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1 Introduction

In recent years there has been remarkable progress in computing quantum corrections

to the entropy of extremal black holes. By relating the exact entropy to the partition

function of string fields in the near horizon geometry, the AdS2 proposal of [1] has led to a

novel insight into the holographic nature of these black holes. Recently, in the context of

supersymmetric black holes, localization techniques in supergravity [2–4] have opened the

possibility of computing the AdS2 partition function exactly for any value of the charges,

thus constituting a remarkable step forward in our understanding of quantum corrections

in gravity and more generally of finite N corrections in holography.

In this work, we continue the study of the partition function ZAdS2 using localization

techniques. Our goal is to derive the exact measure for the finite dimensional integral that

one obtains using localization [3] — it has been a long-standing problem determining the

exact contribution from all the supergravity multiplets. In particular we are interested in

giving a fundamental principles derivation of the measure proposed in [2] for the case of

one-eighth BPS states in N = 8 string theory and extend it also to one-quarter BPS states

in N = 4 string theory, that is, IIB on K3× T 2 and CHL models including T 4 orbifolds.

The reason to study one-eighth and one-quarter BPS black holes is twofold. On one

hand, from microscopics, the spectrum of BPS states, which is known exactly for a large

class of charge configurations, includes rich information about non-perturbative physics.
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On the other hand, on the black hole side, we can use an equality between index and

degeneracy [5, 6] to extract the exact degeneracy d(q) of the black hole that we can use to

guide and test the bulk computations.

From the microscopic study, we find that perturbative corrections to the area formula

are captured exactly by a modified Bessel function of the first kind,1 which in the case of

one-eighth BPS states has the form [2]

d(q) ' I7/2(π
√
Q2P 2), N = 8, (1.2)

while for one-quarter BPS states it is

d(q) ' P 2 + 4np√
P 2

(P 2 + 8np)
k+3/2 Ik+3/2

(
π
√
Q2(P 2 + 8np)

)
, N = 4 (1.3)

with the constant np = 0, 1 for the CHL models on T 4 and K3 respectively and k is a

certain positive integer that depends on the CHL orbifold. Without loss of generality, we

have set Q.P = 0, where Q2, P 2 and Q.P are the T-duality invariants. The validity of the

expressions (1.2) and (1.3) holds up to exponentially suppressed terms for sufficiently large

charges.

Formula (1.3) was derived in [6] for k = 10, that is, for the case of one-quarter BPS

states in IIB on K3 × T 2, which agrees with a Rademacher expansion [7]. In section

section 2.2 we present a novel way to compute the leading (1.3) and subleading Bessel

behaviour (1.4) of the one-quarter BPS degeneracy for the CHL models on T 4 and K3.

To next leading order, the N = 4 formula (1.3) is corrected by terms that are also of

Bessel type. Developing on a formula for the asymptotic behaviour of the degeneracy of

dyons, first proposed in [8], we find a series of subleading Bessels of the form

d(q) '
P 2/2∑
µ=1

∑
m≥0

∆̃µ,m>0

c̃µ(P 2,m) Ik+3/2

(
π

√
Q2∆̃µ,m(P 2)

)
+O

(
eπ
√
Q28np

)
(1.4)

with

∆̃µ,m(P 2) = 8

(
np −m+

µ2

2P 2

)
(1.5)

and c̃µ(P 2,m) are some constant coefficients. For Q2 � 1 and fixed P 2, the leading term in

this sum, that is, the term with m = 0 and µ = P 2/2, reproduces the Bessel (1.3), whereas

the subleading terms are suggestive of a Rademacher type of expansion [7]. In contrast,

for the N = 8 case these corrections are not present, with (1.2) being corrected at a much

subleading order by terms of the form exp [π
√
Q2P 2/n], with n an integer greater than

one. These corrections are also present in the N = 4 case but they will not be an object

of study.

1Here Iν(z) is the modified Bessel function of the first kind which is defined as

Iν(z) =
1

2πi

∫ ε+i∞

ε−i∞

dt

tν+1
exp

[
t+

z2

4t

]
, ε > 0 (1.1)
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In this work, the focus is on the exact computation of the Bessel functions (1.2)

and (1.3) including the precise coefficients. The emphasis will be on the one-quarter

BPS case but we review at the same time the case of one-eighth BPS states, in partic-

ular, the measure proposed in [2]. Furthermore, we argue that the subleading corrections

in (1.4) may originate from instanton contributions to the AdS2 path integral. Under cer-

tain assumptions, we determine not only the exact Bessel functions but we also compute

an instanton corrected measure, which reproduces the exact coefficients c̃µ(P 2,m) in the

microscopic answers (1.4).

The derivation for both one-eighth and one-quarter BPS black holes is similar. This

follows from a N = 4 truncation of N = 8 supergravity, which allows us to see the one-

eighth BPS black hole effectively as a one-quarter BPS black hole of N = 4 supergravity.

The truncation consists in projecting onto (−1)FL even states in which we set the RR and

RNS fields to zero, with FL the world-sheet fermion number.2 On the microscopic side, this

is also consistent as the counting is valid only for charges vectors that are purely NSNS or

that can be brought to such a configuration by a duality transformation [9]. Equivalently

the counting is performed in a region of the moduli space invariant under a right N = 4

subalgebra, the one that is (−1)FL invariant; the one-eighth BPS states are effectively one-

quarter BPS states of that subalgebra. For this reason, we can treat both supersymmetric

examples in a similar way with the difference that in the one-eighth BPS case we need to

take into account the contribution from the odd fields, that is, the fields which are odd

under (−1)FL .

To carry out this task, our starting point is a formula for ZAdS2 that one obtains using

localization in supergravity [3, 10]. It was argued in [3] that the path integral of N = 2

off-shell supergravity on AdS2 × S2 reduces to the finite dimensional integral

ZAdS2 ∼
∫ nV∏

a=0

dφa exp

[
− πqaφa +

π

2
ImF (φ+ ip)

]
(1.6)

where (q, p) are respectively the electric and magnetic charges of the black hole. Here F (X)

is the N = 2 prepotential and nV is the number of N = 2 vector-multiplets. The variables

φa parametrize a normalizable mode of the scalars that is left unfixed by the localization

regulator. In a saddle point approximation of (1.6) one obtains precisely the area formula

for the entropy.

Despite this success, formula (1.6) lacks the correct measure that reproduces the mi-

croscopic answers (1.2) and (1.3). In a way, this is partially understood because the lo-

calization computation of [3] only takes into account the vector-multiplets. Instead, the

full answer must take into account not only the contribution from the other matter mul-

tiplets but also the contribution from the gravity multiplet, which in this context can be

problematic. That is, if we want to apply localization in supergravity we need to deal with

local supersymmetry and thus with a proper gauge fixed path integral, which is by itself

a very difficult problem. Furthermore, the localization technique relies on a certain coho-

mological structure of the underlying space- equivariant cohomology to be more precise,

2The N = 8 subalgebra splits into a left and right N = 4 subalgebras, respectively (−1)FR and (−1)FL

invariant. The truncation consists in keeping the fields that transform under the right N = 4 subalgebra.
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and hence it is not clear how this can be translated to gravity, which can raise questions of

background independence. Despite these issues, the problem of computing the localization

one-loop determinants for the matter multiplets has been addressed recently in [11, 12]

using N = 2 off-shell supergravity on AdS2 × S2. Here we give a qualitatively different

approach based mostly on three dimensional supergravity but it includes the contribution

from all the massless fields. In particular, we argue that the Kahler dependence of the

one-loop determinants and the induced measure claimed in [11, 12] for the N = 8 and

N = 4 examples do not hold. We explain, nevertheless, why the approach for N = 8 fol-

lowed in [11] correctly reproduces the exact microscopic answer and how it can be correctly

extended for the N = 4 case.

To achieve our goal, we use well-known properties of AdS2 and its relation to AdS3

holography to derive the measure for the integral (1.6). Partially justified by the compu-

tation of [13] which fixes the background to be exactly AdS2 × S2, our derivation is based

on the assumption that the full AdS2 path integral has the form (1.6), that is, the contri-

bution from other multiplets enters only through the measure. After all, the integral (1.6)

reproduces correctly the area formula in all known examples and so it is not expected that

other fields contribute already at the exponential level.

The key idea is as follows. We map the problem of computing the measure to a certain

anomaly in the path integral of super Chern-Simons theory on AdS3. From a bulk point of

view, this anomaly is related to a dependence on a metric choice for the Chern-Simons path

integral. Using holography, we can relate this dependence to the modular weight of the

dual CFT2 partition function- for the supersymmetric black holes this partition function is

an elliptic genus. It is well known that in general the CFT2 partition function on the torus

is not invariant under global diffeomorphisms but transforms covariantly with a certain

weight under modular transformations. Equivalently, we can say that the partition function

is anomalous under SL(2,Z) diffeomorphisms. In turn, the low/high temperature modular

transformation can be used to show that the asymptotic growth of the Fourier coefficients

of the CFT2 partition function [14], and thus the AdS2 partition function, are of Bessel

type. Therefore, by understanding the anomalous modular transformation in the bulk we

have immediate access to the structure of perturbative corrections to the entropy, which

are determined by the leading Bessel in (1.3). Nevertheless, this is not the full answer.

In going from the gravity picture to the Chern-Simons formulation we need to keep track

of an anomalous field redefinition- it is anomalous due to zero modes. This contribution,

in turn, can be identified with a certain degeneracy that accompanies the Bessel function,

which, in the theory of Jacobi forms, can be identified with a “polar” coefficient.

To compute this anomaly we use three dimensional supergravity. By convenience, this

can be written as a super Chern-Simons action based on the gauge group SU(1, 1|2)R ×
SU(1, 1)L × SU(2)L. On top of this, we will consider additional abelian Chern-Simons

terms. We put this theory on AdS2 × S1, which is the same as the quotient of global

AdS3 by an additive group Γ, and use microcanonical boundary conditions consistent with

the AdS2 path integral. We explore the orbifold construction to argue that the one-loop

contribution in Chern-Simons theory must hold for any value of the charges. After all,

this leads to a correction of the form ln |Γ| to the effective action, with |Γ| the order of

– 4 –
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the group, and therefore cannot be renormalized by a local counterterm.3 In particular we

show that the one-loop approximation to the AdS2 partition function has the form

ZAdS2 |1-loop =
∑
A

exp [CS(A,M)]ZCS
1-loop(|Γ|) (1.7)

where A is a flat connection and CS(A,M) is the Chern-Simons action on M = AdS3/Γ

properly renormalized. In particular, we find that the one-loop correction is

ZCS
1-loop(|Γ|) = ϑ

|Γ|√
k̃LkL

(
|Γ|
p1

)NV /2
(1.8)

where ϑ is the size of AdS2 × S1 in the physical theory, k̃L and kL are respectively the

SU(1, 1)L and SU(2)L levels of the non-supersymmetric Chern-Simons terms, and p1 is the

abelian Chern-Simons level. By identifying the parameter |Γ| with the variable φ0 in the

integral (1.6), we argue that the component ZCS
1-loop(|Γ|) uniquely determines the measure

in the integral (1.6).

In essence, the main result is an exact formula for ZAdS2 , which in the N = 8 case

takes the form

ZN=8
AdS2

=

∫ NV +1∏
a=0

dφaM1/8(φ0) exp

[
− πqaφa +

π

2
ImF (φ+ ip)

]
× Zodd (1.9)

with

M1/8(φ0) =
P 2

φ0p1
, Zodd = (P 2)−4 (1.10)

where F (XI) = X1CabX
aXb/X0 is the tree level prepotential, Zodd is the contribution

from the odd fields and NV is the number of vector-multiplets of the N = 4 truncation. This

formula correctly reproduces the Bessel answer (1.2). Furthermore, it gives a fundamental

principles derivation of the measure proposed in [2], as we wanted to show.

In the N = 4 case, the partition function has a similar expression except that the con-

tribution from the odd fields is absent and the prepotential F (X) is modified by instanton

corrections. We compute the exact zero instanton AdS2 path integral,

ZN=4
AdS2

=

∫ NV +1∏
a=0

dφaM1/4(φ0) exp

[
− πqaφa +

π

2
ImF (0)(φ+ ip)

]
(1.11)

with

M1/4(φ0) =
P 2 + 4c1

φ0p1
(1.12)

Here F (0)(X) is the zero instanton prepotential F (0) = X1CabX
aXb/X0+c1 ÂX

1/X0, with

c1 taking values 1, 0 for the K3 and T 4 CHL models respectively, and NV is the number

of N = 4 vectormultiplets. Note that for large P 2 the zero instanton measure (1.12)

3By this we mean that any local counterterm evaluated on the on-shell solution will be a polynomial in

|Γ| due to the orbifold. As such, no logarithmic correction can be produced.
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reproduces the one-eighth BPS measure (1.10). This is as expected since the measure

M(φ) comes entirely from the N = 4 supergravity multiplet and therefore for large charges

it should become the same in all examples.

The formula (1.11) leads precisely to the microscopic answer (1.3), including the precise

coefficients that multiply the Bessel function. Furthermore, we argue that corrections due

to instantons can be incorporated by integrals similar to (1.11) and we compute the exact

measure in agreement with microscopics. The idea relies on the observation that the

integral (1.6) with the instanton corrected prepotential suggests a similar Chern-Simons

computation but with renormalized levels. From this, it follows an unitarity condition that

truncates the instanton sum and leads to the same tail of Bessel functions (1.4) that we

find from microscopics.

The plan of the paper is as follows. In section section 2 we study the exact microscopic

answers for both one-eighth and one-quarter BPS states. We derive the exact Bessel

function that captures all perturbative corrections to the area formula and we discuss

the role of the subleading contributions. In section section 3 we first describe the on-

shell N = 4 background and then we review the application of localization techniques

in the computation of the AdS2 path integral. Finally, in section section 4 we describe

the computation of the measure. We divide this section into three main parts. First, we

consider the one-eighth BPS case and the contribution coming from the odd fields and

then we determine both the N = 4 vector and supergravity multiplet measures using the

Chern-Simons formulation. We conclude with a discussion about open problems and other

future directions.

2 Microscopic degeneracy

In the following sections we describe the microscopic partition functions that capture the

spectrum of one-eighth and one-quarter BPS states. We are mainly interested in the

behaviour of the degeneracy for sufficiently large charges. For the N = 8 case we review

a formula derived originally in [2]. In the N = 4 case, we present a novel way to compute

the leading Bessel function and subleading corrections by developing on the formula for

the asymptotic degeneracy of dyons [8, 15].

