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1 Introduction

The discovery of a light Higgs boson [1, 2], which decays to two photons, has helped

cement the diphoton process as one of the most interesting final states to study during the

second run of the LHC (Run II). Experimental studies of prompt (γ) and diphoton (γγ)

production at hadron colliders have been undertaken for several decades [3–15]. These

studies are possible in part due to the high rate of production, but also because of the

relative cleanliness of the experimental final state. As the energy available for collisions

has increased, and as the amount of data collected has grown, so too has the region of

diphoton invariant mass (mγγ) that can be probed. At the LHC experimental data is now

available up to scales of order 1 TeV, allowing for searches for new heavy resonances that

may decay to photon pairs [16, 17].

During Run II, the large data set will result in many measurements being performed

at a level of detail that demands exquisite theoretical predictions. Therefore, in addition

to the detailed experimental studies, the prompt and diphoton processes have received
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considerable theoretical attention. The next-to-leading order (NLO) calculations embodied

in the Jetphox [18] and Diphox [19] Monte Carlo codes have been extensively utilized in the

experimental literature. In addition to the NLO calculation of diphoton production, gg →
γγ contributions that are formally higher-order, but phenomenologically important, have

also been computed [20, 21]. However, existing 7 TeV analyses have already confirmed the

inadequacies of NLO calculations when confronted with data [11, 15]. Instead, much better

agreement is found with the recently-completed next-to-next-to Leading Order (NNLO)

calculation [22], that naturally subsumes the first gg → γγ contributions.

This calculation was made possible through the application of the QT -subtraction

procedure [23]. This procedure makes use of the known factorization properties at small

transverse momenta of the diphoton system to efficiently handle complications arising from

infrared singularities. Although a variety of other methods for regularizing and combin-

ing infrared singularities have been devised [24–26], and used to provide a suite of new

predictions for 2 → 2 hadron collider processes [27–32], the relative simplicity of the QT -

subtraction method is highly appealing [33–39]. The QT -subtraction method generates a

counter-term that regularizes the singularity as QT → 0 but is otherwise non-local; it also

naturally lends itself to implementation as a slicing method (“QT -slicing”). A promising

new development is a generalization of the QT -based methods, which were originally only

applicable to color-neutral final states, to new methods [40–42] based on Soft Collinear

Effective Field Theory (SCET) [43–47]. One of these methods [41, 42], based on the N -

jettiness global event shape [48], can in principle be applied to arbitrary processes [41, 49–

52]. In its implementation as a slicing method, the N -jettiness variable (τ) is used to split

the phase space into two regions. In the region where τ > τ cut at least one of the addi-

tional partons is resolved. Therefore the calculation contains only single unresolved limits

and is amenable to calculation using standard NLO techniques. For the second region,

where τ < τ cut, both partons can be simultaneously unresolved. In this region a factor-

ization theorem from SCET [48] is used to approximate the cross section to the desired

perturbative accuracy. This is a natural generalization of QT -subtraction, where a similar

reasoning applies when replacing τ with QT and SCET factorization with one based on the

Collins-Soper-Sterman formalism [53].

The aim of this paper is to present a new NNLO calculation of pp → γγ using the

N -jettiness slicing approach and compare it with the existing calculation of ref. [22]. Given

its importance for Run II phenomenology an independent calculation is crucial. In fact we

will find that we cannot reproduce the results of the literature and we believe that existing

results for this process are inaccurate. This underlines the need for multiple independent

calculations of processes such as this one that are of great importance for existing and future

experimental analyses. We investigate the role of higher-order effects to the gg initiated

closed loops of quarks, and combine this prediction with NNLO for the first time. We will

also investigate the role of top quark loops at high invariant masses. Our calculation is

implemented in MCFM [54–56] and will be released in a forthcoming version of the code.

We continue this paper by outlining the various component pieces of our calculation in

section 2. In section 3 we compare our predictions to existing results from the literature and

discuss the checks we performed on our calculation. In section 4 we turn our attention to
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Figure 1. Representative Feynman diagrams for the calculation of pp → γγ at NNLO. From

left to right these correspond to double virtual (calculated in ref. [57]), real-virtual and real-real

corrections.

LHC phenomenology, comparing our predictions to data obtained by the CMS experiment

at 7 TeV, and to the mγγ spectrum reported by ATLAS at 13 TeV. Finally, we draw our

conclusions in section 5. Appendices A, B and C contain additional technical details of our

calculation.

