·q0 and

q0·q0, so it is always determined by four parameters, independently of the number of vector

multiplets nv.

18Note that here hx 6= ηxyhy.
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4.3.1 Supersymmetric black holes

If an event horizon exists, it must be situated in ̺ = 0, where f̂ = 0 and the supersymmetric

Killing vector ∂t becomes null. Since f̂ , H and ωz only depend on ̺, it is possible to perform

a coordinate change such that

dt = du−Hf̂−1(f̂−1H−1 − f̂2ωz
2)1/2d̺ , (4.36)

dz = dv − f̂Hωz

(f̂−1H−1 − f̂2ωz
2)1/2

d̺ , (4.37)

after which the metric takes the form

ds2 = f̂2du2 − 2dud̺

(f̂−1H−1 − f̂2ωz
2)1/2

+ 2f̂2ωzdu(dv + χ(k))

− (f̂−1H−1 − f̂2ωz
2)(dv + χ(k))

2 − ̺

f̂
dΩ2

(2,k) .
(4.38)

The combination (f̂−1H−1 − f̂2ωz
2) tends to a constant in the limit ̺ → 0, so the hyper-

surface ̺ = 0 is null, and is thus a Killing horizon, if f̂2ωz goes to zero. The only possibility

to satisfy this condition without giving rise to singularities is to take the scaling limit

gIc0
I =

4√
3

q00
q0 ·q0

(c1
0)2 , c1

0 → 0 , (4.39)

in which case the functions that determine the metric become

f̂−3 =

(

1 +

√
3

8g0ℓ

q00
̺

)(

1 +

√
3

4g ·gℓ
g ·q0
̺

+
3

64g ·gℓ2
q0 ·q0
̺2

)

, (4.40)

Ψ = ̺2

[

4

ℓ2
̺+ k +

√
3

4
(2g0g ·q0 + q00g ·g)

]

, (4.41)

ωz =
2

ℓ
̺+

3

64̺

[

8ℓ√
3
(2g0g ·q0 + q00g ·g) ̺+

1

2
(g0q0 ·q0 + 2q00g ·q0)

]

. (4.42)

For k = 1 these are the supersymmetric black holes of [17] with the choice (4.14), while for

k = 0 and k = −1 one gets a generalization of the black holes with non-compact horizon

found in [11] for pure gauged supergravity.

For them to be regular, any curvature singularity should lie behind the horizon ̺ = 0.

Since the curvature scalars diverge when f̂−3 vanishes, then the zeroes of (4.40) must be

negative, which translates to the conditions

q00 g ·g > 0 , q0 ·q0 g ·g > 0 , (4.43)

and either

(g ·q0)2 < q0 ·q0 g ·g , (4.44)

in which case there is only one real root, or

(g ·q0)2 ≥ q0 ·q0 g ·g and g ·q0 g0 > 0 , (4.45)
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in which case all roots are negative. Further constraints on the parameters come from the

requirement

f̂−1H−1 − f̂2ωz
2 > 0 , (4.46)

that also implies H > 0.

The near horizon geometries of these black holes are themselves supersymmetric solu-

tions and are included in the class of solutions we presented. They can be obtained from

equations (4.20), (4.21) and (4.24) by taking the limit (4.39) and choosing q10 = 0. They

are analogous to the three near horizon geometries obtained in [20] for pure supergravity,

in particular one can easily see from (4.38) that dimensional reduction along v gives the

geometries AdS2 × S2, AdS2 × H
2 or AdS2 × E

2, and that the horizon geometry is given

by a homogeneous Riemannian metric on the group manifolds SU(2) (in which case the

metric is that of a squashed S3), SL(2,R) or Nil respectively for k = 1, −1 or 0. The

entropy density is

s(k) =
A(k)

3πV(k)
=

1

3π

√
3

32

{

√
3 q00 q0 ·q0

[

k +

√
3

4
(2g0g ·q0 + q00g ·g)

]

− 3

16
(g0q0 ·q0 + 2q00g ·q0)2

}1/2

,

(4.47)

where A(k) is the area of the horizon and

V(k) ≡
∫

Φ(k)dv ∧ dx1 ∧ dx3 , (4.48)

so that the entropy for the k = 1 case is S(1) = 16π2s(1), in agreement with the horizon

area computation in [17].