2.1 N = 8 string theory and one-eighth BPS states

We consider IIB string theory compactified on T 4 × S̃1 × S1. An important difference

with the N = 4 case is that here we consider only a subspace of all the one-eighth BPS

configurations. In particular, we consider those that carry only NS-NS charges or that can

be mapped to this case after an U-duality transformation [16]. The microscopic formula

that we present is valid in a region of moduli space where the RR moduli are turned off.

Effectively we are counting one-quarter BPS states of a right N = 4 subalgebra of the

N = 8 supersymmetry algebra.4 In this region of the moduli space, the U-duality group is

broken to SL(2,Z)× SO(6, 6;Z).

4The region of moduli space where the counting is done is invariant under a left and right N = 4

subalgebras.
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The one-eighth BPS configuration that was considered in [9, 17] consists of a D5-brane

wrapped on T 4×S1, Q1 D1-branes wrapped along S1, a Kaluza-Klein monopole associated

with the circle S̃1, n units of momentum along the circle S1 and J units of momentum

along the circle S̃1. This configuration can be mapped to a purely NS-NS configuration in

IIA after a set of U-duality transformations as described in [16].

The index that captures one-eighth BPS states has the expression

d(Q,P ) = (−1)Q.P+1c(∆), (2.1)

with c(u) the Fourier coefficients of the Jacobi form5

− ϑ(τ, z)2

η(τ)6
=
∑
k,l

c(4k − l2)e2πi(kτ+lz). (2.2)

Here ∆ = Q2P 2 − (Q.P )2 with Q2, P 2 and Q.P are the SO(6, 6;Z) T-duality invariants.

The coefficients c(u) admit an exact Rademacher expansion [2]. This is an exact

formula for the Fourier coefficients of Jacobi forms of non-positive weight. In essence, it

consists of an infinite but convergent sum of Bessel functions. In this case, the leading

behaviour is controlled by

c(∆) = 2π(
π

2
)7/2 1

2πi

∫ ε+i∞

ε−i∞

dt

t9/2
et+

π2∆
4t + . . . (2.3)

where the . . . refer to terms that are exponentially supressed. Furthermore, it is convenient

to write the integral in form6

c(∆) =
1√
2iπ

∫
C

dτ1dτ2

(τ2)6

e−K

(P 2)4
exp

[
π

2τ2
|Q+ τP |2

]
+ . . . (2.4)

where we defined

e−K ≡ τ2πP
2. (2.5)

The contour C takes τ1 over the imaginary axis and τ2 over the axis ε + iR with ε > 0.

This form of the integral will be useful later on, as a way to physically check the bulk

computation of the N = 4 answer.

2.2 N = 4 string theory and one-quarter BPS states

In this section we consider one-quarter BPS states in N = 4 CHL compactifications.

These are particular ZN orbifolds of IIB string theory on either K3 × T 2 or T 4 × T 2.

We present a summarized description of the spectrum and BPS-state counting for both

cases. The discussion presented is completely systematic in N . This is advantageous for a

comparison with the gravitational computation and it will help us highlight the key points

of our derivation. For a more detailed description of CHL compactifications and BPS-state

counting we point the reader to [18] and references therein.

5In general the Fourier coefficient c(u) of a Jacobi form with index k depends not only on 4kn− l2 but

also on lmod(2k). In this case we have k = 1 and thus 4n− l2 is even or odd when l is too.
6In the modulus square in (2.4), there is an implicit contraction with the T-duality invariant tensor.
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One of the goals of this section is to rewrite the microscopic degeneracies in a manner

suitable for a gravitational comparison. We will find that the microscopic answer can be

written as a finite sum of Bessel functions, up to much subleading terms.

We consider IIB string theory on M × S̃1 × S1, with M = K3, T 4 modded out by

a ZN symmetry group. The orbifold identification involves a 1/N shift along the circle

S1 and an order N g̃ transformation on M . The element g̃ commutes with the N = 4

supersymmetry generators and therefore the orbifold preserves all the supersymmetry of

the parent theory. By convention, we take the radius of the circle S1 to have size N in the

parent theory. Here N runs over 1, 2, 3, 5, 7 in the K3 case and 2, 3 in the T 4 case. Under

the orbifold only a subgroup SL(2,Z) × SO(6, r − 6;Z) of the U-duality group survives,

with r = 2k + 8 the total number of U(1) gauge fields. The integer k is given by

k =
24

N + 1
− 2, N = 1, 2, 3, 5, 7, for M = K3 (2.6)

k =
12

N + 1
− 2, N = 2, 3 for M = T 4. (2.7)

Let us consider a configuration with a single D5-brane wrapping M×S1, Q1 D1-branes

wrapping S1, a single Kaluza-Klein monopole associated with the circle S̃1, n/N units of

momentum along S1 and J units of momentum along S̃1. At low energies this system is

described by a two dimensional (0, 4) SCFT on R×S1. At the orbifold point in the moduli

space, this theory is described by a symmetric product sigma model and we can compute

the supersymmetric index that counts one-quarter BPS states. The index, which we denote

by d(Q,P ), has the form

d(Q,P ) = (−1)Q.P+1 1

N

∫
C
dρ dσ dv

e−πi(NQ
2ρ+P 2/Nσ+2Q.Pv)

ΦN (ρ, σ, v)
(2.8)

where C is a three dimensional contour in the complexified (ρ, σ, v) = (ρ1 +iI1, σ1 +iI2, v1 +

iI3) space with

I1, I2, I3 = constant� 1 (2.9)

0 ≤ ρ1 ≤ 1, 0 ≤ σ1 ≤ N, 0 ≤ v1 ≤ 1. (2.10)

and Q2 = 2n/N , P 2 = 2Q1 and Q.P = J are the T-duality invariants. The function

ΦN (ρ, σ, v) is a Sp(2,Z) modular form. In particular, for N = 1 it becomes the Igusa

cusp form: the unique weight ten Siegel modular form, while for other N we obtain Siegel

modular forms of congruence subgroups.

We now study the degeneracy in the regime of large charges. In a saddle point approx-

imation of the integral (2.8) we deform the contour and pick poles of 1/ΦN (ρ, σ, v). The

leading contribution comes from the residue at a quadratic divisor of ΦN (ρ, σ, v) and has

final expression [8, 15, 18, 19],

d(Q,P ) ' (−1)Q.P

4πN (k+4)/2

∫
dτ1dτ2

τ2
2

[
2(k + 3) +

π

τ2
|Q− τP |2

]
× (2.11)

exp

[
π

2τ2
|Q− τP |2 − ln g(τ)− ln g(−τ)− (k + 2) ln(2τ2)

]
+ . . .

– 8 –
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with τ = τ1 + iτ2 and τ = τ1 − iτ2. The function g(τ) is determined by the pole structure

of 1/ΦN (ρ, σ, v). In the case of M = K3 it is given by

g(τ) = η(τ)k+2η(Nτ)k+2, (2.12)

while for M = T 4 it has the form

g(τ) = η(τ)
2N(k+2)
N−1 η(Nτ)−2 k+2

N−1 , (2.13)

with N, k given as in (2.6).

The formula (2.11) is not in a form that is suitable for a comparison with the local-

ization computation. The reason is that the measure in (2.11) depends on the electric

charges, while from a gravitational point of view they appear only at level of the Wilson

lines. Besides, the contour in (2.11) has to be chosen appropriately. The only requirement

at this point is that it passes near the leading physical saddle.7 We show that there is

a choice for which we recover not only the leading Bessel function (1.3) [6] but also an

additional tail of subleading Bessel type corrections. Namely, we choose a contour with

τ1, τ2 complex defined as

Ĉ : τ1 = iτ2u, −1 + δ ≤ u ≤ 1− δ,
τ2 = ε+ iy, −∞ < y <∞, ε > 0 (2.14)

Here δ is small but positive (we will make precise what we mean by small in due course).

This contour ensures that we always have Im(τ) and Im(τ) positive- here τ and τ are not

necessarily complex conjugate. This in turn leads to the exact Bessel function determined

in [7] for the leading asymptotics of one-quarter BPS states in IIB on K3× T 2.

We proceed with an integration by parts. First we rewrite the expression (2.11) in the

convenient way

d(Q,P ) ' (−1)Q.P+1

∫
d2τ

τk+4
2

[
2(k + 3) + π

|Q− τP |2

τ2

]
e
π
2
|Q−τP |2

τ2
−Ω(τ,τ)

(2.15)

with

Ω(τ, τ) = ln g(τ) + ln g(−τ). (2.16)

The exponential is just the entropy function of Sen (3.8)

E =
π

2

|Q− τP |2

τ2
− Ω(τ, τ). (2.17)

Using the identity
∂

∂τ2

|Q− τP |2

τ2
= −|Q− τP |

2

τ2
2

+ 2P 2 (2.18)

we can write the measure in (2.15) as

1

τk+3
2

[
2(k + 3)

τ2
+ π
|Q− τP |2

τ2
2

]
=

1

τk+3
2

[
2(k + 3)

τ2
− 2

∂

∂τ2
E − 2

∂

∂τ2
Ω + 2πP 2

]
(2.19)

7By physical, we mean that it reproduces the attractor background and thus the area formula for the

entropy.
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which leads to

d(Q,P ) ' (−1)Q.P+1

∫
d2τ

τk+3
2

[
2(k + 3)

τ2
− 2

∂

∂τ2
E − 2

∂

∂τ2
Ω + 2πP 2

]
eE . (2.20)

The first two terms on the R.H.S. can be written as a total derivative∫
d2τ

τk+3
2

[
2(k + 3)

τ2
− 2

∂

∂τ2
E
]
eE = −2

∫
d2τ

∂

∂τ2

(
eE

τk+3
2

)
(2.21)

which vanishes for the contour (2.14). Hence, the final expression for the degeneracy is

d(Q,P ) ' 2(−1)Q.P+1

∫
Ĉ

d2τ

τk+4
2

e−KeE (2.22)

with

e−K ≡ τ2

[
πP 2 − ∂

∂τ2
Ω

]
. (2.23)

Note the similarities between the one-quarter and the one-eighth BPS formulas, respec-

tively (2.22) and (2.4). In particular, if we neglect the factor of (P 2)−4 in the one-eighth

BPS formula (2.4), then both integrands have the form of the exponential of the entropy

function E times the quantum corrected Kähler potential e−K [19] and a factor of τ
−r/2
2 ,

where r is the total number of U(1) vector fields of the N = 4 supergravity (truncation in

the one-eigth BPS case).

We can proceed further and expand the modular functions in Ω(τ, τ) as a Fourier series

in powers of q = exp (2πiτ) and q = exp (−2πiτ). Note that we have always |q| < 1 for the

contour (2.14) and thus we expand as

exp (−Ω(τ, τ)) =

( ∞∑
n=0

d(n)qn−np

)( ∞∑
m=0

d(m)qm−np

)

= |q|−2np

∞∑
n′=0

e−2πn′τ2

n′∑
m′=0

d(n′ −m′)d(m′)e2πi(n′−2m′)τ1 (2.24)

with d(n) the Fourier coefficients

g(τ)−1 = q−np
∞∑
n=0

d(n)qn. (2.25)

Here np = 0, 1 for T 4 and K3 orbifolds respectively.

Using the expansion (2.24) we can write formula (2.22) as the sum

d(Q,P ) ' (−1)Q.P+1
∞∑
n=0

π
(
P 2 + 4np − 2n

) n∑
m=0

d(n−m)d(m)×

×
∫
Ĉ

d2τ

τk+3
2

exp

[
π

2

|Q− τP |2

τ2
+ π(4np − 2n)τ2 + 2πi(n− 2m)τ1

]
. (2.26)

We can massage further the exponential and write the degeneracy in the form

d(Q,P ) ' (−1)Q.P+1
∞∑
n=0

π
(
P 2+4np−2n

) n∑
m=0

d(n−m)d(m)e2πiQ.P
P2 (n−2m) J(n,m)(Q,P )

(2.27)
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with the integral J(n,m) defined as

J(n,m) =

∫
Ĉ

dτ2

τk+3
2

exp

[
π

2

∆/P 2

τ2
+ 4πτ2F(n,m;P 2)

]
×

×
∫
dτ1 exp

[
π

2

P 2

τ2

(
τ1 −

Q.P

P 2
+ 2i

τ2

P 2
(n− 2m)

)2
]

(2.28)

with

F(n,m;P 2) ≡ np −m+
l(n,m)2

2P 2
, (2.29)

and

l(n,m) = P 2/2− (n− 2m). (2.30)

Lets focus on the τ1 integral for the moment. After the change of variables τ1 = iτ2u

it becomes

Iu = iτ2

∫ 1−δ

−1+δ
du exp

[
−π

2
P 2τ2

(
u+ r − Q.P

iτ2P 2

)2
]

(2.31)

where we have defined r ≡ 2(n − 2m)/P 2. For large values of |τ2|, we can perform the u

integral by a saddle point approximation. In this case, given the contour Ĉ, it is enough

to take Re(τ2) = ε� 1. Moreover, in this limit we can neglect the term Q.P/iτ2P
2 in the

square and thus we can write the integral (2.31) as

Iu ' i
√

2τ2

πP 2

∫ √πP 2τ2/2(1+r−δ)

√
πP 2τ2/2(−1+r+δ)

dz e−z
2

(2.32)

In computing this integral by saddle point approximation, there are two cases to consider.

The most relevant is when

|r| ≤ 1− δ. (2.33)

In this case, the saddle is inside the contour of integration and thus the saddle point

approximation of (2.32) is simply

Iu ' i
√

2τ2

πP 2

∫ ∞
−∞

dz e−z
2 ' i

√
2τ2

P 2
, |r| ≤ 1− δ (2.34)

up to terms that are exponentially decaying. In the other case, that is, when |r| > 1 − δ
we can use the asymptotics of the complemetanty error function∫ ∞

a
dx e−x

2 ' 2

πa
e−a

2
+O(e−a

2
/a2), a� 1 (2.35)

to estimate

Iu ' i
4

π2P 2

e−
πP2τ2

2
(|r|−1+δ)2

(|r| − 1 + δ)
, |r| > 1− δ (2.36)

Putting these results back in the integral (2.28) we find two types of asymptotic behaviour.