2 Calculation

In this section we present an overview of our calculation of diphoton production at NNLO

and discuss the various contributions that are included in this paper. Before going into

detail we introduce the following notation

σNLOγγ = σLO + ∆σNLO ,

σNNLOγγ = σNLO + ∆σNNLO = σLO + ∆σNLO + ∆σNNLO . (2.1)

In this way ∆σX represents the correction obtained from including the coefficient that first

arises at order X in perturbation theory. We use this notation both inclusively (as written

above) and for differential predictions.

2.1 Overview

We present representative Feynman diagrams for the various topologies that enter the

calculation of the pp → γγ process at NNLO in figure 1. At this order in perturbation

theory contributions arise from three distinct final states. The simplest is the one that also

represents the Born contribution and corresponds to a 2 → 2 phase space. At NNLO this

final state receives corrections from two-loop amplitudes interfered with the LO amplitude,

and one-loop squared contributions. The 2 → 3 real-virtual phase space consists of tree-

level and one-loop amplitudes for qqgγγ interfered with one another. Finally the largest

phase space, representing a 2→ 4 process, is referred to as the double-real contribution and

consists of two tree-level qqγγ+ 2 parton amplitudes squared. The contributions discussed

above have ultraviolet (UV) poles in the double-virtual and real-virtual phase spaces, which

we renormalize in the MS scheme. Amplitudes for the double-virtual contribution can be

found in ref. [57], for the real-virtual in ref. [58], and tree-level amplitudes for the real-real

can be found in ref. [59].

After UV renormalization the individual component pieces of the calculation still con-

tain singularities of infrared (IR) origin. These infrared poles must be regulated, made

manifest, and combined across the different phase spaces in order to ensure that a sensible
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Figure 2. Representative Feynman diagrams for the calculation of gg → γγ at LO (top left) and

NLO (the remainder). The virtual two-loop corrections are shown in the top right, while the bottom

row corresponds to real radiation contributions.

prediction is obtained. As discussed in the introduction, we will use the N -jettiness slicing

technique proposed in refs [41, 42] for this task. This results in an above-cut contribu-

tion corresponding to the calculation of pp → γγj at NLO. The below-cut contribution

requires 2-loop soft [60, 61] and beam [62] functions, together with the process-dependent

hard function. Various component pieces of this calculation, including explicit results for

the hard function, are given in appendix A

2.2 gg initiated loops at LO and NLO

The NNLO calculation of γγ production represents the first order in perturbation theory

that is sensitive to gg initial states. One class of gg configurations corresponds to real-real

corrections, i.e. the gg → qqγγ matrix element that is related to the contribution shown in

figure 1 (right) by crossing. These pieces are combined with contributions from the DGLAP

evolution of the parton distribution functions in the real-virtual and double-virtual terms

to ensure an IR-finite result. The second type of contribution is due to nF “box” loops, for

which a representative Feynman diagram is shown in the top left corner of figure 2. This

contribution has no tree-level analogue and is thus separately finite.

The box diagrams result in a sizeable cross section (≈ σLO), primarily due to the large

gluon flux at LHC energies and the fact that this contribution sums over different quark

flavors in the loop. In this section, we focus on nF = 5 light quark loops. Since this

contribution is clearly important for phenomenology it is interesting to try to isolate and

compute higher order corrections to it. We illustrate typical component pieces of these

NLO corrections in the remaining diagrams in figure 2. They comprise two-loop ggγγ

amplitudes, and one-loop gggγγ and gqqγγ amplitudes. A NLO calculation of gg → γγ

including the two-loop and one-loop gggγγ amplitudes was presented in refs. [20, 21]. An

infrared-finite calculation can be obtained from the gg → γγ two-loop amplitudes and the

gggγγ one-loop amplitudes, provided that a suitable modification to the quark PDFs is used

(essentially using a LO evolution for the quark PDFs and a NLO evolution for the gluon

PDFs). On the other hand if the qqgγγ amplitudes are included then the corresponding

collinear singularity can be absorbed into the quark PDFs as normal at NLO, allowing
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Figure 3. The ratio of the invariant mass distribution in gg → γγ computed using five light flavors

and the effect of the top quark, to the calculation with nF = 5 alone. The dashed line shows the

ratio of the result for nF = 6 to the one for nF = 5 that corresponds to eq. (2.2).

for a fully consistent treatment. In the original calculation [20, 21] (and the corresponding

implementation in MCFM [55]) the first approach was taken. Here we will follow the second

approach and include the qqgγγ amplitudes. Although formally an improvement, we find

that the differences between the two approaches are negligible. Most of the required qqgγγ

amplitudes can be found in ref. [58]. However, since that paper was concerned only with

the NLO predictions for the γγj process, it did not include the one-loop amplitude that

interferes with a vanishing tree-level term. In the calculation presented here this purely-

rational amplitude is squared and therefore must be properly included. For completeness

we present this missing amplitude in appendix C.

