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1 Introduction

Holographic lattices provide a general arena for studying thermoelectric DC transport in

the context of holography [1]. These are stationary black hole spacetimes with asymp-

totic boundary conditions that explicitly break translation invariance of the dual field

theory. This breaking of translation invariance provides a mechanism for momentum to

dissipate in the field theory and hence leads to finite results for the DC thermoelectric

conductivity matrix.

It has recently been understood that when the DC conductivity matrix is finite it can

be obtained, universally, by solving a system of time independent, forced, linearised Navier-

Stokes equations for an incompressible fluid on the black hole horizon [2–5]. While these
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hydrostatic fluid equations, which we refer to as Stokes equations, can be used to extract

the DC conductivities, in general they are only indirectly related to physical quantities

in the dual field theory. However, in the special situation of the hydrodynamic limit of

the holographic lattice, in which the temperature is the highest scale, one can show that

the horizon fluid corresponds to the hydrodynamical fluid of the dual field theory in the

presence of external DC electric fields and thermal gradients [6], thus making contact with

the work on fluid-gravity [7].

This general formalism for obtaining the DC conductivity was first derived for holo-

graphic lattices preserving time reversal invariance [2, 3] and then extended to holographic

lattices in which it can also be broken [4]. In particular, the analysis of [4] allowed for the

possibility that the dual field theory in thermal equilibrium is placed in an external mag-

netic field. It also covered the possibility of having local electric and thermal magnetisation

currents that are either driven by external sources or are generated spontaneously.

On general grounds, the thermoelectric conductivity should satisfy a set of Onsager

relations, which relate the conductivity in a given set-up to the conductivity in a time

reversed setup. For the case of holographic lattices which preserve time reversal invariance

this was shown1 in [3]. This was achieved by showing that the relevant Stokes equations

can be obtained from a variational principle for a functional of the fluid variables. For

holographic lattices in which the time reversal invariance is broken, a derivation of the

Stokes equations from a similar variational principle did not seem possible and hence a

derivation of the Onsager relations was obscure.

In this paper we resolve this puzzle. We show that, in general, the Stokes equations

of [4] can be derived from a variational principle that involves a functional that depends

on the fluid variables in the background of interest and, in addition, the time reversed

quantities.2 This novel generalised variational principle then leads to a simple derivation

of the Onsager relations.

Resolving this issue was the original motivation for this work. We have also taken

the opportunity of extending the analysis of [2–4] to cover holographic theories in four

spacetime dimensions which include the term Sϑ ∼
∫
ϑF ∧ F in the action, where ϑ is a

function of dynamical scalar fields, and F is the field strength of a bulk gauge field. A

case of particular interest is when ϑ is taken to be an odd function of the pseudoscalar

fields so that the theory preserves time-reversal invariance. Indeed such terms arise very

naturally in the context of consistent truncations arising from string and M-theory. Such

terms are also interesting since they allow for simple holographic constructions in which the

time-reversal invariance is broken spontaneously. For example the model [10] with a single

pseudoscalar has been used to study phases that spontaneously break translations and

also time reversal invariance at finite charge density [11–15]. Recently, these constructions

have been generalised to holographic lattices by including a spatially modulated chemical

1Onsager relations were also demonstrated for the electrical conductivity in the context of a hydrody-

namic analysis of transport developed in [8]. This paper also emphasised the utility of using variational

principles to extract bounds on conductivities.
2We thank the referee for pointing out that a similar construction has been used for a dissipative wave

equation in e.g. page 256 of [9].
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potential [16]. Here we will outline another construction of a holographic lattice in which

time reversal invariance can be broken spontaneously at zero charge density.

The term Sϑ gives some interesting modifications to the Stokes equations at the black

hole horizon. We will see that the equations can be written naturally in a form in which

only the constitutive relations for the electric current of the auxiliary fluid at the horizon

are modified and this gives rise to interesting Hall conductivity effects3. We also show that

the Stokes equations on the horizon have an S-duality symmetry even if the full D = 4

theory does not.

The plan of the rest of the paper is as follows. In section 2 we discuss the theories of

gravity that we are considering. We also briefly summarise some general features of [2–4]

in order to make this paper self contained. The Stokes equations are presented in section 3,

where we discuss some of their properties, including a derivation of the Onsager relations.

In section 4 we will discuss the impact of the term Sϑ on the DC conductivity in various

different contexts. We will explain how it gives rise to what might be called quantum

critical Hall conductivity, by which we mean a contribution to the Hall conductivity for a

quantum critical point that is independent of any mechanism for momentum dissipation.

In particular, this arises with vanishing applied magnetic field and zero charge density

and is thus a realisation of anomalous Hall conductivity (for a review see [18]). We will

also present the explicit solution of the Stokes equations, in terms of horizon data, in the

special case of holographic lattices that just depend on one of the spatial directions, thus

extending the results presented in [2–4]. We briefly conclude in section 5.

2 Framework

We will focus on the following action in four spacetime dimensions that couples the metric

gµν to a gauge field Aµ, with field strength Fµν and a pseudoscalar field φ:

S =

∫
d4x
√
−g
(
R− V (φ)− 1

4
Z(φ)F 2 − 1

2
(∂φ)2

)
+ Sϑ , (2.1)

where

Sϑ =
1

2

∫
ϑ(φ)F ∧ F = −1

8

∫
d4x
√
−gϑ(φ)εµνσρFµνFσρ , (2.2)

with εtrxy =
√
−g. The action is invariant under the time reversal transformation t→ −t,

At → At, (Ar, Ax, Ay) → −(Ar, Ax, Ay) with φ → −φ provided that V (φ), Z(φ) are even

functions and ϑ(φ) is an odd function of the pseudoscalar φ. It is then also invariant under

the parity transformation x→ −x, Ax → −Ax, (At, Ar, Ay)→ (At, Ar, Ay) with φ→ −φ.

We will focus on such theories in the sequel, but we note that most of our analysis is valid

for arbitrary choices of the functions appearing in (2.1). The generalisation of (2.1) to

include additional pseudoscalars all of which are odd under time reversal (and parity), as

well as scalars that are even under time reversal (and parity), is immediate. We also note

3In the early pioneering paper [17] a term Sϑ was considered in a simplified setting, but some incorrect

conclusions were made concerning the DC conductivity.
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Aµ → −Aµ is a discrete symmetry of the action, associated with charge conjugation in the

dual field theory. We will also assume that V (φ) is such that there is a unit radius AdS4

vacuum solution with A = φ = 0.

It is also interesting to point out that for certain choices of Z, ϑ the equations of motion

are invariant under SL(2,R) symmetries, generated by S-duality as well as shifts of ϑ by a

constant. The S-duality transformation is φ→ −φ with

Fµν → Z ∗ Fµν − ϑFµν , (2.3)

where ∗Fµν = 1
2εµνρσF

ρσ, provided that Z → Z
Z2+ϑ2

and ϑ → − ϑ
Z2+ϑ2

. A specific ex-

ample is Z = 1/ cosh(
√

3φ), ϑ = tanh(
√

3φ) which arises as a consistent truncation of

D=11 supergravity on an arbitrary seven dimensional Sasaki-Einstein space [10], with a

skew-whiffed AdS4 × SE7 vacuum. In this truncation the pseudoscalar field is dual to a

relevant operator with4 conformal scaling dimension ∆ = 2. For the case of SE7 = S7 the

pseudoscalar is part of the U(1)4 invariant sector of the maximally supersymmetric gauged

supergravity theory [20] and hence, in particular, survives the quotient of the S7 giving

rise to ABJM theory.

