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1 Introduction

In the KKLT scenario for moduli stabilization [1, 2], spontaneous supersymmetry breaking

can be induced by an anti-D3-brane in the Calabi-Yau bulk geometry. Its worldvolume

theory includes a Volkov-Akulov fermion goldstino [3, 4], which can be equivalently de-

scribed in terms of a nilpotent scalar superfield S with S2(x, θ) = 0 [5–15]. This nilpotent

superfield allows for a manifestly supersymmetric description of the uplift to a de Sitter

minimum [16–23]. In a parallel development, it has been realized that nilpotent superfields

have great potential as a model building tool in effective supergravity theories of infla-

tion [24–28]. The nilpotent multiplet helps to achieve stability of inflationary trajectory,

making the non-inflaton fields of the theory heavy.

One would like to connect these two developments: can the D3-brane interactions

with the Calabi-Yau moduli give rise to effective supergravity descriptions of inflation? It

is not known how the D3-brane interacts with the CY moduli fields (T i, T
i
). However,

one may ask a question: what kind of interaction between S and (T i, T
i
) would lead

to phenomenological supergravity models of inflation, including the exit stage, that are

compatible with the data?

Here we will construct what we call D3 induced geometric inflation models. In these

models, once one decides about the potential V(T i, T
i
), it is easy to find the corresponding
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S-field geometry GSS(T i, T
i
) in the supergravity Kähler function G, and one is guaranteed

to reproduce the desired potential during inflation. However, one has still to check the

stability of each model and show the absence of tachyons. The bisectional curvature of

these geometric models will play a role in the stability analysis.

We will develop a general class of D3 induced geometric inflation with multiple moduli

in CY bulk interacting with D3 nilpotent multiplet S. It is important that the D3 induced

geometric inflation models have a non-vanishing gravitino mass — W does not vanish

during and at the exit from inflation. In this case, one can use the advantage of a geometric

Kähler function formalism where

G ≡ K + logW + logW , V = eG(GαβGαGβ − 3) (1.1)

and study various interesting application of the new models. Here the index α includes the

directions S and T i.

The role of the Kähler function G was recognized starting with [29, 30] when super-

gravity models interacting with matter were first constructed. It was shown there that the

action is fully determined by the Kähler function. However, in some cosmological models,

for example in D-term inflation [31], or in models in [32], during the evolution the superpo-

tential might vanish. For these models it was more useful to employ the Kähler potential

and the superpotential W since the Kähler function G has a singularity at W = 0. Mean-

while, the analysis of non-supersymmetric Minkowski and metastable de Sitter vacua with

spontaneously broken supersymmetry was based mostly on the analysis using the Kähler

function G, see for example, [33–37]. Comparative to this analysis, the new ingredient

here is the fact that the S superfield is nilpotent and that we will use it for developing

inflationary models with the exit to de Sitter minima. Our Hermitian Kähler function will

be of the form

G(T i, T
i
;S, S) = G0(T i, T

i
) + S + S + GSS(T i, T

i
)SS , (1.2)

which we will show will describe the general case of supergravity models with one nilpotent

multiplet and non-vanishing superpotentials.

We will show below that, in general, from the knowledge of the potential V(T i, T
i
) and

the T -dependent Kähler function G0(T i, T
i
) it is possible to recover the S-field geometry

GSS(T i, T
i
)dSdS. (1.3)

Whereas the complete formula will be given below in eq. (2.12), here we would like to

point out that under certain conditions the relation between the S-field geometry and the

potential simplifies significantly. If the gravitino mass is constant throughout inflation at

S = 0, and supersymmetry is unbroken in the T i directions, i.e. during inflation we have

eG(T i,T
i
) = |m3/2|2 = const , GT i(T i, T

i
) = 0 , (1.4)

one finds the following simple relation between the inflationary potential and the geometry:

GSS(T i, T
i
) =

|m3/2|2

V(T i, T
i
) + 3|m3/2|2

. (1.5)
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Here V(T i, T
i
) is the scalar potential of supergravity at S = 0 defined in the standard

way either from the Kähler function G or from the superpotential W and Kähler potential

K. In examples of D3 induced geometric inflation models which we will specify below, the

conditions (1.4) will be satisfied during and after inflation.

Examples of models with non-trivial Hermitian function GSS(T, T ) include warped

Calabi-Yau throats [18–23], in which the Kähler potential takes the form

− ln(T + T − SS) = − ln(T + T ) +
SS

T + T
, GSS =

1

T + T
. (1.6)

Another instance of a non-flat geometry of the S-field are the ‘axion stabiliser’ terms [38, 39]

in the Kähler potential metric of the kind

SS(T i − T i)2A(T i, T
i
) , GSS = (T i − T i)2A(T i, T

i
). (1.7)

The inclusion of these terms in some models is necessary for the stability of the inflationary

trajectory. Finally, a new class of models where GSS(T, T ) is a general Hermitian function

was proposed in [40]. A number of nice and interesting examples were studied, starting

with W = MS+W0 and shift symmetric canonical Kähler potentials, where also stability

issues were studied, or with Poincaré half-plane geometries in Kähler potentials.