Since the NLO corrections to the gg initiated diagrams form a part of the N3LO

cross section but do not represent a full calculation at that order, we define the additional

cross section associated with them as ∆σN3LO
gg,nF

. The subscript indicates that they are

associated with gg initiated closed loops of quarks. Although by no means a complete

O(α3
s) prediction, it is possible that the ∆σN3LO

gg,nF
contribution forms a sizeable part of this

correction. The impact of these terms will be discussed at length in section 4.

2.3 Impact of the top quark at high mγγ

The previous subsection outlined the calculation of gg loops for nF = 5 light quarks. While

this is an excellent approximation for low invariant mass photon pairs, at higher energies

this is no longer appropriate due to contributions from top quarks circulating in the loop.

Current searches for physics beyond the Standard Model are sensitive to regions of large

invariant mass mγγ > 2mt, so it is essential to quantify the role of the top quark in this

region of phase space. This is the primary aim of this section. To that end we have

computed the amplitudes for gg → γγ that proceed through a closed loop of heavy quarks,

and include details of the calculation in appendix B.

We will perform a detailed phenomenological study of the high invariant mass region

in section 4, but to illustrate the importance of the top quark loop we assess its impact on

the relevant invariant mass spectrum in figure 3. The results have been obtained for the

LHC operating at 13 TeV and under fiducial cuts inspired by the ATLAS collaboration [16]
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that are described in section 4. We show the ratio of the result with nF = 5 light flavors

(for the gg initiated pieces only) and the top quark loop included, to the result for nF = 5

light flavors alone. There is a slight decrease in the prediction below the 2mt threshold, due

to the effects of a destructive interference, then a steady rise to an asymptotic value. This

asymptotic value is of course the result for nF = 6 light quark flavors (without including

any modification to the running of αs) and is simply given by,

σgg(nF = 6)

σgg(nF = 5)
=

(
3Q2

u + 3Q2
d

2Q2
u + 3Q2

d

)2

= 1.8595 . . . (2.2)

2.4 Summary

In this section we have presented an overview of the various component pieces of our calcu-

lation. For the bulk of this paper we will define our NNLO calculation to only account for

five light flavors of quarks. Unless otherwise stated we do not include the NLO corrections

to the gg initial state that have been discussed in section 2.2. Instead we refer to these

pieces always as σNNLO + ∆σN3LO
gg,nF

. Our default scale choice for the renormalization and

factorization scales will be µ = mγγ . We estimate the theoretical uncertainty by varying

this central scale by a factor of two in each direction, i.e. µ = 2mγγ and µ = 0.5mγγ . This

variation will be indicated by shaded bands in the figures of section 4.

3 Validation

In this section we compare our results for pp → γγ with those presented in ref. [22]. A

summary of cross-sections that have been computed in that work is shown in table 1. To

emulate their calculation we impose a series of phase space selection cuts. The cuts on

the transverse momenta of the photons depend on their relative size, phard
T > 40 GeV

and psoft
T > 25 GeV. The photons are also required to be central, |ηγ | < 2.5 and in

addition we require that the invariant mass of the photon-photon system lies in the interval

20 ≤ mγγ ≤ 250 GeV. Finally at NLO and NNLO we impose the following isolation

requirement [63]

EhadT (r) ≤ εγpTγ
(

1− cos r

1− cosR

)n
, (3.1)

with n = 1, εγ = 0.5 and R = 0.4. We use α = 1/137 and the remaining EW parameters

are set to the default values in MCFM. The PDFs are taken from MSTW2008 [64] and

are matched to the appropriate order in perturbation theory. The renormalization and

factorization scales are mostly set to the invariant mass of the photon pair µF = µF = mγγ ,

although we will also present results for µF = µR = mγγ/2 and µF = µR = 2mγγ .