2.1 Holographic lattices

We are interested in studying holographic lattices. These are defined to be stationary

black hole solutions that approach AdS4 in the UV with deformations that are associated

with explicit breaking of translation invariance of the dual CFT. The black hole horizon is

assumed to be a Killing horizon with non-zero temperature. To simplify the exposition, we

will assume that there is a single black hole, with planar topology, and that we can choose

coordinates (t, r, x, y), with ∂t the stationary Killing vector, which are globally defined

outside the horizon. More general setups can also be studied, as explained in [3, 4].

We then demand that as we approach AdS4 at r →∞, we have

ds2 → r−2dr2 + r2
[
g

(∞)
tt dt2 + g

(∞)
ij dxidxj + 2g

(∞)
ti dtdxi

]
,

A→ A
(∞)
t dt+A

(∞)
i dxi , φ→ r∆−3φ(∞) , (2.4)

where g
(∞)
tt etc. are functions of the spatial coordinates, xi = (x, y), only, and give rise

to breaking the translation invariance of the dual field theory. These will be taken to be

periodic in the spatial coordinates xi with the exception5 that we allow for a constant

magnetic field with strength B by writing A
(∞)
i = −1

2Bε(ij)x
j + Â

(∞)
i with periodic Â

(∞)
i

and ε(xy) = 1.

Note that the source terms g
(∞)
ti , A

(∞)
i and φ(∞) are all odd under the time reversal

transformation that we discussed above and explicitly break time reversal invariance. It

is important to note that if these terms vanish, we can still have holographic lattices that

spontaneously break time reversal invariance and we will return to this point later.

4When SE7 = S7 supersymmetry implies that ∆ = 2. For other SE7 the AdS4 × SE7 vacua are not

supersymmetric but they are perturbatively stable [19]. Since the dual CFTs are not known a quantisation

with ∆ = 1 may also be possible.
5In the special case that we have massless axion fields with ∆ = 3, we can also consider the axion to be

linear in the spatial coordinates.
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We assume that the black hole horizon is located at r = 0. We introduce a function

U(r) with analytic expansion U (r) = 4π Tr + . . . and demand that as r → 0 we have

gtt(r, x) = −U(G(0)(x) + . . .) , grr(r, x) = U−1(G(0)(x) + . . .) ,

gtr(r, x) = U(g
(0)
tr (x) + . . .) , gti(r, x) = U(G(0)(x)χ

(0)
i (x) + . . .) ,

At(r, x) = U

(
G(0)(x)

4πT
A

(0)
t (x) + . . .

)
, (2.5)

where the dots refer to higher powers in r and all other quantities are, in general, non-

vanishing at the horizon:

gij(r, x) = h
(0)
ij (x) + . . . , gir(r, x) = g

(0)
ir (x) + . . . ,

Ai(r, x) = A
(0)
i (x) + . . . , Ar(r, x) = A(0)

r (x) + . . . , φ(r, x) = φ(0)(x) + . . . . (2.6)

Note that the function G(0)(x) can be set to unity after carrying out a coordinate trans-

formation, if one wishes (see footnote 8 of [5]). Of most importance in the sequel is the

horizon data h
(0)
ij , A

(0)
t , χ

(0)
i and φ(0).

2.2 The DC perturbation

In order to introduce suitable DC sources for the electric and heat currents we consider

the following linear perturbation of the black hole solution:6

δ(ds2) = δgµνdx
µdxν + 2tgttζidtdx

i + t(gtiζj + gtjζi)dx
idxj + 2tgtrζidrdx

i ,

δA = δaµdx
µ − tEidxi + tAtζidx

i , (2.7)

as well as δφ. The source terms E = Ei(x)dxi and ζ = ζi(x)dxi, with periodic dependence

in xi, are closed one-forms, dE = dζ = 0. The other functions in the perturbation depend

on both r and periodically on xi. In particular all time dependence of the equations of

motion is satisfied, to linear order in the perturbation. The harmonic parts of the sources

E, ζ characterise the physical external sources.

The coordinate t is no longer a good coordinate at the black hole horizon. Switching

to the ingoing Eddington-Finklestein coordinate v = t+ ln r/(4πT ) + . . . , regularity of the

perturbation near r = 0 places the following restrictions on δgµν , δaµ, δφ at the horizon,

δgtt = U(δg
(0)
tt (x) + . . .) , δgrr = U−1(δg(0)

rr (x) + . . .) ,

δgrt = δg
(0)
rt (x) + . . . , δgti = δg

(0)
ti (x) + gtt

ln r

4πT
ζi + . . . ,

δgij = δg
(0)
ij (x) +

2 ln r

4πT
gt(iζj) + . . . , δgri = U−1δg

(0)
ti (x) +

ln r

4πT
gtrζi + . . . , (2.8)

where δg
(0)
tt + δg

(0)
rr − 2δg

(0)
rt = 0. We also have

δat = δa
(0)
t (x) + . . . , δar = U−1(δa

(0)
t (x) + . . .) ,

δaj =
ln r

4πT
(−Ej +Atζj) + δa

(0)
j (x) . . . , δφ = δφ(0)(x) + . . . . (2.9)

6Note that this corrects a sign typo in eq. (4.1) of [4].
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2.3 Electric and heat currents

We begin with the electric currents which are simpler. We first define the two form

Hµν ≡ ZFµν + ϑ ∗ Fµν , (2.10)

and then the equation of motion for the gauge field is ∂µ(
√
−gHµν) = 0. We define the

bulk electric current density to be

Ja =
√
−gHar. (2.11)

When evaluated at the AdS boundary J t∞ is the local charge density and J i∞ is the local

electric current density of the dual field theory. In the presence of the DC perturbation we

deduce that

∂rJ
i = ∂j(

√
−gHji) +

√
−gH ijζj ,

∂iJ
i = ζiJ

i . (2.12)

We also have

∂rJ
t = ∂j(

√
−gHjt) . (2.13)

We next discuss the bulk heat current density7. We first define

Gµν ≡ −2∇[µkν] − Zk[µF ν]σAσ −
1

2
(ϕ− θ)Hµν , (2.14)

where kµ is a vector field satisfying ∇µkµ = 0, ϕ ≡ ikA and ψ ≡ ikF − dθ for any

globally defined function θ. For our setup, we will take kµ = (∂t)
µ and θ = −At, so that

ϕ = −θ = At and ψν = ∂tAν . Note that with the DC perturbation kµ = (∂t)
µ is no longer

a Killing vector, but we still have ∇µkµ = 0. We have

∇µGµν = (−∇µζµ + V )kν + dkνρζρ +
1

2
ZF νµψµ −

ZAσLk(F
νσ)

