
J
H
E
P
0
7
(
2
0
1
6
)
1
5
1

Published for SISSA by Springer

Received: May 21, 2016

Accepted: July 17, 2016

Published: July 29, 2016

From strong to weak coupling in holographic models

of thermalization
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Abstract: We investigate the analytic structure of thermal energy-momentum tensor

correlators at large but finite coupling in quantum field theories with gravity duals. We

compute corrections to the quasinormal spectra of black branes due to the presence of higher

derivative R2 and R4 terms in the action, focusing on the dual to N = 4 SYM theory and

Gauss-Bonnet gravity. We observe the appearance of new poles in the complex frequency

plane at finite coupling. The new poles interfere with hydrodynamic poles of the correlators

leading to the breakdown of hydrodynamic description at a coupling-dependent critical

value of the wave-vector. The dependence of the critical wave vector on the coupling implies

that the range of validity of the hydrodynamic description increases monotonically with

the coupling. The behavior of the quasinormal spectrum at large but finite coupling may

be contrasted with the known properties of the hierarchy of relaxation times determined

by the spectrum of a linearized kinetic operator at weak coupling. We find that the

ratio of a transport coefficient such as viscosity to the relaxation time determined by the

fundamental non-hydrodynamic quasinormal frequency changes rapidly in the vicinity of

infinite coupling but flattens out for weaker coupling, suggesting an extrapolation from

strong coupling to the kinetic theory result. We note that the behavior of the quasinormal

spectrum is qualitatively different depending on whether the ratio of shear viscosity to

entropy density is greater or less than the universal, infinite coupling value of ~/4πkB. In

the former case, the density of poles increases, indicating a formation of branch cuts in the

weak coupling limit, and the spectral function shows the appearance of narrow peaks. We

also discuss the relation of the viscosity-entropy ratio to conjectured bounds on relaxation

time in quantum systems.
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1 Introduction

Nuclear matter produced in heavy ion collisions at RHIC and LHC appears to be well de-

scribed by relativistic fluid dynamics at the time shortly after the collision, i.e. for t > τH ,

where the “hydrodynamization” time τH is of the order of 1 − 2 fm/c [1–6]. The hydro-

dynamic description fits the available experimental data well provided the shear viscosity

- entropy density ratio of the resulting nuclear fluid is low, η/s ∼ ~/4πkB. An interesting

and not fully understood question is how the matter reaches the hydrodynamic stage of

its evolution so quickly and which physical mechanisms are responsible for such a rapid

thermalization at intermediate values of QCD coupling. The regime of intermediate cou-

pling can in principle be approached from either the weak or the strong coupling side and

accordingly, issues related to thermalization have been studied in kinetic theory at weak

coupling and in gauge-string duality (holography) at strong coupling. While the kinetic

theory approach and the holographic methods are very different, it is clear that in one

and the same theory (e.g. in N = 4 supersymmetric SU(Nc) Yang-Mills (SYM) theory at

infinite Nc) one should expect an interpolation between strong and weak coupling results

for observables describing thermalization, similar to the coupling constant dependence of

the shear viscosity - entropy density ratio [7, 8] or pressure [9, 10]. The goal of this paper

is to investigate such a dependence for a number of models where corrections to known

holographic results at infinitely strong coupling can be computed by using higher derivative

terms in the dual gravity action.

Among relevant observables, we focus on the hierarchy of times characterizing the

approach to thermal equilibrium. In simple models of kinetic theory, the appropriate time

scales emerge as eigenvalues of the linearized collision operator, with the largest eigenvalue,

τR, essentially (within a specified approximation scheme) setting the time scale for transport

phenomena [11–14] (see section 2 for details). In particular, for the shear viscosity in the

non-relativistic kinetic theory one typically obtains [15]

η = τR nkB T , (1.1)

where n is the particle density. The relativistic analogue of eq. (1.1) is

η = τR s T , (1.2)

where s is the volume entropy density.1 In kinetic theory, the relaxation time τR is simply

proportional to the (equilibrium) mean free time for corresponding particles or quasipar-

ticles and thus the internal time scale associated with the kinetic operator acquires a

transparent physical meaning. In the regime of validity of eq. (1.2), the dependence of η/s

on e.g. the coupling is the same as the dependence on the coupling of τRT and thus we

expect the ratio η/sτRT to be (approximately) constant in that regime. Another inter-

esting feature of kinetic theory models is the breakdown of the hydrodynamic description

for sufficiently large values of the wave vector q > qc and the appearance of the strongly

damped Knudsen modes [16]. We shall see that these phenomena have their counterparts

1To get the factors of kB right, one may consult the equation carved on Boltzmann’s tombstone.
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in the regime of strong coupling despite the fact that kinetic theory is not applicable in

that regime.

It is believed that the quark-gluon plasma created in heavy ion collisions at ener-

gies available at RHIC or LHC is a strongly interacting system, for which a direct or

effective (via a suitable quasiparticle picture) application of kinetic theory is difficult to

justify. Instead, insights into the time-dependent processes at strong coupling are obtained

by studying qualitatively similar strongly coupled theories having a dual holographic de-

scription in terms of higher-dimensional semiclassical gravity. Holography [17–21] provides

a convenient framework for studying non-equilibrium phenomena in strongly interacting

systems. The dynamics and evolution of non-equilibrium states in a strongly interacting

quantum many-body system is mapped (in the appropriate limit) into the dynamics and

evolution of gravitational and other fields of a dual theory. Holography should in princi-

ple be capable of encoding all types of non-equilibrium behavior. In particular, evolution

of the system towards thermal equilibrium is expected to be described by the dynamics

of gravitational collapse. Numerical and analytical studies of processes involving strong

gravitational fields including black holes and neutron stars mergers resulting in black hole

formation and particles falling into black holes show a characteristic scenario in which a

primary signal (strongly dependent on the initial conditions) is followed by the quasinor-

mal ringdown (dependent on the final state parameters only) and then a late-time tail

(see e.g. [22, 23]). A holographic description of fully non-equilibrium quantum field theory

states via dual gravity has been developed over the last several years and the results suggest

that the quasinormal spectrum (i.e. the eigenvalues of the linearized Einstein’s equations

of the dual black brane background) and in particular the fundamental (the least damped

non-hydrodynamic) quasinormal frequency play a significant role in the description of re-

laxation phenomena. Recent studies (including sophisticated numerical general relativity

approaches) of equilibration processes in the dual gravity models [24–33] reveal that the

hydrodynamic stage of evolution is reached by a strongly coupled system long before the

pressure gradients become small and that the relevant time scales are essentially determined

by the lowest quasinormal frequency, even for non-conformal backgrounds [31, 34–38]. The

characteristic time scale here is set by the inverse Hawking temperature of the dual equi-

librium black hole.

A seemingly natural question to ask is whether the relation between transport phenom-

ena and the relaxation time(s) familiar from kinetic theory exists also at strong coupling

and if yes, how it changes as a function of coupling. Is there a limiting value of the wave

vector beyond which hydrodynamic description breaks down at large but finite coupling?

Extrapolating kinetic theory results to the regime of intermediate coupling was the subject

of recent investigation by Romatschke [39]. In holography, these questions can be stud-

ied by computing coupling constant corrections to the full quasinormal spectra using the

appropriate higher derivative terms in dual gravity. Recently, such corrections have been

studied in refs. [40, 41].

In this paper, we compute the quasinormal spectra of metric perturbations of the

gravitational background with R4 higher derivative term (dual to N = 4 SYM at finite

temperature and large but finite ’t Hooft coupling), and for the background with R2 terms

– 3 –
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including Gauss-Bonnet gravity in d = 5 dimensions. Normally, higher derivative terms

are treated as infinitesimally small corrections to the second order equations of motion of

Einstein gravity, otherwise one is doomed to encounter the Ostrogradsky instability and

related problems. Accordingly, extrapolating results from infinitesimal to finite values of

the corresponding parameters requires caution. Gauss-Bonnet and more generally Love-

lock gravity are good laboratories since their equations of motion are of second order and

thus can handle finite values of the parameters multiplying higher derivative terms. How-

ever, such theories appear to suffer from internal inconsistencies for any finite value of the

parameters [42] (for an apparently dissenting view, see [43]). The passage between Scylla

and Charybdis of those two difficulties may be hard to find, if it exists at all. We find

some solace in the fact that our results show a qualitatively similar picture regardless of

the exact form of higher derivative terms used.

The paper is organized as follows: our main results are summarized in section 2, where

we also review some facts about the relaxation times in quantum critical, kinetic and

gravitational systems, adding a number of new observations along the way. In section 3,

we compute the (inverse) ’t Hooft coupling corrections to the quasinormal spectrum of

gravitational fluctuations in AdS-Schwarzschild black brane background modified by the

higher derivative terms and discuss the relaxation time behavior, the density of poles

and the inflow of extra poles from infinity. In sections 4 and 5, correspondingly, a similar

procedure is applied to Gauss-Bonnet gravity and to the background with generic curvature

squared terms. We briefly discuss the results in the concluding section 6. Some technical

issues and comments about our numerical procedures appear in the appendices.

2 Relaxation times at weak and strong coupling

In this section, we briefly review the appearance of the hierarchy of relaxation times in

kinetic theory, holography and some models of condensed matter physics, emphasizing

their similarities and adding some new observations. In this context, at the end of the

section, we list the main results of the present paper.

In kinetic theory, transport coefficients and relaxation time(s) are intimately related.

To be clear, by the relaxation time we mean the characteristic time interval during which

a local thermal equilibrium (e.g. a local Maxwell-Boltzmann equilibrium) is formed ev-

erywhere in the system. We are not interested in the momentum-dependent equilibration

time-scales of the densities of conserved charges (these densities always relax hydrodynam-

ically) which are, strictly speaking, infinite in the limit of vanishing spatial momentum.

Consider, for illustration, non-relativistic Boltzmann equation obeyed by the one-particle

distribution function F (t, r,p)

∂F

∂t
+
pi
m

∂F

∂ri
− ∂U(r)

∂ri
∂F

∂pi
= C[F ] , (2.1)

where U(r) is the external potential and C[F ] is the Boltzmann collision operator con-

taining details of the interactions. For small deviations from the local thermal equilibrium

described by the distribution function F0(r,p), the kinetic equation can be linearized by
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the ansatz

F (t, r,p) = F0(r,p) [1 + ϕ(t, r,p)] , (2.2)

where ϕ� 1. The ansatz (2.2) leads to the evolution equation

∂ϕ

∂t
= −pi

m

∂ϕ

∂ri
+
∂U(r)

∂ri
∂ϕ

∂pi
+ L0[ϕ] , (2.3)

where L0 is a linear integral operator resulting from linearization of C[F ]. Formal solution

to eq. (2.3) with the initial condition ϕ(0, r,p) = ϕ0(r,p) can be written in the form [44]

ϕ(t, r,p) = etL ϕ0(r,p) =
1

2πi

∫ γ+i∞

γ−i∞
estRsdsϕ0(r,p) , (2.4)

where Rs = (sI − L)−1 is the resolvent whose analytical structure in the complex s-plane

determines the relaxation properties. In some simple cases, such as e.g. the relaxation of a

low-density gas of light particles in a gas of heavy particles, the resolvent can be constructed

explicitly and the time dependence fully analyzed [45]. Generically, however, the time

evolution is not known explicitly. For spatially homogeneous equilibrium distributions and

perturbations, a simple ansatz ϕ(t,p) = e−νth(p) reduces the linearized kinetic equation

to the eigenvalue problem for the linear collision operator:

− νh = L0[h] . (2.5)

The eigenvalues of L0 determine the spectrum of (inverse) relaxation times in the system.