In the first, when |r| ≤ 1− δ, we obtain

J(n,m) ' i
√

2

P 2

∫ ε+i∞

ε−i∞

dτ2

τ
k+5/2
2

exp

[
π

2

∆/P 2

τ2
+ 4πτ2F(n,m;P 2)

]
(2.37)
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which is of Bessel type. However, if F(n,m;P 2) ≤ 0 we can close the contour at infinity

and since there is no pole inside we obtain zero. In turn, this leads to the condition

F(n,m;P 2) > 0, |r| ≤ 1− δ (2.38)

At this point it is convenient to impose the condition that δP 2/2 < 1 such that the

formula (2.37) is valid exactly for |r| < 1. We assume this for now on.

In the case when |r| ≥ 1 the asymptotics are governed instead by

J(n,m) ' i
4

π2P 2(|r| − 1 + δ)
×

×
∫ ε+i∞

ε−i∞

dτ2

τk+3
2

exp

[
π

2

∆/P 2

τ2
+ 4πτ2

(
F(n,m;P 2)− P 2

8
(|r| − 1 + δ)2

)]
(2.39)

which is still of Bessel type but has different index. By the same argument that gives the

condition (2.38), this integral will be non-zero only when the term proportional to τ2 in the

exponential is positive. In this case we have to truncate further to the terms with m = 0

for r > 0, and n−m = 0 for r < 0, with the condition that 1 ≤ |r| < |r∗|, for a maximum

r∗ that solves the equation np − δP 2(|r∗| − 1)/4 − δ2P 2/8 = 0. Note that, when np = 0,

that is, for T 4 orbifolds, the exponential is always negative and thus these terms are not

present. Under these conditions we find

J(n,m) ' i
4

π2P 2(|r| − 1 + δ)
× 1 ≤ |r| < |r∗|

×
∫ ε+i∞

ε−i∞

dτ2

τk+3
2

exp

[
π

2

∆/P 2

τ2
+ 4πτ2

(
np − δP 2(|r| − 1)/4− δ2P 2/8

)]
, (2.40)

With this analysis we conclude that the integral J (n,m) has two kinds of behaviour.

For |r| < 1 it behaves as a modified Bessel function with index k + 3/2 while for |r| ≥ 1

and np = 1 the Bessel has index k + 2. As we will see later, the ones which are of interest

for us are the Bessels with index k+ 3/2. Moreover, these are the ones that do not depend

on the regularization, that is, on the choice of δ for δ < 2/P 2.

Given the conditions that F(n,m;P 2) > 0 and −P 2/2 < n− 2m < P 2/2 it is easy to

show that n is bounded by

n < k + 2np (2.41)

and thus the sum over the terms with −P 2/2 < n− 2m < P 2/2 is finite. This leads to an
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answer for the degeneracy which is a finite sum of Bessel functions, that is,

d(Q,P ) ' (−1)Q.P+1

P 2/2+2np−1∑
n=0

iπ
(
P 2 + 4np − 2n

)
×

×
n∑

m≥0
0≤n−2m<P 2/2
F(n,m,P 2)>0

d(n−m)d(m)
[
2 cos(2π(n− 2m)Q.P/P 2)− δn,2m

]
×

×
√

2

P 2

∫ ε+i∞

ε−i∞

dτ2

τ
k+5/2
2

exp

[
π

2

∆/P 2

τ2
+ 4πτ2

(
np −m+

l(n,m)2

2P 2

)]
+O(e2π

√
∆np/k) (2.42)

with δj,l the Kronecker delta function. The terms of order e2π
√

∆np/k are Bessels of index

k + 2. Some of these can compete asymptotically with the other Bessels but since they

depend explicitly on δ, parameter for which we have some freedom to choose, we assume

that they are not relevant for the physics we want to study.

In this work we are mainly interested in the zero instanton term which is the leading

term in the tail (2.42). We find

d(Q,P )(n,m)=0 '
(P 2 + 4np)√

P 2

∫ ε+i∞

ε−i∞

dt

tk+3−1/2
exp

[
π2∆

4tP 2
+ t(P 2 + 8np)

]
=

(P 2 + 4np)√
P 2

(P 2 + 8np)
k+3/2 Ik+3/2

(
π
√

∆(1 + 8np/P 2)

)
. (2.43)

In particular, the two following examples are instructive. In the case of M = K3 and

N = 1 we obtain the Bessel function

d(Q,P )(n,m)=0 ∝ (P 2)−12I23/2(π
√

∆) (2.44)

where we have taken P 2 large. This in perfect agreement with the results in [6, 7]. Also,

in the case of M = T 4 and N = 2 we obtain, in the same charge limit,

d(Q,P )(n,m)=0 ∝ (P 2)4I7/2(π
√

∆). (2.45)

Up to a factor of (P 2)4, this is precisely the same Bessel function one obtains from the

one-eighth BPS formula (2.4). This will be important to understand the role of the odd

fields in a N = 4 truncation of N = 8 supergravity.

3 Black hole entropy and supersymmetric localization

In the first part of this section we review the quantum entropy formalism introduced by

Sen [1]. Later we describe recent developments on the computation of the AdS2 path

integral using supersymmetric localization.
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The quantum entropy function is a proposal based on the AdS2/CFT1 correspondence

that relates the quantum degeneracy d(q) of an extremal black hole with charges q to a

string theory path integral on AdS2, that is,

d(q) = 〈e−iq
∮
A〉AdS2 (3.1)

The path integral is performed in euclidean AdS2,8 and the Wilson line insertions are

required to assure that the correct boundary conditions are preserved. On AdS2 we fix the

electric fields and integrate instead over the chemical potentials which are the normalizable

modes. We denote the Wilson line path integral (3.1) simply by ZAdS2 .

This formalism reduces to Wald’s formalism in the limit of low curvatures or large hori-

zon radius. That is, in a saddle point approximation we can write ZAdS2 as the contribution

of the on-shell configuration,

〈e−iq
∮
A〉AdS2 ' Ren{e−2πqe(r0−1)+(r0−1)2πL(v,e,Φ)} = e2πqe−2πL(v,e,Φ) (3.2)

where r0 is an IR cuttoff [5] and Ren denotes renormalization by appropriate boundary

counter terms. The most R.H.S expression is the exponential of Wald’s entropy or equiv-

alently Sen’s entropy function [20], which in this context is interpreted as the on-shell

renormalized action on AdS2.

Additional quantum corrections can be systematically computed in perturbation the-

ory. For example, in [21–24] logarithmic corrections to the entropy are computed by inte-

grating out the massless fields.9 These are found to be in agreement with the microscopic

answers described in sections section 2.1 and section 2.2.

3.1 N = 4 supergravity and attractor background

In this section we describe the on-shell attractor background of one-quarter BPS black

holes in four dimensional N = 4 supergravity. This includes the CHL compactifications in

both K3 and T 4 compactifications. Along with this, we describe how the one-eighth BPS

black hole can be embedded in N = 4 supergravity. Additional details can be found in [18]

and references therein.

As explained in section section 2.2, CHL compactifications are ZN orbifolds of

IIB string theory on M × S̃1 × S1, where M is either K3 or T 4, that preserve

N = 4 supersymmetry. After the orbifold the U-duality group is reduced to an

SL(2,Z)× SO(6, r − 6;Z) subgroup.

The massless bosonic spectrum consists of the string metric gµν , r = 2k + 8 abelian

gauge fields Aiµ, (i = 1 . . . r) with k given by (2.6), the axion-dilaton field a+iS and a set of

r×r matrix valued scalar fields M subject to the constraint MLMT = L, MT = M with L

the SO(6, r−6) T-duality invariant matrix. In terms of supermultiplets we have the N = 4

supergravity multiplet, which contains the metric, six U(1) gauge fields, the axion-dilaton

8We do the Wick rotation t → −iθ. In this case the path integral configurations are weighted with

eS with S the action; it is the renormalized action that is damping the path integral, which explains the

unusual sign of the exponential eS .
9Similar logarithmic corrections are found in [25, 26] using properties of the supersymmetry algebra.
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a + iS and the fermionic superpartners, interacting with 2k + 2 N = 4 vectormultiplets

each containing a U(1) gauge field, six scalars and corresponding fermionic superpartners.

At the two derivative level the four dimensional effective Lagrangian is the same for

all the compactifications mentioned, with the exception of the number of U(1) gauge fields.

Hence, at this order in derivatives, we can study the solution that extremizes the quantum

entropy functional (3.1) in quite generality. This configuration preserves all the symmetries

of AdS2 × S2 and for this reason it has the form

ds2 =
ϑ1

8

(
−(r2 − 1)dt2 +

dr2

r2 − 1

)
+
ϑ2

8
(dθ2 + sin2(θ)dφ2) (3.3)

S = us, a = ua, M = uij , (3.4)

F irt =
ei

4
, F iθφ =

pi

16π
sin(θ) (3.5)

with constant fields v1, v2, us, ua, uij . Here Fµν is the field strength of the abelian gauge

field with e the electric field and p the magnetic charge, which are also constant.

After substituting the on-shell values of the electric fields ei and renormalizing the

action as in (3.2), the entropy functional for two derivative supergravity has the form

Ren(S) =
π

2

[
2us(ϑ2 − ϑ1) +

ϑ1

ϑ2

|Q− τP |2

us

]
(3.6)

with τ = ua + ius and Q, P are respectively the electric and magnetic charge vectors (in

the absolute square on the r.h.s. of (3.6) it is implicit a contraction with the T-duality

SO(6, r − 6) invariant matrix L). We have used P i = Lijpj/4π and Qi = 2qi, with qi the

electric charge associated with the electric field ei [18]. With these definitions, T-duality

acts linearly on the charge vectors (Qi, P i).

Further extremization with respect to ϑ1, ϑ2 leads to an equation that relates the size

of AdS2 × S2 in terms of the moduli τ , that is,

ϑ1 = ϑ2 =
|Q− τP |2

2u2
s

. (3.7)

After substituting this back in (3.6) we obtain an effective entropy function for the moduli τ

Ren(S)|ϑ1=ϑ2 =
π

2

|Q− τP |2

us
(3.8)

which in turn leads to the attractor values

us =

√
Q2P 2 − (Q.P )2

P 2
, ua =

Q.P

P 2
, ϑ1 = ϑ2 = P 2. (3.9)

The N = 8 attractor is determined similarly by considering a truncation of N = 8

to N = 4 supergravity [23]. Under this truncation all the R-R and R-NS fields are set

to zero, so in this case the one-eighth BPS black hole is equivalent to a one-quarter BPS

black hole in N = 4 supergravity with the same charges and therefore the same attractor

background (3.9).
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We now study the effect of higher derivative corrections. In this case the attractor

background receives corrections that depend on the ZN orbifold. The effective action

contains Gauss-Bonnet corrections of the form [18]

∆S =

∫
d4x
√
−detGφ(a, S){RµνρσRµνρσ − 4RµνR

µν +R2} (3.10)

where the curvature tensor is computed with respect to the Einstein metric Gµν = Sgµν
and the function φ(a, S) has the form

φ(a, S) = − 1

64π2
[(k + 2) ln(S) + ln g(a+ iS) + ln g(−a+ iS)] + constant (3.11)

with g(τ) given by

g(τ) = e2πiατ
∞∏
n=1

N−1∏
r=0

(1− e2πir/Ne2πinτ )sr . (3.12)

Here sr counts the number of harmonic p-forms of M with g̃ eigenvalue e2πir/N weighted

with (−1)p and α = 1, 0 for M = K3, T 4 respectively. The function g(τ) is a modular

function of weight k + 2 under a Γ1(N) congruence subgroup and it has the form already

described in section 2.2, formulas (2.12) and (2.13).

In the AdS2 formalism, the renormalized on-shell action is computed from a local

and analytic Lagrangian. However terms as lnS in (3.11) are non-analytic and thus, in

computing the entropy functional we throw away such terms. The attractor equations for

ϑ1, ϑ2 (3.7) are not modified by the higher derivative corrections which leads as before to

an effective entropy functional for the moduli τ , that is,

Ren(S) =
π

2

[
|Q− τP |2

us
− Ω(τ, τ)

]
, (3.13)

with

Ω(τ, τ) = ln g(τ) + ln g(−τ). (3.14)

The values of us, ua are determined by extremization and this leads to

ϑ1 = ϑ2 = P 2 − ∂usΩ(τ, τ) (3.15)

For large charges, us is very large and equation (3.15) approximates to

ϑ1 = P 2 + 4α+O(e−2πus). (3.16)

In the N = 8 case the higher derivative terms (3.10) are absent and thus the result (3.9)

is exact up to this order in alpha prime.

In the following we use a six dimensional description of the attractor background to

highlight the geometrical nature of the moduli τ .

A detailed description of the U-duality map can be found for example in [27]. This

requires mapping the Heterotic configuration to a mixed NSNS RR configuration in IIA on

K3×S1× S̃1 and then do a series of M-theory lift/reduction and T-duality transformations
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to land on IIB on K3× S1 × S1
M where S1

M is the M-theory circle in the IIA description.

This leads to a configuration with q1 units of momentum along the circle S1
M , p1 units of

KK monopole associated with the same circle and q0 units of momentum along the circle

S1. On the other hand a (qa|pa) configuration in IIA maps to D3-branes wrapping cycles

S1
M × γa and S1 × γ̃a respectively with γa ∈ H2(K3) and γ̃a is the Poincare dual of γa.

The (q0, q1|p1) configuration corresponds geometrically to a local AdS3 × S3 metric

ds2
6 =

ϑ

4
ds2

AdS2×S2 +
ϑ

4(e0)2
(dy− e0(r− 1)dt)2 +

ϑ

4(p1)2

(
dz +

e1

e0
dy + p1 cos θdφ

)2

(3.17)

where ds2
AdS2×S2 has unit size. The circles S1 and S1

M correspond respectively to the y and

z directions and the parameters e0,1 are four dimensional electric fields associated with the

charges q0,1 respectively. They parametrize a torus with metric

ds2 =
ϑ

4(e0)2
dy2 +

ϑ

4(p1)2

(
dz +

e1

e0
dy

)2

(3.18)

with complex structure τ and volume given by

τ = e1/e0 + ip1/e0, vol(T 2) =
ϑ

4p1e0
=

P 2

8p1e0
. (3.19)

where we have used the attractor values (3.9). The geometry (3.17) being locally AdS3×S3,

preserves an SL(2,R)R×U(1)L×SU(2)R×U(1)L subgroup of the full SL(2,R)R×SL(2,R)L×
SU(2)R × SU(2)L isometry of global AdS3 × S3.