4.3.2 Conserved charges

For k = 1 the class of solutions we presented is asymptotically globally AdS5 according to

the definition given by Ashtekar and Das in [21].19 It is then possible to use the prescription

in the same paper20 to compute the AD mass and angular momenta.

The mass is the conserved charge associated with the timelike Killing vector field

V =
∂

∂t
+

2

ℓ

∂

∂z
. (4.49)

This is the correct vector rather than the one associated with supersymmetry, since in

coordinates adapted to V the metric of AdS5, and in particular the metric on the conformal

boundary, is written in static form. The value of the mass is

M =
g0ℓ

2

2
√
3
g ·q0 +

1

8g0ℓ

gIc0
I

(c10)2
q0 ·q0

+
3

32ℓ

(

q0 ·q0 −
32ℓ

3
c1

0

){

2g0 +
gIc0

I

(c10)2

[√
3g ·q0 +

1

ℓ3

(

q0 ·q0 −
32ℓ

3
c1

0

)]}

.

(4.50)

19See [11] for a discussion of the asymptotics of a similar class of solutions in pure gauged supergravity.
20The Ashtekar-Das paper extends to higher dimensions the original four-dimensional results obtained

in an earlier paper by Ashtekar and Magnon [22]. The formalism is thus sometimes referred to as AMD

(Ashtekar-Magnon-Das) formalism.
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Before computing the angular momenta, we perform the coordinate change

z = ψ + ϕ+
2

ℓ
t , x1 = tan

θ

2
cosϕ , x3 = tan

θ

2
sinϕ , (4.51)

so that

dz + χ(1) = dψ + cos θdϕ+
2

ℓ
dt , dΩ2

(2,1) = dθ2 + sin2 θdϕ2 . (4.52)

The angular momenta are the conserved charges associated with the Killing vectors ∂ϕ and

∂ψ. They are

Jϕ = 0 , (4.53)

Jψ =
1

64

(

q0 ·q0 −
32ℓ

3
c1

0

)[

3

ℓ3
gIc0

I

(c10)2

(

q0 ·q0 −
32ℓ

3
c1

0

)

+ 2

(

2g0 +
√
3
gIc0

I

(c10)2
g ·q0

)]

.

(4.54)

The electric charges, defined by

QI =
1

8πG

∫

S3
∞

aIJ ∗ F J (4.55)

are

Q0 =
1

128

[

g0

(

q0 ·q0 −
32ℓ

3
c1

0

)(

2g0 −
√
3
gIc0

I

(c10)2
g ·q0

)

− 4
gIc0

I

(c10)2
q0 ·q0

]

, (4.56)

Qx = − 1

128

{(

q0 ·q0 −
32ℓ

3
c1

0

)[

2g0gx −
√
3
gIc0

I

(c10)2
(gxg ·q0 − g ·gq0x)

]

+
16√
3
q0x

}

. (4.57)

It is straightforward to verify that the following BPS condition, obtained in [17] for

the black hole limit of the solutions, is satisfied for all values of the parameters:

M− 2

ℓ
|J | = 4ℓ|g̃IQI | (4.58)

where we have defined

g̃I ≡ lim
̺→∞

aIJgJ ⇒ g̃0 =
1

g0ℓ2
, g̃x =

2

ℓ2
gx

g ·g . (4.59)

4.3.3 Static solutions

With the choice c1
0 = 3

32ℓq0 ·q0 the functions Ψ and ωz can be expressed in a simple way

in terms of f̂ ,

Ψ =
4

ℓ2
̺3f̂−3 + k̺2 , (4.60)

