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1 Introduction: effective field theory and quantum anomalies

Einstein’s classical theory of General Relativity (GR) predicts the existence of gravitational

waves, created in significant amounts by collapsing and rotating binary systems [1, 2].1 Al-

most a century after this prediction, the Laser Interferometer Gravitational-wave Observa-

tory (LIGO) and LSC collaboration have reported the first direct detection of gravitational

waves from the inspiral and coalescence of two intermediate mass black hole candidates of

approximately 30M⊙ each [4].

As this confirmation of classical GR is added to its already impressive successes in the

astrophysical domain, quantum field theory (QFT) has also achieved a parallel and even

more detailed confirmation in the microscopic domain, culminating in the Standard Model

unifying the weak and electromagnetic forces, and the discovery of the Higgs boson [5, 6]. At

the most microscopic scales probed by experiment, the fundamental principles of quantum

mechanics and special relativistic Lorentz invariance, the twin pillars of QFT, clearly hold.

These successes of classical GR and QFT, each in their respective domains, require

that they be brought together in some consistent framework, preserving the main features

of each, at least in an approximate sense, and in a quantitatively controllable manner.

Absent a unifying synthesis which is able to completely describe and predict phenomena

across the broad spectrum of scales from microphysics to cosmology, the best techniques

presently at our disposal for a partial union of these disparate theories, with a minimum

1For a recent review see e.g. ref. [3].
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of additional assumptions, are those of Effective Field Theory (EFT) and semi-classical

background field methods, such as QFT in curved spacetime.2

Effective Field Theory (EFT) methods have been developed and successfully applied

in a number of areas from nuclear and particle physics to condensed matter physics [8–17].

The key hypothesis in the EFT approach is the decoupling of short and long distance scales,

making possible a description of physics at energies far below an ultraviolet (UV) cutoff

scale M by a set of local operators consistent with low energy symmetries. The low energy

effective action is constructed by truncating at some finite order the sum of such local terms

in increasing numbers of derivatives divided by powers of M , and fixing their coefficients

from experiment. The resulting effective theory is expected then to apply to all physical

processes with energy-momenta k ≪ M , or equivalently, at distance scales ℓ ≫ M−1, with

an error of the first order of terms in k/M which have been neglected in the derivative

expansion. This is a systematic approach, consistent with general QFT principles, relying

on the decoupling theorem of ultra-short distance physics at very large energy scales from

the low energy, longer wavelength processes of interest [18], which applies to both renor-

malizable and non-renormalizable effective theories. Indeed every QFT, including also the

Standard Model itself may be regarded as an EFT [8–17].

The EFT method can be extended to gravity with no essential difficulty. Classical GR

itself is best understood as an EFT for energies much less than the Planck energy MP l c
2 =

(~c5/G)
1
2 , or on distance scales much greater than the Planck length LP l = (~G/c3)

1
2 ≃

2 × 10−33 cm. Since the local EFT corrections to the gravitational action involve higher

powers of the Riemann curvature tensor and its contractions, these gravitational corrections

to classical GR are highly suppressed in the weak field limit of nearly flat spacetime or

for distances r ≫ LP l [19, 20]. If these local higher order curvature corrections would be

the only possible QFT induced corrections to classical gravity, quantum effects would be

entirely negligible and could safely be ignored on macroscopic distance scales, at least if

the Einstein Equivalence Principle and metric foundation of GR are rigorously adhered to.

The semi-classical approach to EFT relies on the other hand upon the development

of QFT in background curved spacetimes, treating the metric classically (at least at first),

while the fields propagating on this classical curved background are allowed to be fully

quantum. Since the metric is otherwise arbitrary, QFT in curved spacetime is a particular

application of the background field method [21–25], not relying upon any perturbative

or local expansion around flat space, static sources or weak gravitational fields. When

the quantum fields are completely ‘integrated out’ in an arbitrary curved background and

QFT divergences are either cut off at short distances, or renormalized in the standard way

consistent with general covariance, an exact effective action is produced which contains

the higher curvature squared terms characteristic of the previous EFT expansion in local

invariants. Hence the semi-classical background field method and the EFT method of

cataloguing local operators are closely related. However, in integrating over the quantum

fields at all scales, the background field method and quantum effective action approach

captures one important but somewhat more subtle consequence of QFT easily overlooked

2See e.g. ref. [7] and references therein.
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in a more phenomenological Wilsonian EFT expansion in local curvature invariants, namely

the generally non-local and infrared effects of quantum anomalies.

The best known and most instructive example of a quantum anomaly is the axial

current anomaly in either QED or QCD. At the classical level the axial current j5µ is a

Noether current whose divergence is expected to vanish in the limit of vanishing fermion

mass. As is well known, it turns out to be impossible for any regulator to enforce the

conservation of j5µ at the one-loop quantum level without violating gauge invariance, and

a well-defined finite divergence ∂µj
5µ = (N/16π2)FF̃ results in a background gauge field

Fµν with N massless fermions [26, 27]. This axial current divergence cannot be represented

in terms of the original gauge fields by any local effective action. If it could be, there would

be the possibility of shifting the coefficient of this term by a suitable constant and cancelling

the anomaly. That this is impossible without violating gauge invariance implies that the

axial anomaly is a genuine quantum infrared (IR) effect, characterized by a non-local

effective action in pure QED or QCD. The IR (or more properly lightcone) implications of

the anomaly are confirmed by the appearance of massless poles in anomalous amplitudes,

signaling the existence of a low energy massless effective excitation and degree of freedom

not present in the original classical Lagrangian [28–30].

Since the UA(1) symmetry is explicitly broken by the axial anomaly, any local EFT

expansion assuming this symmetry will necessarily miss the anomaly and its associated

low energy massless excitation. Thus if one adopts a standard Wilsonian EFT approach

to low energy meson physics, expanding only in polynomials of local derivatives of the

meson fields divided by a characteristic mass scale of the order of Λ
QCD

or the ρ-meson

mass of Mρ ≃ 770 MeV, no anomalous UA(1) contribution will be present. This local EFT

is necessarily incomplete, neither correctly predicting the η′ pseudoscalar meson mass nor

the decay constant of π0 → 2γ. Capturing these effects requires adding to the standard

local EFT meson Lagrangian an additional term, explicitly breaking the UA(1) symmetry,

in a procedure that has come to be known as anomaly matching [16, 17, 31].

The necessity of modifying the standard EFT approach when quantum anomalies are

present becomes clear when keeping track of the scaling dimensions of operators. All

infrared relevant operators, scaling with dimensions d ≤ D where D = 4 is the physical

spacetime dimension must be included in the EFT. Local operators with d > 4 appear

divided by d − 4 powers of the mass scale, and being suppressed by d−4 powers of k/M

at low energies, are classified as irrelevant in the infrared. Conversely, local operators

with d < 4, such as the Einstein-Hilbert action of classical GR (together with a possible

cosmological term) are infrared relevant. The case of logarithmic scaling corresponding to

the marginal case d = 4 requires special care. Since a logarithm cannot be represented as a

local polynomial in k, it corresponds to a non-local term in the effective action in position

space. It should be included in the EFT since its low energy effects are not power law

suppressed by the UV mass scale Mρ. Logarithmic scaling is exactly the behavior of the

marginal operators in the quantum effective action generated by the anomaly [32]. The

marginally relevant non-local contribution(s) in the effective action can have important non-

trivial effects in the low energy EFT, including the appearance of new massless excitations

in correlation functions, as the QED/QCD axial anomalies show [28–30].
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Inclusion of non-local operators obtained from the quantum one-loop effects of mass-

less degrees of freedom may still seem counterintuitive from the standard Wilsonian EFT

approach, viewed as integrating out only heavy degrees of freedom at mass-energy scales

greater than the UV scale M . Reference to the QCD axial anomaly will help to resolve

any apparent paradox. In QCD the mass scale of the light u and d quarks is of order 5 to

10 MeV. Since the meson EFT is supposed to be valid up to the much larger UV cutoff

scale for Mρ ≃ 770MeV, it follows that there is a large energy range

mu,d ≪ k ≪ Mρ (1.1)

for which the light quarks are effectively massless. The decoupling theorem still holds for

the very lowest energies k ≪ mu,d, where all effects of the anomaly are suppressed by at

least one factor of (k/2mu,d)
2, but the existence of mass scales much smaller than the UV

cutoff scale Mρ means that anomalous quantum vacuum polarization effects of the light

quark loops survive in the meson EFT in the intermediate energy range (1.1), and the term

in the EFT due to the axial anomaly matching must be added to the low energy effective

Lagrangian in this energy range. Thus even when the fermion masses are non-zero, so

that the underlying QFT has no exact chiral symmetry, the anomaly contributions will be

present in the range (1.1), where the light quark masses can be neglected.

In the case of gravity the UV cutoff at the Planck scale likewise does not preclude

anomalous effects at much lower energies because of the existence of additional light quan-

tum fields which are either exactly massless, such as the photon, or approximately so

compared to the Planck scale. Thus over a large intermediate range of energies below the

Planck energy scale, semi-classical methods and an EFT approach to gravity including the

effects of logarithmally scaling QFT anomalies should apply.

In QFT in curved space the important quantity coupling to gravity is the matter stress-

energy tensor Tµν . For massless fields conformally coupled to gravity, the stress tensor is

classically traceless Tµ
µ = 0. As in the case of the axial current, the classical conformal sym-

metry cannot be maintained at the one-loop quantum level without violating another invari-

ance, in this case general coordinate invariance, expressed by the covariant conservation law

∇µT
µν = 0. Enforcing the latter results in the trace being necessarily non-zero and given by

〈Tµ
µ〉 = bC2 + b′

(

E − 2

3
R

)

+ b′′ R+
∑

i

βi Li (1.2)

in a general four dimensional curved spacetime, where

E ≡ ∗Rαβγδ
∗Rαβγδ = RαβγδR

αβγδ − 4RαβR
αβ +R2 (1.3a)

C2 ≡ CαβγδC
αβγδ = RαβγδR

αβγδ − 2RαβR
αβ +

1

3
R2 (1.3b)

is the Euler-Gauss-Bonnet integrand and the square of the Weyl conformal tensor respec-

tively. Here Rαβγδ the Riemann curvature tensor, ∗Rαβγδ its dual, and Rαβ and R is the

Ricci tensor and scalar. Additional dimension four invariants denoted by Li in (1.2) may

also appear in the general form of the trace anomaly, if the massless conformal fields in

– 4 –
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question couple to additional long range fields. For example in the case of massless fermions

coupled to a gauge field, there are contributions from the scalar invariants LF = FµνF
µν of

electromagnetism or of the strong or electroweak non-abelian gauge fields, with coefficients

determined by the β function of the corresponding gauge coupling. Note that these gauge

field terms are certainly not Planck suppressed.

All the anomaly coefficients b, b′, b′′ and βi are dimensionless parameters multiplied by

~, and

b =
~

120(4π)2
(

Ns + 6Nf + 12Nv

)

(1.4a)

b′ = − ~

360(4π)2
(

Ns + 11Nf + 62Nv

)

(1.4b)

are known for any number of free conformal scalars (Ns), four-component Dirac fermions

(Nf ) or vectors (Nv) respectively [7, 33–38]. The b′′ coefficient in (1.2) is ultraviolet (UV)

regularization dependent and can be changed at will or set to zero by the addition of a

local R2 term in the effective action, and hence is not a true anomaly. In contrast, the b

and b′ terms in (1.2) are independent of the UV regulator, cannot be removed by any local

counterterm, and depend on the number of massless fields of each spin, which is a property

of the low energy effective description of matter coupled to gravity. Note that b > 0 but

b′ < 0 for all non-gravitational free fields of spin less than or equal to one.

Since the terms in the quantum effective action of the trace anomaly, cf. eq. (2.14)

below, scale logarithmically with distance, they may be regarded as marginally relevant

terms in the low energy Wilsonian effective action for gravity, with the b, b′ coefficients

treated as arbitrary parameters to be fixed by experiment, and to be added to the usual

R and Λ terms of the Einstein-Hilbert action in a local EFT expansion in derivatives.