2

− ∂λϑ

4
ελστρFτρAσk

ν − ϑ

4
εµνσρFσρ∇µ(ϕ− θ) . (2.15)

We can then define the bulk heat current density as

Qi ≡
√
−gGir. (2.16)

When evaluated at the AdS boundary we have Qi∞ is the heat current density of the dual

field theory. After some calculation we find that in the presence of the DC perturbation

we have

∂rQ
i = ∂j(

√
−gGji) + 2

√
−gGijζj +

√
−gH ijEj ,

∂iQ
i = 2Qiζi + J iEi. (2.17)

7It is also possible to follow the approach developed in [5]. For example, in eq. (3.4) of [5] one would

have 2Wmn = H2wmn −HAt(Zvmn + ϑ(∗̄u)mn).
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We next rewrite the bulk equations of motion using a radial Hamiltonian decomposi-

tion. Since the extra term Sϑ is independent of the metric, the only change in the analysis

of [4] is a redefinition of the momentum conjugate to the gauge fields. Denoting the mo-

mentum conjugate to the metric and gauge-field on the radial hypersurfaces as πab and πa,

we still have

Ja = πa ,

Qi = −2πit − πiAt . (2.18)

The latter expression confirms that Qi∞ is indeed the local heat current density of the

dual field theory. By evaluating the hamiltonian, momentum and Gauss law constraints

on the stretched horizon, gives rise to a system of Stokes equations on the horizon, that

will be given in the next subsection. These equations can be solved to obtain the current

densities J i(0), Q
i
(0) on the horizon. In turn, these can be used to obtain the zero modes of

suitably defined transport currents of the dual field theory, as we next explain. For further

discussion on transport currents see [5, 21–23].

2.4 Transport currents

First consider the currents for the background black holes, with vanishing DC perturba-

tion. One can show that the currents vanish at the black hole horizon. Hence, upon

integrating (2.12), (2.17) in the radial direction we deduce that the current densities for

the background black holes are magnetisation currents of the form

J (B)i
∞ = ∂jM

(B)ij , Q(B)i
∞ = ∂jM

(B)ij
T , (2.19)

where M ij(x), and M ij
T (x) are given by

M ij = −
∫ ∞

0
dr
√
−gH ij , M ij

T = −
∫ ∞

0
dr
√
−gGij . (2.20)

Clearly ∂iJ
(B)i
∞ = ∂iQ

(B)i
∞ = 0. In addition, since the integrands are periodic functions

of the spatial coordinates, it is clear that the zero modes of these currents must vanish

J̄
(B)i
∞ = Q̄

(B)i
∞ = 0, where the bar refers to the following average integral taken over a

period of the spatial coordinates:

Ā ≡ 1

L1L2

∫ L1

0

∫ L2

0
d2xA(x) . (2.21)

In the presence of the DC perturbation we can define the local transport currents of

the dual field theory to be

J i ≡ J i∞ +M (B)ijζj ,

Qi ≡ Qi∞ +M (B)ijEj + 2M
(B)ij
T ζj , (2.22)

with ∂iJ i = 0 and ∂iQi = 0. From (2.12), (2.17) we deduce that the transport current flux

densities, relevant for the DC conductivity, are given by the horizon current flux densities:

J̄ i = J̄ i(0), Q̄i = Q̄i(0) . (2.23)

– 7 –
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3 Stokes equations

By evaluating the Hamiltonian, momentum and Gauss law constraints on the black hole

horizon we find a closed system of time independent, forced, linearised Navier-Stokes equa-

tions for a subset of the perturbation (vi, p, w) defined by

vi ≡ −δg(0)
ti , p ≡ −4πT

G(0)

(
δg

(0)
rt − h

ij
(0)g

(0)
ir δg

(0)
tj

)
− hij(0)

∂iG
(0)

G(0)
δg

(0)
tj ,

w ≡ δa(0)
t , (3.1)

where hij(0) is the inverse metric for h
(0)
ij . It is also helpful to introduce the local charge

density, ρH , of the black hole background evaluated at the horizon:

ρH ≡ J t(0) =
√
h(0)

(
Z(0)A

(0)
t −

1

2
ϑ(0)εijF

(0)
ij

)
, (3.2)

with εij =
√
h(0)ε(ij) the volume form on the horizon, where ε(xy) = 1. In general ρH is

not the same as the charge density of the dual field theory, However, because of (2.13),

the zero mode, ρ ≡ ρ̄H , defined by (2.21), is not renormalised in going to the holographic

boundary and hence ρ is the zero mode of the charge density of the dual field theory.

The resulting system of Stokes equations can be written

− 2∇j∇(ivj) +
[
∇iφ(0)∇jφ(0) − 4πTdχ

(0)
ij

]
vj − 1√

h(0)
F

(0)
ij J

j
(0)

= 4πT

(
ζi −

1

4πT
∇ip

)
+

ρH√
h(0)

(Ei +∇iw) ,

∂iQ
i
(0) = 0 , ∂iJ

i
(0) = 0 , (3.3)

where the current densities on the horizon are given by

J i(0) = ρHv
i +
√
h(0)

(
Z(0)hij(0) − ϑ

(0)εij
)(

Ej +∇jw + F
(0)
jk v

k
)
,

Qi(0) = 4πT
√
h(0)vi . (3.4)

These expressions depend on the following horizon quantities h
(0)
ij , A

(0)
t , Z(0) ≡ Z(φ(0)),

ϑ(0) ≡ ϑ(φ(0)) and ∇ is the covariant derivative with respect to h
(0)
ij .

By solving these equations on the horizon, we obtain expressions for the local currents

on the horizon J i(0), Q
i
(0) as a function of the applied DC source parametrised by Ei, ζi.

Via (2.23) we can then obtain expressions for the DC transport fluxes J̄ i, Q̄ as functions

of the applied DC source, and hence the DC conductivity.

– 8 –
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3.1 Uniqueness and positivity of conductivity

It is straightforward to show that the Stokes equations imply

∫
d2x
√
h(0)

(
2∇(ivk)∇(ivk) + [∇jφ(0)vj ]2 + Z(0)|Ei +∇iw + F

(0)
ij v

j |2
)

=

∫
d2x

(
Qi(0)ζi + J i(0)Ei

)
. (3.5)

To examine the issue of uniqueness of solutions we set Ei = ζi = 0. From (3.5) we

immediately obtain ∇(ivj) = 0, vj∇jφ(0) = 0 and ∇iw + vjF
(0)
ij = 0. Then from (3.3) we

deduce ∇ip+ 4πTvjdχ
(0)
ji = 0 and Z(0)vi∇iA(0)

t −∇iϑ(0)εij∇jw = 0. In particular, we see

that solutions to the source free equations require that vi is a Killing vector that preserves

φ(0), w, p and that the Lie-derivative of A
(0)
t is a specific gauge-transformation. For a given

background, if no such vi, p, w satisfying these conditions exist, then any solution to the

sourced equations will be unique.

The exact parts of the closed one-forms E, ζ do not contribute to the currents on the

horizon and hence to calculate the DC conductivities we can take E, ζ to be harmonic.