An important feature of the D3 induced geometric inflation models with one modulus

is that the bisectional curvature is non-vanishing, RTTSS 6= 0 during inflation and at the

exit, at the minimum of the potential. This is the consequence of the fact that the metric

GSS is not a product of a holomorphic F (T ) function times an anti-holomorphic function

F (T ). In the latter case it can be removed by a holomorphic change of the Kähler manifold

coordinates F (T )S → S′ which leads to a flat geometry of the nilpotent superfield. This

case includes models with canonical geometry for the nilpotent field, GSS = 1 and some

general superpotentials W = g(T i) + f(T i)S. For these models the Kähler geometry of

the nilpotent field S is flat, and hence RijSS = 0.

A nice feature of our examples is that all of them during inflation, in case of a single

modulus, have no tachyons without any assumption. At the minimum of the potential we

do not have a general argument of stability, however, a priori these models allow a way to

associate geometry with the good choices of the potentials which have a minimum at the

exit from inflation. The same argument refers to multiple moduli models. A choice of the

potentials is possible such that the desirable relations between moduli can be implemented

as a requirement of the minimum of the potential, as a result we end up with single modulus

models which have a stable inflationary trajectory.

Comparatively to other model building we used before, we have found various ad-

vantages, which we dubbed as a ‘model building paradise’, based on a geometry of the

D3-brane and associated nilpotent multiplet interacting with moduli of the Calabi-Yau

manifolds. In particular, we have a parameter of supersymmetry breaking independent of

the Hubble parameter and the models are simple.
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2 Geometric inflation features

2.1 D3-brane induced geometry

We will explain here that the most general Kähler invariant Kähler function G depending

on multiple Calabi-Yau moduli and on a nilpotent multiplet S can be reduced to the form

we show in eq. (1.2). An equivalent form is to use

K(T i, T
i
;S, S) = K0(T i, T

i
) + S + S + GSS(T i, T

i
)SS , W = W0 , (2.1)

where the gravitino mass, in general is given by the following expression:

|m3/2(T i, T
i
)|2 = eG0(T i,T

i
) = eK0(T i,T

i
)|W0|2 . (2.2)

The linear terms in the Kähler function and potential are directly related to spontaneous

SUSY breaking and hence an integral aspect of our set-up.

We will start with the observation [41, 42] that the most general supergravity theory

with a number of unconstrained chiral multiplets T i and a single nilpotent superfield S is

given by

K = K0(T i, T
i
) +KS(T i, T

i
)S +KS(T i, T

i
)S + GSS(T i, T

i
)SS ,

W = g(T i) + f(T i)S, (2.3)

where KS ,KS and GSS are non-holomorphic functions while f and g are holomorphic.

These are the most general Taylor expansions of the Kähler and superpotential due to the

nilpotency condition S2 = 0.

These general expressions can be simplified without loss of generality by a number of

redefinitions. First of all, one can use a Kähler transformation acting as

W →W ×F , K → K − log |F|2 , (2.4)

to set W = W0 by choosing F = W0/(g + fS). The resulting Kähler potential is given by

K ′ = K ′0(T i, T
i
) +K ′S(T i, T

i
)S +K ′S(T i, T

i
)S + GSS(T i, T

i
)SS, (2.5)

in terms of the redefined variables K ′0 = K0 + 2 log(|g|/|W0|), and K ′S = KS + f/g. In this

frame, the supersymmetry breaking is set by K ′S which we assume to be non-vanishing due

to the nilpotency of S.

We can subsequently use the field redefinition K ′SS = S. Note that K ′S is not holomor-

phic, and hence this field redefinition breaks the complex manifold structure. However, at

least in the bosonic part of the theory1 this is not a problem for the following reason. The

geometry spanned by the physical scalars is given by the Kähler manifold with a projection

S = 0, since the bosonic component of S is a fermion bilinear, i.e.,

ds2 = GijdT
idT

j |dS=S=0. (2.6)

1The fermionic action will be affected by this change only in the part depending on the goldstino, a

fermion in the nilpotent multiplet, χS . But in the unitary gauge, χS = 0, in which this fermion is absent,

there will be no changes. In our models with GT i = 0 in this gauge the gravitino decouples from the

fermions in T i multiplets and the gauge with χS = 0 is simple.
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Therefore, the field redefinition dS′ = K ′SdS+∂iK
′
SSdT

i+∂jK
′
SSdT

j
does not change the

Kähler manifold of physical scalars. It only affects the nilpotent part of the Kähler poten-

tial, which now has a metric

G′
S′S′ =

GSS
|K ′S |2

. (2.7)

This completes the argument that the most general supergravity theory can be brought to

the form (1.2) or (2.1) (omitting all primes), when evaluated at dS = S = 0.