From this latter point of view the effective action corresponding to the trace anomaly is

a non-trivial extension, or modification of Einstein’s classical theory at energies far below

the Planck scale, and is hence relevant for macroscopic physics. Unlike most other possible

modifications of GR, the extension by a term associated with the conformal anomaly is

required by known one-loop quantum vacuum polarization effects of light fields in general

curved spaces, and being generally covariant is consistent with the Equivalence Principle,

at least in its weak sense.

Note also that inclusion of the effects of the trace anomaly does not rely in any way

upon the classical Einstein-Hilbert action or the value of the gravitational constant G itself.

The Einstein eqs. are not used in deriving (1.2) for an arbitrary classical background

metric. As in the case of the QCD axial anomaly, the underlying QFT need not be exactly

conformally invariant, or the axial and/or conformal invariance may be spontaneously

broken. Notwithstanding any of the fields contributing to b and b′ in (1.4) having a finite

mass m ≪ MP l, their anomalous vacuum contributions to the effective action must still

be taken into account for intermediate energies m ≪ k ≪ MP l, in the low energy EFT of

gravity far below the Planck scale [32, 39, 40].

It is this semi-classical EFT, consisting of the usual Einstein-Hilbert action of classical

General Relativity together with the quantum effective action generated by the conformal

– 5 –
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trace anomaly, eqs. (2.14) and (2.18) below, which lead to an additional massless dynam-

ical scalar in the conformal sector, and scalar gravitational waves that propagate over

macroscopic distances, that is the main subject of this paper.

The paper is organized as follows. In the next section the effective action of the con-

formal trace anomaly and the Wess-Zumino consistency condition it satisfies are briefly

reviewed in both its non-local and equivalent local form, the latter by the introduction of a

scalar field ϕ, to be called the conformalon field. The stress-energy tensor of the scalar con-

formalon field is given in section 3. The resulting EFT containing both metric and scalar

conformalon ϕ field is linearized around flat spacetime in section 4, and gauge invariant

metric variables introduced in both a covariant and a 3 + 1 spacetime splitting, demon-

strating the coupling of ϕ to the conformal part of the metric at linear order. In section 5

the scalar Green’s function for ϕ is used to express the solutions in terms of the strength of

localized sources. The energy and power radiated in scalar gravitational waves is computed

to quadratic order in the fluctuations and given in terms of the source strength in section 6.

Section 7 contains some preliminary estimates of the strength of scalar gravitational waves

from astrophysical sources, including the possibility of detection by present or planned

gravitational wave antennas. Section 8 contains a Summary of the results and Outlook for

future work on the EFT modification of General Relativity by the anomaly effective action.

2 The conformal anomaly and low energy EFT of gravity

The derivation of the effective action encapsulating the trace anomaly (1.2) is straightfor-

ward. Introducing the local conformal parameterization of the metric

gµν(x) = e2σ(x)ḡµν(x) ,
√−gx ≡ [−det gµν(x)]

1
2 = e4σ(x)

√−ḡx (2.1)

in terms of an arbitrary fixed fiducial metric ḡµν , the conformal dependences of the terms

in (1.2) are

√−g C2 =
√

−g C
2

(2.2a)
√−gLi =

√

−gLi (2.2b)

√−g

(

E − 2

3
R

)

=
√

−g

(

E − 2

3
R

)

+ 4
√

−g ∆̄4 σ (2.2c)

where the coordinate label x subscript on
√−gx =

√−g is generally suppressed when it

causes no confusion to do so. All quantities with an overbar are evaluated in the fixed

fiducial metric ḡµν . The fourth order differential operator [32, 41–45]

∆4 ≡ ∇µ

(

∇µ∇ν + 2Rµν − 2

3
Rgµν

)

∇ν = 2 + 2Rµν∇µ∇ν −
2

3
R +

1

3
(∇µR)∇µ (2.3)

is the unique fourth order scalar kinetic operator that is conformally covariant

√−g∆4 =
√−ḡ ∆̄4 (2.4)

for arbitrary σ(x).

From (2.2) it is clear that of the various terms in the general form of the trace

anomaly (1.2), the particular linear combination of the topological density E and −2
3 R

– 6 –
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in (2.2c) plays a special role. It is this linear combination and this combination only whose

conformal variation is linear in σ and defines the differential operator ∆4. This is a general

feature in any even d = 2n dimensional spacetime, as there exists a particular set of local

invariants which when added to the Euler-Gauss-Bonnet topological density in any even di-

mension defines a conformally covariant (2n)th order scalar differential operator operating

linearly on σ. All other terms in the general form the conformal anomaly (1.2) are either

conformally invariant as (2.2a)–(2.2b) or cohomologically trivial, as is R by itself, in the

sense that they can be removed by appropriate local counterterms in the effective action.

If (1.2) is multiplied by
√−g the result is the conformal σ variation of a Wess-Zumino

effective action
δΓ

WZ

δσ

∣

∣

∣

∣

ḡ

=
√−g 〈Tµ

µ(x)〉 ≡ A (2.5)

which gives rise to the anomalous trace. Because of (2.1) the linear σ dependence in (2.2)

is a logarithmic scaling with metric distances, which makes Γ
WZ

a marginally relevant

effective action. This Wess-Zumino effective action is easily found by inspection of the

linear relations (2.2), viz. [41]

Γ
WZ

[ḡ;σ] = 2b′
∫

d4x
√−ḡx σ∆4 σ +

∫

d4xAσ (2.6)

= b′
∫

d4x
√−ḡx

[

2σ ∆̄4 σ +

(

Ē − 2

3
R̄

)

σ

]

x

+

∫

d4x
√−ḡx

[

b C̄2 σ +
∑

i

βi L̄i σ

]

x

up to conformally invariant terms independent of σ, which being insensitive to rescalings do

not generate infrared relevant terms. The action Γ
WZ

satisfies the Wess-Zumino consistency

condition [46, 47]

Γ
WZ

[ḡ;σ] = Γ
WZ

[e2ω ḡ;σ − ω] + Γ
WZ

[ḡ;ω] . (2.7)

By its construction the WZ action Γ
WZ

depends separately on σ and the arbitrary back-

ground metric ḡµν and is therefore not fully generally coordinate invariant. However, owing

to (2.7) Γ
WZ

is a cohomological representation of the group of local Weyl transformations

of the metric, and consequently can be expressed as a difference of fully covariant but

non-local effective actions evaluated at the metric gµν(x) and ḡµν(x) [32]. This non-local

difference form

Γ
WZ

[ḡ;σ] = SNL

anom[g = e2σ ḡ]− SNL

anom[ḡ], (2.8)

is obtained by solving (2.2c) formally for σ, thereby inverting the differential operator ∆4,

substituting the result into (2.6) and using (2.4). The resulting covariant non-local effective

action is given by

SNL

anom[g] =
1

4

∫

d4x
√−gx

(

E − 2

3
R

)

x

∫

d4x′
√−gx′ D4(x, x

′)

×
[

b′

2

(

E − 2

3
R

)

+ bC2 +
∑

i

βi Li

]

x′

(2.9)

– 7 –
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whereD4(x, x
′) denotes the Green’s function inverse of the fourth order differential operator

∆4 defined by (2.3), in the sense that

∫

d4x′
√−gx′ ∆4D4(x, x

′)ψ(x′) = ψ(x) (2.10)

for any scalar function ψ(x). The particular Green’s function depending on appropriate

boundary conditions must be selected by the physical application. In section 5 we solve for

the retarded Green’s function D4,Ret ≡ DR(x, x
′) explicitly with classical retarded bound-

ary conditions in flat space. Similar to the retarded Green’s function for the usual second

order wave operator in two dimensions, DR(x, x
′) is a constant for all points x′ within

the entire past light cone of x, and the corresponding Feynman propagator grows loga-

rithmically at large distances. This feature allows the effects of the non-local quantum

correlations induced by the conformal trace anomaly (1.2), contained in the anomaly ef-

fective action to be cumulative and non-negligible at macroscopic distance scales. Adding

a R term to (1.2) with an arbitrary b′′ 6= 0 would add a local R2 term to the effective

action, which affects the UV behavior but which only produces Planck suppressed effects

at low energies, without altering the non-local IR contribution (2.9) of the true anomaly.

It bears emphasizing that the anomaly effective action (2.14) is completely distinct from

all terms local in the curvature and its derivatives in EFT, as well as any other possible non-

local but conformally invariant terms that might be generated by integrating out quantum

matter fields, in both its logarithmic scaling with distance, and the special role of the ∆4

operator in producing a particular kinetic energy term for σ. This kinetic energy term in the

Wess-Zumino action (2.6) shows that the conformal part of the metric becomes dynamical

in the low energy EFT of gravity, whereas it is constrained in classical General Relativity.

The covariant non-local form (2.9) of the anomaly effective action shows that the dynamical

degree of freedom in the conformal sector is not associated with the Planck scale, quite un-

like possible additional degrees of freedom introduced by local higher derivative curvature

terms. The effects of such higher local higher derivative terms have been considered in [19,

20], and are suppressed by (Lpl/r)
2 where r is a typical macroscopic scale. This need not be

the case for (2.9), the effects of which are non-local in the invariants including Li, and which

are not uniformly suppressed by the Planck scale. The effective semi-classical action (2.9)

in the gravitational sector, in which b, b′ proportional to ~ appear as parameters, may be

regarded as an efficient bookkeeping device to take into account the anomalous vacuum po-

larization effects of the known light fields in the Standard Model in the gravitational sector,

without having to calculate loops containing these light fields in every individual process.

In order to make the scalar excitation associated with the anomaly and its macroscopic

consequences manifest in a coordinate independent way, it is convenient to recast the

generally covariant non-local effective action (2.9) in local form by the introduction of (at

least one) scalar field. Because it is asymmetrical in the invariants E and (C2,Li), two

additional scalar fields would be necessary to render the minimal non-local action (2.9)

into a local form [39]. On the other hand, if one adds to (2.14) the Weyl invariant terms

– 8 –
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necessary to symmetrize the terms in x and x′, and complete the square in (2.9), namely

1

8b′

∫

d4x
√−gx

[

bC2 +
∑

i

βiLi

]

x

∫

d4x′
√−gx′ D4(x, x

′)

[

bC2 +
∑

i

βiLi

]

x′

(2.11)

one obtains the symmetric non-local form of the anomaly effective action

SNL

anom[g] →
1

8b′

∫

d4x

∫

d4x′A(x)D4(x, x
′)A(x′) (2.12)

where the total trace anomaly density A is given by (1.2) with b′′ = 0 and (2.5). Since the

anomaly effective action SNL

anom is determined only up to Weyl invariant terms in any case,

adding Weyl invariant terms such as (2.11) to it does not affect the trace anomaly or (2.8).

However adding a term such as (2.11) does change the tracefree parts of the stress tensor

derivable from the action in (2.9) vs. (2.12), and whether the effective action contains non-

minimal Weyl invariant terms such as (2.11) or not can only be determined by explicit

calculation in particular QFTs. The results of this paper are insensitive to whether the

anomaly action is symmetrized or not.

Assuming for simplicity the symmetrized form (2.12), one can now introduce a single

scalar field ϕ, requiring it to satisfy the linear equation of motion

∆4 ϕ =
E

2
− R

3
+

1

2b′

(

bC2 +
∑

i

βiLi

)

=
1

2b′
A√−g

(2.13)

and rewrite the non-local action (2.12) in its equivalent local form

Sanom[g;ϕ] ≡ −b′

2

∫

d4x
√−g

[

( ϕ)2 − 2

(

Rµν − 1

3
Rgµν

)

(∇µϕ)(∇νϕ)

]

+
1

2

∫

d4x
√−g

[

b′
(

E − 2

3
R

)

+ bC2 +
∑

i

βiLi

]

ϕ (2.14)

by using (2.3) and integrating by parts. The advantage of this local form of Sanon[g;ϕ]

is that free variation with respect to ϕ yields back its equation of motion (2.13), and is

otherwise entirely equivalent to the non-local form (2.12) which is reproduced (up to surface

terms) if (2.13) is solved for ϕ by inverting ∆4 and the result is substituted into (2.14). The

freedom to change the boundary conditions on the Green’s function inverse D4(x, x
′) of the

wave operator ∆4 by adding homogeneous solutions of this wave operator to D4(x, x
′) in

the non-local effective action is equivalent to the freedom in the initial data to solve (2.13)

for ϕ in the local form (2.14). The kinetic terms of the local scalar ϕ in (2.14) are mapped

to the massless scalar propagator anomaly poles in the non-local form (2.12), which have

been verified explicitly in three-point correlation functions as a necessary consequence of

anomalous Conformal Ward Identities of otherwise conformal field theories [28–30, 49].