The results that we obtain from our implementation in MCFM are presented in table 2

and should be compared with the results from ref. [22] that are shown in table 1. Whilst

our LO and NLO predictions are in good accord, we find no such agreement for the NNLO

cross sections, for any of the choices of scale. The discrepancy is approximately 3pb, or

around 8% of the total NNLO prediction. However we do note that the size of the scale

variation, i.e. the departures from the central choice, is the same for both calculations.
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σ[fb] LO NLO NNLO

µF = µR = mγγ/2 5045 ± 1 26581 ± 23 45588 ± 97

µF = µR = mγγ 5712 ± 2 26402 ± 25 43315 ± 54

µF = µR = 2mγγ 6319 ± 2 26045 ± 24 41794 ± 77

Table 1. Cross sections reported in ref. [22].

σ[fb] LO NLO NNLO

µF = µR = mγγ/2 5043 ± 1 26578 ± 13 42685 ± 35

µF = µR = mγγ 5710 ± 1 26444 ± 12 40453 ± 30

µF = µR = 2mγγ 6315 ± 2 26110 ± 13 38842 ± 27

Table 2. Cross section results obtained using MCFM. The NLO contribution is always computed

using Catani-Seymour dipole subtraction; the NNLO coefficient corresponds to the τ → 0 limit of

a calculation using N -jettiness regularization (cf. figure 5). In the NNLO calculation the errors are

obtained by adding the fitting and NLO Monte Carlo uncertainties in quadrature.

Since we therefore do not agree with the essential results of the existing literature we

now describe the further checks that we have performed on our calculation. Several of

the ingredients for the below-cut contribution have been reused from previous calculations

where good agreement with the literature results was obtained. Specifically, the soft and

beam functions have already been used to compute the Drell-Yan and associated Higgs

production processes [52, 65]. The MCFM predictions for these cross sections agree per-

fectly with the known results from the literature. The remaining below-cut contribution,

the hard function, has been implemented in two independent codes that check both the

SCET matching and the proper inclusion of the double-virtual results of ref. [57].1 Addi-

tionally we have checked that by setting µ2 = s, and implementing the hard function for a

specific scale, we can reproduce the full result by application of the renormalization group

equations. This test is extremely non-trivial since the µ2 dependence occurs both in the

finite functions taken from ref. [57] (in their notation, a dependence on S) and also in the

matching to the SCET formalism. This check therefore ensures that no mistakes are made

in the relative normalization between the two parts of the hard function calculation. For

the gg → γγ pieces we have reproduced the results of refs. [20, 21], which were implemented

previously in MCFM [55]. For the above-cut pieces we have compared our NLO prediction

for γγj with the results presented in ref. [66], finding agreement for the isolation procedure

used here (“smooth-cone”). We have also checked the analytic calculation of the helicity

amplitudes for the real and virtual contributions to γγj production against an in-house

implementation of the numerical D-dimensional algorithm [67].

In order to eliminate the N -jettiness slicing procedure as a cause of the difference, we

have also implemented QT -slicing in MCFM.2 This implementation has been additionally

1We have adjusted the results of ref. [57] to account for small typos in the manuscript, as detailed in

appendix A.
2The QT -slicing method is based on the same factorization and ingredients that were used in the previous

QT -subtraction calculation [23].

– 7 –



J
H
E
P
0
7
(
2
0
1
6
)
1
4
8

▲ ▲ ▲
▲

μ=�γγ
δ���=��

���

δ���=τ���

��-� ����� ����� �����

����

����

����

����

����

δ��� [���]

σ
�
�
�
(δ
��
� )
/σ
�
�
�
�
�

Figure 4. The dependence of the NLO cross section on the slicing parameter δcut. Results are

presented using the N -jettiness (circles) (δcut ≡ τ cut) and QT -slicing (triangles) (δcut ≡ Qcut
T )

methods. In both cases the results are normalized to the standard MCFM prediction obtained with

Catani-Seymour dipole subtraction, which does not have a slicing parameter dependence.

checked, for large values of Qcut
T , with a calculation using a completely different setup.

The alternate QT -slicing calculation is implemented using the Sherpa framework [68] and

uses the OpenLoops [69] and BlackHat [70–72] programs to evaluate the above-cut matrix

elements. An obvious cause for concern in either of these slicing-based methods is the

dependence on the regulating parameter. When comparing our predictions it is therefore

crucial to investigate the dependence of them on this unphysical slicing parameter, either

τ cut or Qcut
T as appropriate.