In models satisfying our condition (1.4) and with a positive CC, we can use the following

form of the total potential where V (T i, T
i
) vanishes at the minimum:

V(T i, T
i
) = V (T i, T

i
) + Λ , Λ ≡ |FS |2 − 3|W0|2 . (2.8)

This gives us an alternative form of the D3 geometry

GSS(T i, T
i
) =

|W0|2

|FS |2 + V (T i, T
i
)
, (2.9)

where the measure of supersymmetry breaking at T i = T
i

due to the D3-brane is set by

|GS |2 ≡ eG0GSGSSGS = |FS |2 + V (T i, T
i
) . (2.10)

Note that the above metric explicitly includes an independent Hubble, SUSY breaking and

dark energy scale.

In the absence of the nilpotent field, this model has a SUSY AdS solution with at least

one flat direction amongst the T i moduli that will provide the inflaton. The inclusion of the

D3-brane yields the uplift term. When including a constant µS term to the superpotential,

or equivalently a constant metric GSS , this uplifts to a non-SUSY vacuum with arbitrary

CC and a flat direction. The subsequent introduction of an inflationary profile can be

performed either by means of a holomorphic function f in the superpotential, or more

generally by means of an moduli-dependent metric for the S-field, leading to the D3-brane

induced geometry (1.3).

Also in more general models that do not satisfy (1.4), we can reconstruct any desired

potential V(T i, T
i
) starting from the Kähler function G(T i, T

i
). In supergravity, the scalar

potential and geometry are related as follows, assuming that GS = 1:

V(T i, T
i
) = eG(T i,T

i
)(GSS(T i, T

i
) + GT iT

i

GT iGT i − 3). (2.11)

This relation is invertible with respect to GSS . In order to realize the desired potential

V(T i, T
i
), we find the proper choice of GSS is

GSS(T i, T
i
) =

eG(T i,T
i
)

V(T i, T
i
) + 3eG(T i,T

i
) − GT iT

i

GT iGT ie
G(T i,T

i
)
. (2.12)

This geometry directly gives any phenomenologically favored potential.

– 5 –



J
H
E
P
0
7
(
2
0
1
7
)
0
5
7

2.2 Curvature invariants

In case of one modulus T , this geometry is determined by two curvature invariants that

will characterize the cosmological parameters. In addition to the full Ricci scalar, one

can also define the Ricci scalar of the submanifold defined by S = 0, as the only allowed

coordinate redefinitions on this Kähler geometry preserve the nilpotency condition. This

will be referred to as the sectional curvature and is given by

Rsec = −GTTGTT (GTTTT − GTTTG
TTGTTT ) . (2.13)

The importance of this geometric quantity for inflationary model building has been stressed

in various places. For example in the case of the hyperbolic disk relevant for α-attractors,

one has

K = −3α ln(T + T ) , Rsec = − 2

3α
, (2.14)

where the latter is of course independent of the Kähler frame.

The new ingredient in the D3 induced geometric inflation models is the second curva-

ture invariant, corresponding to the bisectional curvature along the S = 0 plane:

Rbisec = −RTTSSG
TTGSS =

GTT (VTT (F 2
S + V )− VTVT )

(F 2
S + V )2

. (2.15)

During inflation at V � |FS |2, it is proportional to slow roll parameters

Rbisec|infl ≈ GTT
(
VTT
V
−
VTVT
V 2

)
= η − 2ε . (2.16)

In contrast, at the minimum of the potential,

Rbisec|min = −RTTSSG
TTGSS =

GTTVTT
F 2
S

> 0 . (2.17)

It therefore sets the scale for the sum of masses of both T -components, and stability requires

a positive value for the bisectional curvature.

2.3 Stability analysis

For a model with a single inflaton superfield model, we find that the supersymmetric scalar

partner of inflaton (the so-called sinflaton) is always stabilized at its origin as shown below.

The general formula for the non-holomorphic masses of the scalar fields is given in the

notation of [43] by

m2
ij

=eG
[
Gij

(
1+

V

|m3/2|2

)
−GiGj+(Giα+GiGα)Gαβ(Gβj+GβGj)−RijαβG

αGβ
]
, (2.18)

where Gα ≡ GαβGβ , α = (S, T i) and i = 1, . . . , N . Under the assumption (1.4) for the

physical scalar fields, this simplifies to

m2
ij

= eG
[
Gij

(
1 +

V

|m3/2|2

)
+ GiαGαβGβj −RijSSG

SGS
]
, (2.19)
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Tracing this formula yields the average mass:

m2
ave =

1

N
Gijm2

ij
=

1

N
eG
(
N

(
1 +

V

|m3/2|2

)
+ GiαGjβG

αβGij − GijRijSSG
SGS

)
. (2.20)

In particular, for N = 1, this expression can be reduced to

m2
ave = V +m2

3/2 +m2
3/2(|GTT |2(GTT )2 − GTTRTTSSG

SGS)

= V +m2
3/2 +m2

3/2|GTT |
2(GTT )2 +Rbisec(|FS |2 + V ) , (2.21)

emphasizing the importance of the bisectional curvature.