Taking the components Ei, ζi to be constants,8 we see that if we take the integrals in (3.5)

over a period and divide by L1L2, then the right hand side is just Q̄iζi+ J̄ iEi ≡ EiσijEj +

EiTα
ijζj + ζiT ᾱ

ijEj + ζiT κ̄
ijζj . The positivity of the left hand side of (3.5) then shows

that the full thermoelectric conductivity matrix is positive semi-definite.

3.2 Lagrangian formulation and Onsager relations

We now derive Onsager relations relating the DC conductivities for a given holographic

lattice to one that is associated with deformations obtained via time reversal. In the bulk,

the relevant time reversal symmetry is obtained by taking t→ −t, φ→ −φ and A→ −A for

the bulk gauge field. Given a background black hole solution, this implies that the horizon

quantities of the time reversed background solution can be obtained by the transformations

χ
(0)
i → −χ

(0)
i , F

(0)
ij → −F

(0)
ij and ϑ(0) → −ϑ(0) and we notice that ρH → ρH .

We next consider the DC perturbation on the horizon that is associated with the time

reversed solution. We will use the notation ṽi, p̃, w̃ for the perturbation of the time reversed

background that survives at the horizon, and these will be determined in terms of the DC

source which we denote Ẽi, ζ̃i (independent of Ei, ζi). The currents on the horizon for the

time reversed solution are then given by

J̃ i(0) = ρH ṽ
i +
√
h(0)

(
Z(0)hij(0) + ϑ(0)εij

)(
Ẽj +∇jw̃ − F (0)

jk ṽ
k
)
,

Q̃i(0) = 4πT
√
h(0)ṽi , (3.6)

8For a more general discussion see section 3.7 of [3].
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and they can be obtained by solving the following Stokes equations:

− 2∇j∇(iṽj) +
[
∇iφ(0)∇jφ(0) + 4πTdχ

(0)
ij

]
ṽj +

1√
h(0)

F
(0)
ij J̃

j
(0)

= 4πT

(
ζ̃i −

1

4πT
∇ip̃

)
+
ρH√
h

(Ẽi +∇iw̃) ,

∂iQ̃
i
(0) = 0 , ∂iJ̃

i
(0) = 0 . (3.7)

Remarkably, the equations for the background (3.3) and the time-reversed back-

ground (3.7) can both be obtained from the following Lagrangian:

L =

∫
d2x

√
h(0)

[
−∇(i ṽ j)∇(i v j) +

1

2
ṽivj

(
−∇iφ(0)∇jφ(0) + 4πTdχ

(0)
ij +

ρH√
h(0)

F
(0)
ij

)
+

1

2
ṽi
(

4πTζi −∇ip+
ρH√
h(0)

(Ei +∇iw)
)

+
1

2
vi
(

4πT ζ̃i −∇ip̃+
ρH√
h(0)

(Ẽi +∇iw̃)

)
+

1

2

(
Ẽi +∇iw̃ − F

(0)
ik ṽ

k
)(

Z(0)hij(0) − ϑ
(0)εij

)(
Ej +∇jw + F

(0)
jl v

l
)]

. (3.8)

Variations with respect to (ṽi, p̃, w̃) yield the system (3.3) and variations with respect

to (vi, p, w) yield (3.7). Furthermore, we have:

J i(0) = 2
δL

δẼi
, Qi(0) = 2

δL

δζ̃i
, J̃ i(0) = 2

δL

δEi
, Q̃i(0) = 2

δL

δζi
. (3.9)

By taking an additional derivative with respect to the sources and commuting partial

derivatives we immediately obtain the Onsager relations for the local current densities on

the horizon, relating quantities on the background geometry with those in the time-reversed

geometry. On-shell, we have

δJ i(0)

δEj
=
δJ̃ j(0)

δẼi
,

δJ i(0)

δζj
=
δQ̃j(0)

δẼi
,

δQi(0)

δEj
=
δJ̃ j(0)

δζ̃i
,

δQi(0)

δζj
=
δQ̃j(0)

δζ̃i
. (3.10)

In these expressions the left hand side depends on the horizon data (F
(0)
ij , χ

(0)
i , ϑ(0)) while

the right hand side depends on the horizon data (−F (0)
ij ,−χ

(0)
i ,−ϑ(0)) which arises in the

time reversed background.

The transport currents of the time reversed configuration can be written

J̃ i ≡ J̃ i∞ + M̃ (B)ij ζ̃j ,

Q̃i ≡ Q̃i∞ + M̃ (B)ijẼj + 2M̃
(B)ij
T ζ̃j , (3.11)

and we have M̃ (B)ij = −M (B)ij , M̃
(B)ij
T = −M (B)ij

T . By solving the Stokes equations (3.7)

we can obtain the current fluxes at the horizon which are identical to fluxes of the transport

currents in the dual CFT and hence we immediately obtain the Onsager relations of the
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dual CFT. Specifically, if we let S denote the UV data specifying the holographic lattice

and St as the time-reversed data, with (St)t = S, we have

σT (S) = σ(St), αT (S) = ᾱ(St), κ̄T (S) = κ̄(St) . (3.12)

Note that we have presented the Lagrangian (3.8) and the Onsager relations for the

specific bulk theory in four spacetime dimensions (2.1). However, it is straightforward to

obtain them for other holographic theories. For example, if we consider the theory with

Lagrangian (2.1) and Sϑ = 0 but in any spacetime dimension, then the resulting Stokes

equations can be obtained by varying the integrand in (3.8) after setting ϑ = 0. Finally, it

is also worth pointing out that on-shell we have

LOS =
1

2

∫
d2x
[
ẼiJ

i
(0) + ζ̃iQ

i
(0)

]
=

1

2

∫
d2x
[
EiJ̃

i
(0) + ζiQ̃

i
(0)

]
. (3.13)

3.3 S-duality

It is also interesting to note that the system of Stokes equations (3.3) is invariant under

S-duality transformations of the horizon quantities. We emphasise that this is independent

of whether or not the bulk theory is invariant under the S-duality transformation discussed

near (2.3). We first define the local magnetic field on the horizon, BH , via

BH ≡
1

2

√
h(0)εijF

(0)
ij . (3.14)

Notice that this is independent of the metric on the horizon. We also point out that

the zero mode B ≡ B̄H , being a topological charge, is not renormalised in going to the

boundary and is in fact the total magnetic field of the dual field theory. The S-duality

transformations can then be written

BH → ρH , ρH → −BH ,

Z(0) → Z(0)

Z2
(0) + ϑ2

(0)

, ϑ(0) → − ϑ(0)

Z2
(0) + ϑ2

(0)

(Ei +∇iw)→ − 1√
h(0)

εijJ
j
(0) , J j(0) → −

√
h(0)εij(Ej +∇jw) . (3.15)

One can check that these transformations also leave (3.5) invariant.

The S-duality invariance leads to consequences9 for the DC conductivity. Define

SH ≡ (ρH , BH , Z
(0), ϑ(0)) to be the horizon data that is transformed under S-duality as

in (3.15), and the inverse transformed quantities S′H ≡
(
BH ,−ρH , Z(0)

Z2
(0)

+ϑ2
(0)

,− ϑ(0)

Z2
(0)

+ϑ2
(0)

)
.