Note that unlike Γ
WZ

[ḡ;σ], Sanom[g;ϕ] depends upon the full physical metric gµν and

is therefore fully general coordinate invariant. It is clear that ϕ is nevertheless very closely

related to the conformal factor σ of the metric itself in (2.1). Indeed

Sanom[g;ϕ] = −Γ
WZ

[

g;−ϕ

2

]

(2.15)
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so that (2.7) implies

Sanom[e
−2σg;ϕ] = Sanom[g;ϕ+ 2σ]− Sanom[g; 2σ] (2.16)

which shows that conformal transformations of the metric are related to linear shifts in

the spacetime scalar ϕ. For this reason and because the identity (2.16) exposes its origin

and fundamental relationship to variations of the conformal frame of the metric, ϕ may

be termed the scalar conformalon field, which serves to distinguish it from dilatons and

dilaton-like fields that arise in other contexts. Because of the fourth order kinetic term the

scalar conformalon ϕ has canonical mass dimension zero, which also distinguishes it from

other dimension one dilaton-like fields.

The method of obtaining (2.14) outlined relies upon integrating the trace anomaly

eq. (1.2) with the values of the coefficients b, b′, βi dependent upon the underlying QFT

content. In that case the scalar conformalon ϕ does not introduce any genuinely ‘new’

degrees of freedom, but rather re-expresses in a convenient form certain two-particle corre-

lations present in the underlying QFT vacuum [28–30, 49, 50]. For example, the Casimir

effect and vacuum polarization effects in fixed geometries such as the Schwarzschild and

de Sitter backgrounds may be computed for a large variety of states for fields of arbitrary

spin by use of Sanom and its corresponding stress tensor (3.2) [39]. On the other hand,

since the form of the trace anomaly (1.2) is prescribed by locality of QFT and general

coordinate invariance, the effective action (2.9) associated with it may be regarded as a

necessary part of the general effective action of low energy gravity, based on dimensional

scaling and invariance principles alone. From that perspective the existence of (at least

one) scalar field ϕ coupling to the spacetime metric and satisfying (2.16) is independent of

any specific matter field content, and the coefficients b, b′, βi and of (2.11) may be treated

as free parameters of low energy gravity, to be determined by experiment.

When (2.14) is added to the usual Einstein-Hilbert term of classical General Relativity

SEH[g] =
1

16πG

∫

d4x
√−g

(

R− 2Λ
)

(2.17)

we obtain the semi-classical effective action

Seff [g;ϕ] = SEH[g] + Sanom[g;ϕ] (2.18)

which defines a scalar-tensor low energy effective theory of gravity. Since ϕ(x) is a space-

time scalar field, the trace anomaly action (2.14) is invariant under general coordinate

transformations, just as the classical action (2.17) is. As a metric theory that leaves un-

altered the direct minimal gravitational couplings of matter through covariant derivatives,

the effective action (2.18) is thus consistent with the Einstein Equivalence Principle, by

admitting local freely falling Lorentz frames at every point where the non-gravitational

laws of physics take on their familiar Lorentz invariant form.

Because the scalar conformalon couples to gauge fields through the βiLi terms in the

trace anomaly and influences the metric and gravitational interactions through its stress

tensor, cf. (3.1) below, certain more subtle violations of the Strong Equivalence Principle
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(SEP) are possible in the EFT defined by (2.18). Since the scalar ϕ is the minimal one re-

quired by the general form of the quantum trace anomaly (1.2) and general covariance, the

addition of Sanom and any violations of the SEP it generates are the minimal ones required

by general principles of QFT. In this connection one should note that both the form and

the fundamental origin of (2.14) in the correlations of massless quantum fluctuations dif-

fer markedly from other scalar-tensor theories, such as Fierz-Jordan-Brans-Dicke (FJBD)

theory [51–54]. In particular, the scalar conformalon ϕ does not couple to the full trace

of the classical stress tensor of massive matter, as the FJBD scalar does, but only linearly

to those dimension four conformal invariants with no dimensionful mass parameters, such

as (2.2b), which are dictated by the quantum trace anomaly (1.2) and Wess-Zumino consis-

tency (2.16). Additional self-couplings of ϕ would generally violate WZ consistency. Since

the possible sources for ϕ in (2.13) are negligibly small in our local neighborhood, this also

allows (2.18) to easily pass the stringent solar system tests which constrain the coupling(s)

in FJBD theory, as well as the laboratory constraints on other modified gravity theories [55].

The presence of four derivatives in ∆4 naturally raises questions and potential contro-

versies about unitarity and ghosts in the quantum EFT of (2.14). In the context of the

pure anomaly ‘free’ theory (2.6), quantized on R× S
3, the negative norm ghost states are

eliminated from the physical spectrum by the diffeomorphism constraints [56, 57]. The

proper framework for the resolution of the question of ghosts in the EFT of low energy

gravity (2.18) requires making full use of the (four) constraints of diffeomorphism invari-

ance. Because of (2.16), ϕ mixes with the conformal part of the metric, and the scalar

conformalon ϕ is always partly constrained, as the conformal part of the metric is fully

constrained in classical GR, cf. section 4. Since (2.16) forbids adding arbitrary additional

non-linear interactions in the conformalon sector, it is only the non-linearity of classical GR

itself that prevents the constraints from being solved in closed form, but these non-linear

couplings are suppressed in flat space by the weakness of the gravitational coupling G, up

to Planck energy scales where the EFT framework is expected to break down. Since in this

paper only linearized perturbations about flat space are considered, which may be treated

by classical methods, with ~ entering only through the b, b′, βi coefficients of the anomaly,

but with the scalar conformalon ϕ taken to be a c-number field, the results do not rely

upon quantization of ϕ, and are independent of questions or concerns about the quantum

EFT, unitarity and ghosts, which will be addressed in a separate publication.

In [58] the full effective action (2.18) with a cosmological term was considered per-

turbatively in linear response around de Sitter space. In that case the higher derivative

mode of ∆4 decouples if one restricts attention to excitations far below the Planck scale,

for which the EFT description is valid, but a physical scalar mode of ϕ with second order

kinetic term not present in the classical Einstein theory survives. In this paper this analysis

is carried out for the somewhat simpler case of linear perturbations around flat space, with

the result that again a single second order physical scalar excitation survives and couples

to the metric at low energies, which with positive energy is stable, and is responsible for

the new phenomenon of scalar gravitational waves, treated classically in the EFT of (2.18).

– 11 –



J
H
E
P
0
7
(
2
0
1
7
)
0
4
3

3 Stress-energy of the scalar conformalon

Variation of the last form of the anomaly action (2.14) with respect to the metric yields

the stress-energy tensor of the scalar conformalon field

Tµν [ϕ] ≡ − 2√−g

δ

δgµν
Sanom[g;ϕ] = b′Eµν + bCµν +

∑

i

βi T
(i)
µν [ϕ] (3.1)

where

Eµν ≡ −2 (∇(µϕ)(∇ν) ϕ) + 2∇α
[

(∇αϕ)(∇µ∇νϕ)
]

− 2

3
∇µ∇ν

[

(∇αϕ)(∇αϕ)
]

+
2

3
Rµν (∇αϕ)(∇αϕ)− 4Rα

(µ

[

(∇ν)ϕ)(∇αϕ)
]

+
2

3
R (∇(µϕ)(∇ν)ϕ)

+
1

6
gµν

{

−3 ( ϕ)2 +
[

(∇αϕ)(∇αϕ)
]

+ 2
(

3Rαβ −Rgαβ
)

(∇αϕ)(∇βϕ)
}

−2

3
∇µ∇ν ϕ− 4C α β

µ ν ∇α∇βϕ− 4Rα
(µ∇ν)∇αϕ

+
8

3
Rµν ϕ+

4

3
R∇µ∇νϕ− 2

3

(

∇(µR
)

∇ν)ϕ

+
1

3
gµν

[

2 2ϕ+ 6Rαβ ∇α∇βϕ− 4R ϕ+ (∇αR)∇αϕ
]

(3.2)

is the metric variation of the terms proportional to b′, both quadratic and linear in ϕ

in (2.14), and

Cµν ≡− 2√−g

δ

δgµν

{

1

2

∫

d4x
√−g C2 ϕ

}

=−4∇α∇β

(

C α β
(µ ν) ϕ

)

−2C α β
µ ν Rαβ ϕ (3.3a)

T (i)
µν [ϕ]≡− 2√−g

δ

δgµν

{

1

2

∫

d4x
√−gLi ϕ

}

(3.3b)

are the metric variations of the last two b and βi terms in (2.14), linear in ϕ. Thus for

example,

T (F )
µν [ϕ] =

(

− 2F α
µ Fαν +

1

2
gµνF

αβFαβ

)

ϕ (3.4)

for L = FµνF
µν , which is proportional to ϕ and the Maxwell stress tensor.

Since the effective action is a coordinate invariant scalar, the stress-energy tensor (3.1)

is covariantly conserved

∇µT
µ
ν [ϕ] = 0 (3.5)

for any b, b′ upon making use of the ϕ eq. of motion (2.13), and for any βi, if supplemented

by the eqs. of motion for any additional fields coupled through Li. It is easily verified that

the terms quadratic in ϕ in (3.2), as well the terms (3.3)–(3.4) are conformally invariant

and traceless, so that the total trace of the anomaly stress tensor is obtained from the

terms in (3.2) linear in ϕ, yielding

gµνTµν [ϕ] = 2b′∆4ϕ = bC2 + b′
(

E − 2

3
R

)

+ b′′ R+
∑

i

βi Li (3.6)
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which reproduces (1.2), by again using the classical eq. of motion (2.13). This relation

may also be derived as a direct consequence of Wess-Zumino consistency (2.16).

The stress tensor (3.1) appears as an additional source to the Einstein field equations

obtained by varying the full gravitational effective action (2.18) with respect to the metric,

which thus become

Rµν −
1

2
gµνR+ Λgµν = 8πG

(

T (cl)
µν + Tµν [ϕ]

)

(3.7)

in the EFT. Here T
(cl)
µν denotes the classical stress-energy tensor of all other matter and

radiation fields. Thus the semi-classical EFT consists of classical GR supplemented by

a well-defined additional conserved stress-energy tensor which encapsulates the vacuum

fluctuation and polarization effects associated with the conformal trace anomaly of light

or massless quantum fields. The form and value of (3.1) given by (3.2)–(3.4) depend in its

tracefree parts quadratic in ϕ upon the completion of the square by addition of the Weyl in-

variant terms (2.11). If these Weyl invariant terms are absent from the full effective action,

the slightly more complicated two-field effective action and stress tensor of the anomaly

given in [39] should be used in place of the tracefree quadratic terms in (3.2) and (3.1).