During inflation, the inflaton mass is very small, and the first 3 terms are positive.

The last term is given by the linear combination of slow-roll parameters (2.16). Using the

experimental values of ns and r it comes out negative, but is always smaller than the first

two positive contributions thanks to the slow-roll suppression. Thus, during inflation, we

have shown that the sinflaton direction in a single superfield model is always stable, or

equivalently our assumption T = T is satisfied automatically.

Apart from the inflationary era, we discuss the minimum of our model. The nilpotent

superfield is well defined only if GS 6= 0 and GSS 6= 0. Due to the absence of a propagating

scalar in S, the stability requirement is equivalent to the condition that the propagating

scalars have stable vacua at GS 6= 0 and also GSS 6= 0. Then, we need to require positive

masses for the scalar fields at the minimum. The general minimization condition of the

scalar potential is

Vi = GiV + eG(∇iGαGαβGβ + Gi) = 0. (2.22)

Since V = Λ ∼ 0 at the minimum, we obtain the condition ∇iGαGαβGβ + Gi = 0. For

Gi = 0, the condition is equivalent to ∇iGS = 0. Then, the mass matrix at the minimum

is simply given by

m2
ij

= eG [Gij + GijGjkGkj +RijSS(GSS)2]. (2.23)

Assuming GijGjkGkj = O(1) and RijSS = 0, the averaged mass becomes

m2
ave = O(m2

3/2). (2.24)

Therefore, to disentangle the scalar mass and the SUSY breaking scale, we need to introduce

large GijGjkGkj or RijSS(GSS)2. Moreover, the scale of the averaged mass does not tell us

the mass of each scalar and their positivity, and therefore, we need to discuss the stability

at the minimum for each case.

With our choice of GSS in the single-modulus N = 1 case, the averaged mass becomes

m2
ave = eG(1 + GTTGTTGTT ) + GTTVTT . (2.25)

The last term comes from the bisectional curvature and it is not necessarily related to the

SUSY breaking scale. Thus, with a proper choice of V , the SUSY breaking and the mass

of the inflation sector can be disentangled.
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3 Model building paradise

Our main goal here is to give example of geometric models of inflation which are defined by

a geometry of the D3-brane in the CY bulk geometry. For this purpose it is natural to use

logarithmic Kähler potentials for the moduli fields T i of the kind ln(T i + T
i
). However,

once we use nilpotent superfield geometry as a tool in model building, we find that the shift

symmetric Kähler potentials for the moduli fields Φi are also particularly efficient. We will

start therefore with the model of polynomial inflation with the Kähler potential −1
2(Φ−Φ)2.

3.1 Polynomial inflation

Inflation-related Planck data [44, 45] describing Gaussian adiabatic perturbations consist

of 3 main parameters: the amplitude of the perturbations As, the spectral index ns and

the tensor to scalar ratio r. According to [46–48], one can properly describe any set of

these parameters in the context of the 3-parameter polynomial inflationary models with

the potential

V (φ) =
m2φ2

2
(1 + aφ+ bφ2). (3.1)

One could try to implement the models with such potentials in supergravity [47, 48], using

the general approach developed in [32, 49, 50], but the resulting potentials can reproduce

the potential (3.1) only approximately, see a discussion of this issue in [51]. Meanwhile,

as we will see now, the potential (3.1) can be easily obtained in the context of the new

geometric approach discussed in our paper.

We will consider the Kähler function

G = logW 2
0 −

1

2
(Φ− Φ)2 + (S + S) + gSSSS, gSS =

1

W 2
0

(
|FS |2 + V (Φ,Φ)

)
. (3.2)

Here the part of the potential vanishing at the minimum is

V (Φ,Φ) =
m2

4
(Φ + Φ)2

(
1− a√

2
(Φ + Φ)

(
1 +

a b√
2

(Φ + Φ)

))
. (3.3)

We represent the field Φ in terms of its canonically normalized components, Φ = 1√
2
(φ+iχ).

One can show that the potential of these fields is stable at χ = 0, and the inflaton fields φ

has the desirable potential

V(φ) =
m2φ2

2

(
1− aφ(1 + b a φ)

)
+ Λ, (3.4)

where Λ = |FS |2 − 3|W0|2 is the vacuum energy/cosmological constant at the minimum

of the potential, and the gravitino mass at the minimum is equal to m3/2 = W0. The

potential for Λ = 0 is shown in figure 1.

As we already mentioned, inflation-related Planck data [44, 45] consist of three main

parameters, As, ns and r. The value of As can be easily tuned by a proper choice of

M . The parameters a and b are responsible for ns and r. For example, for a = 0.12 and

b = 0.29, the perturbations generated at the moment corresponding to N = 58 e-folding

– 8 –
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Figure 1. The potential V (φ) = m2φ2

2

(
1− aφ + a2b φ2

)
for a = 0.12 and b = 0.30 (upper curve),

b = 0.29 (middle), and b = 0.28 (lower curve). The potential is shown in units of m2, with φ in

Planck units. For b = 0.29 (the middle curve), at the moment corresponding to N = 58 e-folding

from the end of inflation one has ns = 0.965 and r = 0.012, perfectly matching the Planck data.

from the end of inflation have ns = 0.965 and r = 0.012, perfectly matching the Planck

data [44, 45].