One can then write a general solution of the linearized kinetic equation in the form

ϕ(t,p) =
∑
n

Cne
−νnthn(p) , (2.6)

where the coefficients Cn are determined by the initial conditions and the sum should be

replaced by an integral if the spectrum turns out to be continuous. The hierarchy {νn}
in eq. (2.6) is clearly reminiscent of the hierarchy of imaginary times of the quasinormal

modes in the dual gravity treatment of near-equilibrium processes at strong coupling. The

spectrum of the operator L0 for (classical) particles interacting via the potential U(r) =

α/rn has been investigated by Wang Chang and Uhlenbeck [11] and by Grad [13]. The

spectrum consists of a five-fold degenerate null eigenvalue, corresponding to conserved

quantities and the rest of the spectrum which can be discrete (for n = 4) or continuous [11,

13, 14], with or without a gap, depending on n (see figure 1). The time dependence

is obviously sensitive to the type of the spectrum: discrete spectrum leads to a clear

exponential relaxation, whereas continuous spectrum implies a more complicated pattern

including a pure power-law fall-off in the gapless case. Assuming the spectrum is discrete

and denoting τR = 1/νmin, in the relaxation time approximation, when the sum in (2.6) is

dominated by a single term with νn = νmin, we find

∂F

∂t
= −F − F0

τR
. (2.7)
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Figure 1. The spectrum of a linear collision operator: a) discrete spectrum, b) continuous spectrum

with a gap, realized for the interaction potential U = α/rn, n > 4, c) gapless continuous spectrum,

realized for the interaction potential U = α/rn, n < 4, d) Hod spectrum (see text): 0 ≤ νmin ≤ νc.
In all cases, ν = 0 is a degenerate eigenvalue corresponding to hydrodynamic modes (at zero spatial

momentum).

Generalization to weakly inhomogeneous systems gives [14, 46]

∂F

∂t
+
pi
m

∂F

∂ri
− ∂U(r)

∂ri
∂F

∂pi
= −F − F0

τR
. (2.8)

The equation (2.8) has been remarkably successful in describing transport phenomena in

systems with a kinetic regime2 [12, 44]. In particular, assuming τR = const, for the shear

viscosity one obtains the result (1.1). Estimates of τR based on Ritz variational method

relate the relaxation time to the mean free time: τR = 15/8 τmft ∼
√
m/
√
Tnσ, where σ

is the interaction cross-section. The account above may look too schematic but a more

detailed treatment is available in the standard kinetic theory [44] (including relativistic

and quantum cases [14, 48]), in the mathematical theory of Boltzmann equation [49] and

in thermal gauge theory [50, 51].

Do the relations between transport coefficients and relaxation time(s) similar or iden-

tical to the ones in eqs. (1.1) and (1.2) hold beyond the regime of applicability of kinetic

theory and in the absence of quasiparticles? One may appeal to dimensional analysis and

the uncertainty principle [52] or “general wisdoms” [21] when arguing for an affirmative

answer3 but in all cases the concept of weakly interacting quasiparticles seems to be lurking

behind such reasoning. At the same time, the concepts of relaxation time and transport

are meaningful irrespective of whether or not the kinetic theory arguments are applicable.

In particular, in condensed matter physics, considerable attention has been drawn to the

2The equation (2.8) with a semi-phenomenological τR = τR(v) is sometimes called the Krook-Gross-

Bhatnagar (KGB) equation [47].
3Indeed, the characteristic time scale in the kinetic regime is the mean free path τ ∼ tmfp and in

the regime of strong coupling it is the inverse temperature of a dual black hole, τ ∼ ~/kBT . Assuming

η/s ∼ τkBT , we have η/s ∼
√
mT/nσ in the first case and η/s ∼ ~/kB in the second.

– 6 –
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Figure 2. Phase diagram of the d = 1 + 1 quantum Ising model [53]. The relaxation time in the

quantum critical region is determined by the lowest quasinormal frequency of the BTZ black hole.

studies of quantum critical regions [53], where the characteristic time scales of strongly

interacting theories at finite temperature are of the order of τ ∼ ~/kBT (see figure 2).

Moreover, estimates of thermal equilibration time τR in relevant models suggest that [53]

τR ≥ C
~

kBT
, (2.9)

where C is a constant of order one, with the inequality saturated in the quantum critical

region. In some models, the constant C can be computed analytically. For the quantum

Ising model in d = 1+1 dimension serving as one of the main examples illustrating quantum

critical behavior in [53], the relaxation time of the order parameter σ̂z having the anomalous

dimension ∆ = 1/8 in the quantum critical region is determined by the correlation function

of a 1 + 1-dimensional CFT at finite temperature. The (equilibrium) retarded two-point

correlation function of an operator of (non-integer) conformal dimension ∆ in momentum

space is given by [54]

GR(ω, q) =
C∆

π Γ2(∆− 1) sinπ∆

∣∣∣∣Γ(∆

2
+
i(ω − q)

4πT

)
Γ

(
∆

2
+
i(ω + q)

4πT

)∣∣∣∣2
×

[
cosh

q

2T
− cosπ∆ cosh

ω

2T
+ i sinπ∆ sinh

ω

2T

]
, (2.10)

where C∆ is the normalization constant and we put TL = TR = T . The correlator has a

sequence of poles at

ω = ±q − i4πT
(
n+

∆

2

)
, (2.11)

where n = 0, 1, 2, . . .. Note that these are precisely the quasinormal frequencies of the dual

BTZ black hole [54, 55]. At zero spatial momentum, the lowest quasinormal frequency

determines the relaxation time

τR =
1

2π∆

~
kBT

, (2.12)
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Figure 3. Singularities of a thermal two-point correlation function in the complex frequency plane

at (vanishingly) small [61] (left panel) and infinitely large [60] (right panel) values of the coupling.
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Figure 4. Singularities of thermal two-point correlation function of the energy-momentum tensor

in the shear channel in the complex frequency plane at large coupling at η/s > ~/4πkB (left panel)

and at η/s < ~/4πkB (right panel). Poles at infinitely large coupling are indicated by squares. At

large but finite coupling, their new positions are shown by crosses.

and thus the constant C in eq. (2.9) is C = 4/π ≈ 1.273 for the Ising model considered4

in [53]. Curiously, inserting ∆ = 2 (the scaling dimension of the energy-momentum tensor)

into eq. (2.12) and using eq. (1.2), one formally5 finds η/s = 1/4π.

In holography, the importance of the quasinormal spectrum as the fundamental char-

acteristic feature of near-equilibrium phenomena in a dual field theory has been recognized

early on [56–58] and later it was observed [55] and shown [54, 59] that the quasinormal

frequencies correspond to poles of the dual retarded correlators. A typical distribution of

poles in the complex frequency ω plane at fixed spatial momentum q of an equilibrium

retarded correlator computed via holography in the supergravity approximation (e.g. at

infinite ’t Hooft coupling and infinite Nc in N = 4 SYM) is shown in figure 3 (right panel),

where the spectrum of a scalar fluctuation is shown [60]. For correlators of conserved

quantities such as the energy-momentum tensor, the spectrum, in addition to an infinite

tower of gapped strongly damped modes ωn = ωn(q), contains also a sector of gapless

hydrodynamic modes ω = ω(q) with the property ω(q)→ 0 for q → 0 [59, 60, 62]. Asymp-

4In [53], the relaxation time was determined by expanding the denominator of the correlation function

in Taylor series around ω = 0. This approximates the singularity of the correlator rather crudely giving

τR = ~
2kBT

cot [ π
16

] and C = 1
2

cot [ π
16

] ≈ 2.514.
5The shear viscosity is not defined in d = 1 + 1.
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totics of these spectra were computed in refs. [63, 64] (for large n) and in ref. [65] (for

large q). Curiously, at weak coupling the correlators at finite spatial momentum q seem to

have branch cuts stretching from −q to q rather than poles [61] (see left panel of figure 3).

At zero spatial momentum, the branch cuts reduce to a sequence of poles on the imaginary

axis [61]. These issues are further discussed in [39] and in the present paper.

Finite coupling corrections to the quasinormal spectrum can be computed by us-

ing higher derivative terms in the appropriate supergravity action. Such corrections for

gravitational backgrounds involving R4 higher derivative term were recently computed in

refs. [40, 41]. In this paper, we consider R4 and R2 terms, including Gauss-Bonnet gravity.

We find a number of novel features in addition to those reported in refs. [40, 41]. Our

observations can be summarized as follows (see sections 3, 4, 5 for full details):

• The positions of all poles change with the coupling. In the shear channel in particular,

two qualitatively different trends are seen depending on whether η/s > ~/4πkB or

η/s < ~/4πkB (see figure 4). In the first case (realized, for example, in N = 4

SYM), the symmetric branches of non-hydrodynamic poles lift up towards the real

axis6 and the diffusion pole moves deeper down the imaginary axis. In the second

case (corresponding to known examples of the dual gravity actions with curvature

squared corrections, in particular, Gauss-Bonnet gravity with positive coupling), the

branches move up only very slightly and the diffusion pole comes closer to the origin.

• For η/s > ~/4πkB, the density of poles in the symmetric branches increases monoton-

ically with the coupling changing from strong to weak values as shown schematically

in figure 4. Qualitatively, this seems to be compatible with the poles merging and

eventually forming branch cuts (−∞, q] and [q,∞), where q is the spatial momentum,

in the complex frequency plane at vanishing coupling. For η/s < ~/4πkB, however,

the density of poles decreases and they seem to disappear from the finite complex

plane completely in the limit of vanishing viscosity.

• In the holographic models we considered, the function η/s τRT is a slowly varying

function of the coupling, with an appreciable change in the vicinity of infinite coupling

only, suggesting that approximations of the type η/s ∼ const τRT are not unreason-

able in the strongly coupled regime even though they cannot possibly follow from

kinetic theory arguments.

• In view of the relation between η/s and relaxation time, a bound on quasinormal

frequencies of black branes similar to the one proposed by Hod for black holes [66]

may imply a bound on η/s. This is further discussed in section 6.

• As η/s increases well beyond ~/4πkB and the poles approach the real axis, we expect

them to be visible as clear quasiparticle-like excitations (i.e. well-defined, high in

amplitude and very narrow peaks) in the appropriate spectral function of the dual

6In their motion toward the real axis, the branches remain essentially straight, in agreement with earlier

observations in ref. [41]. We do not observe the phenomenon of poles with large imaginary parts bending

toward the real axis reported in ref. [40].
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field theory, well known from weakly coupled theories. This is indeed the case (see

section 4.2.6 for a calculation of the shear channel spectral function in the Gauss-

Bonnet theory where these feature can be seen explicitly).

• An inflow of new poles from complex infinity is observed at finite coupling. The new

poles ascend from the negative infinity towards the origin along the imaginary axis

as the coupling changes. The behavior of these new poles as a function of coupling

also depends on whether η/s > ~/4πkB or η/s < ~/4πkB. In the Gauss-Bonnet

model with η/s < ~/4πkB (i.e. with positive values of the Gauss-Bonnet coupling),

the poles reach the asymptotic values known analytically [67], without interfering

with the hydrodynamic pole. However, in models with η/s > ~/4πkB (N = 4 SYM

or Gauss-Bonnet holographic liquid with negative coupling), a qualitatively different

picture is observed. In this case, in the shear channel, the least damped new pole

reaches the hydrodynamic pole at a certain value of the coupling (for each fixed q),

the two poles merge and then move off the imaginary axis. Furthermore, as the cou-

pling constant varies at fixed q, the poles previously describing the hydrodynamic

excitations (diffusion and sound) become the leading (i.e. having the smallest Im|ω|)
poles of the two symmetric branches. We interpret these phenomena as the break-

down of the hydrodynamic gradient expansion at some value of the coupling (for each

q). Phrased differently, at each value of the coupling λ, there exists a critical value of

the wave vector qc(λ) such that for q > qc(λ) the hydrodynamic description becomes

inadequate. In the holographic models we considered, the function qc(λ) is a mono-

tonically increasing function of the coupling suggesting that the range of validity of

the hydrodynamic description is larger at strong coupling. Details are reported in

sections 3 and 4. This is reminiscent of the weak coupling kinetic theory behavior

mentioned earlier [16] and also the one described in [39], although our interpretation

is somewhat different from the one in ref. [39].