Then, following the discussion in appendix E of [4], we deduce that

σij(S′H) = −ε(ik)σ−1
kl (SH)ε(lj) , αij(S′H) = −ε(ik)[σ−1

kl α
lj ](SH) ,

ᾱij(S′H) = −[ᾱikσ−1
kl ](SH)ε(lj) , κ̄ij(S′H) = κij(SH) , (3.16)

9An early paper that discussed the consequences of S-duality on conductivities within holography and

in a translationally invariant context is [24]. A discussion of connections with results from magnetohydro-

damics incorporating a phenomenological method of dissipating momentum appears in [22].
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where, as usual κij ≡ κ̄ij − T ᾱikσ−1
kl α

lj . It is important to note that, in general, given one

has a black hole solution with horizon data SH , one is not guaranteed that there is in fact

a black hole solution with horizon data S′H , unless the equations of motion for the full bulk

field theory are themselves invariant under S-duality. Note that when the bulk field theory

is invariant under S-duality, then the transformations (2.3) when evaluated on the horizon

indeed give rise to (3.15).

Finally, let us consider a bulk S-duality invariant theory with Z2+ϑ2 = 1 as in the con-

sistent truncation of D=11 supergravity on an arbitrary seven dimensional Sasaki-Einstein

space [10]. A background solution of this theory that is symmetric under the combination

of S-duality followed by time reversal has ρH = BH and we deduce, from (3.16), (3.12),

that the conductivities must satisfy

σij = −ε(jk)σ−1
kl ε(li) , αij = ᾱjkσ−1

kl ε(li) ,

ᾱij = ε(jk)σ−1
kl α

li , κ̄ij = κ̄ji − T ᾱjkσ−1
kl α

li . (3.17)

In particular, this implies that det(σ) = 1 and also det(α) = det(ᾱ) (provided that the

conductivities are finite). This generalises analogous results for σij of [25], which studied

the special case of Einstein-Maxwell theory and solutions with ρH = BH = 0.

4 Examples

In this section we explore some of the effects of Sϑ on the DC conductivity in various

contexts. In particular it naturally gives rise to an anomalous Hall conductivity, by which

we mean a Hall current in the absence of an applied external magnetic field.

4.1 Constant ϑ in the bulk

The simplest case to consider, which has been already discussed in [17] (see also [26]), is

when ϑ = θ/(2π)2 is a constant in the bulk. In this case Sϑ is a total derivative and does

not affect the bulk equations of motion. However, it does lead to a modification of the bulk

currents so that at the horizon we have

J i(0) → J i(0) −
θ

(2π)2
ε(ij)(Ej + ∂jw) , (4.1)

with the extra term trivially conserved. This leads to an extra contribution to the Hall

conductivity via, σij → σij − θ
(2π)2

ε(ij), with α, ᾱ and κ̄ unchanged. Clearly constant ϑ

gives rise to an anomalous Hall conductivity.

We also note that for this case the term Sϑ give rise to a Chern-Simons term on

the boundary. The T -duality transformation defined by θ → θ + 2π combines with S

duality transformation discussed earlier to generate SL(2,Z) and this is discussed in [27]

and also in [24].

It is also worth noting that for this case unless θ = 0, π the theory breaks time reversal

invariance (e.g. see [28]). In particular, the Onsager relations involve taking θ → −θ.
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4.2 Non-constant ϑ

We now move on to more general setups in which ϑ is not a constant, but a function of pseu-

doscalar and scalar fields. Let us first consider holographic lattices in which the bulk gauge

field vanishes everywhere, Aµ = 0. In this case we see that there is a decoupling of w,Ei
from vi, p, ζi in the Stokes equations. In particular, to obtain the electrical conductivity

matrix one should solve ∂iJ
i
(0) = 0 for w. That is, on the horizon we need to solve

∇i
((
Z(0)hij(0) − ϑ

(0)εij
)

(Ej +∇jw)
)

= 0 . (4.2)

Notice that the piece involving ϑ(0) is not trivially conserved as it was when ϑ was constant.

Generically, solving (4.2) will give rise to a non-zero Hall response, with σxy 6= 0. We also

emphasise that if ϑ depends on a pseudoscalar that is dual to a relevant operator in the

dual CFT, at the AdS boundary ϑ will vanish but, generically, ϑ(0) will be non-zero; this

underscores the role of the black hole horizon in obtaining the DC Hall conductivity.

To make further explicit progress, still with Aµ = 0, we can consider the specific class

of black hole backgrounds in which the bulk fields only depend on the radial direction, with

no dependence on the spatial coordinates10. For such backgrounds there is no dissipation of

momentum and the thermal DC conductivity is necessarily infinite. However, the electric

conductivity is finite. Indeed, in this case all background quantities appearing in (4.2) are

constant and so we can solve the equation with w = 0. This then leads to the finite DC

conductivity matrix

σij =
√
h(0)

(
Z(0)hij(0) − ϑ

(0)εij
)
. (4.3)

Since this finite electrical conductivity is independent of any breaking of translation sym-

metry, in the context of a quantum critical theory, it is sometimes called the quantum

critical conductivity. Here we see that Sϑ leads to an anomalous Hall component.

A simple way to obtain such black hole solutions is to consider metrics that are homo-

geneous and isotropic with respect to the spatial directions of the dual field theory and just

switch on a source for the pseudoscalar field φ(r) which is taken to be dual to a relevant

operator in the dual field theory. In this type of setup, the source breaks the time reversal

symmetry explicitly. A specific construction of this type was made in section 8 of [10].

Interestingly, it is also possible to have constructions in which the quantum critical

hall conductivity appears when the time reversal symmetry is broken spontaneously and

still11 with Aµ = 0. To see this, we first assume that the bulk theory of gravity depends

on the pseudoscalar φ as well as an additional scalar σ, which we take to be even under

time reversal. The functions V,Z, ϑ will then depend on both φ and σ, with V,Z even

and ϑ odd under time reversal. It is not difficult to find choices for V for which there is a

10Note that a related discussion is made in [17] by imposing by hand the phenomenological condition

ϑ = ϑ(r). However, it was incorrectly concluded that the Hall conductivity is associated with the value of

ϑ(r) at r →∞, the AdS boundary.
11Note that in the interesting construction [16] time reversal invariance is broken spontaneously but it

uses a spatially modulated chemical potential. Without the latter, translation invariance is spontaneously

broken [11] and the DC electrical conductivity is infinite.
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Poincaré invariant RG flow between the AdS4 vacuum at infinity to another AdS4 solution

in the IR that is driven by a deformation of the scalar field σ(r) and for which φ = Aµ = 0.

In particular, one needs the scalar σ to be dual to a relevant operator in the dual field

theory and one imposes boundary conditions associated with sourcing this operator. This

source does not break the time reversal symmetry (nor the translation symmetry). We

next demand that V is chosen so that while φ is dual to a relevant operator in the UV

AdS4 solution, it violates the BF bound in the IR AdS4 solution. This means that the

IR vacuum is unstable and hence, with the same source for the relevant operator dual to

σ(r) still switched on in the UV, there will be a finite temperature phase transition at

some critical temperature in which a new branch of black holes appears with φ(r) 6= 0.