Thus we found the desirable polynomial potential, and much more: we have full flexi-

bility to describe arbitrary cosmological constant and SUSY breaking in this simple model.

Finally, inflation in this model may begin close to the Planck density, which easily solves

the problem of initial conditions for inflation, as explained in [52, 53].

3.2 T-models

Moving on to a hyperbolic instead of a flat geometry for the scalar manifold, the Kähler

function in disk variables can be written as

G = lnW 2
0 −

3α

2
log

(1− ZZ)2

(1− Z2)(1− Z2
)

+ S + S +
W 2

0

|FS |2 +m2ZZ
SS. (3.5)

Note that this employs a Kähler frame that has a manifest inflaton shift symmetry [38].

One can check that GZ = 0 and GS = 1, i.e. the theory has all required properties.

The canonical inflaton ϕ is defined by relation Z = tanh ϕ√
6α

. The inflaton potential is

V|Z=Z = Λ +m2 tanh2 ϕ√
6α

, (3.6)

where Λ = |FS |2 − 3W 2
0 . The axion mass along the inflaton trajectory for Λ = 0 is

m2
θ = 2(m2 + 2W 2

0 )−m2

((
2− 2

3α

)
cosh2 ϕ√

6α
+

1

3α

)(
cosh

ϕ√
6α

)−4

. (3.7)

As expected from the observation in section 2.3, the mass of the axion θ is positive during

inflation: m2
θ = 2(m2 + 2W 2

0 ) > 2V ∼ 6H2 for ϕ �
√

6α. This means that the field θ is

strongly stabilized and its perturbations are not generated during inflation. Moreover, the

– 9 –
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Figure 2. Basic T-model with α = 1. The height of the potential here and in other figures is in

units m2 and the values of the fields are in Planck mass units.

stability condition is satisfied along the full inflaton trajectory for all φ. In particular, the

masses of the fields ϕ and θ at the minimum of the potential at ϕ = θ = 0 are given by

m2
φ =

m2

3α
, m2

θ =
m2

3α
+ 4W 2

0 . (3.8)

These results are illustrated by figure 2, which shows the potential V (ϕ, θ) in the limit

W 2
0 = m2

3/2 � m2 for the particular case α = 1.

If we use a more general function

G = lnW 2
0 −

3α

2
log

(1− ZZ)2

(1− Z2)(1− Z2
)

+ S + S +
W 2

0

|FS |2 + f(ZZ)
SS, (3.9)

and the potential is

V|Z=Z = F 2
S − 3W 2

0 + f

(
tanh2 ϕ√

6α

)
. (3.10)

Then, the axion mass becomes

m2
θ = 4W 2

0 + 2f +
cosh

√
2φ
3α sech4 φ√

6α
f ′

3α
, (3.11)

where the prime denotes the derivative with respect to the argument tanh2 ϕ√
6α

. The last

term becomes O(
√
ε)H2 whereas the second term is 6H2 and is much larger than the last

term. Therefore, the axion mass is positive as we expected from the general discussion in

section 2.3. The minimum is φ = 0 and the mass of the inflaton and axion at the minimum

are

m2
φ =

f ′(0)

3α
, m2

θ = 4W 2
0 +

f ′(0)

3α
, (3.12)

where we have used f(0) = 0, which is our general assumption on V . One can check that

this coincides with the general formula (2.25) from the previous section.
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Figure 3. Basic E-model with α = 1/3.

3.3 E-models

A simple case using half-plane variables is

G = lnW 2
0 −

3α

2
log

(T + T )2

4TT
+ S + S +

W 2
0

|FS |2 +m2
(
1− T+T

2

)2SS. (3.13)

The trajectory is stable at T = T . The canonical inflaton ϕ is defined by T = e
−
√

2
3α
ϕ
.

The inflaton potential is

VΛ|T=T = Λ +m2

(
1− e−

√
2
3α
ϕ
)2

. (3.14)

One can check that GT = 0 and GS |min = 1 6= 0, i.e. the theory has all required properties.

The axion mass squared during inflation is

m2
a = 2m2

(
1− e−

√
2
3α
ϕ
)2

+ 4W 2
0 . (3.15)

It is positive definite during and after inflation. Note that at the minimum ϕ = 0, the

axion mass squared becomes 4W 2
0 = 4m2

3/2.

If we take a more general function

G = lnW 2
0 −

3α

2
log

(T + T )2

4TT
+ S + S +

W 2
0

|FS |2 +m2f(T + T )
SS, (3.16)

and the potential is

V|Z=Z = |FS |2 − 3W 2
0 +M2f

(
2e

√
2
3α
ϕ
)
. (3.17)

In this case, the mass of the axion is given by

m2
a = 4W 2

0 + 2f
(

2e

√
2
3α
ϕ
)

= 4W 2
0 + 6H2, (3.18)

which is positive definite and consistent with our general argument in section 2.3.
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Figure 4. Merger of two disks with α = 1/3 creates the inflaton potential with α = 2/3. Here we

considered an example with M = 6m.