The reported observations (admittedly, made only for a few holographic models and

suffering from various limitations mentioned above) seem to suggest the following picture:

first, the relations such as (1.2) may still hold in the regime of the coupling where the

kinetic theory approach used to derive them can no longer be justified. This may explain

why using the kinetic theory formally outside its regime of applicability can still give results

compatible with experimental data. Second, it seems that for a fixed value of the coupling,

there exist critical length- and time-scales beyond which the hydrodynamic approximation

fails. The dependence of these critical scales on coupling extracted from the holographic

models suggests that hydrodynamics has a wider range of applicability at strong coupling

in comparison to weaker coupling. This appears to be compatible with the widely reported

“unreasonable effectiveness of hydrodynamics” in models of strongly coupled plasma.

3 Coupling constant corrections to equilibrium energy-momentum ten-

sor correlators in strongly interacting N = 4 SYM theory

For N = 4 supersymmetric SU(Nc) Yang-Mills (SYM) theory in d = 3 + 1 (flat) dimen-

sions, corrections in inverse powers of the ’t Hooft coupling λ = g2
YMNc at infinite Nc
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to thermodynamics [9, 68] and transport [8, 69–75] have been computed using the higher

derivative R4 term [76, 77] in the effective low-energy type IIB string theory action.7 In

particular, for the shear viscosity to entropy density ratio the coupling constant correction

to the universal infinite coupling result is positive [8, 69]:

η

s
=

1

4π

(
1 + 15ζ(3)λ−3/2 + . . .

)
. (3.1)

The result (3.1) can be found, in particular, by computing the λ−3/2 correction to the hy-

drodynamic (gapless) quasinormal frequency in the shear channel of gravitational perturba-

tions of the appropriate background. Coupling constant corrections to the full quasinormal

spectrum of gravitational perturbations of the AdS-Schwarzschild black brane background,

dual to finite-temperature N = 4 SYM were previously computed by Stricker [40] (see

also [41]). In this section, we reproduce those results and find some new features focusing

on the relaxation time and the behavior of the old and new poles.

3.1 Equations of motion

The source of finite ’t Hooft coupling corrections is the ten-dimensional low-energy effective

action of type IIB string theory

SIIB =
1

2κ2
10

∫
d10x
√
−g
(
R− 1

2
(∂φ)2 − 1

4 · 5!
F 2

5 + γe−
3
2
φW + . . .

)
, (3.2)

where γ = α′3ζ(3)/8 and the term W is proportional to the contractions of the four copies

of the Weyl tensor

W = CαβγδCµβγνC
ρσµ
α Cνρσδ +

1

2
CαδβγCµνβγC

ρσµ
α Cνρσδ . (3.3)

Considering corrections to the AdS-Schwarzschild black brane background and its fluctua-

tions, potential α′ corrections to supergravity fields other than the metric and the five-form

field have been argued to be irrelevant [82]. Moreover, as discussed in [83], for the purposes

of computing the corrected quasinormal spectrum one can use the Kaluza-Klein reduced

five-dimensional action

S =
1

2κ2
5

∫
d5x
√
−g
(
R+

12

L2
+ γW

)
, (3.4)

where W is given by eq. (3.3) in 5d. The parameter γ is related to the value of the ’t

Hooft coupling λ in N = 4 SYM via γ = λ−3/2ζ(3)L6/8 (we set L = 1 in the rest of this

section). Higher derivative terms in the equations of motion are treated as perturbations

and thus any reliable results are restricted to small values of the parameter γ. The effective

7The full set of α′3 terms in the ten-dimensional effective action is currently unknown. Corrections

involving the self-dual Ramond-Ramond five-form were considered in refs. [78–81]. Following the arguments

in [82], in this paper we assume that the (unknown) corrections to fields whose background values vanish

to leading order in α′3 for a given supergravity solution will not modify the quasinormal spectrum at order

α′3 and thus can be neglected. We thank A. Buchel and K. Skenderis for discussing these issues with us.
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five-dimensional gravitational constant is connected to the rank of the gauge group by the

expression κ5 = 2π/Nc.

To leading order in γ, the black brane solution to the equations of motion following

from (3.4) is given by [9, 68]

ds2 =
r2

0

u

(
−f(u)Ztdt

2 + dx2 + dy2 + dz2
)

+ Zu
du2

4u2f
, (3.5)

where f(u) = 1 − u2, r0 is the parameter of non-extremality of the black brane geometry

and the functions Zt and Zu are given by

Zt = 1− 15γ
(
5u2 + 5u4 − 3u6

)
, Zu = 1 + 15γ

(
5u2 + 5u4 − 19u6

)
. (3.6)

The γ-corrected Hawking temperature corresponding to the solution (3.5) is T = r0(1 +

15γ)/π. For the isotropic N = 4 SYM medium, we now consider fluctuations of the

metric of the form gµν = g
(0)
µν + hµν(u, t, z), where g

(0)
µν is the background (3.5). We Fourier

transform the fluctuations with respect to t and z to introduce hµν(u, ω, q), choose the

radial gauge with huν = 0 and follow the recipes in [59] to write down the equations of

motion for the three gauge-invariant modes Zi = Z
(0)
i + γZ

(1)
i , i = 1, 2, 3, in the scalar,

shear and sound channels, respectively. Explicitly, the three modes and the corresponding

equations of motion are given by the following expressions:8

Scalar channel:

Z1 =
u

π2T 2
0

hxy, (3.7)

∂2
uZ1 −

1 + u2

u (1− u2)
∂uZ1 +

w2 − q2
(
1− u2

)
u (1− u2)2 Z1 = γ G1 [Z1] . (3.8)

Shear channel:

Z2 =
u

π2T 2
0

(qhtx + ωhxz) , (3.9)

∂2
uZ2 −

(
1 + u2

)
w2 − q2

(
1− u2

)2
u (1− u2) (w2 − q2 (1− u2))

∂uZ2 +
w2 − q2

(
1− u2

)
u (1− u2)2 Z2 = γ G2 [Z2] . (3.10)

Sound channel:

Z3 = − u

2π2T 2
0

[
1− q2

ω2

(
1 + u2 + 15γu2

(
21u6 − 40u4 + 5

))]
(hxx + hyy)

+
u

π2T 2
0

[
q2

ω2
htt + hzz +

2q

ω
htz

]
, (3.11)

∂2
uZ3 −

3
(
1 + u2

)
w2 − q2

(
3− 2u2 + 3u4

)
u (1− u2) (3w2 − q2 (3− u2))

∂uZ3

+
3w4 − 2

(
3− 2u2

)
w2q2 − q2

(
1− u2

) (
4u3 + q2

(
u2 − 3

))
u (1− u2)2 (3w2 − q2 (3− u2))

Z3 = γ G3 [Z3] . (3.12)

8We note that there seems to be a typo in eq. (23) of ref. [40] describing metric fluctuations in the shear

mode.
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Figure 5. Poles (shown by squares) of the energy-momentum retarded two-point function of

N = 4 SYM in the scalar channel, for various values of the coupling constant and q = 0.1. From

top left: γ = {10−5, 10−4, 10−3, 10−2} corresponding to values of the ’t Hooft coupling λ ≈
{609, 131, 28, 6}. Poles at γ = 0 (λ→∞) are shown by circles.

The functions G1, G2 and G3 appearing on the right hand side of the equations can be found

in appendix A. Here and in the rest of the paper we use the dimensionless variables

w =
ω

2πT
, q =

q

2πT
. (3.13)

The equations of motion are solved numerically and the quasinormal spectrum is extracted

using the standard recipes [8, 59, 60, 62, 69, 70]. Our numerical approach is described in

appendix C.

3.2 The spectrum of the metric fluctuations

Given the smooth dependence of the equations of motion on the parameter γ, we may

expect the eigenvalues to shift somewhat in the complex frequency plane with respect to

their γ = 0 positions. This is indeed the case, as noted previously in refs. [40, 41] and

the details of this shift are interesting. In addition to this, we observe an inflow of new

poles from complex infinity along the imaginary axis. These poles are non-perturbative in

γ (the relevant quasinormal frequencies scale as 1/γ) but under certain conditions they are

visible in the finite complex frequency plane and can even be approximated by analytic

expressions. The new poles appear in all three channels of perturbations. In the shear and

sound channels, they interfere with the hydrodynamic poles and effectively destroy them
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Figure 6. The closest to the origin poles (shown by black dots) of the energy-momentum retarded

two-point function of N = 4 SYM in the scalar channel, for various values of the coupling constant

and q = 0.1. From top left: γ = {0.005, 0.010, 0.020, 0.060} corresponding to values of the ’t

Hooft coupling λ ≈ {10, 6, 4, 2}. The crude analytical approximation (3.14) to the new pole on

the imaginary axis becomes more accurate for larger γ.

at still sufficiently small, q-dependent values of γ. A qualitatively similar phenomenon is

observed in Gauss-Bonnet gravity where the equations of motion are second order and fully

non-perturbative (see section 4).

3.2.1 Scalar channel

The scalar equation of motion (3.8) is solved numerically with the incoming wave boundary

condition at u = 1 and Dirichlet condition at u = 0 for fixed small values of γ > 0. A

typical distribution of the quasinormal frequencies (poles of the scalar components of the

energy-momentum retarded two-point function of N = 4 SYM) in the complex frequency

plane is shown in figure 5.

The two symmetric branches of the modes move up towards the real axis relative

to their γ = 0 position. Here and in all subsequent calculations, we do not observe the

bending of the quasinormal modes with large real and imaginary parts towards the real

axis reported earlier in ref. [40]. Rather, our findings agree with the results of ref. [41],

where the two branches lift up without bending. The two branches become more and more

horizontal with the ’t Hooft coupling decreasing and move closer to the real axis.

At the same time, the distance between the poles in the branches decreases: in a sense,

there is an inflow of new poles from complex infinity along the branches. This last effect
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is too small to be noticeable e.g. in figure 5 because in N = 4 SYM we are restricted

to the γ � 1 regime. Extrapolating to larger values of γ (smaller values of ’t Hooft

coupling) would not be legitimate with the R4 corrections treated perturbatively but it is

conceivable that in the limit of vanishing ’t Hooft coupling the poles in the two branches

merge forming two symmetric branch cuts (−∞,−q] and [q,∞). We shall see more evidence

for this behavior in Gauss-Bonnet gravity, where the equations of motion are second-order

and the coupling dependence is fully non-perturbative (see section 4). The closeness of

the two branches of poles to the real axis at intermediate and small values of the ’t Hooft

coupling raises the question of the behavior of the spectral function and the appearance of

quasiparticles. Again, this is investigated in detail in Gauss-Bonnet gravity in section 4,

where we are not constrained by the smallness of the perturbation theory parameter.

We also observe a novel phenomenon: a sequence of new poles ascends along the

imaginary axis towards the origin as γ increases from zero to small finite values. The

first of these poles reaches the vicinity of the origin at γ ∼ 0.01. One can find a crude

analytic approximation for this top pole by solving the equation in the regime |w| � 1 (for

simplicity, we also take |q| � 1). We assume the scaling w→ εw and q→ εq for ε� 1, so

that to first order in ε, the function Z1(u) = (1−u)−iw/2
(
z

(0)
1 + εz

(1)
1

)
. The functions z

(0,1)
1

are found perturbatively to first order in γ. To find the quasinormal frequency, we solve

the polynomial equation Z1(u = 0,w, q) = 0, looking for a solution of the form w(q). To

leading order in q, we find a gapped pole on the imaginary axis with the dispersion relation

w = wg = − 2i

373γ − ln 2
≈ − 2i

373γ
. (3.14)

As shown in figure 6, the analytic approximation (3.14) works better for larger values of

γ. For γ → 0, the pole recedes deep into the complex plane along the negative imaginary

axis (the approximate formula (3.14) is compatible with this observation but breaks down

when |w| becomes large).

3.2.2 Shear channel

In the shear channel, the distribution of poles at finite coupling is similar to the one in

the scalar channel. The exception is the gapless hydrodynamic pole on the imaginary

axis responsible for the momentum diffusion. The poles are shown in figure 7 for several

values of γ. General properties of non-hydrodynamic poles described in detail for the scalar

channel are observed here as well. The new feature is the interaction between the diffusion

pole and the first of the new poles rising up from complex infinity along the imaginary axis

with increasing γ.