4 Linearization around flat space

4.1 Covariant tensor decomposition

It is clear that with Λ = 0 the modified field eqs. (3.7) with (2.13) are satisfied by the

vacuum solution ϕ = 0 in flat space gµν = ηµν with no other sources. An important

physical consequence of adding the anomaly action to classical GR can be seen at linearized

order around this flat spacetime vacuum solution. The effective action (2.18) expanded to

second order in the field fluctuations

hµν ≡ gµν − ηµν , h ≡ ηµνhµν (4.1)

around the vacuum solution of flat spacetime with ηµν = diag(−+++) and ϕ = 0 is

S
(2)
eff

∣

∣

g=η
=

1

32πG

∫

d4x

{

1

2
hµν hµν + h∇µ∇νhµν + (∇νhµν)(∇αh µ

α )− 1

2
h h

}

−b′

2

∫

d4x ( ϕ)2 +
b′

3

∫

d4x ( ϕ)
{

h−∇µ∇νhµν
}

(4.2)

where surface terms have been discarded. The last term in (4.2) shows that there is a

mixing between the trace of the metric perturbation hµν and the scalar conformalon ϕ.

Note also that this mixing of ϕ to the metric perturbation is only through ϕ. Thus any

scalar perturbations with ϕ = 0 are completely decoupled from the metric perturbations

at linear order.

One can analyze the coupling between the anomaly scalar with ϕ 6= 0 and the lin-

earized metric perturbation in either a covariant or a canonical framework. In a covariant

treatment space and time indices are treated on an equal footing, so that Lorentz invari-

ance is manifest, whereas in a canonical treatment spacetime is split into space + time,
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and true propagating modes containing kinetic terms may be more clearly separated from

constrained modes.

Considering first the spacetime covariant decomposition of the metric perturbation

hµν = u⊥µν + ∂µv
⊥
ν + ∂νv

⊥
µ +

(

∂µ∂ν −
1

4
ηµν

)

w +
1

4
ηµνh (4.3)

where u⊥µν and v⊥µ are transverse and u⊥µν is traceless in the four-dimensional covariant

sense, i.e.

∂µu⊥µν = 0 = ηµνu⊥µν (4.4a)

∂µv⊥µ = 0 (4.4b)

then under the infinitesimal coordinate transformation xµ → xµ + ξµ(x)

u⊥µν → u⊥µν

v⊥µ → v⊥µ + ξ⊥µ

w → w + 2ζ

h → h+ 2 ζ
(4.5)

where ξµ = ξ⊥µ +∇µζ is also decomposed into transverse and longitudinal components in the

same covariant four-dimensional sense. Thus, of the ten independent metric components

of the linearized metric perturbation hµν only the subset of

u⊥µν → u⊥µν (4.6a)

h− w → h− w (4.6b)

consisting of 5 components of a spin-2 tensor field and 1 component of spin-0 scalar field

are gauge invariant under coordinate transformations (up to possible zero modes). Ac-

cordingly, since the effective action (2.18) is generally coordinate invariant, the equations

of motion (3.7) and the second variation (4.2) can depend upon only these 6 gauge invari-

ant metric components. Indeed the Riemann and Einstein tensors, and the Ricci scalar

linearized around flat space are respectively

δRµναβ = δR
(T )
µναβ + δR

(S)
µναβ =

1

2

{

∂α∂νu
⊥
µβ + ∂β∂µu

⊥
να − ∂β∂νu

⊥
µα − ∂α∂µu

⊥
νβ

}

+
1

8

{

ηµβ∂ν∂α + ηνα∂µ∂β − ηµα∂ν∂β − ηνβ∂µ∂α

}

(h− w) (4.7a)

δGµν = δG(T )
µν + δG(S)

µν = −1

2
h⊥µν +

1

4
(ηµν − ∂µ∂ν)(h− w) (4.7b)

δR = −3

4
(h− w) (4.7c)

depending only upon the gauge invariant tensor (T ) and scalar (S) parts of the linearized

metric perturbations (4.6) respectively. Substituting (4.3) into (4.2) gives

S
(2)
eff

∣

∣

∣

g=η
=

1

64πG

∫

d4xu⊥µν u⊥µν −
3

512πG

∫

d4x (h− w) (h− w)

− b′

2

∫

d4x ( ϕ)2 +
b′

4

∫

d4x ( ϕ) (h− w) (4.8)
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which is also gauge invariant under linearized coordinate transformations. Thus the gauge

invariant scalar metric perturbations h− w couples to and mixes with the conformalon

scalar via ϕ.

The tensor decomposition (4.3) is useful for separating gauge invariant from gauge non-

invariant components of the linearized deviations of the metric from flat space in a Lorentz

covariant way. Because the Einstein equations obtained by the full metric variation has tt

and ti components which act as four constraints, similar to the Gauss Law constraint on

the longitudinal part of the electric field in electromagnetism, not all modes in the covariant

decomposition (4.6) are true propagating degrees of freedom. In the pure Einstein theory

(b′ = 0) the scalar spin-0 metric perturbations h− w and 3 of the 5 polarizations of spin-

2 gravitational waves are constrained, so that only the 2 remaining transverse, traceless

components freely propagate in classical GR.

The four first order constraints corresponding to the four diffeomorphism gauge degrees

of freedom are the tt and ti components of the linearized Einstein eqs. (3.7). The scalar

conformalon stress-energy tensor (3.2) in the flat space limit is

Eµν

∣

∣

flat
= −2(∇(µϕ)(∇ν) ϕ) + 2( ϕ)(∇µ∇νϕ)

+
2

3
(∇αϕ)(∇α∇µ∇νϕ)−

4

3
(∇µ∇αϕ)(∇ν∇αϕ)

+
1

6
gµν

{

− 3( ϕ)2 +
[

(∇αϕ)(∇αϕ)
]

}

+
2

3
(ηµν −∇µ∇µ) ϕ (4.9)

with

Tµν [ϕ]
∣

∣

flat
= b′Eµν

∣

∣

flat
and Cµν

∣

∣

flat
= 0 (4.10)

in vacuo when no other sources are present. Note that (4.9) contains terms both linear and

quadratic in ϕ. The terms linear in ϕ, (3.7), and the scalar part of (4.7b) give

δG(S)
µν =

1

4
(ηµν − ∂µ∂ν)(h− w) =

16πGb′

3
(ηµν − ∂µ∂ν) ϕ (4.11)

or in component form,

δG
(S)
tt = −1

4
~∇2 (h− w) = −16πGb′

3
~∇2( ϕ) (4.12a)

δG
(S)
ti = −1

4
∂t~∇i (h− w) = −16πGb′

3
∂t~∇i( ϕ) (4.12b)

to linear order in hµν and ϕ, with the spin-2 tensor part δG
(T )
µν dependent upon u⊥µν unaf-

fected. The general solution of the constraints (4.12) in the scalar sector is

1

8
(h− w) =

8πGb′

3
ϕ+ F (t) +K(x) , ~∇2K = 0 (4.13)

where F (t) is a function only of time and K(x) is a function only of space, with zero spatial

Laplacian. Since the only solution of ~∇2K = 0 which is non-singular everywhere, including

spatial infinity, is K(x) = const., it may be absorbed into F (t), and we may effectively set

K = 0 in (4.13).
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In the pure Einstein theory (i.e. b′ = 0) (4.13) implies that the gauge invariant scalar

metric perturbation h− w = 8F (t) contains no local propagating degree of freedom, in the

same way that the longitudinal part of the electric field is locally constrained by Gauss’ Law
~∇ · ~E = ρ and is non-propagating in pure electromagnetism (with ρ = 0). In that case as

well the longitudinal electric field can contain at most a spatially homogeneous mode that is

a function only of time: ~E = ~E(t). As is well known in finite temperature field theory, plas-

mas or generally whenever there is a polarizable fluctuating medium, the fluctuations of the

charges in the medium induce through Gauss’ law a collective plasmon mode described by a

propagating longitudinal electric field [59]. Thus the longitudinal mode of the electric field,

completely constrained and non-propagating with fixed sources, becomes propagating in

the presence of dynamical charged sources, inheriting the collective dynamics of the sources.

An analogous phenomenon can occur due to quantum fluctuations and anomaly of a

charged field in the vacuum, as evidenced for example by the Schwinger model of mass-

less QED in one 1+1 dimensions. Integrating out of the massless fermion field leads

to a propagating massive scalar boson equivalent to the longitudinal electric field, classi-

cally constrained, which becomes propagating through Gauss’ Law and the quantum axial

anomaly [50]. In either case the collective mode arises from two-particle correlations of the

fluctuating source field (either thermal or quantum).

Eq. (4.13) shows that this phenomenon occurs in vacuo in the EFT of gravity due to

the conformal trace anomaly, since the gauge invariant scalar metric perturbations h− w,

previously constrained to be non-propagating by the classical Einstein eqs. are forced now

to follow the propagating conformalon scalar field ϕ. Since ϕ satisfies the fourth order

eq. (2.13), or

2ϕ = ( ϕ) = −1

3
δR (4.14)

linearized around flat space, it contains two sets of scalar field modes. In fact, as will be

shown in the next subsection, the linearized Einstein eqs. also imply δR = 0 identically at

linearized order. Hence of two sets of massless modes in the fourth order eq. of motion for

ϕ, only the one remaining in ϕ 6= 0 survives to provide

(h− w) = 0 (4.15)

with non-trivial propagating scalar gravitational wave solutions, obeying a second order

wave equation. In the next subsection a non-covariant space + time splitting of the metric

perturbations, appropriate for identifying the unconstrained propagating local scalar degree

of freedom in a canonical framework is given, in order to verify this conclusion.

4.2 Space + time decomposition and constraints

In order to properly characterize the dynamical propagating degrees of freedom in the EFT

of gravity vs. the constrained modes, introduce the non-covariant space + time splitting of

– 16 –



J
H
E
P
0
7
(
2
0
1
7
)
0
4
3

the linearized metric perturbations in the standard Hodge decomposition

htt = −2A (4.16a)

hti = B⊥
i + ~∇iB (4.16b)

hij = H⊥
ij + ~∇iE⊥

j + ~∇jE⊥
i + 2 ηij C + 2

(

~∇i
~∇j −

1

3
ηij ~∇2

)

D (4.16c)

adapted from that commonly employed in spatially homogeneous, isotropic cosmological

models [58, 60], with ηij = δij in Cartesian coordinates of flat R3. The components

A,B,C,D are four scalars with respect to the flat spatial metric on R3, the 3-vectors

B⊥
i , E⊥

i are transverse, satisfying

~∇iB⊥
i = ~∇iE⊥

i = 0 (4.17)

resulting in two independent components each, and H⊥
ij = H⊥

ji is a symmetric, transverse,

traceless tensor (now in the spatial three-dimensional sense) satisfying

~∇jH⊥
ij = ~∇iH⊥

ij = 0 = ηij H⊥
ij (4.18)

resulting in two independent polarization components.