To arrive at the geometry (3.17) we uplifted the four dimensional IIB configuration first

to five dimensions as explained for example in [28, 29] and then to six dimensions by analogy.

The four dimensional gauge fields associated with the charges q0, q1 are respectively

A0
4d = −e0(r − 1)dt, A1

4d = e1(r − 1)dt+ p1 cos(θ)dφ (3.20)

where A1 is defined only locally due to a Dirac monopole singularity. Under this process

we take A0 as the Kaluza-Klein gauge field associated with the circle S1 and write the five

dimensional gauge field, following [29], as

A1
5d =

e1

e0
(dy − e0(r − 1)dt) + e1(r − 1)dt+ p1 cos(θ)dφ

=
e1

e0
dy + p1 cos θdφ. (3.21)

The uplift to six dimensions is done by analogy by turning A1
5d into the Kaluza-Klein gauge

field associated to the circle z.

3.2 Localization in N = 2 off-shell supergravity

In this section we review recent developments on the exact computation of the AdS2 path

integral using supersymmetric localization. For more details we refer the reader to [2, 3,

10, 30] and references therein.
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Supersymmetric localization can be explained succinctly as follows. In supersymmet-

ric QFT’s we introduce a regulator in the action of the form QV with Q an hermitian

supercharge that generates a U(1) symmetry and V is a deformation invariant under that

U(1). Because both the action and the deformation are annihilated by the supercharge, the

path integral does not change and hence V generates an equivalence class of Lagrangians.

In mathematical terms the Lagrangians are equivariantly cohomologous. In other words,

we have the following identity ∫
e−S =

∫
e−S−tQV (3.22)

for any t, with S the physical action. By choosing V for which the deformation QV is

positive semidefinite, the limit t→ +∞ leads to a drastic simplification: the path integral

localizes over the saddles of the deformation QV and the one-loop approximation becomes

exact at these points. That is,∫
e−S =

∑
σ∈ saddles QV

e−S(σ) × ZQV1-loop (3.23)

where ZQV1-loop is a superdeterminant that depends only on the choice of the deformation

and not on particular details of the physical theory.

In supergravity, localization is technically more challenging. The main difficulty comes

from the fact that we have to deal with local supersymmetry and so it is not clear how to

translate the equivariant localization principle to this context. It is possible that the AdS2

path integral receives contributions from only backgrounds that preserve a certain U(1)

symmetry as argued in [10], thus allowing for the equivariant principle to take place.

Despite these difficulties, the authors in [3] considered supersymmetric localization in

N = 2 off-shell supergravity. The analysis focused only on off-shell vectormultiplets living

on a rigid AdS2×S2 geometry. In this background, we can find a supercharge Q that squares

to the combination L0 − J0, where L0 and J0 are rotations on AdS2 and S2 respectively,

and therefore we can use that supercharge to localise. Under the principle described before,

the path integral localizes over a nV + 1-dimensional space of configurations, with nV the

number of N = 2 vector multiplets in the theory.10 This is possible because the localization

equations allow for the vectormultiplet scalars XI to have a non-trivial solution at the cost

of turning on the auxiliary fields Y I . In terms of radial coordinates11 they have the off-

shell profile

XI = XI∗ +
CI

r
, Y I =

2CI

r2
, I = 0 . . . nV (3.24)

with CI an integration constant and XI∗ is the attractor value. By (3.23) we are instructed

to compute the supergravity action on these solutions, properly renormalized, and integrate

over the constant CI ’s. We obtain

ZAdS2×S2 =

∫ nV +1∏
I=0

dφIe−πqIφ
I+F(φ,p), (3.25)

10In N = 2 superconformal off-shell supergravity we need to introduce a compensating vectormultiplet

since the Weyl multiplet does not carry any vector.
11We take the AdS2 metric to be ds2 = dr2/(r2 − 1) + (r2 − 1)dθ2.
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where F(φ, p) is a function of the prepotential F (X) and magnetic charges pI

F(φ, p) = −2πi

[
F

(
φI + ipI

2

)
− F

(
φI − ipI

2

)]
. (3.26)

and φ is a certain combination of CI in (3.24) and the attractor values. It is also possi-

ble to show that the contribution of a large class of D-term type corrections in off-shell

supergravity vanishes exactly on the localization solution [31].

Furthermore, since the theory is abelian, the QV deformation is purely quadratic [2, 3].

This implies that the one-loop determinants cannot have any dependence on the constant

CI ’s. Instead, the only dependence comes from the parameter ϑ, which is the size of

AdS2×S2. In this case, since both the action and the deformation are scale invariant this

is possible due to an anomalous scaling of the one-loop determinants (3.23).

To understand the scaling properties of the integral (3.25) consider the following. The

integration variable φI in (3.25) has the scale invariant form12

φI = eI + 2ω−1CI = Re(2ω−1XI) (3.27)

where ω is defined in relation to the size of AdS2 as

ϑ =
1

ω2
. (3.28)

In the N = 2 off-shell formalism ω is proportional to the attractor value of the auxiliary

tensor Tµν which in the on-shell theory gives rise to the graviphoton field. Furthermore,

the renormalized action depends on CI only via the scale invariant combination (3.27),

while the charges q, p are scale invariant by definition. Therefore, from the anomalous

scale transformation of the partition function

Z(λω, λX) = λ−2βZ(ω,X) (3.29)

we conclude that the one-loop determinants must give a factor of ϑβ , with ϑ the size of

AdS2 × S2 and β is the scale anomaly of the vector-multiplet partition function. Later we

compute β for the case of interest.

At this point it is important to make a few remarks concerning the one-loop computa-

tion of [11, 12]. Their approach is different since they first consider a computation where

the metric is rigid with a charge independent constant size and then claim the result to

be valid also when the metric is fluctuating, by means of a Weyl transformation, which is

seen as a gauge choice.13 In order to do the computation with a fluctuating metric it is

strictly necessary to consider the Weyl multiplet coupled to the remaining matter multi-

plets. However, it is an open problem how to define an equivariant complex using local

supersymmetry. A few comments on this problem can be found in [30].

12Note that in [3] it was used a gauge with ω = 1.
13In a gauge where the Kahler potential e−K(X) = i(FIX

I −FIXI) = 1 the supergravity Lagrangian has

the canonical Einstein-Hilbert term and therefore the conformal factor of the metric is effectively fluctuating.
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4 Supersymmetry and measure

In this section we derive the exact measure for the finite dimensional integral (3.25).

There are two main tasks underlying the derivation. First we argue that the measure for

the N = 4 vector-multiplets, that is, the measure for the variables φa with a = 2 . . . NV +1,

is flat. To justify this we consider first the theory of free NV N = 4 vector-multiplets living

on a rigid AdS2 × S2 and compute the exact partition function. This will allow us to fix

the measure. Finally we consider the contribution of the N = 4 supergravity multiplet.

Using a supersymmetric Chern-Simons theory on AdS2 × S1 we determine a one-loop

dependence on the background metric. This will fix the measure for the variables φ0 and

φ1 in (3.25) that parametrize normalizable fluctuations of the axion-dilaton in the N = 4

supergravity multiplet.

Schematically the N = 4 answer has the form

d(q, p)N=4 =
1

C

∫ NV +1∏
a=0

dφaM1/4(φ, p) exp
[
−πqIφI + F (0)(φ, p)

]
+

∑
instanton

∫ NV +1∏
a=0

dφa . . . (4.1)

where F (0)(φ, p) is defined as (3.26) with the zero instanton N = 2 prepotential

F (X) =
X1

X0
CabX

aXb + ω2 c1
X1

X0
(4.2)

that describes the coupling of NV N = 4 vector multiplets to the supergravity multiplet.

Here c1 = 0, 1 for T 4 and K3 models respectively. The factor M1/4(φ, p) is the effective

measure for the supergravity multiplet fields that we want to determine.

Furthermore, we argue that there are subleading saddle points, the second term in (4.1),

which can be interpreted as instanton contributions to the AdS2 path integral. Based

on the localization integral (3.25) with the non-perturbative prepotential we suggest a

reinterpretation of the instanton contributions in terms of a renormalization of the Chern-

Simons couplings. Proceeding analogously to the zero instanton case we obtain an unitarity

condition that truncates the instanton sum leading precisely to the tail of Bessel functions

found in (2.42).

For N = 8 black holes we use a N = 4 truncation. For this reason the exact answer

still has the form of (4.1), but in this case the instanton contributions are not present, with

the prepotential having the tree level form F (X) = X1/X0CabX
aXb. However, from this

point of view there is an additional contribution coming from the fields that are thrown

away under the truncation of N = 8 supergravity. We denote this contribution by Zodd.

The final answer has the form

d(q, p)N=8 =
1

C

∫ NV +1∏
a=0

dφaM1/8(φ, p) exp
[
−πqIφI + F(φ, p)

]
× Zodd (4.3)

with the measureM1/8(φ, p) and Zodd the quantities we want to determine. Here NV = 6 is

the number of N = 4 vector-multiplets of the truncation and C is a normalization constant.
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4.1 Odd fields contribution

In section 3.1 we explained a truncation of N = 8 to N = 4 supergravity. This truncation

consists in setting all the RR and RNS fields to zero in IIB string theory. From the string

worldsheet this is equivalent to consider only the fields which are even under (−1)FL , with

FL the left fermion number, in a sector invariant under a right N = 4 subalgebra. This is

the sector where the microscopic formula (2.3) is valid. The N = 4 truncation consists of

the supergravity multiplet together with six vector-multiplets and the U-duality group is

reduced to a SL(2,Z)× SO(6, 6;Z) subgroup.

The computation is based on the assumption that the contribution from even and

odd fields factorize. This is justified in part from the fact that at the quadratic level the

fluctuations over the odd fields [23] does not mix with the fluctuations of the even fields

due to the symmetry under (−1)FL and therefore they can be integrated out to obtain

an effective N = 4 supergravity. It is possible that for the class of BPS states we are

interested in, namely those which are invariant under the right N = 4 subalgebra, the

factorization is exact.

On the other hand, the microscopic counting formulas for the CHL models on T 4

compactifications strongly suggest that this is the case. Namely the T 4×T 2/Z2 orbifold has

precisely the same massless spectrum and the same U-duality group SL(2,Z)× SO(6, 6;Z)

as the N = 4 truncation. For large charges the leading microscopic degeneracy has the form

d(Q,P )|T 4/Z2
' 2(−1)Q.P+1

∫
Ĉ

d2τ

τ5
2

πP 2 exp

[
π

2

|Q+ τP |2

τ2

]
(4.4)

which is precisely the N = 8 answer (2.4) up to a factor of (P 2)−4. This suggests that the

odd fields contribution should be given by

Zodd =
1

(P 2)4
(4.5)

At the quadratic level it is easy to compute (4.5). The gaussian integrals will give

factors of the dilaton and ϑ, the size of AdS2, since these are the only parameters available.

The dependence on the first can be determined by noting that at the quadratic level the

supergravity action has a symmetry [32, 33] in which the dilaton is shifted by ln λ−1, the

NS fields remain invariant and the RR fields are multiplied by λ. This implies that the

quadratic action for the odd fields does not have dependence on the dilaton and thus the

zero mode argument of section section 4.2 gives a trivial answer. On the other hand, there

is a non-trivial dependence on ϑ, which equals P 2 in this case, due to a scaling anomaly.

This was computed in [23] using the heat kernel method. It is found a contribution of

−4 lnP 2 to the effective action coming from the odd fields. This leads to the result (4.5)

as we wanted.

4.2 Vectormultiplet measure

To understand the measure for the vectormultiplets we consider first the theory of NV free

U(1) N = 4 vector multiplets on AdS2 × S2 with microcanonical boundary conditions,
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that is, we fix the electric fields and allow for the chemical potentials to fluctuate. To

have a variational problem consistent with these boundary conditions we need to insert

appropriate Wilson lines. In addition, we need to add boundary counter terms to remove

IR divergences.

The N = 4 Lagrangian contains a Maxwell and a theta term

1

g2

∫
F ∧ ?F + θ

∫
F ∧ F, (4.6)

with g the U(1) coupling constant, together with six scalars and respective fermionic terms.

Without loss of generality we set the theta term to zero for the moment. Since the U(1)

theory is free the partition function is semiclassically exact and in this case we only need to

know the on-shell action and the one-loop determinants of fluctuations. By comparing this

with the localization computation we will find evidence for the measure used. Note that

in the localization computation the one-loop determinants ZQV1-loop (3.23) do not depend on

particular details of the physical theory and therefore they can be computed in the case of

the free theory.

We follow closely Witten’s work on free Maxwell theory on a compact manifold [34]

and highlight the main differences for the non-compact case. As explained, in this case the

semiclassical approximation is exact and thus the partition function is a sum over saddles

times a determinant over fluctuations. Before going in details about the computation, we

present the final expression for the partition function:

Z free
N=4 = e

π
2

(q,q)g2+π
2

1
g2 (p,p)

gNV (4.7)

where ( , ) is a measure induced by the hodge ?-operator via the kinetic terms (4.6) and

q and p are respectively the electric and magnetic charge vectors. The exponential term

comes from the evaluation of the renormalized on-shell action on solutions that carry

electric and magnetic charges, that is, which have field strength F = e volAdS2 + p volS2 .

On the other hand, the factor gNV comes from the one-loop determinant of fluctuations

whose computation is more involved. Roughly, there is a factor of g for each non-zero

mode fluctuation times a zeta-function regularized super-determinant that depends only

on the size of AdS2. The super-determinant can be computed as in [21] using the heat

kernel method- it is found that each N = 4 vector-multiplet gives a trivial contribution-

while the dependence on g is determined using an ultralocality argument. Following [34],

we introduce a regulator to count the number of non-zero modes. This number is then

equal to the total number of modes, which is a local quantity, minus the number of zero

modes; the first can be renormalized to one by adding appropriate local counter terms

and therefore we are left with g−Nzero where Nzero is the number of zero modes. The main

difference with the computation [34] is that here we obtain an infinite number of zero modes

since the space is non-compact.