ωz =
2

ℓ
̺f̂−3 , (4.61)

with f̂ given by

f̂−3 =
27

2
H0H·H , (4.62)
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where

HI ≡ ℓ

3
gI −

QI

̺
(4.63)

and the QI ’s, that for k = 1 are the electric charges (4.56) and (4.57), are

Q0 = −32ℓ2

9

gIc0
I

q0 ·q0
, Qx = − q0x

8
√
3
. (4.64)

The gauge potentials and scalar fields can also be written in a simple way in terms of the

functions HI ,

A0 = − dt

3H0
Ax = −2

3

Hx

H·Hdt φx =
Hx

H0
. (4.65)

For k = ±1 it is possible to remove from the metric the cross term proportional to

dt(dz + χ) by performing a simple shift in the z coordinate, z = ψ + 2
ℓk t, and rewrite the

solutions as

ds2 =
f̂2

k

(

k +
4

l2
̺f̂−3

)

dt2 − d̺2

̺f̂
(

k + 4
l2
̺f̂−3

) − ̺

f̂

[

k
(

dψ + χ(k)

)2
+ dΩ2

(2,k)

]

. (4.66)

Note that these coordinates are static for k = 1 but not for k = −1, since in that case the

time coordinate is actually ψ, while t is spatial. However the metric can still be rewritten

in static form making first the coordinate change

ψ = ψ̃ − ϕ , x1 = tanh
θ

2
cosϕ , x3 = tanh

θ

2
sinϕ , (4.67)

so that

dψ + χ(−1) = dψ̃ − cosh θdϕ , dΩ2
(2,−1) = dθ2 + sinh2 θdϕ2 , (4.68)

followed by a second change,

ψ̃ = α+ β , ϕ = α− β , θ = 2ϑ , (4.69)

after which it takes the form

ds2 =− f̂2

(

−1 +
4

l2
̺f̂−3

)

dt2 − d̺2

̺f̂
(

−1 + 4
l2
̺f̂−3

)

− 4̺

f̂

(

− cosh2 ϑdβ2 + dϑ2 + sinh2 ϑdα2
)

.

(4.70)

For k = 1 one can see that substituting the chosen value of c1
0 in (4.54) the angular

momentum vanishes as expected. In this case the three-dimensional part of the metric

contained in the square brackets is just the metric of a 3-sphere, with the coordinate

change

ψ = ψ̃ + ϕ , x1 = tan
θ

2
cosϕ , x3 = tan

θ

2
sinϕ , (4.71)

one has

(

dψ + χ(1)

)2
+ dΩ2

(2,1) = 4dΩ2
S3 =

(

dψ̃ + cos θdϕ
)2

+ dθ2 + sin2 θdϕ2 . (4.72)
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This solution was first found in [23], and can be seen as a generalization in the presence of

vector multiplets of the BPS limit of the Reissner-Nördstrom-AdS5 black hole, to which it

reduces in the pure supergravity case.

For k = 0 it is not possible to eliminate the cross term in a simple way, and the metric is

ds2 = f̂2dt2 +
4

ℓ

̺

f̂
dt
(

dz + χ(0)

)

− ℓ2

4

f̂2d̺2

̺2
− ̺

f̂
dΩ2

(2,0) . (4.73)

In the pure supergravity case this reduces to a metric without free parameters and having

constant curvature scalars [11]. Here this is not true in general, and only happens if

H·H =
2

(g0)3ℓ3
(H0)

2 , (4.74)

in which case the metric is the same as in the pure supergravity case, but it is still possible

to have independent vector fields and non-trivial scalar fields.

4.4 Case 2

The solutions with

q1x =
q10
g0

gx , c1
0 = g ·q0 = g ·c1 = q0 ·c1 = c1 ·c1 = gIc0

I = 0 (4.75)

are almost identical to the black hole limit of the ones in subsection 4.3, given in equa-

tions (4.40), (4.41) and (4.42), with the additional constraint g·q0 = 0. However there is an

additional term in the 4-dimensional gauge potentials Âx proportional to the constants c1
x,

which were zero in the aforementioned limit. These constants are not completely arbitrary,

being constrained by the relations g ·c1 = q0 ·c1 = c1 ·c1 = 0.