In this space + time splitting the four independent linearized coordinate transforma-

tions can be similarly decomposed:

ξt = −T ξi = ~∇iL+ X⊥
i (4.19)

with X⊥
i a transverse vector satisfying ~∇iX⊥

i = 0. The linearized coordinate gauge trans-

formation induces the linearized changes in the metric components

A → A+
.
T

B → B − T +
.
L

C → C +
1

3
~∇2L

D → D + L

B⊥
i → B⊥

i +
.
X⊥
i

E⊥
i → E⊥

i + X⊥
i

H⊥
ij → H⊥

ij

(4.20)

provided the spatial gradients of B,D, T and L are all non-vanishing. Thus

ΥA ≡ A+
.
B −

..
D

ΥC ≡ C − 1

3
~∇2D

Ψ⊥
i ≡ B⊥

i −
.
E⊥
i

H⊥
ij → H⊥

ij

(4.21)

are invariant under linearized coordinate transformations, whenever the spatial depen-

dences of these functions are non-vanishing. In the special case of metric perturbations

independent of the spatial coordinate x, B,D and L may be set to zero. Then only ΥC = C

is gauge invariant, while ΥA = A is still subject to the gauge transformation ΥA → ΥA+
.
T ,

with T (t) independent of the spatial coordinate.
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The non-zero components of the Riemann tensor can be expressed in the form

δRtitj = ∂i∂jΥA − ηij
..
ΥC +

1

2

(

∂iΨ
⊥
j + ∂jΨ

⊥
i

)

− 1

2

..
H⊥

ij (4.22a)

δRtijk = (ηij∂k − ηik∂j)
.
ΥC +

1

2
∂i

(

∂jΨ
⊥
k − ∂kΨ

⊥
j

)

+
1

2

(

∂k
.
H⊥

ij − ∂j
.
H⊥

ik

)

(4.22b)

δRijkl =
(

ηil ∂j∂k − ηjl ∂i∂k + ηjk ∂i∂l − ηik ∂j∂l
)

ΥC

+
1

2

(

∂k∂jH⊥
il − ∂k∂iH⊥

jl − ∂j∂lH⊥
ik + ∂i∂lH⊥

jk

)

(4.22c)

from which follow the linearized variation of the Ricci tensor and Ricci scalar

δRtt = ~∇2ΥA − 3
..
ΥC (4.23a)

δRti = −2 ∂i
.
ΥC − 1

2
~∇2Ψ⊥

i (4.23b)

δRij = −∂i∂jΥA − (∂i∂j + ηij ~∇2)ΥC + ηij
..
ΥC − 1

2
(∂iΨ

⊥
j + ∂jΨ

⊥
i )−

1

2
H⊥

ij (4.23c)

δR = −2 ~∇2ΥA − 4 ~∇2ΥC + 6
..
ΥC (4.23d)

and the linearized Einstein tensor

δGtt = −2 ~∇2ΥC (4.24a)

δGti = −2 ∂i
.
ΥC − 1

2
~∇2Ψ⊥

i (4.24b)

δGij = (ηij ~∇2 − ∂i∂j)(ΥA +ΥC)− 2 ηij
..
ΥC − 1

2
(∂iΨ

⊥
j + ∂jΨ

⊥
i )−

1

2
H⊥

ij (4.24c)

all expressed in terms of the six gauge invariant components (4.21). From (4.24a) it is clear

that the tt component of the Einstein’s eqs., δGtt = 8πGδTtt is

~∇2ΥC = −4πGδTtt (4.25)

for small perturbations about flat space. Since δGij → 0 in the non-relativistic limit for

slowly moving weak sources, ΥA = −ΥC from (4.24c) becomes the Newtonian potential

for quasi-static weak sources. On the other hand for relativistic sources, δGij 6= 0 and

ΥA 6= −ΥC in general.

The quadratic effective action S
(2)
eff around flat space in the decomposition (4.16) takes

the form

S
(2)
eff

∣

∣

∣

g=η
=

1

64πG

∫

d4x
(

H⊥
ij H⊥

ij − 2Ψ⊥
i
~∇2Ψ⊥

i

)

+
1

8πG

∫

d4x
(

−2ΥA
~∇2ΥC −ΥC

~∇2ΥC + 3ΥC

..
ΥC

)

−b′

2

∫

d4x ( ϕ)2 − 2b′

3

∫

d4x ( ϕ)
(

−~∇2ΥA + 3
..
ΥC − 2 ~∇2ΥC

)

(4.26)
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while the linearized Einstein equations become

H⊥
ij = 0 (4.27a)

~∇2Ψ⊥
i = 0 (4.27b)

~∇2ΥC =
8πGb′

3
~∇2( ϕ) (4.27c)

∂t~∇iΥC =
8πGb′

3
∂t~∇i( ϕ) (4.27d)

(ηij ~∇2 − ~∇i
~∇j)(ΥA +ΥC)− 2ηij

..
ΥC = −16πGb′

3
~∇i

~∇j( ϕ) (4.27e)

since the linearly independent components in the tensor, vector and scalar sectors must

be satisfied separately. Note that although the variation of the scalar effective action (4.2)

yields the scalar solutions of the linearized Einstein equations (4.27), the latter tensorial

equations are more restrictive, and it is only this more restrictive set of solutions of the

tensorial eqs. (4.27) that satisfy all the correct linearized constraints of diffeomorphism

invariance. The first eq. (4.27a) gives the usual three-dimensionally transverse, traceless,

propagating gravitational wave modes, while the second eq. (4.27b) expresses the triviality

of the transverse, vector sector in the absence of any rotating sources. The last three eqs.

of (4.27) together with (4.14) show the non-trivial coupling of the anomaly scalar into the

scalar sector of metric perturbations in the space + time splitting.

Analogously to the covariant analysis in the previous subsection, the constraint

eqs. (4.27c) and (4.27d) imply

ΥC =
8πGb′

3
ϕ+ F (t) (4.28)

with F some function only of time. When twice (4.27c) is added to the trace of (4.27e) we

obtain

2 ~∇2ΥA + 4 ~∇2ΥC − 6
..
ΥC = −δR = 0 (4.29)

by (4.23d), showing that the Ricci curvature scalar perturbations are constrained to be iden-

tically zero at linearized order as a direct consequence of the linearized Einstein eqs. (4.27).

As anticipated this then implies that the ϕ equation of motion (4.14) linearized around flat

space becomes
2 ϕ = −1

3
δR = 0 . (4.30)

which is sourcefree in vacuo. Finally (4.29) together with (4.28) and (4.30) imply that

~∇2(ΥA −ΥC) = 3 (
..
ΥC − ~∇2ΥC) = −8πGb′ 2ϕ+ 3

..
F = 3

..
F . (4.31)

Since the right side of this relation is a constant in space, but the spatial Laplacian ~∇2

has no non-singular inverse on constant functions, the only non-singular solutions of (4.31)

are those where each of the four different expressions in (4.31) are all vanishing. Thus in

addition to (4.30), we find

..
F (t) = 0 (4.32a)

ΥA −ΥC =
.
ξ(t) (4.32b)
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where
.
ξ(t) is another arbitrary function of time. This arbitrary function

.
ξ(t) may be

removed by the residual time coordinate gauge freedom ΥA → ΥA+
.
T allowed for spatially

homogeneous time reparameterizations, so that choosing T (t) = −ξ(t) fixes

ΥA = ΥC =
8πGb′

3
ϕ+ F (t) =

1

8
(h− w) (4.33)

with F (t) = αt+ β at most a linear function of time due to (4.32a), and the last equality

follows from (4.13) with K = 0 with F (t) identified as the same function as in the covariant

analysis, cf. (4.13).

Thus the solution of the Einstein eqs., the ϕ equation of motion (4.30) and all diffeo-

morphism constraints for the gauge invariant scalar potentials imply finally

ΥA = ΥC =
8πGb′

3
2ϕ = 0 (4.34)

describing true propagating scalar gravitational waves in flat space, arising from the

anomaly scalar for ϕ 6= 0. The equal gravitational potentials ΥA = ΥC with (4.33) make

clear that the gauge invariant and Lorentz invariant scalar metric perturbation h − w,

constrained in the classical Einstein theory is a bona fide propagating scalar wave mode

in the semi-classical EFT. Note that this discontinuous change in the nature of the scalar

sector of GR when b′ 6= 0 is unrelated to the Planck scale and hence unsuppressed at low

energies and macroscopic distance scales, and moreover, half of the solutions of (4.30) for

which ϕ = 0 decouple from the metric perturbations at linear order around flat space.

For completeness we record the relations between the covariant metric decomposi-

tion (4.3) and the 3 + 1 decomposition (4.16):

u⊥tt = −4

3

1
2
(~∇2)2 (ΥA −ΥC) (4.35a)

u⊥ti =
1 ~∇2Ψ⊥

i − 4

3

1
2
~∇i

~∇2 (
.
ΥA −

.
ΥC) (4.35b)

u⊥ij = H⊥
ij +

1 (

~∇i

.
Ψ⊥

j + ~∇j

.
Ψ⊥

i

)

− 2
2
~∇i

~∇j

( ..
ΥA −

..
ΥC

)

+
2

3

1
2

(

~∇i
~∇j − ηij

)

~∇2 (ΥA −ΥC)

h− w = 8ΥC +
8

3

1 ~∇2 (ΥA −ΥC) (4.35c)

which show that the scalar wave solution (4.33) with ΥA = ΥC and Ψ⊥
i = 0 is pure gauge

invaraint spacetime scalar h− w, and leaves the transverse, traceless gravitational wave

sector of the classical Einstein theory, with its 2 gauge invariant propagating polarizations

u⊥ij = H⊥
ij unaffected.

5 Scalar gravitational waves from localized sources

Having found that the semi-classical EFT of gravity admits scalar gravitational wave so-

lutions in vacuo for any b′ 6= 0, which are not present in classical GR, in this section we

consider localized sources for these scalar waves, arising from the anomaly stress tensor,
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and solve the linearized equations with fixed causal (classical retarded) boundary conditions

due to these localized sources.

In flat spacetime the eq. of motion (2.13) for the anomaly scalar field ϕ is

2ϕ = 8πJ (5.1)

with the source

J ≡ 1

16πb′
A√−g

=
1

16π

[

E − 2

3
R+

b

b′
C2 +

1

b′

∑

i

βi Li

]

→ 1

16πb′

∑

i

βi Li (5.2)

to be treated as a weak perturbation in the nearly flat space limit. The factor of 8π is

inserted in (5.1) for later convenience. The linear equation (5.1) can be solved in terms of

the classical retarded Green’s function ( −2)Ret ≡ DR, which in flat spacetime (dropping

the subscript 4 on D4) satisfies

2DR(t− t′;x− x′) = δ(t− t′) δ3(x− x′) (5.3)

and which is represented by the Fourier integral

DR(t− t′;x− x′) =

∫ ∞

−∞

dω

2π

∫

d3k

(2π)3
e−iω(t−t′) eik·(x−x

′)

[

− (ω + iǫ)2 + k2
]2 (5.4)

with the infinitesimal ǫ > 0 prescription enforcing retarded boundary conditions. Since the

second order poles of the integrand at ω = ±|k| are displaced into the lower half complex

by this prescription, the ω contour may be closed in the upper half complex plane for

t − t′ < 0, giving zero, while for t − t′ > 0 the ω contour may be closed in the lower half

complex plane, yielding the result

DR(t−t′;x−x′)=

∫

d3k

(2π)3
eik·(x−x

′)

2 k2

{

sin [k(t− t′)]

k
− (t− t′) cos

[

k (t− t′)
]

}

θ(t− t′)

=
1

4π2

∫ ∞

0
dk

sin
[

k |x− x′|
]

k |x− x′|

{

sin [k (t− t′)]

k
− (t− t′) cos

[

k (t− t′)
]

}

θ(t− t′)

=
1

8π
θ
(

t− t′ − |x− x′|
)

for t > t′ (0 otherwise) (5.5)

which vanishes if t ≤ t′, and where eqs. 3.741 (2) and (3) of [61] and have been used.

Thus whereas the usual second order wave operator has a retarded Green’s function

1

4π|x− x′| δ
(

t− t′ − |x− x′|
)

θ(t− t′) = − DR(t− t′;x− x′) (5.6)

with support only on the past light cone in 3 + 1 spacetime dimensions, the fourth order

operator 2 has a retarded Green’s function (5.5) with uniformly constant support every-

where within the past light cone. This is similar to the retarded Green’s function for the

second order wave operator but in 1+1 spacetime dimensions, and results in pronounced
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long distance infrared behavior of the conformalon scalar ϕ. Indeed the solution of (5.1)

fixed by these classical retarded boundary conditions is

ϕ(t,x) = 8π

∫ ∞

−∞
dt′

∫

d3x′DR(t− t′;x− x′) J(t′,x′)

=

∫

d3x′

∫ t−|x−x
′|

−∞
dt′ J(t′,x′) (5.7)

which does not fall off with large |x−x′|, and which can even become large without bound

for persistent sources. Inspection of (3.2) shows that ϕ appears only under derivatives, so

that these largest infrared effects are removed for localized sources.