Lets analyse the zero mode contribution. In AdS2 only the U(1) gauge fields can have

zero modes [21, 35]. These correspond to gauge transformations with non-normalizable

parameters, that is,

Azero
l = dΦl (4.8)
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with

Φl =
1√
2π|l|

[
sinh(η)

1 + cosh(η)

]|l|
eiθl, l = ±1,±2, . . . (4.9)

where we have used euclidean hyperbolic metric for AdS2.14 The mode Φl is not normal-

izable on AdS2 since as we approach the boundary η ∼ ∞, it behaves as Φl ∼ eiθl and

thus its norm diverges. On the other hand, the gauge field (4.8) respects the microcanoni-

cal boundary conditions and has a finite squared norm. Note that this field configuration

cannot be gauged away because Φl is not normalizable, and so Azero
l = dΦl is indeed a

zero mode.

To compute the regularized number of non-zero modes we use the normalization con-

dition [21] ∫
D[Aµ(x)]e

− 1
g2

∫
A∧?A

= 1. (4.10)

Basically this means that any local quantity of Aµ(x) can be renormalized to one by adding

local counter terms. Procceding as in [34] the one-loop determinant gives g to the power of

the number of non-zero modes. Multiplying and diving by gNzero , with Nzero the number

of zero modes, the normalization (4.10) leads to the result

1-loop ∼ g−Nzero . (4.11)

In general the number of zero modes in compact manifolds is finite, however, because

we are on AdS2 this number is infinite- see equations (4.8) and (4.9). In this case the

infinity is due to an IR rather than an UV divergence and hence it can be renormalized by

introducing boundary counter terms. Proceeding as in [21] we obtain

N zero =
∑
l

1 =
∑
l

(dΦl, dΦl) = cosh(η0)− 1 (4.12)

=
reg −1 (4.13)

where we have removed the cuttoff dependent term cosh(η0). The final answer for the

one-loop determinant is therefore

Z free
1-loop = g−N

zero
reg ×NV = gNV , (4.14)

as we wanted to show.

At this point it is useful to make a comparison with the compact case. For simplicity

lets consider a compact manifold with constant positive curvature like the four-sphere.

In this case there are no fermionic zero modes because the square of the Dirac operator

is positive definite by /∇2
ψ = Rψ [36], with R the curvature. Furthermore, the scalars

couple conformally to the curvature scalar and this generates an effective potential which

sets them to zero. Therefore, the only zero modes present come from the U(1) gauge

fields fluctuations.

The counting of zero modes goes as follows. In the compact case there are b1 zero

modes to the vector laplacian and a gauge fixing ghost zero mode due to the constant

14In these coordinates the metric is ds2 = dη2 + sinh(η)2dθ2.
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gauge transformation that acts trivially. Hence the number of zero modes in the gauge

fixed theory is precisely b1− b0, where the minus sign is due to the ghost zero mode which

is fermionic; the numbers b0, b1 can be identified respectively with the dimensions of the

De Rham cohomology groups H0, H1. The one-loop contribution is then [34]

Z1-loop = gb0−b1 . (4.15)

Suppose we have b1 = 0 as in the AdS2 × S2 case, then, since b0 = 1, we find a factor of g

for the one-loop contribution (4.15) which is precisely the result found in the non-compact

case for one vector-multiplet.

It is an instructive exercise to write the non-compact result (4.11) in a similar language,

that is, in terms of cohomology. To do that we denote by Ĥ1 the space of normalizable

closed one-forms modulo exact one-forms dα with normalizable α on AdS2 × S2. Analo-

gously we define Ĥ0 to be the space of normalizable closed zero-forms. The dimensions of

these spaces, respectively b̂1,0, must be renormalized as in (4.12). Thus, on AdS2 × S2 we

find b̂0 = 0 because any constant is non-normalizable, and b̂1 = −1 by (4.12). This leads

to the same result (4.15).

Given the semiclassical computation, we turn gears to the computation of (4.7) using

localization. The idea is to write first the N = 4 theory in terms of N = 2 multiplets and

then use the result (3.25) for localization of N = 2 supergravity. We want to show that

the localization computation gives the same result as in the semiclassical approach.

The N = 4 vector-multiplet decomposes into a N = 2 vector-multiplet together with

an hyper-multiplet. A theory of NV free vector-multiplets can be described by a N = 2

prepotential of the form

Ffree(X) = − i

g2

nv∑
a,b=1

mabX
aXb (4.16)

with mab some constant matrix and g is the coupling constant.

The measure for the N = 4 vectormultiplet fields in the path integral is flat because

of supersymmetry. The same should be true for the full supergravity path integral. It

is difficult, a priori, to find a non-flat pointwise measure that is supersymmetric and so

the flat choice is the most natural. There can be the confusion, however, that the kinetic

terms in the physical Lagrangian determine the measure. This is not so in the presence

of supersymmetry. A good example is supersymmetric quantum mechanics. In this case

we have an interacting one dimensional supersymmetric sigma model that describes a

superparticle moving in a non-trivial manifold; the kinetic terms are non-tivial functions of

the scalar fields (the position of the superparticle) and are given in terms of the components

of the background manifold. A flat measure for the partition function leads to the correct

results for the expected index theorems [37, 38]. Similarly there are the examples of

topological sigma models [39, 40] just to mention a few.

Using the result (3.25) we find that the partition function for NV vector-multiplets is

given by the gaussian integral

Zvec
N=4 =

∫ NV∏
a=1

dφae
−πqaφa− π

2g2

∑NV
a,b=1 mabφ

aφb+π
2

(p,p)

g2 ZQV1−loop (4.17)
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The factor ZQV1−loop can be computed using an equivariant-index theorem as described in [36],

though we provide a much simpler approach. As previously explained, for a U(1) gauge

theory the exact deformation QV is purely quadratic, which implies that the one-loop

determinant cannot have any dependence on φa. Instead it is a single function of the size

of AdS2 × S2.15 As explained in section section 3, we must have by equation (3.29)

ZQV1-loop = ϑβ . (4.18)

where β is the scale anomaly. We can compute it in the on-shell theory as in [22, 23].

This gives ϑ−1/12 for the N = 2 vector and ϑ1/12 for the hyper, and so for the full N = 4

vector-multiplet the dependence on ϑ precisely cancels. This result further agrees with the

index computation of [11] if we fix the size of AdS2 to be the constant ϑ. Hence we find

ZQVN=4 vec = 1 (4.19)

Finally, integrating the gaussians in (4.17) we obtain the semiclassical answer (4.7) as we

wanted. It is important to note that we have not introduced the induced measure used

in [2, 11, 12]

Mind ∝
√

det Im(∂a∂bF free). (4.20)

Such factor would lead to additional powers of 1/g, in disagreement with the semiclassical

answer. This has implications for the one-loop determinants of the N = 2 gravity and

gravitino multiplets, proposed in [11] after comparing with the on-shell results of [43].

A comparison between the semiclassical result (4.7) and the localization integral (4.17)

suggests that the modes φa in the integral (4.17) correspond in a certain way to the zero

modes of the U(1) gauge fields since they both generate the one-loop factor gNV . This is

true in the case of localization of N = 4 SYM on the four-sphere [36], in which case the

constant mode of the scalar that is left unfixed by the localization equations, corresponds

precisely to the constant mode of the gauge transformations that gives rise to a ghost

zero mode. On AdS2 × S2 we have only a partial understanding of this phenomena. It is

plausible that in the presence of gravity the localization equations lift all the zero modes as

originally proposed in [10] and only the localization mode (3.24) is allowed. As a matter of

fact, since the theory has an asymptotic supercharge Q which squares to L0−J0 [10], with

L0 and J0 rotations on AdS2 and S2 respectively, we expect the zero modes to be lifted as

they have non-zero eigenvalues L0 − J0. It would be interesting to understand this from

the localization computation.

In the black hole problem we need to couple the N = 4 vectormultiplets to supergravity.

We do this by considering a theory with prepotential

F (X) = −1

2

X1

X0
CabX

aXb, (4.21)

with X1/X0 the axion-dilaton. The coupling constant 1/g is now the imaginary part of

the scalar X1/X0 measured at infinity and the real part is the theta parameter. Because

15We have used a scale invariant measure [41, 42].
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the prepotential is still quadratic in Xa, the vector-multiplet integrals are still gaussian

and thus we expect to obtain a similar contribution as in the free case (4.7).

Lets consider the localization solution (3.24) but with fixed X1 and X0. The super-

gravity path integral for this configuration subspace is

∫ NV∏
a=1

dφa exp

[
− πq0e

0 − πq1e
1 − πqaφa +

π

2

p1

e0
P 2

−π
2

p1

e0

NV∑
a,b=1

Cabφ
aφb − πe

1

e0

NV∑
a,b=1

Cabφ
apb

]
(4.22)

=

∫ NV∏
a=1

dφa exp

[
π

2
Q2 e

0

p1
+ πQ.P

e1

p1
+
π

2

p1

e0
P 2 +

π

2

P 2

p1e0
(e1)2

]
×

× exp

[
− π

2

p1

e0

NV∑
a,b=1

Cab

(
φa + e1 p

a

p1
+ qa

e0

p1

)(
φb + e1 p

b

p1
+ qb

e0

p1

)]
. (4.23)

Here the electric fields e0,1 are the on-shell values of Re(X0,1) and Q2, P 2 and Q.P are the

T-duality invariant combinations

Q2 = −2q0p
1 + Cabq

aqb, Q.P = −q1p
1 + Cabq

apa, P 2 = Cabp
apb, (4.24)

with qa = Cabq
b. The last term in the exponential (4.22) comes from a theta term ∼∫

θ F ∧ F with θ = e1/e0. Take e1 = 0 for the moment. If we perform the gaussian

integrals in (4.23) we obtain precisely the free answer (4.7) with 1/g2 = p1/φ0. If we

turn on the theta term, then the contribution from e1 is still gaussian and this too can be

interpreted as coming from integration over zero modes.

4.3 Super Chern-Simons theory and gravity-multiplet measure

By the AdS3/CFT2 holographic correspondence [44, 45], we have an equality between the

partition functions of string theory on AdS3 and the dual CFT2, that is,

ZAdS3 = ZCFT2 . (4.25)

Since ZCFT2 has modular properties, so does ZAdS3 , that is, we have

ZAdS3

(
aτ + b

cτ + d
,
aτ + b

cτ + d

)
= (cτ + d)ω(cτ + d)ωZAdS3(τ, τ),

(
a b

c d

)
∈ SL(2,Z) (4.26)

where the τ is the complex structure of the AdS3 boundary torus and SL(2,Z) is the group

that parametrizes global diffeomorphisms of this torus. Equation (4.26) shows that the

partition function is not invariant under the SL(2,Z) action but transforms covariantly

with certain weights ω and ω. In quantum field theory language this signs an anomaly. In

this section we compute this anomaly and show that it fixes the measure of the localization

integral (3.25).
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To illustrate the main idea, first we study the asymptotic behaviour of the Fourier

coefficients of ZCFT2 , which we take to be holomorphic. We will find that this behaviour

is fixed by two properties: the anomalous transformation of the partition function (4.26)

and the values of the polar coefficients.

In the case of one-eighth and one-quarter BPS states the spectrum is captured by

a (0, 4) SCFT [6]. The partition function ZCFT2 is thus the elliptic genus and so it is a

holomorphic object. In this case the modular relation (4.26) is modified by the introduction

of the R-symmetry chemical potential z. To put it another way

Z

(
−1

τ
,
z

τ

)
= τωe2πik z

2

τ Z(τ, z), (4.27)

where we only consider the transformation under the element S ∈ SL(2,Z). Here k is the

index of the elliptic genus, which is a Jacobi form. For simplicity we set it to one.

The degeneracy of BPS states can be computed by doing an inverse Fourier transform,

that is,

d(n, l) =

∫ 1

0

∫ 1

0
dτdz ZCFT2(τ, z)e−2πiτn−2πizl. (4.28)

For large charges n, l we can compute (4.28) by a saddle point approximation. Since the

saddle is at |τ | � 1 we can use the modular property (4.27) to estimate the integral (4.28).

That is, near the saddle the function Z(−1/τ, z/τ) is dominated by the ground state which

has energy −c/24, with c the central charge and thus by (4.27) we have

d(n, l) ' dpolar

∫ 1+i/ε

0+i/ε
dτ

∫ 1

0
dz τ−ω exp

[
iπc

12τ
− 2πi

z2

τ
− 2πiτn− 2πizl

]
. (4.29)

where we have used a ε� 1 prescription to avoid the singularity. Here the coefficient dpolar

denotes the degeneracy of the polar term. Further, we perform the z integral by saddle

point approximation and change variables −iτ = πc/12t to obtain16

d(n, l) ∼ dpolar c
−ω+3/2

∫ ε+i∞

ε−i∞

dt

t−ω+5/2
exp

[
t+

π2c∆

24t

]
(4.30)

with ∆ = 4n − l2. The range of integration only makes sense asymptotically, that is, we

have extended and deformed the finite contour t ∈ [0+i/ε, 1+i/ε] to ε+iR. Equation (4.30)

shows that the number of BPS states grows with Bessel type behaviour with the index of the

Bessel function determined by the weight of the modular transformation (4.27). Moreover,

this Bessel comes multiplied by a factor dpolar c
−ω+3/2 which can become important for

large charges.

If in addition Z(τ, z) has weight ω < 1/2, then the approximation (4.30) can be

completed exactly by the circle method, leading to the Rademacher expansion [14]. For

example, for one-eighth BPS states we have ω = −2 and c = 6. Using formula (4.30)

we find d(n, l) ∼ I7/2(π
√

∆) which is the exact leading result (2.3) in the Rademacher

expansion [2].

16We are assuming that ω < 1/2 in which case the integral is convergent.
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This exercise shows essentially two things. First, the leading asymptotics of the Fourier

coefficients of ZCFT2 are determined by a Bessel of type Iν(π
√
c∆/6), with the index ν

determined by the weight ω in (4.26). This result depends only on general properties of

conformal field theory and not on particular details of the theory. Moreover, it illustrates

that the Bessel behaviour is intimately related to the modular anomaly (4.26) and one

can be determined from the other as shown. Finally, the asymptotic behavior contains in

addition a factor of dpolar c
−ω+3/2. Since we must have ω < 1/2 for convergence, this term

becomes important when we are scaling the central charge to parametrically large values.

This is the regime studied in the logarithmic computations of [21, 23] that we want to

partially revisit here.