3.4 Two-disk merger models

3.4.1 E-model

Here we consider the model with two half-planes T1,2 and 3αi = 1 for i = 1, 2. As the

previous work [54] where the merger of different attractors was discussed (albeit in disk co-

ordinates), we dynamically realize the inflationary trajectory where two half-plane moduli

directions merge during last 50-60 e-foldings. Instead of the use of the superpotential for

stabilization [54], we use the geometry,

G=logW 2
0 −

1

2

2∑
i=1

log

(
(Ti + T i)

2

4TiT i

)
+ S + S + gSSSS, (3.19)

gSS =
1

W 2
0

(
|FS |2+m2

(
1− 1

4
(T1+T 1+T2+T 2)

)2

+
1

4
M2(T1+T 1−T2−T 2)2

)
. (3.20)

Then the scalar potential is

V = Λ +m2

(
1− 1

4
(T1 + T 1 + T2 + T 2)

)2

+
1

4
M2(T1 + T 1 − T2 − T 2)2. (3.21)

The last term in (3.21) leads to the merger of inflationary trajectories of T i as shown

in figure 4. We represent field Ti as Ti = e−
√

2φi(1 +
√

2θi), where φi are canonical,

and θi are canonical in the small θi limit. The inflaton direction on merger trajectory is

ϕ = 1√
2
(φ1 + φ2) and the orthogonal direction is χ = 1√

2
(φ1 − φ2). During inflation with

ϕ = 1√
2
(φ1 + φ2) the potential of the canonically normalized inflaton field ϕ is

V(ϕ) = Λ +m2
(
1− e−ϕ

)2
(3.22)

corresponding to 3α = 2.
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In models with multiple fields, the stability of the axionic direction is not guaranteed

by the discussion in section 3.1 and we need to discuss the stability of the trajectory for

each case. For the current model, the axionic directions are stabilized with masses

m2
a1 = m2

a2 = 2(m2(1− e−ϕ)2 + 2W 2
0 ) = 6H2 + 4W 2

0 , (3.23)

where H2 = 1
3V = 1

3m
2(1 − e−ϕ)2. As is the case of the previous work [54], the direction

χ = 1√
2
(φ1 − φ2) acquires a light or tachyonic mass for sufficiently large φ: the mass of χ

is given by

m2
χ = 2e−2ϕ(4M2 −m2(eϕ − 1)). (3.24)

As explained in [54], this simply means that the exponentially flat and long dS plateau in

the upper right corner of figure 4 is slightly curved, and the fields tend to move towards

its boundaries. Then they slide along these boundaries towards the point where these

boundaries merge and the diagonal deep gorge is formed, as shown at the center of figure 4.

After that, all fields become stable along the inflationary trajectory with φ1 = φ2 = 1√
2
ϕ

and the inflaton potential coincides with the E-model potential (3.14). The field value of ϕ

at the last N e-folding is given by ϕN = log(4N). The condition that the merger trajectory

is stable for last N e-foldings is M2 > m2N
2 .

At the minimum, GS = 1, the metric is GSS =
W 2

0
|FS |2 ∼

1
3 , and the SUSY breaking is

realized with m3/2 = W0. Thus, this model generalizes the E-model disk merger described

in [54], but now one can have arbitrary values of the cosmological constant Λ and the

gravitino mass.

3.4.2 T-model

The disk merger model is also possible for T-models. We consider the following system,

G = logW 2
0 −

1

2

2∑
i=1

log
(1− ZiZi)2

(1− Z2
i )(1− Z2

i )
+ S + S + gSSSS, (3.25)

gSS =
1

W 2
0

(
|FS |2 +

m2

2
(|Z1|2 + |Z2|2) +

M2

4

(
(Z1 + Z1)− (Z2 + Z2)

)2)
. (3.26)

The scalar potential is

V = Λ +
m2

2
(|Z1|2 + |Z2|2) +

M2

4

(
(Z1 + Z1)− (Z2 + Z2)

)2
, (3.27)

and the last term gives the dynamical constraint φ1 = φ2 where we have defined canonical

fields as Zi = tanh φi+iθi√
2

. During inflation with φ1 = φ2 = 1√
2
ϕ the potential is

V(ϕ) = Λ +m2 tanh2 ϕ

2
(3.28)

corresponding to 3α = 2. The scalar potential is shown in figure 5.

Turning to stability, the mass eigenvalues of axionic directions on inflationary trajec-

tory φ1 = φ2 = 1√
2
ϕ are given by

m2
1 = m2

2 = 4W 2
0 +

2m2(cosh2 ϕ+ coshϕ− 1)

(coshϕ+ 1)2
. (3.29)
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Figure 5. Merger of two disks with α = 1/3 creates the inflaton T-model potential with α = 2/3.