Relabeling the point of observation x → r, and the integration variable over the spatial

extent of the source x′ → x, the first derivatives of (5.7) are

.
ϕ(t, r) =

∫

d3x J(t̃,x) (5.8a)

~∇i ϕ(t, r) = −
∫

d3x N̂i J(t̃,x) (5.8b)

where

N̂i ≡ ~∇i |r− x| = (r− x)i
|r− x| and t̃ ≡ t− |r− x| (5.9)

is the retarded time, the spatial derivatives being taken with respect to r. The second

derivatives of (5.7) are

..
ϕ(t, r) =

∫

d3x
.
J(t̃,x) (5.10a)

~∇i
.
ϕ(t, r) = −

∫

d3x N̂i

.
J(t̃,x) (5.10b)

~∇i
~∇j ϕ(t, r) = −

∫

d3x

(

δij − N̂iN̂j

)

|r− x| J(t̃,x) +

∫

d3x N̂iN̂j

.
J(t̃,x) (5.10c)

from which follow

~∇2ϕ(t, r) = −2

∫

d3x
1

|r− x| J(t̃,x) +
∫

d3x
.
J(t̃,x) (5.11a)

ϕ(t, r) = (−∂2
t + ~∇2)ϕ(t, r) = −2

∫

d3x
1

|r− x| J(t̃,x) (5.11b)

.
ϕ(t, r) = −2

∫

d3x
1

|r− x|
.
J(t̃,x) . (5.11c)

Thus from (4.33) the gauge invariant scalar metric perturbation propagated from a distant

localized source is

ΥA = ΥC =
1

8
(h− w) = −16πGb′

3

∫

d3x
1

|r− x| J(t̃,x)

→ −G

3r

∫

d3xA(t̃,x) (5.12)

in the far or radiation zone where r ≡ |r| ≫ |x|.

– 22 –



J
H
E
P
0
7
(
2
0
1
7
)
0
4
3

For time harmonic sources,

A(t,x) = e−iωtAω(x) (5.13)

where the Real Part is understood, we have

∫

d3xA(t̃,x) ≃ e−iω(t−r)

∫

d3x exp(−iωr̂ · x)Aω(x) ≡ e−iω(t−r) Ã(ω|̂r) (5.14)

in the far radiation zone, and therefore from (5.12),

ΥA = ΥC = −G

3r
e−iω(t−r)

∫

d3x exp(−iωr̂ · x)Aω(x) = −G

3r
e−iω(t−r)A(ω|̂r) (5.15)

which has the form of an outgoing spherical scalar gravitational wave.

This result is to be compared with the linearized metric perturbation of transverse,

traceless gravitational waves

H⊥
ij(t, r) = 4G

∫

d3x
1

|r− x| T
⊥
ij (t̃,x)

→ 4G

r
Π lm

ij (r̂)

∫

d3xTlm(t− r + r̂ · x,x)

=
2G

r
Π lm

ij (r̂)

∫

d3xxl xm

..
T tt(t− r + r̂ · x,x) (5.16)

in the radiation zone, where

Π lm
ij (r̂) =

1

2

(

δ l
i δ

m
j + δ m

i δ l
j + r̂i r̂j r̂

l r̂m − ηijη
lm + ηij r̂

l r̂m + ηlm r̂i r̂j

−δ l
i r̂j r̂

m − δ m
j r̂i r̂

l
)

(5.17)

is the projector onto transverse, traceless tensors. For a time harmonic source

H⊥
ij(t, r) = −2Gω2

r
e−iω(t−r)Π lm

ij (r̂)

∫

d3x exp(−iωr̂ · x)xl xm T tt
ω (x)

≃ −2Gω2

r
e−iω(t−r)Π lm

ij (r̂) Qlm(ω) (5.18)

in the quadrupole approximation, where the exponential factor in the integral in (5.18)

is replaced by unity, valid if ωa/c ≪ 1 for slow moving non-relativistic sources of spatial

extent a, and where

Qlm(ω) =

∫

d3xxl xm T tt
ω (x) (5.19)

is the Fourier component of the source quadrupole moment.

Thus whereas the source for electromagnetic radiation is the time varying current

transverse to the line of sight, whose first non-vanishing multipole is the dipole term, and

the source for transverse, traceless gravitational radiation in classical GR is the time varying

transverse stress-energy whose first non-vanishing multipole is the quadrupole term (5.19),

the source for the scalar gravitational wave in (5.12)–(5.15) is the trace anomaly A, which
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receives a contribution from its monopole term in the expansion of the exponent in (5.15).

Due to the decoupling of the anomaly gauge field sources when ωk < me (QED) or ωk <

mu,d (QCD) an effective lower threshold for space and time variation of these sources is

introduced for scalar monopole radiation. As shown below and in the next section, the

Riemann tensor and power radiated in scalar gravitational radiation are proportional to

ω2.

The linearized perturbation of the Riemann tensor corresponding to the scalar gravi-

tational wave (5.15) may be computed with the help of (4.7a) to be

δR
(A)
µναβ =

{

ηµα∂ν∂β + ηνβ∂µ∂α − ηµβ∂ν∂α − ηνα∂µ∂β

} G

3 r

∫

d3xA(t̃,x)

→ G

3 r

{

ηµα∂ν∂β + ηνβ∂µ∂α − ηµβ∂ν∂α − ηνα∂µ∂β

}

∫

d3xA(t̃,x) (5.20)

in the far region where the terms dropped by neglecting the effect of the derivatives upon 1/r

fall off faster than 1/r as r → ∞. In this region because of the dependence of the integrand

on the retarded time t̃ = t − |r − x|, one can also make the replacement ~∇i → −r̂i ∂t.

From (5.20) the components of the Riemann tensor perturbation then become

δR
(A)
itjt =

G

3 r

(

ηij − r̂ir̂j
)

∫

d3x
..
A(t̃,x) (5.21a)

δR
(A)
ijkt =

G

3 r

(

ηikr̂j − ηjkr̂i
)

∫

d3x
..
A(t̃,x) (5.21b)

δR
(A)
ijkl =

G

3 r

(

ηikr̂j r̂l + ηjlr̂ir̂k − ηilr̂j r̂k − ηjkr̂ir̂l
)

∫

d3x
..
A(t̃,x) (5.21c)

in the far field region, whereas the linearized Weyl tensor

δC
(A)
µναβ = 0 (5.22)

vanishes for scalar gravitational waves. The Riemann tensor perturbations (5.21) may be

used to compute the effect of the scalar gravitational wave on test masses in a detector.

The contractions of (5.21) are

δR
(A)
tt =

2G

3 r

∫

d3x
..
A(t̃,x) (5.23a)

δR
(A)
it =

2G

3 r
r̂i

∫

d3x
..
A(t̃,x) (5.23b)

δR
(A)
ij =

2G

3 r
r̂ir̂j

∫

d3x
..
A(t̃,x) (5.23c)

δR(A) = 0 (5.23d)

and for time harmonic sources (5.13) in the radiation zone we may make the replacement

∫

d3x
..
A(t̃,x) → −ω2 e−iω(t−r) Ã(ω|̂r) (5.24)

in (5.21) and (5.23), with Ã(ω|̂r) defined by (5.14), and the Real Part is understood.
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Whereas the tensor perturbations H⊥
ij have vanishing linearized Ricci tensor, but non-

vanishing linearized Weyl tensor, befitting a spin-2 tensor gravitational wave, the scalar

gravitational waves ΥA = ΥC generated by the trace anomaly have non-vanishing Ricci

tensor (5.23), but vanishing Weyl tensor (5.22). Both scalar and tensor waves fall off as

1/r from a distant source, with the anomaly monopolar source A in (5.12) taking the place

of the transverse, traceless tensor source T⊥
ij in (5.16).

6 Energy and power radiated in scalar gravitational waves

The terms linear in ϕ and the metric perturbation around flat space hµν in the EFT give

rise to scalar gravitational waves. As in the case of tensor perturbations in Einstein’s

theory, it is necessary to consider the quadratic terms in the expansion around flat space

in order to compute the energy and power radiated by these waves. These quadratic terms

arise from (2.18) in three possible ways:

A. Quadratic terms in hµν in the Einstein-Hilbert action and effective stress tensor;

B. Mixed terms linear in each of hµν and ϕ in the anomaly action and stress tensor;

C. Quadratic terms in ϕ, but lowest order in the metric in the anomaly action and stress

tensor.

A. Einstein-Hilbert quadratic terms

The terms of the first kind are of the same origin as in classical General Relativity (albeit

in the scalar sector), and are encapsulated in the expansion of the Ricci tensor

R(2)
µν = ∇αΓ

(2)α
µν −∇νΓ

(2)α
µα + Γ(1)α

µν Γ
(1)β

αβ − Γ
(1)α

µβ Γ
(1)β

αν (6.1)

to second order in the metric perturbation (4.1). Here Γ
(ℓ)α

µν is the Christoffel connection

at order ℓ. In accordance with the Brill-Hartle-Isaacson averaging procedure for grav-

itational waves of small amplitude and wavelength much shorter than any background

curvature radius [62–65], one can ignore total derivatives in the stress tensor such as the

first two terms in (6.1). Substituting the expression

Γ(1)α
µν =

1

2

(

∂νh
α
µ + ∂µh

α
µ − ∂αhµν

)

(6.2)

for the expansion of the Christoffel connection to the first order into (6.1) one obtains

〈R(2)
µν 〉 =

〈

1

2
(∂(µh)(∂αh

α
ν))−

1

4
(∂αh)(∂

αhµν) +
1

2
(∂βhαµ)(∂βhνα)

−1

2
(∂αh

α
µ)(∂βh

β
ν)−

1

4
(∂µh

αβ)(∂νhαβ)

〉

(6.3a)

〈R(2)〉 =
〈

−hµνR(1)
µν + ηµνR(2)

µν

〉

=

〈

1

2
(∂αh

α
λ)(∂βh

βλ)− 1

4
(∂λh

αβ)(∂λhαβ)−
1

4
(∂αh)(∂

αh)

〉

(6.3b)
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where all indices are raised and lowered with the flat space Minkowski metric, h ≡ ηµνhµν ,

integration by parts has been used freely under the averaging brackets, and R
(1)
µν ≡ δRµν

to first order in the metric perturbation is given by (4.27) with R(1) ≡ δR = 0 by (4.30).

The contribution of this first (A) set of terms to the effective energy-momentum tensor

of gravitational waves is the negative of the second order Einstein tensor and thus given by

− 1

8πG

〈

G(2)
µν

〉

= − 1

8πG

〈

R(2)
µν − 1

2
ηµνR

(2)

〉

= − 1

8πG

〈

R(2)
µν

〉

(6.4)

where the second equality follows by substituting the covariant metric decomposition (4.3),

retaining only the w and h terms for scalar perturbations, so that

〈R(2)〉 = − 3

32

〈

(∂αh)(∂
αh)− 2(∂αh)(∂

α w) + (∂α w)(∂α w)
〉

=
3

32

〈

(h− w) (h− w)
〉

= 0 (6.5)

after integration by parts and use of the eq. of motion (4.15). The same substitution in

the second order Ricci tensor gives after some algebra

〈R(2)
µν 〉 =

〈

− 3

32
∂µ(h− w)∂ν(h− w) +

1

8
(∂µh)(∂νh)−

1

8
(∂µ w)(∂ν w)

〉

(6.6)

which is non-vanishing but also not manifestly gauge invariant. This shows that

contributions from the other sets of terms in B (or C) are needed.

B. Mixed terms linear in ϕ and the metric perturbation

The terms in the anomaly stress-energy tensor which are linear in the scalar conformalon

field ϕ are given by terms linear in ϕ in (3.2) together with (3.3). Expanding these terms

to first order in the metric perturbation from flat space gives

T (1)
µν [ϕ] = −4(b+ b′)C

(1)α β
(µ ν) ∂α∂βϕ+ b′

{

2

3
Γ(1)α

µν ∂α ϕ− 4R(1)α
(µ∂ν)∂αϕ+

8

3
R(1)

µν ϕ

+
2

3
ηµν

[

( 2)(1)ϕ+ 3R(1)αβ ∂α∂βϕ
]

}

(6.7)

where (4.30) has again been used, and terms involving the Li terms in the anomaly stress

tensor have been dropped, under the assumption that in free space in vacuo there are no

background fields.