In the following we determine the bulk origin of these two aspects. To do that we

use a supersymmetric Chern-Simons theory on a local AdS3 geometry and compute a one-

loop correction to the leading saddle. We show that this correction carries an anomalous

dependence on the background metric. Note that Chern-Simons theory is defined without a

metric. However, quantum mechanically the dependence on the metric may be anomalous.

We use this idea to argue that the particular dependence on the background metric must

be valid for not only for large but also finite charges. This determines entirely the measure

for the localization integral and gives the Bessel behaviour as expected.

To compute this anomaly we consider supersymmetric Chern-Simons theory on

AdS2 × S1. The Lagrangian can be obtained as a consistent truncation of six dimen-

sional supergravity on a three sphere [46, 47] and contains both gravitational, and abelian

and non-abelian Chern-Simons terms. We use microcanonical boundary conditions that

are consistent with AdS2.

This point of view is justified on general grounds of two dimensional superconformal

field theories and AdS3 holography. It is well known that Chern-Simons theory captures

many aspects of (0, 4) SCFT’s not only at the on-shell level [48–50] but also at the quantum

level [4, 6, 14]. On the other hand, the anomaly can be computed at long wavelengths

depending only, as we show, on global properties of the space given by a certain cohomology

structure of the gauge transformations.

The metric of AdS2 × S1 is

ds2 =
ϑ

4

(
sinh(η)2dθ2 + dη2

)
+

ϑ

4(φ0)2

(
dy − iφ0(cosh(η)− 1)dθ

)2
. (4.31)

with θ, y periodically identified and ϑ is determined by the attractor background (3.9).

Under a reduction of five dimensional supergravity on the circle S1 the moduli φ0 becomes

the real part of X0 in the four dimensional theory [51].

The key aspect of the metric (4.31) that we want to explore, is the fact that it cor-

responds to a quotient of global AdS3 [52] by an additive group Γ. To see this, take first

global AdS3 with metric17

ds2 = cosh(ρ)dt2 + sinh(ρ)2dψ2 + dρ2 (4.32)

17This is actually the universal cover.
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with −∞ < t < +∞ and ψ ≡ ψ + 2π and then consider the identification by the group

Γ : (t, ψ) ∼
(
t+

π

φ0
, ψ + i

π

φ0

)
∼ (t, ψ + 2π). (4.33)

Under the coordinate change t = y/(2φ0), η = 2ρ and ψ = θ + iy/(2φ0), the metric of

global AdS3 becomes precisely that of AdS2 × S1 (4.31) with ϑ = 1.

More generally, we can consider the identification of points z = ψ+it on the boundary C
of the universal cover of AdS3 by the additive group z ∼ z+2πn+2πmτ . This construction

leads to a solid torus with a boundary that has complex structure τ . Other identifications

consist of z ∼ z + 2πn+ 2πm(aτ + b)/(cτ + d) with integers a, b, c, d obeying ad− bc = 1.

This leads to the same torus but now with complex structure aτ+b/cτ+d. The interior, on

the other hand, is obtained by filing the solid torus with a diffeomorphism that changes the

cycles that become contractible and non-contractible. These are the well known SL(2,Z)

family of AdS3 solutions [14, 53]. The space with AdS2 × S1 metric (4.31) corresponds to

a quotient with Lorentzian τ = iφ0 and τ → ∞,18 with an SL(2,Z) filling corresponding

to a = d = 0 and c = −b = 1 [52]. For other fillings we have iφ0 = cτ + d. With this in

mind, we see from (4.33) that ψ+ it ∼ ψ+ it+ 2πn+ 2πim/φ0 while ψ− it ∼ ψ− it+ 2πn,

that is, a torus with τ ′ = −1/τ = 0 and τ ′ = −1/τ .

In the physical theory we have three dimensional supergravity coupled to SU(2)L and

SU(2)R Chern-Simons terms. Following [54], the precise content is

S =

∫
d3x

[
√
g
(
R+ 2m2

)
− 1

m
εµνρψµDνψρ

]
−kR

4π

∫
Tr
(
AR ∧ dAR + 2/3A3

R

)
+
kL
4π

∫
Tr
(
AL ∧ dAL + 2/3A3

L

)
(4.34)

The gauge connections AL, AR correspond respectively to the SU(2)L and SU(2)R Chern-

Simons terms and the field ψiµ is a Dirac gravitino transforming in the fundamental of

SU(2)R with index i. The covariant derivative is defined as Dν = ∂ν+ωabνγ
ab/4−mγν+AR,

and the trace is taken in the fundamental representation. Because of supersymmetry the

right Chern-Simons level is related to the cosmological constant as kR = 4π/m, while the

left level kL is independent.

It is well known that we can write the Einstein-Hilbert term with negative cosmo-

logical constant as a pair of SL(2,R) Chern-Simons terms with equal levels [55, 56].

The supergravity action (4.34) becomes a Chern-Simons action based on the supergroup

SU(1, 1|2)R × SU(1, 1)L × SU(2)L. In this case the gravitino transforms only under the

fundamental of SU(2)R and thus the action splits into a non-supersymmetric (left) and a

supersymmetric (right) Chern-Simons actions, that is,

S = SL + SR, (4.35)

with the non-supersymmetric SL action given by

SL = − ikL
4π

∫
M

Tr

(
ÃL ∧ dÃL +

2

3
Ã3
L

)
+
ikL
4π

∫
M

Tr

(
AL ∧ dAL +

2

3
A3
L

)
(4.36)

18In the Lorentzian version τ and τ are independent variables.

– 29 –



J
H
E
P
0
7
(
2
0
1
7
)
0
2
2

whereas the supersymmetric SR action is

SR =
ikR
4π

∫
M

Tr

(
ÃR ∧ dÃR +

2

3
Ã3
R

)
− ikR

4π

∫
M

Tr

(
AR ∧ dAR +

2

3
A3
R

)
(4.37)

− ikR
4π

∫
ψ ∧ (d+ ÃR +AR)ψ (4.38)

Here ÃL,R denote respectively the SL(2,R)L,R connections.

So far we have considered the diffeomorphic theory which corresponds to having equal

left and right SL(2,R) levels. Nevertheless, if the theory has gravitational Chern-Simons

terms, then the levels can differ by an amount proportional to the coefficient of those

terms [50]. On the other hand, the SL(2,R)R and SU(2)R levels must be the same because

of supersymmetry. The SU(2)L,R levels in general have independent values. However,

in the absence of gravitational Chern-Simons they are the same, so to preserve the full

rotational symmetry- if we want to see this theory as coming from a truncation of six

dimensional supergravity on a three sphere.

To fix the different levels as functions of the charges, we consider five dimensional

supergravity reduced on S2. In particular we are interested on the reduction of five di-

mensional Einstein-Hilbert and abelian Chern-Simons terms. This was partially analyzed

in [4] and we review it now. The Einsten-Hilbert term has the form∫
d5x
√
g cIJKσ

IσJσk R (4.39)

where σI is the vector-multiplet scalar and cIJK has values c1ab = ca1b = cab1 = Cab. At

the on-shell level we have the condition ϑ1/2σI = pI . Thus after reduction on the sphere

we obtain ∫
d3x
√
gϑ−1/2 p1P 2R+ . . . . (4.40)

with P 2 = Cabp
apb. To go from the Einstein-Hilbert action to the Chern-Simons formula-

tion, the metric must have unit constant curvature and therefore we scale it further as

gµν = ϑg(0)
µν (4.41)

where gµν is asymptotically (4.31), to obtain∫
d3x

√
g(0) p1P 2R(0). (4.42)

The Ricci curvature R(0) is now normalized to one at the on-shell level. It is the rescaled

Einstein-Hilbert term (4.42) that determines the Chern-Simons levels. These can be de-

termined as in [50] and hence we find

kL = kR = p1P 2/2 (4.43)

On the other hand the five dimensional Chern-Simons reduces to

πi

3(4π)3

∫
S2

cIJKA
I ∧ F J ∧ FK →

− πi

p1(4π)2
P 2

∫
A1 ∧ F 1 +

πip1

(4π)2

∫
Cab

(
Ab +

pb

p1
A1

)
∧
(
F a +

pa

p1
F 1

)
. (4.44)
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where a = 2 . . . NV + 1, with NV the number of N = 4 vector-multiplets in the four

dimensional theory. We have diagonalized the different couplings in order to identify the

different Chern-Simons terms. The first term in (4.44) can be interpred as coming from a

U(1) truncation of an SU(2)L Chern-Simons term. By writing

AL = iσ3/(2p1)A1 (4.45)

the SU(2)L Chern-Simons action (4.36) leads precisely to this U(1) term. Note that the

factor of 1/p1 in (4.45) is necessary to have the correct Chern-Simons level kL = p1P 2/2,

which in turn equals kR. If we had considered instead the six dimensional theory reduced on

a three sphere we would have obtained directly a SU(2)L Chern-Simons action by gauging

the left isometries of the three sphere and likewise an SU(2)R Chern-Simons from gauging

the right isometries.

Before moving to the one-loop computation we need to study the classical solutions

of the Chern-Simons action (4.35). These correspond to flat connections and covariantly

constant spinors, that is,

dÃL,R + ÃL,R ∧ ÃL,R = 0, dAL,R +AL,R ∧AL,R = 0, (4.46)

(d+ ÃR +AR)ψ = 0. (4.47)

The holonomies of these flat connections were reviewed in [4]. On a general SL(2,Z) filling,

the Wilson lines are,19∮
Cn

ÃL = 2πi
aτ + b

cτ + d

σ3

2
,

∮
Cn

ÃR = − 2πi
a

c

σ3

2
; (4.48)∮

Cc

ÃL = 2πi
σ3

2
,

∮
Cc

ÃR = − 2πi
σ3

2
, ad− bc = 1 (4.49)

and similarly for the SU(2) connections. Here Cn is the non-contractible cycle and Cc is

the contractible cycle. In terms of the coordinates θ, y in (4.31) we have Cn = aC1 + bC2

and Cc = cC1 + dC2 with C1 = −θ and C2 = y.

Note that the holonomy of ÃR along the contractible cycle is minus one. This makes

the gravitino antiperiodic; it is a well known fact that covariantly constant spinors are an-

tiperiodic along contractible cycles. However, since the gravitino also couples to AR (4.47),

which has holonomy minus one too, it becomes effectively periodic. This is in agreement

with the boundary conditions of the R-sector of the dual CFT [14].

We are now ready to compute the modular anomaly using the super Chern-Simons path

integral. To illustrate the main idea we consider first the case of Chern-Simons theory on a

compact manifold. The non-compact case will follow by a straightforward generalization.

It is a well known fact that Chern-Simons theory with simple Lie group on a compact

manifold is a topological theory [57]. This fact seems apparent from the Chern-Simons

functional because it does not depend explicitly on a metric. However, at the quantum

level we need to pick a metric to ensure a well defined gauge fixed path integral [57] and

19The holonomies are defined up to conjugation.
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thus a priori it is not obvious that this choice is not anomalous. The problem can arise

from the appearance of zero modes which signal that the choice of metric is not compatible

with the regulator used. As a matter of fact, studies of the exact Chern-Simons partition

function on a manifold M reveal that there can be a dependence on the volume at one-loop

level. In particular, at large level r we find [58]

Z(M) '
∑
A

e2πirCS(A)τ(M,A)1/2 r(dimH1
A−dimH0

A)/2 Vol(M)(dimH1
A−dimH0

A)/2 (4.50)

The sum is over gauge equivalence classes of flat connections A. Both the Chern-Simons

invariant CS(A) [59] and τ(M,A)1/2, the Reidemeister-Ray-Singer torsion, are topolog-

ical invariants. However we see that there can be a metric dependence via the term

Vol(M)(dimH1
A−dimH0

A)/2, where Vol(M) is the volume of the manifold.

The metric anomaly can be explained succinctly as follows. In the gauge fixed theory

we introduce an auxiliary bosonic scalar b and ghost fermions c, c together with a metric to

impose a Lorenz gauge fixing condition dA ? B = 0 with B the gauge field fluctuation [57].

In computing the one-loop contribution there can be zero modes for the one-forms and

scalars if the cohomology groups of the flat bundle, respectively H1
A and H0

A, are not zero.

Correspondingly the number of zero modes is

N0
zero = dim(H0

A), N1
zero = dim(H1

A) (4.51)

for scalars and one-forms respectively.

Lets consider for example the case of the ghost zero modes c, c. For the purpose of

this work, it is suitable to take a manifold M that results from a quotient M̃/Γ. In this

case the zero modes correspond to the elements of the gauge group that commute with

Γ, that is, the elements that leave the flat connection invariant. The zero modes sign a

residual gauge symmetry and thus when we divide the path integral by the volume of the

gauge group there is a factor of the volume of the residual gauge symmetry that remains in

the denominator. To compute this volume we use the ultralocality argument explained in

section section 4.2. In this case we consider a Grassmannian measure for the gauge fixing

ghosts of the form ∫
[dc][dc] exp

{
−r
∫

Tr c ∧ ?c
}

= 1. (4.52)

The operator ? is defined with respect to a metric with constant curvature ±1 on M . By

choosing a basis of orthonormal adjoint-valued eigenfunctions of the Laplacian on M̃ , the

normalization (4.52) leads to the measure

[dc][dc] =
∏
x,µ

(
r

|Γ|

)−1

dc dc (4.53)

by the usual rules of grassmann integration. Integrating this measure over the space of

zero modes we obtain (
r

|Γ|

)−dim(H0
A)

(4.54)
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where dim(H0
A) is the number of ghost zero modes (4.51). Similarly, from the scalar

bosonic zero modes b we find a contribution of (r/|Γ|)dim(H0
A)/2. In this case the exponent

is just 1/2 times the dimension of H0
A because we are dealing with real bosonic scalars.

Therefore, the total zero mode contribution from both bosonic and fermionic scalars is

(r/|Γ|)−dimH0
A(M)/2.

A similarly exercise for one-forms, using the normalization∫
[dA] exp

{
−r
∫

TrA ∧ ?A
}

= 1, (4.55)

gives the zero mode contribution (
r

|Γ|

)dimH1
A(M)/2

. (4.56)

Equivalently we can replace |Γ| by the volume of the manifold since we have vol(M) =

vol(M̃)/|Γ|. This is particularly adequate when the group Γ has infinite order, as it is the

case of the quotient AdS2×S1 = AdS3/Γ, which is our main interest. Putting together the

one-form and the scalar zero mode contributions we obtain the metric dependence of the

one-loop determinant (4.50), including the exact dependence on the Chern-Simons level r.