In this figure we show the potential with M = 10m.

The masses are positive. At the minimum, m2
i = m2

2 + 4W 2
0 . Instead, the mass of the χ

direction is

m2
χ =

(
m2 + 2M2 − m2

2
coshϕ

)
cosh−4 ϕ

2
. (3.30)

As in the E-model discussion, for the very large values of the inflaton field, such that

m2 coshφ > 4M2, the field χ is tachyonic. In order for this instability to take place

outside of the observable window of N e-folds, one has again has to impose the condition

M2 > m2N
2 .

As in the previous section, at the minimum, GS = 1, the metric is GSS =
W 2

0
|FS |2 ∼

1
3 , and

the SUSY breaking is realized with m3/2 = W0. Thus, this model generalizes the T-model

disk merger described in [54], but now one can have arbitrary values of the cosmological

constant Λ and the gravitino mass.

3.4.3 Cascade inflation

The two-disk merger (the fusion of two different attractors) is not the only interesting

feature of the two-disk model studied above. Figure 5 shows only the lower part of the

potential, which is sufficient to illustrate the effect of the disk merger. However, the upper

part of the potential tells us an equally interesting story. To explain it, we will show the

potential including its upper part, for a toy model with m = M , see figure 6. One can easily

recognize the minimum of the potential, near which one may have inflation with α = 2/3

for the models with M � m. However, another important part of the potential is the

existence of 4 different dS plateaus. The lower ones have the height m2, one can see them

also in figure 5. The upper ones have the height m2 +M2. They exist even in the absence

of the disk interactions, for M = 0, in which case the height of each plateau is equal to m2.

The existence of these plateaus follows from the general expression for the potential of

the fields φ1 and φ2 in that model:

V(ϕ) = Λ +
m2

2

(
tanh2 φ1√

2
+ tanh2 φ2√

2

)
+
M2

4

(
tanh

φ1√
2
− tanh

φ2√
2

)2

. (3.31)
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Figure 6. The potential of the two disks with α = 1/3 for m = M .

Inflation may begin at the upper plateau, with φ1 � 1 and −φ2 � 1, or with −φ1 � 1

and φ2 � 1. Then the field falls down to one of the lower plateaus, from which it moves

towards the narrow gorge along φ1 = φ2 in the potential shown in figure 5, and eventually

falls to the minimum at φ1 = φ2 = 0. One may call this multi-stage process a cascade

inflation. For M2 > 60m2

2 , all observational consequences of this regime are determined

by the last stage of the process, described by the T-model potential with α = 2/3 (3.31).

However, the cascade regime is very interesting from the point of view of the theory of

initial conditions for inflation.

Indeed, suppose that the parameter M describing the disk interactions takes the sim-

plest value M = O(1) in Planck units. Then the height of the upper potential will be

Planckian, which allows to solve the problem of initial conditions for inflation in the sim-

plest possible way, as described in [52, 53]. The Planck-size universe can be born with

the scalar fields φ1 and φ2 at an infinite plateau with V = m2 + M2 = O(1). According

to [52, 53], the probability of this process is not expected to be exponentially suppressed.

Once this happens, the cascade inflation begins, with observational predictions determined

by the last stage of the process, matching the latest observational data.

A more general solution to the problem of initial conditions for inflation, which applies

to all models discussed in our paper, can be found in [55, 56]. We hope to return to a more

detailed discussion of the cascade inflation in a separate publication.

3.5 Seven-disk merger model

Finally, we briefly discuss the possible merger of several disks. Consider for instance,

G = logW 2
0 −

1

2

7∑
i=1

log
(1− ZiZi)2

(1− Z2
i )(1− Z2

i )
+ S + S + GSSSS, (3.32)

GSS =
1

W 2
0

(3W 2
0 + V). (3.33)
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corresponding to seven disks with αi = 1/3. The scalar potential is

V = Λ +
m2

7

∑
i

|Zi|2 +
M2

72

∑
1≤i≤j≤7

(
(Zi + Zi)− (Zj + Zj)

)2
, (3.34)

and the last term gives the dynamical constraint φi = φj where we have defined canonical

fields as Zi = tanh φi+iθi√
2

. During inflation at φi = φj = ϕ√
7
, the scalar potential reads

V(ϕ) = Λ +m2 tanh2 ϕ√
14
, (3.35)

in terms of the canonically normalized inflaton field.

The axionic directions are stabilized at their origin, and their masses are given by

m2
θi

= 2(m2 + 2W 2
0 )− 1

7
m2

(
7 + 6 cosh

√
2

7
ϕ

)
cosh−4 ϕ√

14
. (3.36)

The first two constant part dominate the mass and the remaining negative part is sup-

pressed during inflation. At the minimum, the mass of the axions becomes m2
θi

= 1
7m

2 +

4W 2
0 and is still positive.