As a point of reference, we first study the dependence of the total NLO cross section

on the slicing parameter in figure 4. To assess the agreement with the known result,

we divide the results of these calculations with the one obtained from the existing NLO

calculation of MCFM. This implementation of the pp → γγ process [55] uses Catani-

Seymour dipoles [73] to regulate the infrared divergences and thus contains no dependence

on a slicing parameter. The figure indicates that the slicing results approach the correct

cross section, with deviations in the cross section that are O(0.1)% and smaller for τ cut .
0.002 GeV or Qcut

T . 0.04 GeV. This agreement is an additional check of the correctness of

the NNLO calculation since the one-loop hard function is also used there.

Although the effect of power corrections appears to be milder for QT -slicing than N -

jettiness regularization, by around a factor of 20, we note that the computational resources

required to perform the calculations at these two points is similar. The resources needed

for a computation of a given accuracy is dominated by the calculation of the above-cut

contribution, which scales as [42, 74],

∆σN
nLO(τ > τ cut)/σLO ∼ 1

n!

(
αsCF
π

)n
log2n τ

cut

Q
+ . . . (3.2)

for the N -jettiness calculation. In this equation Q is an appropriate hard scale that is given

here by the transverse momentum of the photons. A similar analysis for QT -slicing yields

the result [75],

∆σN
nLO(QT > Qcut

T )/σLO ∼ 1

n!

(
2αsCF
π

)n
log2n Q

cut
T

Q
+ . . . (3.3)
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Figure 5. The dependence of the NNLO coefficient ∆σNNLO on the slicing parameter δcut. Results

are presented using the N -jettiness (δcut ≡ τ cut) (circle) and QT -slicing (triangles) (δcut ≡ Qcut
T )

methods. The dashed lines correspond to the errors associated with the fitting procedure.

Therefore one expects similar computational effort for the two methods when the values of

τ cut and Qcut
T are related by [74],

τ cut

Q
'
(
Qcut
T

Q

)√2

. (3.4)

For Q = 40 GeV one therefore expects the NLO calculation using Qcut
T = 0.04 GeV to be

as expensive as the one with τ cut = 0.0023 GeV.

Figure 5 shows the δcut dependence for the NNLO coefficient, ∆σNNLO (cf. eq. (2.1)).

It is clear that the dependence is much more pronounced than at NLO. To achieve a

1% accuracy for ∆σNNLO requires a value of τ cut around 0.002 GeV or Qcut
T smaller than

about 0.02 GeV. Once again power corrections are less significant for QT -slicing, but the

computing time to achieve equivalent accuracy is comparable in both methods. This is in

line with the scaling expected from eq. (3.4). The NNLO results reported in table 2 are

obtained from the asymptotic τ → 0 results obtained by a fit to the τ cut dependence that

is represented by the solid red line in figure 5. We observe that for values of Qcut
T around

1 GeV there is a a local maximum in the NNLO coefficient, which could be mistaken for

the onset of asymptotic behavior.

We have communicated our findings with the authors of ref. [22], who have acknowl-

edged a problem with their results presented in ref [22]. The updated version of their code

produces results that are consistent with ours, within Monte Carlo uncertainties.

4 LHC phenomenology

In this section we present results that are relevant for current LHC phenomenology. We

first investigate the comparison of our calculation with existing data taken by the CMS

experiment with the LHC operating at
√
s = 7 TeV. Although such comparisons have

already been performed, we believe that this is especially important given the disagreement

with the previous NNLO calculation noted in section 3. Additionally, we are able to

make the first comparison of the data to a theory prediction that includes both NNLO

– 9 –
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and ∆σN3LO
gg,nF

. We then turn our attention to more recent data taken at
√
s = 13 TeV and

concentrate on the region of high invariant mass of the diphoton pair, which is relevant for

searches for new physics. This region of phase space is particularly interesting given the

recent observations of excesses in the data at around 750 GeV [16, 17]. For the remainder of

this paper we will use the NNLO CT14 PDF set [76] for all predictions (NNLO, NLO, and

∆σN3LO
gg,nF

). The NLO (and ∆σN3LO
gg,nF

) contributions are computed using dipole subtraction

and the NNLO coefficients use jettiness regularization with a value of τ cut = 0.002 GeV.

From the studies of section 3 we expect this to give us control of the power corrections at

the few per-mille level in the total cross-section. We maintain the EW parameters from

the previous section, namely α = 1/137.