With this in mind we turn gears to the non-compact case. The key idea is to look at

AdS2 × S1 as the quotient of AdS3 by the additive group Γ (4.33). We compute the AdS3

partition function using microcanonical boundary conditions. These consist in fixing the

Wilson lines along the boundary cycle C2 parametrized by the coordinate y in (4.31) and

summing over the Wilson lines along the cycle C1 parametrized by θ [4]. For large level r,

the partition function has the form

ZAdS3|micro '
∑
A

e2πirCS(A)Z1-loop (4.57)

where A are flat connections on AdS2×S1 and CS(A) is the Chern-Simons action of the flat

connection, properly renormalized by boundary counter terms. The Chern-Simons action

of these flat connections was studied in [4] for example.

The component Z1-loop arises from the determinant over the non-zero modes. This

determinant consists of two different contributions: one is a local contribution coming

from a zeta function regularized determinant which is topological [60, 61], and so it does

not depend on either r or |Γ|. The other contribution comes from the zero modes, which

we now describe.

On AdS2 × S1 we need to care only about the one-form zero modes because constant

functions are non-normalizable. In particular, the zero modes correspond to adjoint-valued

connections that are closed under d + A with A the flat connection. In this problem the

flat connection is never the trivial solution A = 0, and thus the zero modes correspond to

adjoint-valued closed forms that commute with the flat connection. For each factor of the

gauge group the maximal commuting subgroup is always one-dimensional and therefore we

only need to find the space of closed one-forms modulo gauge transformations in the De

Rham sense.
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Since on AdS2 × S1 we fix the Wilson lines along the circle S1, because of the mi-

crocanonical boundary conditions, we can discard the flat connections of the type ∼ dy.

Therefore the only zero modes we can have are those along the AdS2 directions, which are

precisely the ones we have determined in section section 4.2 equation (4.8). The measure

for the zero modes is determined analogously to the compact case except that here the

order of Γ is infinite. The way to proceed is to define |Γ| from its action on the volume of

the quotient manifold and so we have effectively

|Γ| = φ0 (4.58)

where 1/φ0 is the radius of the circle S1 in the metric (4.31). In addition, we need to

regularize the infinite number of zero modes by introducing boundary counter terms as we

did in section section 4.2. The zero mode contribution is then(
k

|Γ|

)Ren(Nzero)/2

=

(
k

|Γ|

)−1/2

(4.59)

with k the corresponding Chern-Simons level. We have used the fact that the renormalized

number of zero modes is Ren(Nzero) = −1.

This is not the final answer because the gravitino can also have zero modes. On the

background solution we can set ψµ = ψµ = 0, so the equation for the fluctuation zero mode

δψzero is

(d+ Ãflat
R +Aflat

R )δψzero = 0 (4.60)

where Ãflat
R , Aflat

R are the on-shell SL(2)R and SU(2)R flat connections respectively, which

as we have shown carry non-trivial holonomies. Since these are flat connections we can

write the above equation as

(d+ g−1dg)δψzero = 0⇔ d(gδψzero) = 0 (4.61)

with g a gauge transformation element in SL(2)R × SU(2)R. Much like for the gauge

connections, the gravitino zero modes therefore correspond to normalizable solutions of

the form g−1dε with non-normalizable fermionic parameters ε [23]- these are the solutions

that can not be gauged away by a normalizable gauge transformation. Besides, there

are auxiliary fermionic scalars and bosonic scalar ghosts in the gauge fixed theory but,

as explained, they do not lead to additional zero modes because a constant scalar is not

normalizable on AdS2 × S1. To compute the measure for the gravitino zero modes we use

the SU(2)R invariant measure∫
[Dψ][Dψ] exp

{
−r
∫
ψ ∧ ?ψ

}
= 1 (4.62)

where ψ is the gravitino one-form that transforms in the fundamental of SU(2)R. The

ultralocality argument gives the zero-mode volume(
r

|Γ|

)−Ñzero

(4.63)
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where Ñzero is the number of gravitino one-form zero modes. This number is infinite

so we have to proceed as in section section 4.2. The holonomies of the flat connections

Ãflat
R , Aflat

R have residual gauge symmetries that we can use to bring δψ to a particular

direction in the SL(2)R×SU(2)R space. In particular, the flat connection is invariant under

g → hg with h a constant element of SL(2)R × SU(2)R. This leads to the transformation

dε → h−1dε. Therefore the zero-mode effectively consists of a complex Grassmann-valued

one form expanded in the basis (4.8). We regularize the number of zero-modes as

Ñzero =
∑
l

〈ψl|ψl〉 (4.64)

where l is the quantum number that parametrizes the zero mode and 〈 | 〉 is an SU(2)R
invariant norm induced from the measure (4.62). Much like for the gauge connections

we find

Ñzero =
∑
l

〈ψl|ψl〉 = cosh(η0)− 1 (4.65)

where η0 is an AdS2 cuttoff. The renormalized number of zero modes is therefore

Ñ ren
zero = −1, (4.66)

and so from the gravitino zero modes we obtain the contribution r/|Γ|.
We are now ready to assemble the different contributions. From the supersymmetric

side we have bosonic zero modes for both the SL(2,R)R and SU(2)R connections which

give a total contribution of ∼ |Γ|/kR, as they have equal Chern-Simons levels. This cancels

the gravitino zero mode contribution ∼ kR/|Γ|. Thus the total contribution from the

supersymmetric side is trivial

Z1-loop SR ∼ 1 (4.67)

On the other hand, from the non-supersymmetric side we have the contribution from only

the gauge connections zero modes which give

Z1-loop SL ∼
|Γ|√
k̃LkL

(4.68)

where k̃L is the SL(2)L level and kL is the SU(2)L level. In terms of the cohomology groups

Ĥ0,1 defined in section section 4.2 for AdS2, the one-loop contribution (4.68) has precisely

the same form as the compact result (4.50). Note that, even though we are taking the

level k large to compute the one-loop contribution, the result (4.68) is expected to hold

even for small k since it relies purely on a zero mode argument that depends only on the

cohomology structure of the space.

In the same way, the contribution from the abelian gauge fields is

Z
U(1)
1-loop =

(
p1

|Γ|

)−NV /2
(4.69)

where p1 is the U(1) Chern-Simons level (4.44) and NV is the number of N = 4 vector-

multiplets. Note that this agrees with the vector-multiplet computation of section sec-

tion 4.2.
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There is however an additional contribution besides the one-loop Chern-Simons cor-

rection. As explained, in the Chern-Simons formulation we use a background metric with

constant unit curvature. So in going from the physical theory (4.34) to the Chern-Simons

formulation there is a rescaling of the metric (4.41). This leads to an additional contri-

bution to the SL(2)L,R Chern-Simons measure as function of ϑ, the size of the physical

metric. That is, the measure for the physical metric is effectively

[Dg] ∼ [ϑ1/2DÃL][ϑ1/2DÃR] (4.70)

where ϑ is the size of the on-shell metric, which is a constant. By the same zero mode

counting argument we find an additional contribution proportional to ϑ from integrating

the SL(2) gauge fields. To be more explicit, define AgL,R ≡ ϑ1/2ÃL,R. The ultralocality

normalization (4.55) now becomes∫
[dAg] exp

{
− r
ϑ

∫
TrAg ∧ ?Ag

}
= 1 (4.71)

The exponential factor is just the norm of the Chern-Simons variables ÃL,R. The measure

[dAg] must carry a factor of (r/ϑ|Γ|)1/2 for each mode. So integrating over the zero mode

space we obtain ϑ−Nzero/2 = ϑ1/2 for each gauge group factor. We remind the reader that

in the path integral we are not really integrating over the zero modes as they give rise to

infinities. Instead the ultralocality normalization is a nice way to correctly regulate the

integration over the non-zero modes. To put in other words, we are instructed to compute

a one-loop correction from the gravitational path integral, which we can rewrite in terms

of the Chern-Simons variables, that is,∫
[Dg] exp

[∫
R− 2Λ + . . .

]
|1-loop

=

∫ ∏
n,m∈non-zero

[ϑ1/2DÃL]n[ϑ1/2DÃL]m exp

[∫
CS(AL,R)

]
|1-loop (4.72)

where Λ is the cosmological constant and R is the Ricci scalar. From this point of view, the

measure has an additional ϑ1/2 factor for each non-zero mode. So integration over these

gives ϑNnon-zero/2 which equals ϑ(Ntotal−Nzero)/2. The term with ϑNtotal/2 can be renormalized

to zero because it is an ultra-local function, and hence we obtain ϑ−Nzero/2 = ϑ1/2, which

is consistent with the ultralocality argument.

The total contribution from the SU(1, 1|2)×SL(2)L×SU(2)L and abelian Chern-Simons

is therefore

Z1-loop ∼ ϑ
|Γ|√
k̃LkL

(
|Γ|
p1

)NV /2
(4.73)

Since this contribution leads to a correction of the effective action of the form ∼ ln |Γ| it

cannot be renormalized by a local counterterm and therefore represents an anomaly.

We can now compare the Chern-Simons one-loop correction with the one-loop approx-

imation of the localization integral on AdS2 × S2 (3.25). Introducing a measure M(φ0)
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we have

ZAdS2, 1-loop ' e
π
2

∆
p1P2 φ

0+π
2
p1

φ0 (P 2+8c1) ×M(φ0)
(φ0)2√

P 2(P 2 + 8c1)

(
φ0

p1

)NV /2
(4.74)

Here we have used the zero instanton prepotential (4.2); the instanton sector gives rise

to exponentially suppressed corrections. In this expansion, it is enough to scale ∆ �
1 for fixed but large P 2. This is so because we can write the exponential in the form

∼ ∆1/2(x + 1/x), with p1/φ0 = x
√
Q2/P 2, and we have approximated P 2 + 8c1 ' P 2;

we are assuming the measure is at most polynomial so it does not change the on-shell

attractor values. Therefore, in the saddle approximation we are expanding in powers of

∆1/2 � 1. At the saddle, x ∼ 1 and so we can consider arbitrary values of Q2 while keeping

∆ ∼ Q2P 2 � 1 for P 2 � 1. This means that in the saddle approximation we can have

arbitrary on-shell values of φ0 ∼
√
Q2/P 2 by dialing the value of Q2.

In the one-loop approximation (4.74) the integrals over φ0 and φ1 give respectively

the terms (φ0)3/2/
√

(P 2 + 8c1) and (φ0)1/2/
√
P 2, while the term (φ0/p1)NV /2 arises from

integrating over the φa, that is, the vector-multiplet integrals. Furthermore, the exponential

term can be identified with the Chern-Simons integral for the flat connections [4]. That is,

the on-shell contribution from the supersymmetric Chern-Simons gives exactly zero, while

on the non-supersymmetric side there are two types of contributions: there is a boundary

contribution of ∆φ0/p1P 2, due to the microcanonical boundary conditions, and a term

p1(P 2 + 8c1)/φ0 which comes from the bulk integral. In fact, from the bulk term we can

identify the SL(2,R)L level as

k̃L = p1(P 2 + 8c1)/2 (4.75)

which agrees with other computations in higher dimensional gravity [49, 51]. Therefore,

at the on-shell level we can match the renormalized action π
2

∆
p1P 2φ

0 + π
2
p1

φ0 (P 2 + 8c1), with

the Chern-Simons action of the SL(2)L flat connection [4].

Note that the Chern-Simons one-loop computation (4.73) holds for any value of |Γ| =
φ0, since it corresponds to a different choice of background metric. Similarly, the one-loop

approximation (4.74) is valid for arbitrary values of φ0. Equality of the one-loop term

in (4.74) with (4.73) determines the measure

M(φ0) ∼ ϑ

φ0p1
. (4.76)

This is our main result.

We can compute the charge dependence of the ϑ from the zero instanton prepotential.

Using the formulas (3.15) and (3.16) we compute

ϑ = P 2 + 4c1. (4.77)

Together with (4.76) we obtain the measure for one-quarter BPS black holes

M1/4(φ0) =
P 2 + 4c1

φ0p1
(4.78)
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This measure reproduces the exact leading Bessel function, including the value of the polar

coefficient, in the microscopic answer (2.42) for the N = 4 CHL models in both K3 and T 4.

For the one-eighth BPS case, we have exactly ϑ = P 2 and so the measure is

M1/8(φ0) =
P 2

φ0p1
. (4.79)

Together with the contribution Zodd (4.5) coming from the odd fields, we obtain an exact

agreement with the microscopic answer (2.4).

Finally, note that for large P 2 the measures (4.78) and (4.79) are asymptotically the

same. This is consistent with the fact that they arise from integrating out the fields in the

N = 4 supergravity multiplet. Since in that limit of charges, the attractor background is

exactly the same in both cases, we expect to obtain the same contribution to the measure

after integrating out the massless fields in the N = 4 supergravity multiplet. On the other

hand, the factor 1/φ0p1 is universal. By combining it with dφ0dφ1 it ensures the SL(2,R)

invariant measure dτdτ/(τ2)2 where τ = φ1/φ0 + ip1/φ0 is the complex structure of the

torus, which is part of the six dimensional metric AdS2×S2×T 2. This is as expected since

from a six dimensional point of view we can either reduce the theory to four dimensions

by first going down on one circle and then on the other or on any SL(2,Z) combination

of these.

4.4 Instanton corrections

In section section 2.2 we found a formula for the degeneracy of one-quarter BPS states which

contains subleading Bessel corrections (2.42). In this section we explore the contribution

of instantons in the localization integral (3.25) and argue that they are responsible for

the subleading Bessel functions. Nonetheless, we do not explain how these instantons are

included at the level of the path integral. Instead we use an effective description in terms

of an instanton quantum corrected prepotential. We tailor this answer in such a way that

it is easy to read the effect of the instantons and interpret this in terms of an effective

Chern-Simons theory that we can work with.