The dispersion relation for the diffusion pole is given by the formula [84–86]

ω = −i η

ε+ P
q2 − i

[
η2τΠ

(ε+ P )2
− θ1

2(ε+ P )

]
q4 + · · · , (3.15)

where in the absence of the chemical potential ε + P = sT . In N = 4 SYM theory, one
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Figure 7. Poles (shown by squares) of the energy-momentum retarded two-point function of N = 4

SYM in the shear channel, for various values of the coupling constant and q = 0.1. From top left: γ =

{10−5, 10−4, 10−3, 10−2} corresponding to values of the ’t Hooft coupling λ ≈ {609, 131, 28, 6}.
Poles at γ = 0 (λ→∞) are shown by circles.

has [8, 69, 70, 72, 72, 73, 85–88]

η

s
=

1

4π
(1 + 120γ + · · · ) , (3.16)

τΠ =
2− ln 2

2πT
+

375γ

4πT
+ · · · , (3.17)

θ1 =
N2
c T

32π
+O(γ) . (3.18)

The coupling constant correction to the coefficient θ1 of the third-order hydrodynamics is

currently unknown. However, for q� 1, the q2 term in eq. (3.15) dominates and the pole

moves down the imaginary axis with γ increasing, in agreement with our numerical findings.

For certain values of γ � 1, the leading new pole ascending the imaginary axis ap-

proaches the hydrodynamic pole. The two poles collide on the imaginary axis at some

critical value of γ at fixed q (or equivalently, at some q = qc(γ) at fixed γ) and then for

larger γ they symmetrically move off the imaginary axis, both having acquired non-zero

real parts (see figure 8). At this point, the hydrodynamic pole (3.15) ceases to exists and

for q > qc the hydrodynamic description appears to be invalid. We interpret this as the

breakdown of hydrodynamics at sufficiently large, coupling-dependent value of the wave-

vector. The function qc(γ) is shown in figure 9. It is monotonically decreasing with γ
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suggesting that hydrodynamics has a wider applicability range at larger ’t Hooft coupling

as far as the spatial momentum dependence is concerned.

The phenomenon just described can be approximated analytically in the region of small

w and q (although this approximation is not very precise quantitatively, it captures the

behavior of the poles correctly). Indeed, solving the equation (3.10) perturbatively in w�
1 and q � 1 (still with γ � 1) and imposing the Dirichlet condition Z2(u = 0,w, q) = 0,

we find a quadratic equation

2w + iw2 log 2 + iq2 + i120γq2 − i373γw2 = 0 . (3.19)

This equation has two roots parametrized by γ and q,

w1 =
−i+ i

√
−44760γ2q2 − 373γq2 + 120γq2 ln 2 + q2 ln 2 + 1

373γ − ln 2
, (3.20)

w2 =
−i− i

√
−44760γ2q2 − 373γq2 + 120γq2 ln 2 + q2 ln 2 + 1

373γ − ln 2
. (3.21)

At fixed q and sufficiently small γ, the roots are purely imaginary, moving closer to each

other with increasing γ. Finally, the two roots merge and then acquire non-zero real parts

for larger γ. The physical meaning of the solutions (3.20) and (3.21) becomes transparent

from their small q expansions:

w1 = −1

2
i (1 + 120γ) q2 + . . . , (3.22)

w2 = wg +
1

2
i (1 + 120γ) q2 + . . . , (3.23)

where wg is given by eq. (3.14). Here, the mode (3.22) is the standard hydrodynamic mo-

mentum diffusion pole predicted by eq. (3.15), whereas the mode (3.23) approximates the

new gapped pole moving up the imaginary axis. Note that the gap wg in the mode (3.23) is

the same as in the scalar channel. Using eqs. (3.22) and (3.23), we can find an approximate

analytic expression for the function qc(γ) plotted in figure 9:

qc =

√
2

373γ (1 + 120γ)
∼ 0.04λ3/2 . (3.24)

As is evident from figure 9, the analytic approximation becomes more precise with larger γ.

3.2.3 Sound channel

The quasinormal spectrum in the sound channel is found by solving eq. (3.12) and imposing

the Dirichlet condition Z3(u = 0,w, q) = 0. The distribution of poles in the complex

frequency plane at various values of the coupling is shown in figure 10. The movement of

the poles with varying coupling is qualitatively similar to the one observed in the scalar

and shear channels. The two gapless sound poles symmetric with respect to the imaginary

axis have the dispersion relation predicted by hydrodynamics [84–86]

ω = ±cs q − iΓ q2 ∓ Γ

2cs

(
Γ− 2c2

sτΠ

)
q3 − i

[
8

9

η2τΠ

(ε+ P )2
− 1

3

θ1 + θ2

ε+ P

]
q4 + · · · , (3.25)
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Figure 8. The closest to the origin poles (shown by black dots) of the energy-momentum retarded

two-point function of N = 4 SYM in the shear channel, for various values of the coupling constant

and q = 0.1. From top left: γ = {0.011, 0.012, 0.013, 0.020} corresponding to values of the ’t Hooft

coupling λ ≈ {5.7, 5.4, 5.1, 3.8}. The hydrodynamic pole moving down the imaginary axis and the

new gapped pole moving up the axis merge and move off the imaginary axis. All other poles are

outside the range of this plot.
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Figure 9. Critical value of the spatial momentum qc, limiting the hydrodynamic regime, as a

function of higher derivative coupling γ in the shear channel of N = 4 SYM. Hydrodynamics has

a wider range of applicability in q at smaller γ (larger ’t Hooft coupling).
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where cs = 1/
√

3 for conformal fluids in d = 3 + 1 dimensions, Γ = 2η/3(ε + P ) and

ε + P = sT at zero chemical potential. For N = 4 SYM theory, the coefficients η/s, τΠ

and θ1 are given in eq. (3.18) and

θ2 =
N2
c T

384π

(
22− π2

12
− 18 ln 2 + ln2 2

)
+O(γ) . (3.26)

The full γ-dependence of the quartic term in eq. (3.25) is currently unknown.

With γ increasing, the leading new gapless pole rising along the imaginary axis ap-

proaches the region of the sound poles (see figure 11). For w � 1 and q � 1, the equa-

tion (3.12) can be solved perturbatively and from the Dirichlet condition Z3(u = 0,w, q) =

0 one finds a quintic equation

420γq4 − 2546iγq4w− 8iq4w + 4q4 + 4797iγq2w3 + 12iq2w3

− 1260γq2w2 − 18q2w2 − 3357iγw5 + 18w4 = 0. (3.27)

Expanding further in γ � 1 and q � 1, we obtain the following analytic expressions for

the three closely located modes of interest:

w1,2 = ± 1√
3
q− 1

3
i(1 + 120γ)q2 + . . . , (3.28)

w3 = wg +
2

3
i(1 + 120γ)q2 + . . . . (3.29)

Here, the eq. (3.28) is the standard dispersion relation for the two sound modes as in

eq. (3.25), and eq. (3.29) is the new gapped pole with wg given by eq. (3.14). Assuming,

perhaps somewhat arbitrarily, that the hydrodynamic description fails when the imaginary

part of the new gapped pole becomes equal to the one of the sound mode, from eqs. (3.28)

and (3.29) we find the critical value of the spatial momentum qc which turns out to be

exactly the same as in eq. (3.24).

3.2.4 Coupling constant dependence of the shear viscosity — relaxation time

ratio

The dependence of real and imaginary parts of the smallest in magnitude quasinormal

frequencies in the symmetric branches on γ (at fixed q) in the scalar, shear and sound

channels, respectively, is shown in figures 12, 13 and 14. In all three channels, a relatively

strong dependence of the spectrum on γ in the vicinity of γ = 0 changes to a nearly flat

behavior at larger values of γ. As discussed in the Introduction, these data can be used

to test whether the relations between transport coefficients and the relaxation time typical

for a kinetic regime of the theory may still hold at strong coupling. In kinetic theory,

the hierarchy of relaxation times arises as the non-hydrodynamic part of the spectrum of

a linearized Boltzmann operator (see section 2). At strong coupling, it seems natural to

associate this hierarchy with the (inverse) imaginary parts of the quasinormal spectrum

frequencies. In particular, the relaxation time τR can be defined as

τR(q, λ) =
2πT

ImωF (q, λ)
=

1

ImwF (q, λ)
, (3.30)
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Figure 10. Poles (shown by squares) of the energy-momentum retarded two-point function of

N = 4 SYM in the sound channel, for various values of the coupling constant and q = 0.1.

From top left: γ = {10−5, 10−4, 10−3, 10−2} corresponding to values of the ’t Hooft coupling

λ ≈ {609, 131, 28, 6}. Poles at γ = 0 (λ→∞) are shown by circles.

where ωF is the fundamental (lowest in magnitude) quasinormal frequency. The prediction

of kinetic theory is that eq. (1.2) holds at least at weak coupling, i.e. that the ratio η/s τRT is

approximately constant. In figure 15, we plot the ratios η/s τkT , k = 1, 2, 3, 4, as functions

of γ using the data for τk = 1/Imwk of the leading four non-hydrodynamic quasinormal

frequencies (including the fundamental one) in the shear channel at q = 0. Curiously,

although rapid decrease of all four functions is seen in the vicinity of γ = 0, the dependence

changes to a nearly flat one very quickly, already at γ ≈ 2× 10−3 (corresponding to the ’t

Hooft coupling λ ∼ 18), which is well within the regime of small γ. Note that the ’t Hooft

coupling correction to η/s for γ ≈ 2× 10−3 is approximately 25%. Thus, the naive use of

kinetic theory expressions such as eq. (1.2) may not be so disastrous at moderate or even

strong coupling. We shall see in the next sections that the features discussed here for the

specific gravity dual with the higher derivative term of the type R4 are also observed for

gravity backgrounds with R2 terms, in particular Gauss-Bonnet gravity.

4 Relaxation time and poles of energy-momentum tensor correlators in

a theory dual to Gauss-Bonnet gravity

The action of Einstein-Gauss-Bonnet gravity in five space-time dimensions is given by

SGB =
1

2κ2
5

∫
d5x
√
−g
[
R+

12

L2
+
l2GB

2

(
R2 − 4RµνR

µν +RµνρσR
µνρσ

)]
, (4.1)
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Figure 11. Closest to the origin poles (shown by black dots) of the energy-momentum retarded

two-point function of N = 4 SYM in the sound channel, for various values of the coupling constant

and q = 0.1. From top left: γ = {0.005, 0.01, 0.02, 0.03} corresponding to values of the ’t Hooft

coupling λ ≈ {10, 6, 4, 3}. All other poles are outside the range of this plot.
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Figure 12. N = 4 SYM: real (left panel) and imaginary (right panel) parts of the lowest four

quasinormal frequencies in the scalar channel at q = 0.1.

where the scale l2GB of the higher derivative term can be chosen to be set by a cosmological

constant, l2GB = λGBL
2, where λGB is the dimensionless parameter. The coefficients of the

curvature-squared terms ensure that the equations of motion following from the action (4.1)

are second order in derivatives. Thus, in the absence of Ostrogradsky instability and

other difficulties usually induced by the dynamics with higher derivatives, Gauss-Bonnet

and more generally Lovelock theories, are popular theoretical laboratories for studying
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Figure 13. N = 4 SYM: real (left panel) and imaginary (right panel) parts of the lowest four

quasinormal frequencies in the shear channel at q = 0.1.
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Figure 14. N = 4 SYM: real (left panel) and imaginary (right panel) parts of the lowest four

quasinormal frequencies in the sound channel at q = 0.1.
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Figure 15. The ratios η/sτkT , k = {1, 2, 3, 4}, as functions of γ in N = 4 SYM.
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non-perturbative effects of higher-derivative couplings. For example, the shear viscosity-

entropy ratio in a (hypothetical) conformal fluid dual to five-dimensional Gauss-Bonnet

gravity turns out to be [89]

η

s
=

1− 4λGB

4π
, (4.2)

and this result is obtained without the assumption |λGB| � 1, i.e. non-perturbatively in the

coupling. However, as pointed out and investigated in detail in refs. [89–94], for λGB outside

of a certain interval, the dual theory suffers from pathologies associated with superluminal

propagation of high momentum modes. More recently, Camanho et al. [42] argued that

Gauss-Bonnet theory suffers from causality problems in the bulk that can only be cured

by adding higher spin fields. This would effectively imply that Gauss-Bonnet and, most

likely, general Lovelock theories9 should loose their privileged non-perturbative status and

be treated as any other theory with higher derivative terms, i.e. the coupling λGB in, for

example, eq. (4.2) should be seen as an infinitesimally small parameter (see, however,

refs. [43, 98]). We note those difficulties but will not constrain λGB beyond its natural

(here, limited by the existence of the black brane solution) domain λGB ∈ (−∞, 1/4] in the

following.