For real directions {φi}, the following canonical mass eigenbasis is useful, ϕ =
1√
7

∑7
i=1 φi, and χi = 1√

8−i((7 − i)φi − φi+1 · · · − φ7). The inflaton is ϕ and moduli χi
are stabilized at their origin with the mass

m2
χi =

1

7

(
2m2 + 4M2 −m2 cosh

√
2

7
ϕ

)
cosh−4 ϕ√

14
. (3.37)

As the two disk models, the mass of the moduli χi becomes small, and when 4M2 <

m2 cosh
√

2
7ϕ, they becomes tachyonic. At the minimum ϕ = 0, the inflaton and moduli

mass are given by

m2
φ =

1

7
m2, m2

χi =
1

7
m2 +

4

7
M2. (3.38)

Note that SUSY breaking takes place at the minimum; GS = 1 and
√
GSGSSGS =

√
3W0.

Here again we see the advantage of using the new geometric class of models comparative to

the earlier version of the seven-disk model in ref. [54] where we only studied an inflationary

stage.

In the seven-disk models we expect a cascade inflation with a rich structure due to the

multiplicity of different inflationary plateaus. The different possibilities arise from the pos-

sible sign choices for the seven moduli. For instance, one can either take four positive and

three negative, in which case 12 out of the 21 mass terms contribute. Similarly, one can have

five and two, with ten mass terms etc. From this logic it follows that the potential at the dS

plateaus may take 4 different values: V = Λ +m2 + 16nM2

72
, where n can be 0, 6, 10, or 12.

4 Discussion

It has been realized during the last few years that both the construction of de Sitter

vacua in string theory as well as building inflationary models is facilitated by the concept
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of an upliting D3 brane. The positive energy contribution sourced by a D3 brane in

effective supergravity models is represented by a nilpotent multiplet S. Supersymmetry is

spontaneously broken during inflation as well as at the exit from inflation, at the minimum

of the potential, and never restored in the class of models we described here: D3 brane

induced geometric inflationary models.

The effective supergravity of these models is described by the geometry of the CY

moduli, G0(T i, T
i
) and by the geometry of the nilpotent superfield GSS(T i, T

i
)SS. In our

models it is given by the expression

G(T i, T
i
;S, S) = G0(T i, T

i
) + S + S + GSS(T i, T

i
)SS. (4.1)

Subject to specific assumptions about the geometry of T i moduli (1.4), satisfied by simple

examples like a shift symmetric canonical geometry (3.2) or a disk geometry (3.13), one

finds a simple relation between the inflationary potential and geometry of the D3 brane in

the background of the T i fields:

GSS(T i, T
i
) =

V(T i, T
i
) + 3|m3/2|2

|m3/2|2
. (4.2)

This relation leads to a model building procedure of the following kind. Once the desired

potential V(T i, T
i
) is determined, one can use the relation (4.2) to produce the geometry

GSS(T i, T
i
). The remaining problem for each choice of inflationary model is to check that

all non-inflaton directions are stabilized.

We have found that such a procedure leads to rather simple models with desirable

properties. In particular, in models with one modulus T one finds that axions are stable

during inflation. At the minimum, the masses of the inflaton and axion also tend to be

positive for the appropriate choices of the potentials where there is an exit from inflation

at the minimum of the potential. These desirable stability properties of the potential are

in a nice agreement with the positivity of the S-field metric GSS(T i, T
i
).

Our examples illustrate the main result of the paper: we build desirable cosmological

models with inflationary potentials V(T i, T
i
) which are in agreement with the data, and

we ‘read from the sky’ the geometry of the D3 brane in CY bulk supporting these models

as shown in eq. (4.2). The geometric nature of all these models manifests itself in the fact

that the bisectional curvature is always present and is defined by the slow-roll parameters

as shown in section 2.2. At the exit from inflation at the minimum this curvature gives a

positive contribution to the masses.

We find that this geometric formulation of effective supergravity inflationary models

inspired by string theory is the most powerful tool for model building. Their first

advantage is that they are easily associated with string theory due to fundamental role

of the uplifting D3 brane, interacting with other moduli. The second advantage is that

for specific choices of Kähler geometries of the moduli fields T i, the only input comes

from the nilpotent field geometry, GSS(T i, T
i
), related to the potential. In previously

existing models with generic superpotential W = Sf(T i) + g(T i), the main input is via

two holomorphic functions f(T i) and g(T i), which should satisfy additional constraints.
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This made the model building more involved than in the approach developed in this paper.

The third advantage is the fact that, by construction, the nilpotency condition FS 6= 0

is satisfied everywhere, including the minimum of the potential. The mere existence of

the uplifting D3 brane interacting with the bulk geometry means that supersymmetry is

nonlinearly realized and always spontaneously broken.

In conclusion, the new cosmological models, D3 induced geometric models, defined by

a geometric Kähler function in eq. (4.1), lead to simple dynamical cosmological models of

the inflationary evolution of the space-time, based on the geometry of the scalar manifold.

The dynamics of these models is the consequence of their geometry.
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