The first order metric variation of the scalar 2 operator is

( 2)(1)ϕ =
1

2
(∂αh)(∂

α ϕ) + · · · = −1

2
h ( 2ϕ) + · · · (6.8)

where the ellipsis involves total derivative terms that vanish when substituted into (6.7)

and averaged, and the eq. of motion for ϕ (4.30) is used. Likewise since the first order

metric variations of the Weyl tensor can be expressed in terms of the first order variations

of the Riemann and Ricci tensors, and these are given in terms of h − w by (4.7), it

follows again by integration by parts and repeated use of the eq. of motion (4.15) that
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all these first order curvature terms in (6.7) vanish upon averaging. Hence the only term

in (6.7) which survives upon averaging is

〈T (1)
µν [ϕ]〉 =

2b′

3

〈

Γ(1)α
µν ∂α ϕ

〉

=
2b′

3

〈

(∂αh
α
(µ)(∂ν) ϕ)

〉

=
b′

6

〈

∂(µ(h+ 3 w)(∂ν) ϕ)
〉

(6.9)

for scalar perturbations. Substituting for ϕ from (4.13) and again freely integrating by

parts under the averaging brackets gives

〈T (1)
µν [ϕ]〉 =

1

8πG

〈

1

16
∂µ(h− w)∂ν(h− w) +

1

4
(∂(µh)(∂ν) w)− 1

4
(∂(µ w)(∂ν) w)

〉

(6.10)

which when added to (6.4) and using (6.6) gives the simple result

T SGW

µν =
1

8πG

1

32

〈

∂µ(h− w)∂ν(h− w)
〉

=
16πGb′2

9

〈

(∂µ ϕ) (∂ν ϕ)
〉

(6.11)

whose gauge invariance furnishes a useful check of the calculations.

C. Terms quadratic in ϕ

Since the conformalon field ϕ is itself first order in the metric perturbations from flat space,

the ϕ quadratic terms in its stress-energy tensor Tµν [ϕ] may be evaluated in flat space, and

are given by (4.9)–(4.10) to be

T (2)
µν [ϕ] = b′

〈

− 2 (∂(µϕ)(∂ν) ϕ) + 2 ( ϕ)(∂µ∂νϕ)

+
2

3
(∂αϕ)(∂

α∂µ∂νϕ)−
4

3
(∂µ∂αϕ)(∂ν∂

αϕ)

〉

−b′

2
ηµν

〈

( ϕ)2
〉

= 2b′
〈

( ϕ) (∂µ∂νϕ)

〉

(6.12)

where as before integration by parts and the eq. of motion 2ϕ = 0 outside all sources

have been used freely under the Brill-Hartle-Isaacson wave averaging brackets. Substitut-

ing (5.10)–(5.11) gives







T
(2)
tt [ϕ]

T
(2)
ti [ϕ]

T
(2)
ij [ϕ]






→ −2b′

r







1

−r̂i

r̂ir̂j







〈

∂

∂t

(∫

d3x J(t̃,x)

)2〉

= 0 (6.13)

for each of the components of this tensor in the far field radiation zone, when averaged over

time. Thus there are no contributions to the stress-energy of scalar gravitational waves

from the third set (C) of terms quadratic in the ϕ in perturbations about flat space. These

terms are associated instead with non-wavelike or near field effects of the anomaly sources

for ϕ. Contributions from the Weyl invariant terms (2.11), if present, are also of this kind.
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The stress-energy carried by scalar gravitational waves due to the conformal anomaly is

given therefore by the sum of (A) and (B) terms only in (6.11). Note that this stress-energy

is conserved and the energy density is positive:

T SGW

tt =
16πGb′2

9

〈

( ϕ̇)2
〉

≥ 0 (6.14)

so there is no linear instability. The outward flux from the localized sources considered in

section 5 is

T t SGW

i =
16πGb′2

9
r̂i

〈

( ϕ̇)2
〉

=
G

36π

r̂i

r2

〈

(∫

d3x Ȧ(t̃,x)

)2
〉

(6.15)

in the far field radiation zone. Thus for time harmonic anomaly sources (5.13) the power

radiated by scalar gravitational radiation per unit solid angle in the direction r̂ is

(

dP

dΩ

)

SGW

(r̂) = r2 r̂i T
t SGW

i =
Gω2

72πc5
∣

∣Ã(ω|̂r)
∣

∣

2
=

Gω2

72πc5

∣

∣

∣

∣

∫

d3x e−iωr̂·x/cAω(x)

∣

∣

∣

∣

2

(6.16)

after time averaging, and the factors of c have been re-inserted.

Note that the multipole expansion of (6.16) obtained by expanding the exponential

in powers of (ωr̂ · x/c) begins with a monopole term, unlike that of transverse, trace-

free gravitational waves in the classical Einstein theory, whose lowest order multipole is

a quadrupole (5.18). In the monopole approximation the total power radiated in scalar

gravitational radiation is

P
SGW

≃ P
SGW

∣

∣

monopole
=

Gω2

18c5

∣

∣

∣

∣

∫

d3xAω(x)

∣

∣

∣

∣

2

(6.17)

which may be compared to the lowest order multipole tensor radiation formula in Einstein’s

theory

P
TGW

≃ P
TGW

∣

∣

quadrupole
=

2Gω6

5c9
∣

∣Qij(ω)
∣

∣

2
(6.18)

in terms of the quadrupole moment (5.19) of the classical stress tensor of the source. Thus

the power radiated in scalar radiation is enhanced relative to that of transverse radiation

by a factor of (ωa/c)4, but is suppressed by the weakness of the conformal anomaly stress-

energy tensor source A compared to strictly classical sources. In the next section possible

astrophysical sources of scalar gravitational waves are considered and the amplitude and

power radiated for these sources estimated.

7 Astrophysical sources of scalar gravitational waves

The typical curvature invariant in the vicinity of a completely collapsed star is of order

RµναβR
µναβ =

48(GM)2

r6
≤ 3

4(GM)4
(7.1)
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at the star’s Schwarzschild radius. This corresponds to a very small energy density of

ρ
R2

= 5× 10−38

(

M⊙

M

)4

erg/cm3 . (7.2)

Substituting this source of scalar gravitational waves into (5.12) gives gravitational poten-

tials

ΥA = ΥC ≃ −Gb′

3r

4π(2GM)3

3

3

4(GM)4
= − 8πb′

3Mr
≃ 10−91

( |b′|
~

)(

M⊙

M

)(

kpc

r

)

(7.3)

far below any possibility of direct detection. The reason for such enormous suppression

from curvature sources is essentially the same factor of ~GR ∼ (MP l/M)2 in the quantum

anomaly effective action relative to the classical Einstein-Hilbert action as that which

appears in local EFT treatments. For this reason also the effects of the curvature squared

terms in the anomaly EFT are far too small to be observed in weak gravitational fields,

such as that of the existing binary or double pulsar tests of GR. As a consequence the

anomaly EFT (2.18) easily passes these observational tests.

The possibility of much larger effects arise only when one considers the non-curvature

gauge field sources in the trace anomaly. The electromagnetic trace anomaly becomes

relevant above the two-electron mass-energy threshold 2mec
2 ≃ 1.02MeV, and the QCD

anomaly at least above the light u and d quark mass-energy thresholds of approximately

10MeV. These require very high energy astrophysical environments, but energy scales still

very far below the Planck energy scale, where the EFT defined by (2.18) should be reliable.

In the QED case, highly magnetized neutron stars (‘magnetars’) are believed to have

magnetic fields up to 1015 Gauss, which exceeds the electrodynamic critical field of Bc ≃
4 × 1013 Gauss corresponding to 2mec

2 [66]. Taking into account the coefficient of the

trace anomaly in QED, the magnetar field provides a source of scalar gravitational waves

of strength

Amag = − e2

24π2
FµνF

µν = −αB2

3π
≃ 8× 1026

(

B

1015Gauss

)2

erg/cm3 (7.4)

Since a typical neutron star radius is 12 km, the maximum volume over which this energy

density applies is of order 7 × 1018 cm3, giving a total magnetic field energy of order of

6 × 1045 ergs. The scalar gravitational wave produced at a distance r from such a highly

magnetized source has magnitude

ΥA = ΥC ≃ − G

3rc4

∫

d3xAmag . 5× 10−26

(

kpc

r

)

. (7.5)

The estimate (7.5) is many orders of magnitude greater than (7.3) but still several orders

of magnitude below the sensitivity of present gravitational wave detectors. When the

electron mass is not neglected, because of decoupling of the triangle diagram responsible

for the QED trace anomaly, Amag is suppressed by a factor of order (~ω/mec
2)2 where ω

is a characteristic frequency of time variation of the electromagnetic field strength [28–30].

Thus (7.5), small as it is, will be suppressed further as a source of scalar gravitational
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radiation for more slowly varying magnetic fields, for weaker fields, or for strong fields

exceeding the critical field but extending only over smaller volumes.

This suppression due to decoupling of the anomaly at low frequencies is also the reason

why the power radiated in scalar gravitational waves is negligible compared to classical

quadrupolar radiation in binary pulsar systems, such as the Hulse-Taylor binary and double

pulsar. For the double pulsar the orbital period of 2.454 hours gives an angular frequency

ω ≃ 7.11 × 10−4 sec [67]. This gives a suppression factor in the anomaly source A of

(~ω/mec
2)2 ≃ 2.10× 10−49, which enters the scalar power radiated (6.17) squared. Taking

all the factors in (6.17) into account gives a total power emitted in scalar radiation of order

(

dE

dt

)

scalar

∼ 1

8 (4πb′)

[∫

d3x

(

αB2

3π

)]2(
~ω

mec2

)4

∼ 1.1× 1012 erg/sec (7.6)

where a magnetic field of 2 × 1012 Gauss was assumed and the value of b′ from (1.4b)

was used with Nv = 1 for the electromagnetic field. In principle the energy radiated

in scalar gravitational waves will cause the orbit of the double pulsar to decay and its

orbital period to decrease, above the decrease predicted due to quadrupolar radiation in

Einstein’s classical theory. However the comparable estimate for classical transverse tensor

gravitational radiation from the same double pulsar system is of order 4 × 1032 erg/sec.

Thus the effect of the additional scalar radiation is smaller than one part in 1020 in this

system, and completely negligible. The effect in the Hulse-Taylor binary pulsar is even

smaller. Although a more accurate analysis is called for, these rough estimates indicate

that the anomaly EFT will easily pass all existing pulsar tests from electromagnetic sources

The most promising source for generating scalar gravitational waves in significant and

potentially detectable quantities is the SU(3)color trace anomaly

AQCD = (11Nc − 2Nf )
αs

24π
Ga

µνG
aµν ≃ −4.8× 1036 erg/cm3 (7.7)

forNc = 3 colors andNf = 2 light fermion species, where the last value is that of an effective

bag ‘constant’ of ρbag = −pbag ≃ 750 Mev/fm3 in nuclear matter [68]. The chemical

potential dependence of the bag ‘constant’ of dense nuclear matter has been estimated,

with values of the QCD trace anomaly similar to or even higher than (7.7) possible at

baryon chemical potentials of µ ≃ 1.6 GeV thought to exist in neutron star cores [69].

This energy density is more than 10 orders of magnitude larger than the QED value in a

strong magnetar field (7.4), and thus capable in principle of producing scalar gravitational

waves 10 orders of magnitude larger than (7.5), potentially within the detectable range.

As with the QED source, an important caveat for this estimate is that the QCD gauge

field anomaly proportional to Nf = 2 is a source for the scalar gravitational waves only

to the extent that light u and d quark masses of 5 to 10MeV can be neglected. This

corresponds to a nuclear time scale of 7 × 10−23 sec., or nuclear distance scales of 20

Fermi. Gluonic vacuum fluctuations responsible for the Nc = 3 in (7.7) are presumably

likewise suppressed on distance and time scales larger than the confinement scale of a few

Fermi. For lower energy processes, neither the light quarks nor the gluons can be treated

as massless fields, and the QCD trace anomaly AQCD will be suppressed by a factor of
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order (~ω/mπc
2)2, by non-perturbative effects of confinement. At these lower energies and

frequencies, one should use the low energy meson EFT of the strong interactions, rather

than the QCD anomaly.