Our goal is to compute the quasinormal spectrum of gravitational fluctuations of the

Gauss-Bonnet black brane metric10

ds2 = −f(r)N2
GBdt

2 +
1

f(r)
dr2 +

r2

L2

(
dx2 + dy2 + dz2

)
, (4.3)

dual to a thermal state of a boundary CFT. Here

f(r) =
r2

L2

1

2λGB

[
1−

√
1− 4λGB

(
1− r4

0

r4

)]
(4.4)

and the constant NGB can be chosen to normalize the speed of light at the boundary to

c = 1:

N2
GB =

1

2

(
1 +

√
1− 4λGB

)
. (4.5)

The Hawking temperature corresponding to the solution (4.3) is given by

T =
NGBr0

πL2
=
r0
√

1 + γGB√
2πL2

, (4.6)

where we introduced the notation γGB ≡
√

1− 4λGB. We shall use λGB and γGB interchange-

ably in the following. The range λGB < 0 corresponds to γGB ∈ [1,∞) and the interval

λGB ∈ [0, 1/4] maps into γGB ∈ [0, 1], with λGB = 0 corresponding to γGB = 1.

9See refs. [95–97] for relevant work in Lovelock theories.
10Exact solutions and thermodynamics of black branes and black holes in Gauss-Bonnet gravity were

considered in [99] (see also [100–103]).
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4.1 Equations of motion

Fluctuations hµν(r, t, z) of the Gauss-Bonnet black brane metric (4.3) can be decomposed

into the scalar, shear and sound channels in the standard way [54, 59]. The corresponding

gauge-invariant combinations Z1, Z2, Z3 of the metric fluctuations hµν(r, ω, q) (Fourier

transformed in the variables along the brane directions) in the three channels are given by

Scalar: Z1 = hxy , (4.7)

Shear: Z2 =
q

r2
htx +

ω

r2
hxz , (4.8)

Sound: Z3 =
2q2

r2ω2
htt +

4q

r2ω
htz

−

(
1−

q2N2
GB

(
4r3 − 2rf(r)

)
2rω2 (r2 − 2λGBf(r))

)(
hxx
r2

+
hyy
r2

)
+

2

r2
hzz . (4.9)

Introducing the new variable u = r2
0/r

2, the equation of motion in each of the three channels

can be written in the form of a linear second-order differential equation

∂2
uZi +Ai∂uZi +BiZi = 0 , (4.10)

where i = 1, 2, 3 and the coefficients Ai and Bi are given in appendix B. To find the

quasinormal spectrum in the three channels, we impose the “incoming wave” boundary

conditions at the horizon at u = 1 [54],

Zi(u) = (1− u)−iw/2Zi(u,w, q) , (4.11)

where the functions Zi are regular at u = 1. The quasinormal spectra w = w(q) are then

solutions to the equations Zi(u = 0,w, q) = 0. They can be found numerically. In addition,

in the regime w� 1 and q� 1, some frequencies are determined analytically. In all three

channels, it will be convenient to use a new variable

v = 1−
√

1− (1− u2) (1− γ2
GB), (4.12)

so that the horizon is at v = 0 and the boundary at v = 1 − γGB. The new coordinate is

singular at zero Gauss-Bonnet coupling, λGB = 0 (γGB = 1) and the results for that point,

which are identical to those of N = 4 SYM theory at infinite ’t Hooft coupling, have to be

obtained independently.

4.2 The spectrum of the metric fluctuations

The quasinormal spectra in Einstein-Gauss-Bonnet theory obtained non-perturbatively in

λGB show the properties qualitatively similar to the ones discussed in section 3.2 for the

AdS-Schwarzschild background corrected by the R4 term. In this section we show the nu-

merical results and analytic approximations for the spectra in the three channels, including

the details of the breakdown of the hydrodynamic regime. There are some novelties in the

Gauss-Bonnet case. First, not being restricted by the perturbative nature of the higher-

derivative coupling, we are able to explore the coupling dependence to a fuller extent than
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Figure 16. Quasinormal spectrum (shown by circles) of the scalar channel metric perturbations

in Gauss-Bonnet gravity for various values of the coupling λGB and q = 0.1. From top left: λGB =

{−6, −1.3125, 0.09, 0.21}. For comparison, the spectrum at λGB = 0 is shown by squares.

in N = 4 SYM. In particular, we are able to say more about the spectral function and the

density of poles in the complex plane than we could in N = 4 SYM owing to the restriction

γ � 1. Second, Gauss-Bonnet gravity (and gravity with generic R2 terms) provides an

example of a holographic model, where the shear viscosity - entropy density ratio can be

greater or less than 1/4π, depending on the sign of λGB. We find qualitatively different

patterns in the behavior of relaxation time and other quantities in those two regimes.

4.2.1 Scalar channel

The spectrum of gravitational perturbations in the scalar channel is shown in figure 16.

Two different regimes are observed depending on the value of η/s.

For η/s > 1/4π (corresponding to λGB < 0), the behavior of the poles is qualitatively

the same as in N = 4 SYM: the two symmetric branches of gapped poles lift up towards

the real axis monotonically with |λGB| increasing, the distance between the poles decreases

suggesting a formation of branch cuts (−∞,−q] and [q,∞) in the limit |λGB| → ∞. Ob-

serving the motion of individual poles in the symmetric branches, one can say that there is

an inflow of new poles from complex infinity along the branches with |λGB| increasing. The

dependence of real and imaginary parts of the top three poles in the symmetric branches

on λGB at q = 0.5 is shown in figure 17. Within the limits of numerical accuracy, this

dependence is monotonic. One may notice that the functions become flat for large neg-
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Figure 17. Real (left panel) and imaginary (right panel) parts of the top three quasinormal

frequencies of the symmetric branches in the scalar channel of Gauss-Bonnet gravity at q = 0.5.
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Figure 18. Top three quasinormal frequencies (connected by lines for better visibility) of the

symmetric branches in the scalar channel of gravitational perturbations in Gauss-Bonnet theory as

functions of the coupling λGB > 0 (i.e. in the regime η/s < 1/4π). The rest of the quasinormal

spectrum is not shown in this figure.

ative λGB. When the poles in the two branches are sufficiently close to the real axis, we

expect the spectral function to show the distinct quasiparticle peaks. We shall discuss this

in detail for the shear channel, see subsection 4.2.6.

There is a new pole rising up the imaginary axis from complex infinity.11 The position

of the new pole in the regime w � 1, q � 1, γGB � 1 can be determined analytically by

solving the equation for Z1 perturbatively and imposing the condition Z1(u = 0,w, q) = 0:

w1 = wGB
g + . . . = − 4i

γGB(γGB + 2)− 3 + 2 ln
(

2
γGB+1

) + . . . ≈ − i

|λGB|
. (4.13)

11In contrast to the corresponding N = 4 SYM case, we observe only one new pole for λGB < 0, although

it is difficult to make this conclusion with certainty using a numerical approach.
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Figure 19. Quasinormal modes (shown by black dots), close to the origin, in the scalar channel

of Gauss-Bonnet black brane metric perturbations, for increasing coupling constant and q = 0.1.

From top left to bottom right: λGB = {−2.8125, −4.8125, −7.3125, −13.8125}. The analytic ap-

proximation (4.13) to the gapped pole on the imaginary axis is shown by a white square.

The mode remains purely on the negative imaginary axis and approaches the origin as

γGB →∞ (λGB → −∞). This result is confirmed numerically. The residue vanishes in the

limit γGB →∞, and so the pole disappears in that limit [67].

For η/s < 1/4π (corresponding to λGB > 0), the poles in the two branches become

more sparse relative to their λGB = 0 distribution (see figures 16 and 18). In sharp contrast

with the η/s > 1/4π case, here the branches lift up very slightly, almost infinitesimally,

relative to their λGB = 0 positions. As shown in figures 16 and 18, an outflow of poles

along the branches to complex infinity is observed and it is conceivable that the poles of

the two branches are eventually completely pushed out of the finite complex plane. At the

same time, there are still new poles rising up the imaginary axis. In the limit λGB → 1/4

(γGB → 0) they are seen numerically to approach the positions (known exactly [67])

w = −i
(

4 + 2n1 −
√

4− 3q2
)
, w = −i

(
4 + 2n2 +

√
4− 3q2

)
, (4.14)

where n1 and n2 are non-negative integers.

The limit of vanishing shear viscosity λGB → 1/4 is difficult to explore numerically.

However, the observed behavior is consistent with analytic results available at λGB =

1/4. Indeed, exactly at λGB = 1/4 the equations of motion can be solved in terms of

hypergeometric functions and the quasinormal spectrum is determined exactly [67]. The
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Figure 20. Quasinormal spectrum (shown by circles) of the shear channel metric perturbations

in Gauss-Bonnet gravity for various values of the coupling λGB and q = 0.1. From top left: λGB =

{−6, −1.3125, 0.09, 0.21}. For comparison, the spectrum at λGB = 0 is shown by squares.
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Figure 21. Real (left panel) and imaginary (right panel) parts of the top three quasinormal

frequencies in the symmetric branches in the shear channel of Gauss-Bonnet at q = 0.5.

only quasinormal frequencies at λGB = 1/4 are the ones given by eq. (4.14). This is

consistent with the picture we observe numerically for 0 < λGB < 1/4.

4.2.2 Shear channel

The distribution of the poles in the shear channel is shown in figure 20 and the cou-

pling dependence of the real and imaginary parts of the top three poles in the symmetric

branches can be seen in figure 21. The behavior of the poles in the symmetric branches
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Figure 22. Quasinormal modes, close to the origin, in the shear channel of Gauss-Bonnet,

for increasing coupling constant and q = 0.1. From left to right and top to bottom: λGB =

{−2.0000, −2.8125, −3.7500, −22.3125}.

is qualitatively similar to the one observed in the scalar channel. In the limit λGB → 1/4,

the new poles moving up the imaginary axis approach the q-independent positions known

analytically [67],

w = −2i (1 + n1) , w = −2i (3 + n2) , (4.15)

where n1 and n2 are non-negative integers.

A characteristic feature of the shear channel is the presence of the hydrodynamic

momentum diffusion pole on the imaginary axis. The dispersion relation for this mode is

currently known analytically to quartic order in q [86] and is given by

ω = −i η

ε+ P
q2 − i

[
η2τΠ

(ε+ P )2
− θ1

2(ε+ P )

]
q4 + · · · , (4.16)

where the transport coefficients were defined in section 3. For Gauss-Bonnet gravity, solving

the equation for the shear mode analytically, perturbatively in w � 1, q � 1 and non-

perturbatively in γGB and imposing the Dirichlet condition Z2(0) = 0, we find

w =− iγ
2
GB

2
q2 − iγ

3
GB

16

[
(1 + γGB)

(
γ2
GB + 5γGB − 2

)
− 2γGB ln

[
2 (1 + γGB)

γGB

]
− 2

(
2γ2

GB + γGB − 1
)]

q4 + · · · . (4.17)
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Figure 23. Critical values of coupling λGB, limiting the hydrodynamic regime, for the shear channel

of Gauss-Bonnet.