On this new branch the operator dual to φ acquires an expectation value and thus the

time reversal symmetry is broken spontaneously. In the black hole solutions describing

this phase, one will find, generically, that the pseudoscalar field φ(r) will be non-zero at

the horizon, leading to non-vanishing ϑ(0) and hence non-vanishing Hall conductivity.

An interesting aspect of the constructions we have just outlined, is that they provide

a natural framework for the temperature scaling of the Hall conductivity to be different to

that of the longitudinal conductivity. Indeed these scalings will be governed by the func-

tions Z(0), ϑ(0) appearing in (4.3). It would be interesting to explore the range of different

possibilities that are allowed taking into account the constraint on the bulk theories of

gravity that would be imposed by demanding that there are no further thermodynamic

instabilities. These constructions could also be extended to include momentum dissipating

effects in a natural way. For example, in the construction in which time reversal is broken

spontaneously, one can add additional deformations in the UV which break translations

without explicitly breaking time reversal invariance. One way to achieve this is to have ad-

ditional deformations of the scalar field σ that depend on the spatial coordinates of the dual

field theory. One possibility would be a Q-lattice construction of the type discussed below.

One could also take such constructions and switch on a small magnetic field to explore

the different scalings that are possible for the Hall angle. The term Sϑ allows for more

possibilities than those considered in [29].

4.3 Q-lattices

The key idea of the Q-lattice construction [30] is to exploit a global symmetry in the bulk

in order to obtain an ansatz for the bulk fields in which the dependence on the spatial

directions is solved exactly. This leads to a system of ordinary differential equations for a

set of functions or the bulk fields that just depend on the holographic radial coordinate.

It has been shown that the Stokes equations can be solved in terms of the horizon data

explicitly for Q-lattices [2–4]. This can easily be generalised when there is a Sϑ term in

the bulk theory of gravity. For example, suppose that the pseudoscalar field is replaced

with a complex scalar field. If V , Z and ϑ only depend on the modulus of the complex

pseudoscalar then a Q-lattice construction can be developed by taking the phase to depend

linearly on one of the spatial coordinates. In this case we will have ϑ to be independent

of the spatial coordinates, ∂iϑ = 0. We then find that the expressions for the conductivity

are as in section 6.1 of [4] with the modification σij → σij − ϑ(0)ε(ij).
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4.4 One-dimensional lattices

We now consider a class of black hole solutions in which the UV deformations break transla-

tions periodically in one of the two spatial directions, which we take to be x, with x = x+L.

We write the solution at the horizon12 as:

h
(0)
ij dx

idxj = γ(x) dx2 + λ(x)dy2 ,

F (0)
xy = BH(x) , (4.4)

with13 4πTχ
(0)
i ≡ (0, χ(x)), φ(0) = φ(0)(x) and A

(0)
t = A

(0)
t (x). All functions14 here are

periodic in x with period L. The perturbing electric field source, Ei, and heat source, ζi,

are taken to be constant.

It is useful to define the following constant zero modes:

B =

∫
BH , ρ =

∫
ρH , s =

∫
sH , (4.5)

where
∫

refers to an integral averaged over a period of x, i.e.
∫
≡ (1/L)

∫ L
0 dx,

ρH ≡ J t =
[
(γλ)1/2Z(0)A

(0)
t − ϑ(0)BH

]
and sH = (γλ)1/2(4π). We will also write

BH = B + ∂xÂy , ρH = ρ+ ∂xC , (4.6)

where Ây(x) and C(x) are both periodic functions of x. Note that B is the constant part

of the magnetic field and ρ is the constant total charge density of the dual field theory,

neither of which are renormalised in going to the UV. Furthermore, s is the total entropy

density of the dual field theory.

Here we consider three cases. Firstly, when B 6= 0, second when B = 0 but BH 6= 0 and

finally cases in which the gauge field vanishes everywhere. In the appendix we have also

included some special cases when the total zero mode of the charge density vanishes, ρ = 0,

which can be achieve by imposing a symmetry on the class of solutions being considered.

The derivation for the conductivities follows that presented in [3, 4] and so here we will

just record the final results. In order to do so we now define various quantities that appear

in the final expressions. We first define periodic functions w1(x) and w2(x) via:

w1(x) = ρ

(
1

B

∫ x

BH −
1

ρ

∫ x

ρH

)
, w2(x) = Ts

(
1

B

∫ x

BH −
1

s

∫ x

sH

)
, (4.7)

where
∫ x

refers to an integral from some fiducial point x = 0 to x (with no division by L).

12This ansatz can be justified by noting that it is invariant under y → −y, t→ −t, with the gauge-field

going to minus itself, which is a symmetry of the equations of motion.
13Note that this corrects a sign typo in eq. (6.18) of [4].
14In particular, since χ(x) is periodic we are not allowing for NUT charges.
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We next define the following five periodic functions

u1(x) =

∫ x γ1/2χ

λ3/2
−
∫ γ1/2χ

λ3/2∫ γ1/2

λ3/2

∫ x γ1/2

λ3/2
,

u2(x) =

∫ x γ1/2w1

λ3/2
−
∫ γ1/2w1

λ3/2∫ γ1/2

λ3/2

∫ x γ1/2

λ3/2
,

u3(x) =

∫ x γ1/2w2

λ3/2
−
∫ γ1/2w2

λ3/2∫ γ1/2

λ3/2

∫ x γ1/2

λ3/2
,

u4(x) =

∫ x γ1/2Ây

λ3/2
−
∫ γ1/2Ây

λ3/2∫ γ1/2

λ3/2

∫ x γ1/2

λ3/2
,

u5(x) =

∫ x γ1/2C

λ3/2
−
∫ γ1/2C

λ3/2∫ γ1/2

λ3/2

∫ x γ1/2

λ3/2
. (4.8)

These functions can be used to define the five by five matrix U , with constant components

given by

Uij ≡
∫
λ3/2

γ1/2
∂xui∂xuj . (4.9)

Notice that ∂x

(
λ3/2

γ1/2
∂xui

)
has a simple form; for example ∂x

(
λ3/2

γ1/2
∂xu1

)
= ∂xχ.