The most vigorous disturbance of the QCD gluonic vacuum which can excite this

astrophysical source of the conformal anomaly is in the initial formation of the neutron star

(NS), or its collision, coalescence and merger with another compact stellar object. In such

processes density estimates such as (7.7) may be applicable. Thus the scalar gravitational

wave amplitude from neutron star formation or binary coalescence is estimated to be

ΥA = ΥC ≃ − G

3rc4

∫

d3xANS η ≃ 3× 10−21

(

100Mpc

r

)

η (7.8)

where η < 1 is volume fraction of the neutron star in which the gluonic condensate is

excited by high energy interactions above the QCD deconfinement threshold (∼ 165 MeV)

in the formation or coalescence event.

Clearly more careful estimates are needed, and will require detailed modeling of the

time dependence of the nuclear constituents and gluonic condensate in realistic neutron

star formation and merger events. Still, the signal generated by a time dependent QCD

trace anomaly by nuclear matter in a NS formation or merger event is almost certainly

the strongest astrophysical source of scalar gravitational waves, potentially detectable by

present or planned gravitational wave detectors, meriting such a detailed study. If NS

binary coalescence events are the sources of detectable scalar gravitational radiation, this

emission should follow closely upon transverse, traceless GW emission from binary inspiral,

suggesting the time co-incidence study of production of both GW polarizarization states by

the same event(s) may be a promising observational strategy. Conversely, non-detection of

scalar gravitational waves from NS or black hole candidate coalescence events could provide

potentially interesting constraints on nuclear equations of state and/or the mechanisms of

gravitational wave generation by the QCD trace anomaly.

8 Summary and outlook

In this paper the extension and modification of Einstein’s theory of classical General Rel-

ativity by the infrared relevant effects of the conformal trace anomaly have been analyzed

in the near flat space limit. The effective action (2.18) due to the quantum effects of the

anomaly defines the low energy EFT of gravity with an additional scalar field. The scalar

field ϕ is called a conformalon because it is closely related to and mixes with the conformal

mode of the usual spacetime metric, making it dynamical. Although reminiscent of the

scalar-tensor theory introduced by Fierz, Jordan, Brans and Dicke [51–54], (2.18) is quite

different in several important respects, foremost among them that it its exact form is dic-

tated by the known quantum effect of the conformal anomaly in QFT. As such the EFT

presented here does not fall into the class of scalar-tensor theories or effective field theories

of scalars or modified gravity theories usually considered [55]. Most notably, the scalar ϕ

does not couple directly to the trace of the matter stress tensor, but only to higher order

curvature invariants E,C2 of (1.3), or the gauge field scalars such as FµνF
µν or Ga

µνG
aµν .
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This feature of the scalar conformalon most clearly distinguishing it from other possible

scalar dilaton-like degrees of freedom or other modified gravity theories is a result of the

Wess-Zumino consistency relation (2.16) derived from the conformal anomaly (2.6)–(2.7),

which strictly constrains the form of the effective action.

The equations of the resulting semi-classical EFT are Einstein’s eqs. (3.7) with an

additional covariantly conserved source Tµν [ϕ], (3.1)–(3.3) of the scalar conformalon field

describing certain quantum vacuum effects of the trace anomaly, supplemented by the eq.

of motion (2.13) for this field itself. Linearized around flat spacetime with ϕ = 0, the EFT

describes scalar gravitational waves, in addition to the tensorial transverse, traceless waves

of the linearized Einstein theory. Although the anomaly EFT has a fourth order differential

operator and ϕ solves 2ϕ = 0, only the half of these solutions with ϕ 6= 0 couple to the

gauge invariant scalar gravitational metric perturbations through (4.33). The other half

of the solutions to (2.13) satisfying ϕ = 0 are a passive fixed background which are not

coupled to the metric and do not contribute to scalar gravitational radiation at linearized

order. This is a very important consideration relevant to the stability of the EFT and

any controversy or related difficulties encountered with local higher derivative theories. In

particular there is no linearized instability of flat space in the anomaly EFT, requiring the

discarding of high frequency or ‘runaway’ solutions as there is in higher derivative local

theories of gravity with R2 or C2 terms [75–78].

Since the anomaly effective action is quadratic in ϕ the excluded half of the solutions of

the fourth order linear eq. of motion (2.13) cannot couple to the spacetime metric except

through the non-linear terms in the usual Einstein-Hilbert action of General Relativity

itself, through their mutual gravitational interaction. These interactions are naturally

suppressed by the weakness of the gravitational coupling G, which must come together

with some energy scale squared for dimensional reasons. Since around flat spacetime the

only energy scale available is that of the perturbations, one must expect the other half

of the solutions of the fourth order anomaly EFT to couple only when their energy scale

approaches the Planck energy of 1019GeV, by which point the EFT approach to gravity has

clearly broken down. In curved spacetime backgrounds possessing additional length scales

or horizons, the breakdown of the EFT approach may occur at lower energy scales, such

as in the vicinity of horizons [39, 58]. Issues arising from fourth order anomaly effective

action (2.14) including the quantization and Hamiltonian of the conformalon field will

be taken up in a separate publication, inasmuch as they do not affect the conclusions of

scalar gravitational waves with classical gauge invariant potentials obeying the second order

eq. (4.34). Clearly the full treatment of the anomaly quantum effective theory is required

to settle all questions of the fourth order theory in either its local or non-local form.

When localized sources for the scalar gravitational waves are considered, the scalar

metric perturbations have a monopole form, falling off with distance from the source as

1/r according to (5.12), or (5.15) for time harmonic sources. The corresponding linearized

Riemann tensor components for scalar gravitational waves needed for the response of test

masses in GW detectors are given by eqs. (5.21). The energy flux and power emitted per

unit solid angle in scalar gravitational waves are given in the EFT by (6.16), or (6.17) in

the monopole approximation.
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Although all possible terms in the trace anomaly A can act as sources for the scalar

conformalon field and therefore scalar gravitational radiation, the higher derivative curva-

ture sources are far too small to contribute appreciably. The electromagnetic trace anomaly

of QED is much larger but still very likely too weak to produce observable scalar GWs or

indirect effects, such as energy loss from even the most highly magnetized objects known.

Thus the EFT associated with the conformal anomaly easily passes all present observational

tests from the binary and double pulsar systems.

The most promising non-negligible sources of scalar gravitational waves in the EFT

are those due to the QCD trace anomaly, excited in neutron star formation, or binary co-

alescence with another NS or other collapsed star. In such systems the rough preliminary

estimate (7.8) indicates that scalar gravitational radiation may be produced with large

enough amplitude to be observed by present and future planned GW detectors as a burst

event. The power radiated in scalar gravitational waves from the QCD anomaly is poten-

tially many orders of magnitude larger than (7.6) from strong magnetic sources, but as

proportional to a factor η2 < 1 subject to considerable uncertainty. A more careful quan-

titative calculation of the sources of scalar GWs in NS merger events is clearly warranted,

with the development of detailed models of the scalar waveforms expected in the EFT of

gravity as now becoming available in standard GR [72]. Even at this preliminary stage

an open search for scalar ‘breather mode’ gravitational waves by present and future detec-

tors is indicated [73, 74], with a search strategy for burst events coincident with inspirals

producing transverse, traceless GWs seeming to be the most promising approach.

Energy densities as large as (7.7) from strong interactions and the QCD trace anomaly

also imply that the non-linear effects on the geometry of the anomaly stress-energy tensor,

neglected in the present analysis around flat space, should be taken into account in a

fully consistent treatment. These non-linear effects of the anomaly stress-energy may be

comparable in importance to classical GR effects in the final stages of NS inspiral and

coalescence with a second compact object, either itself another NS or a black hole/gravastar

candidate [70, 71]. The gravastar alternative to black holes may also be a source of scalar

radiation through its interior scalar condensate being partly composed of and coupled to

gluonic degrees of freedom in QCD.

In the early universe when temperatures and energies greater than 165MeV were

reached, the QCD anomaly was fully unsuppressed. Thus these epochs up to the QCD

phase transition, or at even higher energies the electroweak phase transition are possible

sources of a cosmological stochastic background of scalar gravitational radiation, albeit

in lower frequency ranges, potentially detectable by the next generation of space-based

gravitational wave detectors, such as LISA.
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[37] L. Álvarez-Gaumé and E. Witten, Gravitational anomalies, Nucl. Phys. B 234 (1984) 269

[INSPIRE].

[38] M.J. Duff, Twenty years of the Weyl anomaly, Class. Quant. Grav. 11 (1994) 1387

[hep-th/9308075] [INSPIRE].

– 35 –

https://doi.org/10.1103/PhysRevD.50.3874
https://doi.org/10.12942/lrr-2004-5
https://doi.org/10.1016/0550-3213(73)90263-0
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B62,444%22
https://inspirehep.net/search?p=find+recid+95368
https://doi.org/10.1103/PhysRevD.23.389
https://inspirehep.net/search?p=find+J+%22ActaPhys.Polon.,B13,33%22
https://doi.org/10.1103/PhysRev.177.2426
https://doi.org/10.1103/PhysRevD.79.045014
https://doi.org/10.1016/j.physletb.2009.11.013
https://arxiv.org/abs/0909.4522
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B682,322%22
https://doi.org/10.1103/PhysRevD.81.085001
https://arxiv.org/abs/0910.3381
https://inspirehep.net/search?p=find+EPRINT+arXiv:0910.3381
https://inspirehep.net/search?p=find+recid+161902
https://doi.org/10.1103/PhysRevD.64.104022
https://doi.org/10.1007/BF02748300
https://inspirehep.net/search?p=find+J+%22NuovoCim.,A23,173%22
https://doi.org/10.1016/0375-9601(75)90030-4
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,A53,361%22
https://doi.org/10.1016/0550-3213(76)90480-6
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B111,45%22
https://doi.org/10.1016/0550-3213(77)90410-2
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B125,334%22
https://doi.org/10.1016/0550-3213(84)90066-X
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B234,269%22
https://doi.org/10.1088/0264-9381/11/6/004
https://arxiv.org/abs/hep-th/9308075
https://inspirehep.net/search?p=find+J+%22Class.Quant.Grav.,11,1387%22


J
H
E
P
0
7
(
2
0
1
7
)
0
4
3

[39] E. Mottola and R. Vaulin, Macroscopic effects of the quantum trace anomaly,

Phys. Rev. D74 (2006) 064004.

[40] E. Mottola, New horizons in gravity: the trace anomaly, dark energy and condensate stars,

Acta Phys. Polon. B 41 (2010) 2031 [arXiv:1008.5006] [INSPIRE].

[41] R.J. Riegert, A nonlocal action for the trace anomaly, Phys. Lett. 134B (1984) 56 [INSPIRE].

[42] S. Paneitz, A quartic conformally covariant differential operator for arbitrary

pseudo-Riemannian manifolds, MIT preprint, U.S.A., (1983).

[43] R.B. Mann and D.E. Vincent, Radiation and five-dimensional cosmology,

Phys. Lett. A 107 (1985) 75 [INSPIRE].

[44] T.P. Branson, Differential operators cononically associated to a conformal structure, Math.

Scand. 57 (1985) 293.

[45] I. Antoniadis and E. Mottola, Four-dimensional quantum gravity in the conformal sector,

Phys. Rev. D 45 (1992) 2013.

[46] J. Wess and B. Zumino, Consequences of anomalous Ward identities,

Phys. Lett. 37B (1971) 95 [INSPIRE].

[47] I. Antoniadis, P.O. Mazur and E. Mottola, Conformal symmetry and central charges in

four-dimensions, Nucl. Phys. B 388 (1992) 627 [hep-th/9205015] [INSPIRE].

[48] I.L. Shapiro and A.G. Zheksenaev, Gauge dependence in higher derivative quantum gravity

and the conformal anomaly problem, Phys. Lett. B 324 (1994) 286 [INSPIRE].
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