The full set of non-perturbative first- and second-order hydrodynamic transport coefficients

in Gauss-Bonnet theory was computed in [104]. The coefficients relevant for the dispersion

relation (4.16) are given by

η = sγ2
GB/4π , (4.18)

τΠ =
1

2πT

[
1

4
(1 + γGB)

(
5 + γGB −

2

γGB

)
− 1

2
ln

2 (1 + γGB)

γGB

]
. (4.19)

Thus, the value of the third-order coefficient θ1 in the Gauss-Bonnet theory can now be

read off eq. (4.17):

θ1 =
η

8π2T 2
γGB

(
2γ2

GB + γGB − 1
)
. (4.20)

In the limit of λGB → 0 (γGB → 1), this reproduces the corresponding result for N = 4

SYM theory found in ref. [86],

θ1 =
η

4π2T 2
. (4.21)

The behavior of the momentum diffusion pole depends on whether η/s is greater or

less than 1/4π. For η/s < 1/4π (0 < λGB < 1/4), the pole moves up the imaginary

axis relative to its λGB = 0 position and approaches the origin. It completely disappears

from the spectrum at λGB = 1/4 [67]. For η/s > 1/4π (−∞ < λGB < 0), its behavior is

qualitatively similar to the one observed in N = 4 SYM: it moves down the imaginary axis

and collides with the top new pole moving up the axis from complex infinity at which point

the hydrodynamic description seemingly fails. Then the two poles move off the imaginary

axis into the complex plane. For sufficiently large values of |λGB|, this phenomenon happens

in the range of small w, q and thus can be approximated analytically (e.g. for λGB ∼ −3,
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the merger of the poles occurs at |w| ∼ 0.1, q ∼ 0.1). Solving the shear mode equation of

motion perturbatively in w� 1, q� 1, we find a pair of quasinormal frequencies

w1 =

−2i+

√
2(γGB − 1)(γGB + 3)γ2

GBq
2 + 4γ2

GBq
2 ln

(
2

γGB+1

)
− 4

γGB(γGB + 2)− 3 + 2 ln
(

2
γGB+1

) , (4.22)

w2 =

−2i−
√

2(γGB − 1)(γGB + 3)γ2
GBq

2 + 4γ2
GBq

2 ln
(

2
γGB+1

)
− 4

γGB(γGB + 2)− 3 + 2 ln
(

2
γGB+1

) (4.23)

whose motion in the complex plane approximates the numerical observations quite well

(see figure 22). Expanding the above expressions for w1 and w2 to second order in q, we

find the standard hydrodynamic pole of eq. (4.17)

w1 = −1

2
iγ2

GBq
2 + . . . (4.24)

and the new gapped pole

w2 = wGB
g +

1

2
iγ2

GBq
2 + . . . , (4.25)

where the gap wGB
g is identical to the one in eq. (4.13). The behavior of the poles is

qualitatively the same as in the N = 4 SYM theory. The diffusion pole moves down

the imaginary axis while the new gapped pole moves up as λGB decreases from 0 towards

negative values. Then the two poles collide at some q-dependent value of λcGB = λcGB(q) and

move off the axis. An analytical approximation for this dependence (or more conveniently,

for qc = qc(γGB)) can be found from the condition w1(qc) = w2(qc). We interpret this

condition as the condition indicating inadequacy of hydrodynamic description for q >

qc(λGB). Equating the expressions (4.24) and (4.25), we obtain

qc =
2

γGB

√
γGB(γGB + 2)− 3 + 2 ln

(
2

γGB+1

) ∼ 1

2|λGB|
. (4.26)

Note that if we used instead the un-expanded eqs. (4.22), (4.23), we would find

q
(un-exp)
c = qc/

√
2. The discrepancy is due to the additional q corrections not captured

by eqs. (4.24), (4.25). The dependence qc = qc(λGB) obtained numerically as well as the

analytic approximation (4.26) are shown in figure 23.

4.2.3 Sound channel

The poles in the sound channel are shown in figure 24 and the behavior of the real and

imaginary parts of the three leading non-hydrodynamic poles in the symmetric branches is

demonstrated in figure 25. We observe the same features of the coupling dependence of the

spectrum as in the other channels. The two symmetric branches lift up from their λGB = 0

positions, moving swiftly towards the real axis and becoming more dense in the case of
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Figure 24. Quasinormal spectrum (shown by circles) of the sound channel metric perturbations

in Gauss-Bonnet gravity for various values of the coupling λGB and q = 0.1. From top left: λGB =

{−6, −1.3125, 0.09, 0.21}. For comparison, the spectrum at λGB = 0 is shown by squares.

η/s > 1/4π (λGB < 0) and moving only slightly, becoming more sparse and apparently

disappearing from the finite complex plane for η/s < 1/4π (0 < λGB < 1/4). There are

new gapped poles rising up the imaginary axis regardless of the sign of λGB. For η/s < 1/4π

(0 < λGB < 1/4), they reach the asymptotic values

w = −i
(

4 + 2n1 −
√

4 + q2
)
, w = −i

(
4 + 2n2 +

√
4 + q2

)
, (4.27)

where n1 and n2 are non-negative integers, in the zero viscosity limit λGB → 1/4. Here

the modes (4.27) are the exact quasinormal frequencies at λGB = 1/4 [67]. In the regime

η/s > 1/4π (λGB < 0), the top new gapped pole moving up the imaginary axis with |λGB|
increasing gradually approaches the level of the two symmetric sound mode poles and

becomes aligned with them (see figure 26). For larger values of |λGB|, all three poles move

closer to the real axis, with the sound poles now becoming parts of the symmetric branches.

When the three poles are close to the origin, one can try to build an analytic approximation

by solving the equation for Z3 perturbatively in w � 1, q � 1. The Dirichlet condition

(Z3(0) = 0) then gives the equation

9γ2
GBq

2w− 3γ2
GBw

3 + 2γGBq
2w− 2q2w ln(γGB + 1)− 6γGBw

3 + 6w3 ln(γGB + 1)

− 3q2w + q2w ln 4 + 4iq2 + 9w3 − 3w3 ln 4− 12iw2 = 0.

(4.28)
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Figure 25. Real (left panel) and imaginary (right panel) parts of the top three quasinormal

frequencies in the symmetric branches in the sound channel of Gauss-Bonnet at q = 0.5.
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Figure 26. Quasinormal modes, close to the origin, in the sound channel of the Gauss-Bonnet

theory, for increasing coupling constant and q = 0.1. From left to right and top to bottom:

λGB = {−2.0000, −2.8125, −3.7500, −24.7500}.

The three roots, w1,2,3, can be found analytically, but the expressions are too cumbersome

to present here. Their expansions in q to quadratic order are given by

w1,2 = ± 1√
3
q− 1

3
iγ2

GBq
2 + . . . , (4.29)

w3 = wGB
g +

2

3
iγ2

GBq
2 + . . . , (4.30)
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Figure 27. Density of poles in the complex w plane plotted as a function of −λGB ∈ (−1/4, 2) at

q = 0.5.

where the gap wGB
g is the same as in the scalar and shear channels (eqs. (4.13) and (4.25),

respectively). The poles (4.29) correspond to the sound wave modes.

Defining the critical momentum q = qc(γGB) as the one at which the hydrodynamic

expansion no longer serves as an adequate description of the low-energy limit of the theory,

we may choose the equation Im[w1(qc)] = Im[w2(qc)] = Im[w3(qc)] to represent such a

condition. Solving this for qc(γGB), we find exactly the same function (4.26) as in the shear

channel. Note, however, that the agreement between our numerical results and the analytic

approximation is less satisfactory than in the shear channel (see figure 26), apparently due

to a stronger q dependence in the sound channel.

4.2.4 The density of poles and the appearance of branch cuts

In section 3 we observed that for N = 4 SYM theory correlators, the density of poles

in the two symmetric branches increases with ’t Hooft coupling decreasing. In Gauss-

Bonnet theory, the same phenomenon can be investigated in more detail since we are not

constrained by infinitesimally small values of the higher derivative coupling. In all channels,

the density of non-hydrodynamic poles in the two branches monotonically increases for

η/s > ~/4πkB and decreases for η/s < ~/4πkB. Although the trend is apparent already

from figures 16, 20, 24, here we show the density of poles as a function of the coupling
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Figure 28. Position of the first pole in the shear spectrum of the Gauss-Bonnet theory, for λGB =

{−100,−500,−1000}, as a function of momentum q. The point indicates where the hypothetical

branch cut would begin in the limit of large |λGB|. The solid line corresponds to the expectation of

where the position of Rew of the first pole should be in the limit of λGB → −∞, i.e. Rew = q.

constant in figure 27. The density is determined by selecting a region of the complex w

plane, counting the number of poles in the symmetric branches inside that region and

computing the resulting number density. The dependence in figure 27 is monotonic within

the bounds of our numerical accuracy. The situation for λGB > 0 (η/s < ~/4πkB) is clear:

as λGB → 1/4 (η/s → 0), the poles in the symmetric branches become less and less dense

and in the limit they disappear from the finite complex plane altogether, as confirmed by

analytic calculation at λGB = 1/4. For λGB < 0 (η/s > ~/4πkB), the poles become more

and more dense, the symmetric branches lift up toward the real axis with |λGB| increasing,

and one may conjecture that in the limit λGB → −∞ they merge to form branch cuts in the

complex plane of frequency along (−∞,−q] and [q,∞). Numerically, we observe that Re[w]

of the leading quasinormal mode in the (right) branch of poles monotonically approaches

the line w = q for large |λGB| (see figure 28) which supports the conjecture that ±q are

the branch points of the correlator in the limit λGB → −∞. Note that all other poles (the

ones not belonging to the symmetric branches at finite λGB) in all channels either join the

branches (in the sound and shear channels) or disappear due to vanishing residues (scalar

and sound channels) in the limit λGB → −∞. Thus, in that limit, the analytic structure

of the correlator is represented by the branch cuts (−∞,−q] ∪ [q,∞) (see figure 29). This

resembles the zero temperature limit of the thermal correlator in a CFT dual to Einstein

gravity with no higher derivative corrections. Such correlators are known analytically only

for BTZ background. For example, the ∆ = 2 thermal correlator has the form [54]

GR(w, q) ∼
(
q2 −w2

){
ψ

[
1− i

2
(w− q)

]
+ ψ

[
1− i

2
(w + q)

]}
, (4.31)

where ψ(z) is the logarithmic derivative of the Gamma-function with poles at z = −n, n =

0, 1, 2, . . .. In the zero-temperature limit w� 1, q� 1, the poles merge forming two branch
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Figure 29. The conjectured analytic structure of thermal correlators in holographic Gauss-Bonnet

theory in the limit λGB → −∞.

cuts running from the branch points ω = ±q to infinity parallel to the imaginary axis. For

large z, Binet’s formula implies ψ(z) ∼ ln z and thus in the limit of zero temperature

the correlator (4.31) becomes GR ∼ k2 ln k2, where kµ = (−ω, q). Similarly, the zero-

temperature limit of the energy-momentum correlator in a 4d CFT dual to Einstein gravity

is GR ∼ (−ω2 + q2)2 ln (−ω2 + q2). This function has branch points at ω = ±q,∞ joined

by the branch cuts (−∞,−q] ∪ [q,∞).

4.2.5 Coupling constant dependence of the shear viscosity - relaxation time

ratio in Gauss-Bonnet theory

The coupling constant dependence of the ratio η/s τRT in Gauss-Bonnet theory shows the

same qualitative features as in N = 4 SYM discussed in section 3.2.4. In figure 30, we plot

the ratios η/(s τkT ), where τk, k = 1, 2, are defined as τk = 1/|Imωk| for the two smallest in

magnitude non-hydrodynamical quasinormal frequencies ωk at q = 0. We identify τR with

τ1, ω1 being the fundamental frequency. The functions are monotonic, changing rapidly in

the vicinity of λGB = 0 and flattening out in the region |λGB| ≈ 3 − 6. As in N = 4 SYM

theory, the kinetic theory result (1.2) seems to hold at intermediate coupling.