4.4.1 B 6= 0: non-vanishing magnetic field zero mode

For this case, we obtain a finite response for general Ei, ζi. Define the constant

X =

∫
(∂xλ)2

λ5/2γ1/2
+

∫ (
∂xφ

(0)
)2

(γ λ)1/2
+

∫
(ρH +BHϑ

(0))2

λZ(0)(γλ)1/2
+

∫
B2
HZ

(0)

λ(γλ)1/2
+ U11 . (4.10)

For the electric conductivity σ we then find

σxx = 0 ,

σyy = U22 +

∫
γ1/2Z(0)

λ1/2
+

∫ ( ρ
B

+ ϑ(0)
)2 γ1/2

λ1/2Z(0)

− 1

X

(
U12 −

∫ ( ρ
B

+ ϑ(0)
) (ρH +BHϑ

(0))

λZ(0)
−
∫
BHZ

(0)

λ

)2

,

σxy = −σyx =
ρ

B
. (4.11)
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For the thermoelectric conductivities α and ᾱ we find

αxx = ᾱxx = 0 ,

αyy = ᾱyy =
U23

T
+
s

B

∫ ( ρ
B

+ ϑ(0)
) γ1/2

λ1/2Z(0)

− 1

X

(
U12−

∫ ( ρ
B

+ϑ(0)
)(ρH+BHϑ

(0))

λZ(0)
−
∫
BHZ

(0)

λ

)(
U13

T
− s

B

∫
(ρH +BHϑ

(0))

λZ(0)

)
,

αxy = −ᾱyx =
s

B
,

αyx = −ᾱxy =
4π

X

(
U12 −

∫ ( ρ
B

+ ϑ(0)
) (ρH +BHϑ

(0))

λZ(0)
−
∫
BHZ

(0)

λ

)
. (4.12)

Finally, for the thermal conductivity κ̄ we have

κ̄xx =
16π2T

X
,

κ̄yy =
U33

T
+
s2T

B2

∫
γ1/2

λ1/2Z(0)
− T

X

(
U13

T
− s

B

∫
(ρH +BHϑ

(0))

λZ(0)

)2

,

κ̄xy = −κ̄yx = −4πT

X

(
U13

T
− s

B

∫
(ρH +BHϑ

(0))

λZ(0)

)
. (4.13)

If we set ϑ(0) = 0 then we recover the expressions given in [4]. We have not managed to

obtain significantly simpler expressions for the inverse of the conductivity matrix, which

one might have hoped for following a discussion in section 5.10.1 of [31].

4.4.2 B = 0: vanishing magnetic field zero mode

We next consider the case with B = 0 but still allowing for the possibility of BH 6= 0. In

other words there can be magnetisation currents at the horizon of the form BH = ∂xÂy
with Ây a periodic function. This case can arise when the time-reversal invariance is

explicitly broken: for example it will occur when there is a source for the gauge field in

the holographic lattice leading to pure magnetisation currents in the dual field theory with

B = 0 (i.e. A
(∞)
i 6= 0 in (2.4) is a periodic function). It also covers the constructions in [16]

which the time-reversal invariance is broken spontaneously with A
(∞)
i = φ(∞) = g

(∞)
ti = 0,

but nevertheless BH 6= 0.

Generically, in order to find solutions to the Stokes equations, associated with a finite

DC response in the dual field theory, we can have Ex, ζx 6= 0 but should set

Ey = ζy = 0 . (4.14)

We now define

X̃ =X

(∫
γ1/2

λ1/2Z(0)
+ U44

)
−

(∫
(ρH +BHϑ

(0))

λZ(0)
− U14

)2

. (4.15)
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Calculating the electric and thermal currents in the x direction we find:

σxx =
X

X̃
,

αxx = ᾱxx =
4π

X̃

(∫
(ρH +BHϑ

(0))

λZ(0)
− U14

)
,

κ̄xx =
(4π)2T

X̃

(∫
γ1/2

λ1/2Z(0)
+ U44

)
. (4.16)

Setting ϑ(0) = BH = χ = 0 in these expressions leads to the results given in [3] (with Xthere

identified with X̃). We also observe that Tσxxκ̄xx − (Tαxx)2 = (4πT )2/X̃ and hence we

can also write simple expressions for the inverse of the conductivities, in this two times two

block, similar to [31]. Furthermore, Tκxx ≡ T κ̄xx − (Tαxx)2/σxx = (4πT )2/X.

Note that, in general, when B = 0 and in addition ρ 6= 0, the Stokes equations do

not lead to a unique answer for the electric and thermal currents in the y direction due

to the existence of an undetermined integration constant; this zero mode arises because of

the translation invariance in the y direction. This lack of uniqueness corresponds to the

appearance of delta functions in the AC conductivities associated with these currents, at

zero frequency. This is also related to the necessity of (4.14) to obtain solutions.

4.4.3 Vanishing gauge-fields

In the previous sub-section with B = 0, if we also set ρ = 0 then we can allow for Ey 6= 0

and, in addition, we find a finite response for the DC electric current in the y direction.

We still must impose ζy = 0 to find solutions and, furthermore, we still cannot obtain the

DC heat current in the y direction from the Stokes equations, again due to the presence of

a zero mode associated with an infinite DC response. General expressions can be written

down for the finite conductivities but we will omit them both because they are rather long

and, in addition, the condition ρ = 0 will occur, generically, only if there is some symmetry

principle protecting it. Below we will write down the expressions when the gauge-fields

vanish, which obviously has ρ = 0, and in the appendix we have recorded the results for

some other special cases.

Specifically, for vanishing gauge fields, we allow Ex, Ey, ζx 6= 0 but in order to find

solutions we should still set ζy = 0. The finite thermoelectric conductivities can then be

written in the simple form

σxx =

(∫
γ1/2

λ1/2Z(0)

)−1

,

σyy =

∫
γ1/2[(Z(0))2 + (ϑ(0))2]

λ1/2Z(0)
−
(∫

γ1/2

λ1/2Z(0)

)−1(∫ γ1/2ϑ(0)

λ1/2Z(0)

)2

,

σxy = −σyx = −
(∫

γ1/2

λ1/2Z(0)

)−1 ∫ γ1/2ϑ(0)

λ1/2Z(0)
,

αxx = ᾱxx = ᾱxy = 0 ,

κ̄xx =
(4π)2T

X
. (4.17)
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where X now has the simpler form X =
∫ (∂xλ)2

λ5/2γ1/2
+
∫ (∂xφ(0))

2

(γ λ)1/2
+U11. Note that, consistent

with the discussion at the end of section 3.3, if (Z(0))2 + (ϑ(0))2 = 1 then det σ = 1. We

also note that to have non-vanishing Hall currents for this set up, requires that ϑ(0) 6= 0.

5 Final comments

In this paper we extended our understanding of thermoelectric DC conductivity within

the context of holography using the approach developed in [2–5]. We showed that the

Stokes equations for the auxiliary fluid living on the black hole horizon can be derived by

varying a functional that depends on both the fluid variables and the black hole geometry

of interest as well as the time reversed quantities. This then leads to a simple derivation

of the Onsager relations for the DC conductivity.

We also generalised the formalism to include the term Sϑ ∼
∫
ϑF ∧F in the bulk action

in four spacetime dimensions. We outlined several different constructions and discussed

the associated anomalous Hall conductivity. We also presented the solution of the Stokes

equations for the case of holographic lattices that only depend on one of the spatial coor-

dinates. For holographic lattices of pure Einstein gravity in the hydrodynamic limit, i.e. in

the limit in which the temperature is the highest scale, it has been shown how the auxiliary

fluid on the black hole horizon can be identified with the physical fluid of the dual CFT [6]

in the presence of external DC sources. It would be interesting to extend this analysis to

also incorporate scalar fields and gauge fields, including the Sϑ term. We anticipate that

the Stokes equations that we have derived in this paper could also be obtained from a

suitable generalisation of the parity violating relativistic hydrodynamics of [32] to include

additional scalar fields.