Lets start with the effective N = 2 non-perturbative prepotential F non-pt(X). This

was computed in [62] and can be obtained as the holomorphic part of an R2 amplitude at

one-loop. For the N = 4 theories the prepotential is one-loop exact and has the form

F non-pt = −1

2

X1

X0
CabX

aXb −W 2 ln g

(
X1

X0

)
(4.80)

where W 2 is the square of the on-shell value of the graviphoton field. The function g(τ) is a

modular form of a congruence subgroup and has precisely the form given in (2.12) and (2.13)

for respectively the K3 and T 4 orbifold compactifications. From the heterotic point of view,

the contributions coming from g(τ) can be interpreted as NS-5 brane instantons corrections

to the tree level R2 amplitude [62].

As it is well known, the N = 2 prepotential encodes a series of R2 corrections in the

low energy N = 2 supergravity action of the form

∼ ∂F

∂W 2
R− ∧R− + c.c. (4.81)
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where R− is the anti-self-dual part of the Riemann tensor and c.c. stands for complex

conjugate. For the AdS2×S2 geometry, the non-perturbative prepotential (4.80) encodes,

via the terms (4.81), the Gauss-Bonnet corrections discussed in section section 3.1, that

are known to exist in the Heterotic frame.

Introducing the quantum corrected prepotential (4.80) at the level of the Wilsonian

action can be problematic, specially when we want to compute the path integral using

localization. The reason is twofold. First, the function ln g(τ) in (4.80) is generically

singular at finite values of τ . This can spoil the localization argument since in this case

we go off-shell. The second reason is that, from a five dimensional point of view, N = 2

supersymmetry fixes the fourth derivative terms to be schematically of the form ψRR, with

ψ some field and therefore these couplings cannot accommodate instantonic contributions.

The only exception however, is the zero instanton contribution. In this case the reduction of

five dimensional supergravity down to four dimensions leads to a theory with prepotential

the zero instanton approximation of (4.80) [51], that is,

F (0) = −1

2

X1

X0
CabX

aXb + c1W
2X

1

X0
(4.82)

where c1 takes the values 0, 1 for the T 4 and K3 orbifold compactifications respectively.

For these reasons, we take the zero instanton approximation (4.82) as the microscopic

prepotential. It would be interesting to understand the instanton corrections as coming

from additional saddles in the localization computation along the lines of [28].

The localization formula for the AdS2 path integral (3.25) is, nevertheless, generic

for any holomorphic prepotential. This is based on the assumption that the localization

saddles (3.24) are not changed after taking into account the instantons. In this case, the

renormalized action on the localization locus leads precisely to the integral (3.25) with the

non-perturbative prepotential.

Lets proceed with this assumption and continue by studying the integral (3.25) with

the non-perturbative prepotential. After all, it reproduces the microscopic answer (2.22)

up to a measure factor. We obtain

d(q, p) ∼
∫
dµ(τ, τ) exp

[
π

2

|Q+ τP |2

τ2
− Ω(τ, τ)

]
(4.83)

with

Ω(τ, τ) = ln g(τ) + ln g(−τ) (4.84)

and τ = τ1 + iτ2 = φ1/φ0 + ip1/φ0 and τ = τ1 − iτ2. We have denoted the measure by

dµ(τ, τ). Developing on this formula, we expand the exponential Ω(τ, τ) in Fourier series

to obtain

d(q, p) ∼
∞∑

n1,n2=0

∫
dµ(τ, τ ;n1, n2) d(n1)d(n2)

× exp

[
π

2

|Q+ τP |2

τ2
+ 4πτ2c1 + 2πiτn1 − 2πiτn2

]
(4.85)
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where we have used the fact that

exp [−Ω(τ, τ)] = e4πτ2c1

∞∑
n1,n2=0

d(n1)d(n2)e2πiτn1e−2πiτn2 (4.86)

with d(n) the Fourier coefficients of 1/g(τ).

Formula (4.85) is suggestive of an instanton/anti-instanton sum. The exponential

π

2

|Q+ τP |2

τ2
+ 4πτ2c1 (4.87)

is the answer that one obtains using the zero instanton prepotential (4.82), that is, the

contribution coming from the supergravity fields. On the other hand, inspired by the

analysis of [28], the sum in (4.85) can be interpreted as the contribution coming from d(n1)

worldsheet instantons at the north pole of S2 and d(n2) anti-instantons at the south pole,

with charges n1 and n2 respectively.

In each sector (n1, n2) we can compute the effect of the instantons to the attractor

background geometry. Namely, we can compute the effective AdS2 size ϑ(P 2, n1, n2) with

the formula (3.15) but now with respect to an effective entropy function defined by (4.85):

En1,n2 =
π

2

|Q+ τP |2

τ2
+ 4πτ2c1 − 2πτ2(n1 + n2) + 2πiτ1(n1 − n2) (4.88)

We assume that the last two terms do not generate any dependency on either ϑ1 or ϑ2, as

they seem to arise from couplings to topological terms. Therefore, proceeding as in section

section 3.1, we obtain again the attractor equation (3.7). That is, we have ϑ1 = ϑ2 = ϑ with

ϑ(P 2, n1, n2) = P 2 + 4c1 − 2(n1 + n2). (4.89)

Since ϑ must be positive, we see that we can introduce instantons and anti-instantons up

to a maximum charge of

n1 + n2 < P 2/2 + 2c1 (4.90)

is saturated. For this reason we call (4.90) the unitary bound. Furthermore, at the on-shell

level, the value of the dilaton τ2 must be real. From the extremization of En,m we find a

further restriction given by the positivity condition

P 2/2 + 4c1 − 2(n1 + n2) + 2(n1 − n2)2/P 2 > 0. (4.91)

Together with the fact that at the on-shell level the coupling constants τ and τ in (4.85)

must have respectively positive and negative imaginary parts; this is the condition that

instantons are negligible at weak coupling, we must have in addition

− P 2/2 ≤ n1 − n2 ≤ P 2/2. (4.92)

For this reason, the infinite sum in (4.85) is physically truncated to

d(Q,P ) '
P 2/2+2c1∑
n=0

n∑
m=0

−P 2/2≤n−2m≤P 2/2
F(n,m)>0

d(n−m)d(m)e2πiQ.P
P2 (n−2m) I(n,m)(Q

2, P 2, Q.P )

(4.93)
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with the integral I(n,m) defined as

I(n,m) =

∫
C̃
dµ(τ2, τ1;n,m)

× exp

[
π

2

∆/P 2

τ2
+ 4πτ2F(n,m;P 2)

]
exp

[
π

2

P 2

τ2
(τ1 −Q.P/P 2)2

]
. (4.94)

We have redefined τ1 ≡ τ1 + 2iτ2(n− 2m)/P 2, and F(n,m;P 2) is the function (2.29). The

contour C̃ takes τ1 over the imaginary axis iR and τ2 along ε+ iR with ε > 0. This choice,

also justified in [2], is based on the fact that the localization equations do not impose other

restrictions on the parameters φa (3.25) and thus have to integrated over an indefinite

and convergent contour. In particular, we have chosen τ2 to lie along the steepest descent

contour which is the imaginary line at ε+ iR while for τ1 we have chosen it to run over the

imaginary values.

From the truncated sum (4.93), it becomes clear that there are subleading saddle points

to the leading zero instanton contribution, which is the physical attractor background.

These subleading saddle points carry different expectation values for the dilaton τ2 and

the size ϑ, for example. This may look puzzling from the AdS2 path integral point of

view, since we are instructed to sum over fields that respect the same boundary conditions.

However, this ties well with the fact that we are summing over instanton constributions. It

is well known that instanton contributions arise due to non-local field configurations that

carry topological charge and hence, even though they do not change the local equations of

motion and therefore the physical boundary conditions, they can contribute non-trivially

to effective action.

The integrand (4.94) still has the form of a Bessel times a gaussian even after including

the instanton contributions. As explained in section section 4.3, the gaussian is a conse-

quence of the unique bosonic zero mode, after an IR renormalization, of the SU(2)L con-

nection whereas the Bessel exponential comes from evaluating the supersymmetric SL(2)

Chern-Simons on the AdS2 × S1 solution with microcanonical boundary conditions. This

suggests that the effect of introducing the instantons is to renormalize the different cou-

plings in the Chern-Simons theory. Namely, the term in the exponential

4πτ2F(n,m;P 2) =
π

2
τ2

(
P 2 + 8c1 − 4n+ 4(n− 2m)2/P 2

)
(4.95)

suggests that the tree level SL(2)L Chern-Simons level P 2/2 + 4c1 gets renormalized by a

factor of −2n + 2(n − 2m)2/P 2. At first sight, this looks unnatural because, in general,

the Chern-Simons coupling is integrally quantized. It might be possible, nevertheless, that

there are additional contributions, namely, in the form of Kloosterman sums that render

the answer well-defined under large gauge transformations, which is the reason why the

level is quantized. On the other hand, the gaussian term in (4.94) is still proportional to

P 2 which ensures that the SU(2)L level is not renormalized.

With this assumption, we compute the measure using the super Chern-Simons formu-

lation explained in the last section. This leads to

dµ(τ, τ , n) = d2τ
ϑ(P 2, n)

(τ2)k+3
=

d2τ

(τ2)k+3
(P 2 + 4c1 − 2n) (4.96)
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in each instanton sector. Plugging this back in the integral I(n,m), the truncated sum (4.93)

is then in perfect agreement with the microscopic answer (2.42).

5 Conclusions and open problems

With this work we came a step closer to understand in full detail the exact entropy of

supersymmetric black holes. The dream is to be able to show the equation which is at the

heart of this program [1], that is,

ZAdS2 = d(q). (5.1)

In particular, we want to understand how quantum gravity can reproduce the precise

integers d(q). A priori, it looks puzzling how a gravity path integral can reproduce such

a sensible quantity to UV dynamics like an integer. From a bulk point of view there is

no reason why ZAdS2 has to fulfill such requirement. Instead, the reason stems purely

from holography: the dual CFT1 has an hamiltonian with only a finite number of ground

states20 and thus from this side the partition function is an integer.

With this in mind, our results show an interesting interplay between quantum gravity

and number theory. To this end, the main results are

• An exact formula for the AdS2 path integral that encodes all the power law corrections

to the black hole entropy area formula in both N = 8 and N = 4 compactifications.

In essence, this formula is characterized by a Bessel like behaviour whose index is

captured by an anomaly coefficient in Chern-Simons theory.

• The existence of subleading saddle points coming from instanton contributions. Also

in this case, we find subleading Bessel like corrections which are in perfect agreement

with the microscopic formulas. Along with this, we find an unitary condition given

by the positivity of the effective AdS2 size (4.89) which leads to a truncation of the

instanton sum.

Despite this success, there are still a few questions we need to understand. The most

urgent is the study of the measure purely from an AdS2 point of view. As we mentioned

before, this is a very difficult problem which requires understanding equivariant cohomol-

ogy in the context of local supersymmetry. In this respect, an interesting problem would

be to study the AdS2 path integral from the world-sheet point of view using localiza-

tion techniques because in this case there is a way to avoid the complications of local

supersymmetry. This would be different from [28], in the sense that we would be using

microcanonical boundary conditions instead.

Another interesting problem would be to extend this study to include also AdS2 Zc
orbifolds. In [4] it was shown how Chern-Simons theory on these orbifolds can reproduce

the subleading Bessel functions in the N = 8 microscopic answer. Namely, how topologi-

cally different orbifolds can reproduce the Kloosterman sums, which are intricate number

theoretic objects. However, a few key points of this computation are still missing. In

20We are assuming that the quantum mechanics has a mass gap. For the problem at hands this gap is

small but non-zero [63].

– 42 –



J
H
E
P
0
7
(
2
0
1
7
)
0
2
2

particular, the convergence of the Rademacher expansion depends crucially on c, that is,

the order of Zc. To see this we can construct a bound for each term in the Rademacher

expansion [64]. The bound is of the order cω−3/2 , with ω the weight of the Jacobi form,

and thus the Rademacher expansion is convergent only for ω nonpositive (assuming that

ω is half integer). It would be important to derive the exact dependence on the parameter

c at the cost of finding a divergent answer.

On the same note, we can explore the contribution of the AdS2 Zc orbifolds on the

background of mutiple instantons following [4]. Given the Chern-Simons point of view

explored in this work, in principle it would be straightforward to compute the Kloosterman

sums for the N = 4 theory and test them against a Jacobi-Rademacher expansion [7].

This would be an additional test to the renormalization of the Chern-Simons levels that

we proposed in section section 4.4.

Finally, it would be interesting to address the problem of small black holes and the

DH-states in Heterotic string theory. They are certainly the simplest example concerning

the microscopics. After all, we are counting only perturbative states.

The partition function that captures the spectrum of half-BPS states is the modu-

lar form
1

η(τ)24
=

∞∑
n=−1

d(n)qn, (5.2)

and d(n) is the degeneracy we want to study. In this case, the Rademacher expansion of

d(n) simplifies considerably when compared with the N = 8 or the N = 4 answers, and

for this reason it is apparently more advantageous to compare with the bulk. The leading

asymptotics is captured by the Bessel function

d(n) ' I13(4π
√
n) ∼ e4π

√
n−27/2 ln

√
n, n� 1 (5.3)

From the bulk point of view, we expect the Chern-Simons formulation to be still valid.

However, the near horizon geometry preserves eight supercharges and hence we cannot

use the (0, 4) Chern-Simons theory21 to determine the exact measure as we did for the

N = 4 problem. Nevertheless, we can develop on the same idea and make a prediction

for the contribution of different multiplets. The twenty two N = 4 vector multiplets

give a contribution of −11 ln
√
n to the logarithmic correction and thus by (5.3) we find a

prediction for the supergravity multiplet of

Zgrav
1-loop = (

√
n)−5/2. (5.4)

Part of it comes from integrating out the SU(2)L gauge fields. For the small black hole the

full S3 symmetry is restored22 and thus the contribution of the SU(2)L part comes from

fluctuations around the trivial connection AL = 0 which is in contrast with the black holes

studied here. By the argument explained before, this leads to a contribution of (
√
n)−3/2

instead of (
√
n)−1/2, since we have now zero modes in all the three su(2)L directions. On

21By this we mean the Chern-Simons theory which has the same supersymmetry of the dual (0, 4) CFT2.
22In this case we can set e1 = 0 in the geometry (3.17) and thus we have A1 = 0, modulo gauge

transformations, in (4.44).
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the other hand the contribution from the SL(2)L part will still be the same which gives a

mismatch of (
√
n)−1/2. It is possible that the contibution from the supersymmetric side

does not cancel as we have more supersymmetry. It would be interesting to check this.
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