4.2.6 Shear channel spectral function and quasiparticles at “weak coupling”

Since the non-hydrodynamic poles in the symmetric branches approach the real axis with

|λGB| increasing (i.e. at weaker coupling), one may expect the corresponding spectral func-

tion to develop a structure resembling quasiparticle peaks. We check this by computing

the spectral function in the shear channel. Choosing the spatial momentum along the z

axis, the shear channel retarded energy-momentum tensor correlator GR
xz,xz(w, q, λGB) in

Gauss-Bonnet theory can be computed as follows [67]:

GR
xz,xz(w, q, λGB) = 8π2T 2w2 lim

ε→0
C(ε,w, q)

∂uZ2(ε,w, q)

Z2(ε,w, q)
, (4.32)
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Figure 30. The ratios η/sTτk, for k = {1, 2}, as functions of λGB in the shear channel of the

Gauss-Bonnet theory. Here, τk are defined as τk = 1/|Imωk| for the two smallest-in-magnitude

non-hydrodynamical quasinormal frequencies ωk at q = 0. The error bars correspond to resolution

errors in the w-plane.

where the function C is given by

C(u,w, q) =
π2T 2

8κ2
5

N̄ f̄(1− f̄)

N5
GBu

[
N̄ f̄q2 − (1− f̄)2w2

] , (4.33)

with

f̄ = 1−
√

1− 4λGB(1− u2) , N̄ = N2
GB

1− 4λGB

2λGB

,

and Z2(u) is the solution of the shear channel equation of motion obeying the incoming

wave boundary condition at the horizon and normalized to one at the same u = ε → 0.

The solution Z2(u) can be written as Z2(u) = A2Z
I
2(u)+B2Z

II
2 (u), where ZI

2(u) and ZII
2 (u)

are the two local Frobenius expansions at the boundary (see e.g. [105]). In terms of A2

and B2, the retarded Green’s function (4.32) is given by12

GR
xz,xz(w, q, λGB) =

π4T 4

2κ2
5

N̄γGB (1− γGB)w2

N5
GB

[
N̄ (1− γGB) q2 − γ2

GBw
2
] B2

A2
. (4.34)

The spectral function is then computed as

ρxz,xz (w, q, λGB) = −ImGR
xz,xz (w, q, λGB) . (4.35)

In figure 31, we plot the dimensionless spectral function

ρ̄xz,xz (w, q, λGB) ≡ κ2
5

4π2T 4
ρxz,xz (w, q, λGB) , (4.36)

12Since the Frobenius expansion of ZI
2 contains ZII

2 multiplying lnu, it is numerically more con-

venient to compute B2 by subtracting off the logarithmic term, as was done in [105]. We

find that B2 = 1
2

limu→0

(
∂2
uZ2 − 2A2h lnu

)
− 3

2
A2h, where in the Gauss-Bonnet theory, h =

−8λ4
GB

(
q2 −w2

)2
/
(
1−
√

1− 4λGB

)4
[67].
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Figure 31. The dimensionless spectral function ρ̄xz,xz (w, q, λGB) in the shear channel of the Gauss-

Bonnet theory for λGB = −100 (left panel) and λGB = −500 (right panel) at q = 0.1.

where κ2
5 is the Newton’s constant from the Gauss-Bonnet action (4.1) and T the Hawking

temperature (4.6). As |λGB| increases and the symmetric branches of poles approach the

real w axis, the appearance of quasiparticle-like peaks in the spectral function is clearly

seen. As a result of the quasinormal modes now having |Im[w]| � |Re[w]| at large |λGB|,
the peaks become sharp and very narrow. Since the density of poles increases with |λGB|,
the density of peaks increases as well. In the limit |λGB| → ∞, they presumably form a

continuum.

5 Generic curvature squared corrections to quasinormal spectra of met-

ric perturbations

In this section, we comment on the quasinormal spectrum in the theory with general

curvature squared terms in the action,

SR2 =
1

2κ2
5

∫
d5x
√
−g
[
R− 2Λ + L2

(
α1R

2 + α2RµνR
µν + α3RµνρσR

µνρσ
)]
, (5.1)

where the cosmological constant is Λ = −6/L2. For the special choice of the parameters

α1, α2, α3 given by

α1 = λGB/2 , α2 = −2λGB , α3 = λGB/2 , (5.2)

the action (5.1) coincides with the Gauss-Bonnet action (4.1). Generically, however, the

action (5.1) leads to the equations of motion involving derivatives up to the fourth order. In

this case the higher derivative terms in (5.1) are treated perturbatively and the parameters

αi are assumed to be infinitesimally small. We can find the corresponding quasinormal

spectra by using a field redefinition and the known results for Gauss-Bonnet and N = 4

SYM theories.

One may notice [89] that the action (5.1) with α3 = 0 is equivalent via a field

redefinition

gµν = ḡµν + α2R̄µν −
1

3
(α2 + 2α1) ḡµνR̄, (5.3)
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and an additional rescaling to the Einstein-Hilbert action with the same cosmological con-

stant and modified Newton’s constant (which does not enter the vacuum equations of

motion).13 Consider now a gauge-invariant (with respect to infinitesimal metric perturba-

tions) mode Z (hµν) that is linear in metric perturbations, δgµν = hµν . To linear order,

the Ricci and Einstein tensors are invariant under diffeomorphisms, hence so is gµνR. It

therefore follows that gµν and ḡµν transform identically under the diffeomorphisms and so

Z (hµν) = Z
(
h̄µν
)
. (5.4)

Hence, when α3 = 0, the quasinormal modes of Z
(
h̄µν
)

are also those of Z (hµν), which

means that the quasinormal mode spectrum of the AdS-Schwarzschild black brane (dual

to thermal N = 4 SYM theory at infinite ’t Hooft coupling) is exactly the spectrum of the

theory defined by (5.1) with α3 = 0.

To include the α3 contributions, we can use the fact that the perturbative (in αi)

quasinormal spectrum generically has the form

ω∗ = ω∗0 + α1 ω̃
∗
1 + α2 ω̃

∗
2 + α3 ω̃

∗
3, (5.5)

where ω∗0 are the quasinormal frequencies of the AdS-Schwarzschild black brane. Moreover,

the above discussion shows that ω̃∗1 = 0, ω̃∗2 = 0. Keeping in mind the identification (5.2)

and considering the linearized quasinormal spectrum in Gauss-Bonnet theory,

ω∗GB = ω∗0 + λGB ω̃
∗
GB, (5.6)

we conclude that λGBω̃
∗
3/2 = λGBω̃

∗
GB. Hence, the quasinormal spectrum of a background

defined by the action (5.1) has the form

ω∗ = ω∗0 + 2α3 ω̃
∗
GB , (5.7)

where ω∗0 is the corresponding frequency in the spectrum of AdS-Schwarzschild black brane

with no higher derivative corrections included and ω̃∗GB is the coefficient of the term linear

in λGB in the corresponding spectrum of the Gauss-Bonnet theory. Thus, the coupling de-

pendence of the relaxation time and other properties of the spectrum described in previous

sections are qualitatively the same as the ones in the Gauss-Bonnet theory (and N = 4

SYM theory with large but finite ’t Hooft coupling). In particular, one observes a qualita-

tive difference between the regimes with η/s > ~/4πkB and η/s < ~/4πkB similar to the

one described in the previous section.

6 Discussion

In this paper, we have studied the influence of higher derivative R2 and R4 terms on

the quasinormal spectra of gravitational perturbations of black branes. In a dual QFT,

this corresponds to changing the ’t Hooft coupling or its analogue from infinite to large

13See ref. [75] for a detailed description of this procedure where it was applied to the calculation of the

second-order transport coefficients.
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but finite value. Understanding, even qualitatively, how the physical quantities respon-

sible for thermalization change from strong to weak coupling would be important both

from a conceptual and a phenomenological point of view. We were looking for robust,

model-independent qualitative features the higher derivative terms may bring about. Vul-

nerabilities of this approach are quite obvious. While N = 4 SU(Nc) SYM is a well defined

unitary theory, higher derivative corrections in its dual gravity description are only partially

known even to leading order in γ ∼ λ−3/2 at infinite Nc and those terms must be treated

perturbatively. Moreover, as emphasized recently in [41], different physical quantities may

have very different sensitivity to coupling corrections, and the smallness of the perturbative

parameter γ may not necessarily be a good indicator of the size of corrections. In con-

trast, the second order equations of motion of Gauss-Bonnet gravity can be treated fully

non-perturbatively. However, the (hypothetical) dual field theory suffers from causality

violation and even the bulk theory may need higher spin fields to mend the problems (the

latter would imply that higher derivative corrections can only be treated perturbatively,

i.e. the theory loses its special status with respect to Ostrogradsky instability). Unphazed

by these uncertainties, we proceed to investigate coupling corrections in both theories and

are encouraged to observe qualitatively similar results in both cases. Our findings are

summarized at the end of section 1.

One curious feature we find is the behavior of quasinormal spectrum leading to a

breakdown of the hydrodynamic description at a coupling-dependent critical value qc of

the spatial momentum. In bothN = 4 SYM and Gauss-Bonnet theories, the dependence on

coupling implies that hydrodynamics has a wider applicability range at strong coupling. It

may be interesting to investigate the convergence properties of the hydrodynamic derivative

expansion at finite coupling, possibly along the lines of refs. [106, 107].

Another qualitatively similar feature for both theories is the coupling dependence of

the ratio of the shear viscosity to the product of relaxation time, entropy density and tem-

perature. This quantity is (approximately) constant in kinetic theory at weak coupling.

From the dual gravity with higher derivative corrections we find that this ratio changes

rapidly in the vicinity of infinite coupling and then shows a very weak (essentially flat)

dependence on coupling when the coupling is further decreased to large but finite val-

ues. Similar behavior is expected for other transport coefficients. Admittedly, corrections

from the unknown higher derivative terms may influence the dependence at intermediate

coupling. Yet, if correct, the observed tendency may help to explain certain phenomeno-

logical success and “unreasonable effectiveness” of kinetic theory methods far beyond their

justified domain.

We also found that the behavior of coupling corrections to quasinormal spectrum and

related quantities depends strongly on whether η/s > ~/4πkB or η/s < ~/4πkB. In the

regime of η/s < ~/4πkB, the symmetric branches of quasinormal modes exhibit mono-

tonically increasing |Imω|. Since this could lead to the relaxation time of the system τR
decreasing below any possible lower bound (see eq. (2.9)), it is conceivable that this regime

is pathological. Earlier work was focused on looking for possible pathologies (e.g. causal-

ity violation) in the ultraviolet sector of the theories having the regime η/s < ~/4πkB,

and constraining higher derivative couplings accordingly. However, inconsistencies in this
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regime may exist in the infrared sector as well. As the qualitative behavior of the spectra

critically depends on the sign of the correction to η/s = ~/4πkB, we note that the relation

between η/s and the relaxation time τR raises the possibility that the bound on η/s specu-

lated upon14 in ref. [52] is related to a bound on relaxation time. In the holographic models

considered in this paper, both η/s and τRT are monotonic functions of the coupling. For

η/s decreasing below ~/4πkB, the relaxation time also decreases below its value at infinite

coupling. Is there a minimal relaxation time possibly correlated with the viscosity bound?

Are there any universal constraints on the constant C in eq. (2.9)? Curiously, in 2006

Hod [66] suggested a universal bound on relaxation time in any system:

τR ≥ τmin =
~

πkBT
. (6.1)

For the black hole quasinormal spectrum, the inequality (6.1) means that there exists

at least one quasinormal frequency whose imaginary part lies in the strip 0 > Imω ≥
−πkBT/~ in the complex frequency plane or, in terms of w = ω/2πkBT , in the strip

0 > Imw ≥ −1

2
. (6.2)

In the language of the kinetic theory linear collision operator spectrum, the bound implies

0 ≤ νmin ≤ νc = πkBT/~ , (6.3)

see figure 1d. Apparently, the inequality (6.2) holds for black holes (for black holes, the

bound suggests that a black hole has (at least) one channel of slowly decaying pertur-

bation modes which respect (6.2)). At first glance, however, the relaxation time bound

is void of meaning since one expects the hydrodynamic modes to be always present in

any system in the thermodynamic limit and they may relax arbitrarily slowly for suffi-

ciently long wavelengths (in other words, gapless quasinormal frequencies corresponding to

hydrodynamic modes are always present in the strip (6.2) for sufficiently small spatial mo-

mentum q). Moreover, even if we regard the bound (6.1) as the bound obeyed by the (non-

hydrodynamic) relaxation time τR (and correspondingly, the inequality (6.2) as the one for

the fundamental non-hydrodynamic quasinormal frequency), it appears to be violated in

all black brane channels (see e.g. tables of quasinormal frequencies in refs. [59, 60, 62]).