It would also be interesting to include the effects of a Sϑ̂ ∼
∫
ϑ̂R ∧ R term in the

action where ϑ̂ is a function of the dynamical fields. Such terms have been considered

in various hydrodynamic contexts in holography including [33–36]. The currents and the

Stokes equations relevant for obtaining the DC conductivity can be obtained by utilising

the tools developed in [5] to study theories with higher derivatives.
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A One-dimensional lattices with ρ = 0

Here we record the DC conductivities for some additional one-dimensional lattices that

have vanishing total charge density, ρ = 0, arising because of some underlying symmetry.

In order to find solutions to the Stokes equations, generically we will take Ex, Ey, ζx 6= 0

and ζy = 0, and we also note that Qy(0) is not uniquely determined, but for cases when we

have B 6= 0 we will also be able to allow for ζy 6= 0 and find a unique Qy(0). It is worth

noting that when ρ = 0 we see from (4.6) and (4.8) that we have u2(x) = −u5(x).

A.1 ρ = 0 and At 6= 0

We discuss two cases in which we can have vanishing total charge density, ρ = 0, and also

have At 6= 0.

The first case exploits the fact that the action (2.1) is invariant under x→ −x, t→ −t,
leaving the fields invariant.15 Taking a one-dimensional ansatz that is invariant under this

symmetry implies that in the horizon quantities (4.4) we have that A
(0)
t and χ

(0)
y must be

odd functions of x while A
(0)
y and h

(0)
ij must be even functions of x. In addition, φ(0) is

an even function of x and hence Z, V and ϑ will all be even functions of x. Notice that

since BH is an odd and periodic function of x we must have vanishing zero mode for the

magnetic field, B = 0. In addition, we also have, U12 = U14 = U15 = 0.

For this case we find that the finite DC conductivities are given by

σxx =

(∫
γ1/2

λ1/2Z(0)
+ U44

)−1

,

σyy =

∫
γ1/2Z(0)

λ1/2
+

∫
γ1/2(ϑ(0))2

λ1/2Z(0)
+ U55 −

(∫
γ1/2ϑ(0)

λ1/2Z(0)
− U45

)2(∫
γ1/2

λ1/2Z(0)
+ U44

)−1

,

κ̄xx =
(4π)2T

X
,

σxy = −σyx = −

(∫
γ1/2ϑ(0)

λ1/2Z(0)
− U45

)(∫
γ1/2

λ1/2Z(0)
+ U44

)−1

,

ᾱxy = −αyx = αxx = ᾱxx = 0 , (A.1)

where X is as in (4.10). We note that we have a non-zero Hall conductivity if ϑ(0) 6= 0 or due

to the non-vanishing of U45, which derives from local charge density and local magnetisation

currents. It would be interesting to find a physical realisation of this novel mechanism.

The second case arises when the action (2.1) is symmetric under16 x→ −x, A→ −A,

φ → −φ. This is a symmetry of the action provided that ϑ is an odd function of φ while

V,Z are even functions of φ. Taking an ansatz that is invariant under this symmetry

implies that in the horizon quantities (4.4) we have that A
(0)
t , A

(0)
y must be odd functions

15A very similar result to that which we describe here also occurs for actions in which x → −x, t → −t
combined with φ→ −φ is a symmetry, which arises when V,Z and also ϑ are even functions of φ.

16We can also do something similar for actions invariant under x → −x, A → −A, φ → φ, which

requires ϑ = 0.
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of x while χ
(0)
y and h

(0)
ij must be even functions of x. In addition, φ(0) must be an odd

function of x and hence Z, V will be even functions and ϑ will be an odd function of x.

One can check that we have U13 = U14 = U23 = U24 = U35 = U45 = 0.

For vanishing zero mode for the magnetic field, B = 0, the finite DC conductivities

are given by

σxx =

(∫
γ1/2

λ1/2Z(0)
+ U44

)−1

,

σyy =

∫
γ1/2Z(0)

λ1/2
+

∫
γ1/2(ϑ(0))2

λ1/2Z(0)
+ U55 −

1

X

(∫
BHZ

(0)

λ
+

∫
(ρH+ϑ(0)BH)

λZ(0)
ϑ(0)+U15

)2

,

κ̄xx =
(4π)2T

X
,

ᾱxy = −αyx =
4π

X

(∫
BHZ

(0)

λ
+

∫
(ρH + ϑ(0)BH)

λZ(0)
ϑ(0) + U15

)
,

σxy = −σyx = αxx = ᾱxx = 0 , (A.2)

where X is as in (4.10). It is interesting to highlight the three contributions to αyx and

ᾱxy. Let us discuss αyx which is the statement that an electric current in the y direction

is caused by a thermal gradient in the x direction. The first term on the right hand side

does not involve the charge density but just the local BH and is associated with particle

hole pairs moving in opposite directions due to BH . The second term involves ϑ(0). The

final term is associated with a particularly novel effect arising from a combination of local

charge density and the local function χ
(0)
y . For this case we can also allow for non-vanishing

zero mode of the magnetic field B 6= 0 and also ζy 6= 0. The resulting conductivities can be

obtained directly from the expressions given in section 4.4.1 after setting ρ = U23 = U13 = 0

as well as noting that some other integrals vanish due to the fact that they are the averaged

integral of an odd and periodic function of x.

Finally, we note that a one-dimensional holographic ionic lattice based on a single

wave mode and vanishing chemical potential, as well as χ = Ay = 0 was studied in [37].

Specifically, the deformation that was considered had A
(∞)
t = µ cos kx. After making the

shift x→ x− (π/2k) we get A
(∞)
t = µ sin kx, which is an odd function of x. This example

therefore fits into both of the classes above. In other words, it is possible to generalise

the ansatz for the one-dimensional holographic lattice of [37] in two different ways, while

maintaining ρ = 0.

A.2 A case with ϑ = 0 and At = 0

When ϑ = 0 the action (2.1) is invariant under the symmetry t → −t. By restricting to

configurations that are invariant under this symmetry implies, in particular, At = gty = 0.

Notice that for this case we not only have ρ = 0 but we have ρH = 0. We also have

the components Uij vanish if i or j are either 1,2 or 5. For configurations with vanishing

zero mode for the magnetic field, B = 0, we find that the finite DC conductivity matrix
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elements are

σxx =

(∫
γ1/2

λ1/2Z(0)
+ U44

)−1

,

σyy =

∫
γ1/2Z(0)

λ1/2
− 1

X

(∫
BHZ

(0)

λ

)2

,

κ̄xx = (4π)2 T

X
,

ᾱxy = −αyx =
4π

X

(∫
BHZ

(0)

λ

)
,

σxy = −σyx = αxx = ᾱxx = 0 (A.3)

where X =
∫ (∂xλ)2

λ5/2γ1/2
+
∫ (∂xφ(0))

2

(γ λ)1/2
+
∫ B2

HZ
(0)

λ(γλ)1/2
. The non-vanishing of αyx and ᾱxy is

coming from BH 6= 0 as discussed below (A.2). For this case we can also allow for

non-vanishing zero mode of the magnetic field B 6= 0 and also ζy 6= 0. The resulting

conductivities can be obtained from the expressions given in section 4.4.1 after setting

ρH = ϑ = U12 = U13 = U23 = 0.
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