After the rescaling (4.25) the functions determining the metric are

f̂−3 =

(

1 +

√
3

8g0ℓ

q00
̺

)

(

1 +
3

64g ·gℓ2
q0 ·q0
̺2

)

, (4.76)

Ψ = ̺2

(

4

ℓ2
̺+ k +

√
3

4
q00g ·g

)

, (4.77)

ωz =
2

ℓ
̺+

3

64̺

(

8ℓ√
3
q00g ·g̺+

1

2
g0q0 ·q0

)

, (4.78)

while the scalars are

φx =
hx
h0

=
hx/f̂

h0/f̂
=

8gxℓ̺+
√
3q0x

8g0ℓ̺+
√
3q00

, (4.79)

and the gauge potentials are of the form (4.32), with

Â0 =

(

g ·gℓ̺+ 1

2

c1
0

̺

)

(

dz + χ(k)

)

, (4.80)

Âx =

[

2g0g
xℓ̺+

√
3

4
(q00g

x + g0q0
x) +

1

2

c1
x

̺

]

(

dz + χ(k)

)

, (4.81)
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and

h0f̂ =
8̺√

3(8g0 ℓ̺+
√
3q00)

, hxf̂ =
16̺√
3

8gxℓ̺+
√
3q0

x

(8gyℓ̺+
√
3q0y)2

. (4.82)

For k = 1, the mass, angular momenta and electric charges are

M =
q00

2
√
3g0ℓ

+
3

32ℓ
q0 ·q0

(

2g0 +
4√
3ℓ3

q00

)

, (4.83)

Jϕ = 0 , (4.84)

Jψ =
q0 ·q0
16

(

g0 +

√
3

ℓ3
q00

)

, (4.85)

Q0 =
1

64

[

(g0)
2 q0 ·q0 −

8√
3
q00

]

, (4.86)

Qx = − 1

64

[

g0gxq0 ·q0 + 2g ·gq00q0x +
8√
3
q0x −

32ℓ

3
g ·g c1x

]

. (4.87)

Keeping into account the constraints to which the constants q0x and c1
x are subject, it is

easy to check that the relation (4.58) is satisfied.

5 Conclusions

In this paper we have adapted the equations that determine the timelike supersymmetric

solutions of N = 1, d = 5 Abelian gauged supergravity coupled to vector multiplets to the

assumption that the Kähler base space admits a holomorphic isometry. While the resulting

system of equations is much more involved than in the pure supergravity case, we were

able, thanks in part to the experience gained in this latter case, to obtain several super-

symmetric solutions. Of these, the more interesting ones are three classes (for k = 0,±1) of

superficially asymptotically-AdS (globally asymptotically-AdS for k = 1) solutions, which

are a direct generalization of the similar solutions found for pure supergravity in [11], and

which include various already known solutions.

It is worth noting that the special geometric model ST[2, nv + 1] considered here admits

as a special case the so-called U(1)3 model, which is just the STU model with equal gauging

parameters gI . This means that in this particular subcase our solutions can be oxidized to

type-IIB supergravity as described in [24].

The solutions constructed here only have one independent angular momentum, however

there are in the literature examples of supersymmetric black holes with two independent

angular momenta in N = 1, d = 5 Abelian gauged supergravity, both without and with

vector multiplets [25, 26]. It would be interesting to study whether less restrictive as-

sumptions than those made in this paper could lead to solutions generalizing these black

holes.21 Another possible extension of our work would be to consider more general gaug-

ings, for instance a combination of the Abelian Fayet-Iliopoulos gauging considered here

21We have checked for instance [27] that the supersymmetric black holes of [25] can be written in the

same form as the black hole solutions in the present paper or in [11], but with the function Φ not satisfying

Liouville’s equation and f̂ consequently acquiring a dependence on one of the coordinates x1, x3.
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and non-Abelian gaugings of the scalar manifold isometries. Work along these lines is in

progress [27].
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