Nevertheless, we believe the question of whether holography or black hole physics implies

an inequality of the type (6.3) or (6.1) is an interesting one in view of its apparent validity

for black holes and its possible connection to viscosity bound.

In this paper, we considered coupling constant corrections to equilibrium correlators

in 4d CFTs. It would be interesting to consider non-conformal and time-dependent back-

grounds. We also hope questions raised in this paper may stimulate additional work on

weakly coupled thermal QFTs, via perturbation theory or kinetic theory, regarding the

analytic structure of correlation functions and bounds of applicability of hydrodynamic

description, with the goal to form a consistent qualitative picture interpolating between

weak and strong coupling.

14A number of strongly interacting many-body systems — from quark-gluon plasma and cold atoms [3,

108, 109] to dusty plasmas [110, 111] and rare gases and molecules in the vicinity of the critical point [112]

have η/s & ~/4πkB .
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A The functions G1, G2 and G3

Scalar channel:

G1 = − 6u
(
160q2u3 + 129u4 + 94u2 − 25

)
∂uZ1

+
192q4u5 − q2

(
851u6 − 789u4 + 75u2 + 30

)
+ 6

(
−89u4 + 30u2 + 5

)
w2

u (u2 − 1)
Z1. (A.1)

Shear channel:

G2 = − 2u

(w2 − q2 (1− u2))2

[
640q6u3

(
u2 − 1

)2
− 4q4u2

(
135u6 − 450u4 − 248u3w2 + 495u2 + 200uw2 − 180

)
+ q2w2

(
−462u6 + 1374u4 + 160u3w2 − 1002u2 + 75

)
+ 3

(
129u4 + 94u2 − 25

)
w4
]
∂uZ2

+
3

u (1− u2) (w2 − q2 (1− u2))

[
− 64q6u5

(
u2 − 1

)
+ q4

(
425u8 − 880u6 − 64u5w2 + 480u4 − 15u2 − 10

)
+ q2

(
699u6 − 693u4 + 75u2 + 20

)
w2 + 2

(
89u4 − 30u2 − 5

)
w4
]
Z2.

(A.2)
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Sound channel:

G3 = − 2u

(3w2 − q2 (3− u2))3

[
32q8u3

(
35u6 − 291u4 + 753u2 − 585

)
− 3q6

(
3741u10−27911u8−2720u7w2+60804u6 + 12992u5w2−50112u4

−12960u3w2+16887u2 − 225
)
+3q4w2

(
−19401u8+59832u6+4960u5w2

−53892u4 − 7200u3w2 + 26094u2 − 1125
)

+ 9q2w4
(
−1263u6 + 99u4

+160u3w2 − 3915u2 + 525
)

+ 81
(
129u4 + 94u2 − 25

)
w6
]
∂uZ3

− 1

u (1− u2) (3w2 − q2 (3− u2))3

[
192q10u5

(
u2 − 3

)3
− q8

(
u2 − 3

) (
5811u10 − 41287u8 − 1728u7w2 + 74004u6 + 5184u5w2

−35169u4 + 495u2 + 270
)
− 3q6

(
11184u13 − 90072u11 + 17099u10w2

+223952u9 − 106323u8w2 − 16u7
(
108w4 + 12971

)
+ 185876u6w2

+1728u5
(
3w4 + 34

)
− 91107u4w2 + 1800u3 + 2835u2w2 + 1080w2

)
+ 3q4w2

(
−68316u11+279504u9−40333u8w2−319056u7+121158u6w2

+36u5
(
48w4 + 2713

)
− 81018u4w2 + 3600u3 + 6075u2w2 + 1620w2

)
− 9q2w4

(
21708u9 − 37140u7 + 7003u6w2 + 12972u5 − 10017u4w2

+600u3 + 1755u2w2 + 360w2
)
− 162

(
89u4 − 30u2 − 5

)
w8
]
Z3 (A.3)

B The coefficients Ai and Bi of the differential equation (4.10)

Scalar channel:

A1 = − 1

u
− u

[
1

(γ2
GB − 1) (1− u2)2 + 1− u2

+
1

(1− u2)
√
γ2
GB − (γ2

GB − 1)u2

]
, (B.1)

B1 =
(γGB − 1)(γGB + 1)2

(
3
(
γ2
GB − 1

)
u2 − γ2

GB

) (
−γ2

GB +
(
γ2
GB − 1

)
u2 + U

)
4u (γ2

GB − (γ2
GB − 1)u2)3/2 (−γ2

GB + (γ2
GB − 1)u2 + 2U − 1)

q2

+

(
γ2
GB − 1

)2 (−γ2
GB +

(
γ2
GB − 1

)
u2 + U

)
4u(U − 1)

√
γ2
GB − (γ2

GB − 1)u2 (−γ2
GB + (γ2

GB − 1)u2 + 2U − 1)
w2, (B.2)

Shear channel:

A2 = −
2γ4

GB(γGB + 1)
[

1
2

(
1− γ2

GB

) (
u2 − 1

)
(U − 2) + U − 1

]
u(U − 1)U3 [γ2

GB(γGB + 1)(U − 1)q2 − (γ2
GB − 1)U2w2]

q2

−

(
1− γ2

GB

) (
γ4
GB +

(
1− γ2

GB

)2
u4 − 2

(
1− γ2

GB

)
u2
(
U − γ2

GB

)
− γ2

GBU
)

u(U − 1)U [γ2
GB(γGB + 1)(U − 1)q2 − (γ2

GB − 1)U2w2]
w2, (B.3)

B2 =
γ2
GB(γGB + 1)(U + 1)

4u (u2 − 1)U2
q2 +

(
U2 + 2U + 1

)
4u (u2 − 1)2 w2, (B.4)
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Sound channel:

A3 =
3

2u
+

3(γGB − 1)
[(
γ2
GB − 1

)
u2 − γ2

GB

] [(
γ2
GB − 1

)
u2(5U − 7)− 5γ2

GB(U − 1)
]

2u(U − 1)U2D1
w2

+

(
γ2
GB − 1

)2
u4
(
−3γ2

GB + 5U − 7
)

+ γ2
GB

(
γ2
GB − 1

)
u2
(
18γ2

GB − 13U + 10
)

2u(U − 1)U2D1
q2

−
15γ4

GB

(
γ2
GB − 2U + 1

)
2u(U − 1)U2D1

q2, (B.5)

B3 =

(
γ2
GB − 1

)2
D0

{
12(γGB − 1)2γ2

GB(γGB + 1)q2u5 − 4(γGB − 1)γ2
GBq

2u3
(
3γ2

GB − 7U + 4
)

+
(
γ2
GB − 1

)3
q2u6

(
3(γGB − 1)w2 + q2

)
− u2γ2

GB

(
γ2
GB−1

) [
q4
(
γ2
GB+2U

)
+(γGB−1)q2w2

(
9γ2

GB−4U
)
− 6(γGB − 1)2Uw4

]
+
(
γ2
GB − 1

)2
u4
[
q4
(
3γ2

GB(U − 2) + U
)

+ 2(γGB − 1)q2Uw2 − 3(γGB − 1)2Uw4
]

− 3γ4
GB

[
q4
(
γ2
GB(U − 2) + U

)
+ 2(γGB − 1)q2w2

(
U − γ2

GB

)
+ (γGB − 1)2Uw4

] }
,

(B.6)

where we have defined

D1 ≡
(
γ2
GB − 1

)
u2
(
3(γGB − 1)w2 + q2

)
+ 3γ2

GB

(
q2(U − 1)− (γGB − 1)w2

)
,

D0 ≡ 4(γGB − 1)u(U − 1)2U3D1. (B.7)

In the above expressions, we used U2 = u2 + γ2
GB − u2γ2

GB, as well as the dimensionless

frequency and momentum (3.13), where the Hawking temperature is given by eq. (4.6).

C Numerical methods used

In this appendix, we briefly review the numerical methods used to compute quasinormal

modes and spectral functions. The relevant equations of motion are (3.8), (3.10), (3.12)

for the N = 4 and (4.10) for the Gauss-Bonnet case. In all approaches, the first step

involves computing the index of the corresponding regular singular point at the horizon,

i.e. factoring out the singular part of the solution:

Zi → (u− 1)νiZ̃i(u) ,

where ν± = ± i
2w in all channels for N = 4 SYM and Gauss-Bonnet theories, and

Z̃i(u) is the Frobenius solution regular at the horizon. A similar factorization is done

at the boundary.

Leaver’s method. In this method, originally introduced in [113] and then used in [114–

117], the regular function is represented by a series whose convergence radius reaches both

the horizon and the boundary,

Z̃ =

Nmax∑
n=0

an(w, q) (z − z0)n . (C.1)
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In principle, z0 could be chosen arbitrarily, however, the optimal value is z0 = 1/2. By

inserting eq. (C.1) into the equations of motion one gets a set of Nmax + 1 equations for

Nmax + 1 unknowns. Written in a linear algebra language,

Nmax∑
n=0

Mnm(w, q)am(w, q) = 0. (C.2)

For a given value of q, the quasinormal modes correspond to frequencies w for which the

system (C.2) admits a non-trivial solution, i.e. the quasinormal spectrum is determined by

the equation

detMnm(w, q) = 0. (C.3)

In this work, Nmax has been chosen to be 150. This method determines the quasinormal

modes, i.e. the poles of the corresponding Green’s functions but not the residues. The

method is efficient in determining highly damped modes.

Integration. When one is interested in the region of the complex frequency plane close

to the origin, e.g. in hydrodynamic poles, or when the residue of the poles is needed,

one could directly numerically integrate equations of motion, e.g. via the Runge-Kutta

method [118, 119]. Having already imposed the ingoing boundary condition at the horizon,

there is still one boundary condition left. The numerical integration starts at the horizon

(more precisely, at fixed small distance away from the horizon). In order to determine

the starting values for the function and its derivative, one needs to iteratively solve the

equations of motion by expanding the solution in series around the horizon. The freedom

coming from the remaining boundary condition is encoded in a constant undetermined by

this process which can be set to one without loss of generality. The quasinormal modes w

are then determined by solving numerically the equation

Z∗(w)|u=ε = 0, (C.4)

where Z∗ is a numerical solution and ε is a boundary cut-off. This method was used in

this work to determine the spectral functions in section 4.2.6.

Spectral method. In ref. [41], another numerical approach was used to compute quasi-

normal modes. It is based on the spectral method of solving ODEs. In this method, the

regular function Z̃ is expanded in Chebyshev polynomials

Z̃ =

N∑
n=0

cnTn(2u− 1), (C.5)

where Tn(x) = cos(n arccos z). Inserting (C.5) into the corresponding equation of motion

and requiring that it is satisfied on the Chebyshev-Gauss-Lobatto grid, namely on ui =

1/2(1− cos(iπ/N)) for i = 0, 1, . . . , N , the problem reduces to a linear-algebra problem

M̂ · c = 0, (C.6)
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where c is the vector consisting of the N + 1 coefficients {ci} and M̂ , an (N + 1)× (N + 1)

matrix, consists of the evaluated equation of motion on the i-th grid point. A non-trivial

solution exists only when det M̂ = 0. This determinant is a polynomial in w and its roots

correspond to the quasinormal modes, easily computed numerically. One of the advantages

of this method is the rapid convergence of the modes with N , requiring a relatively small

matrix M̂ .

In this paper, we have used all three described methods, where convenient, finding

consistent results (within numerical resolution).
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