4.1 pp → γγ as a probe of hard QCD

As a benchmark we take the recent study by CMS at 7 TeV [15]. In order to mimic the cuts

applied in the experimental analysis we enforce the following phase space selection cuts,

pγ,hard
T > 40 GeV, pγ,soft

T > 25 GeV ,

|ηγ | < 2.5 omitting the region, 1.44 < |ηγ | < 1.57 ,

Rγγ > 0.45 .

Note that the small slice of rapidity that is excluded is due to the design of the CMS

detector. In addition we apply isolation cuts to the photon using the smooth cone pre-

scription [63] that does not require an implementation of photon fragmentation. As part of

their study CMS compared various smooth cone implementations to that of Diphox, which

includes the fragmentation contribution, ultimately employing the following isolation pre-

scription,

Eiso
T (∆R) < ε

(
1− cos ∆R

1− cosR0

)n
, (4.1)

with ε = 5 GeV, R0 = 0.4 and n = 0.05. The rather low value of n results in a fairly weak

damping of the collinear singularity present in the calculation as ∆R → 0. Therefore at

the cost of deviating from the isolation requirement outlined in ref. [15], we instead use the

following definition,

Eiso
T (∆R) < εγp

γ
T

(
1− cos ∆R

1− cosR0

)n
, (4.2)

with εγ = 0.1 and n = 2. We have tuned the values of εγ and n such that our NLO

smooth cone cross section agrees with the theory prediction obtained at NLO with the CMS

isolation experimental requirement and GdRG fragmentation functions [77]. Choosing such

a value of n results in a much more efficient Monte Carlo code. A related study of photon

plus jets [71] drew similar conclusions. We do not believe that the difference in isolation

is a particular cause for concern [58], especially since the cross section has been tuned to

a NLO calculation that includes the effects of fragmentation. In principle, the isolation

procedure used by CMS in their theory predictions could be chosen in MCFM, but the
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Figure 6. The pp → γγ cross section at various orders in perturbation theory, as a function of

the LHC operating energy,
√
s. Acceptance cuts have been applied, as described in the text. Also

shown is the CMS measurement, under the same set of cuts, at 7 TeV [15].

calculation of the corresponding NNLO corrections would require significantly more Monte

Carlo statistics to evaluate, with little additional benefit.

We begin by comparing the total cross section as measured by CMS to our prediction

using MCFM. The value reported by CMS is,

σCMS = 17.2± 0.2 (stat)± 1.9 (syst)± 0.4 (lumi) pb , (4.3)

while our NNLO prediction is

σNNLO = 16.1+0.5
−0.8 (scale) pb . (4.4)

Thus, within the theoretical and experimental uncertainties, the two are in good agreement.

Including the NLO corrections to the gg initiated pieces raises the theoretical prediction

by around 7%,

σNNLO + ∆σN3LO
gg,nF

= 17.3+0.8
−0.9 (scale) pb . (4.5)

Since we do not include the full N3LO prediction we do not obtain any improvement in

the scale variation when including the gg box contributions at NLO.

As a brief aside, in figure 6 we show the cross section computed at higher center of

mass energies, from the 7 TeV result discussed above to the highest design energy of the

LHC, 14 TeV. In the figure we include the cross sections computed at LO, NLO, NNLO

and NNLO+gg boxes at NLO. As the order in perturbation theory increases there are

sizeable corrections. Going from LO to NLO the cross section increases by around a factor

of 4. The corrections going from NLO to NNLO are around 1.5. Including the additional
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Figure 7. The invariant mass of the photon pair mγγ at NLO and NNLO, compared with the CMS

data from ref. [15]. The pure NNLO prediction is shown in the left panel, while the result that also

includes gg nF contributions that enter at N3LO is depicted in the right panel. The lower panels

present the ratio of the data and NNLO scale variations to the NNLO theory prediction obtained

with the central scale.

gg contributions at NLO increases the cross section by about a further 10%. At the 13 TeV

LHC the difference between σNNLO and σNNLO + ∆σN3LO
gg,nF

is still similarly relevant and it

is entirely possible that a measurement will prefer one value over the other. Note that it is

not trivially true that σNNLO+∆σN3LO
gg,nF

is a better prediction than σNNLO since the former

is not a complete N3LO calculation. The missing pieces are not positive definite, and may

reduce the cross section such that σN3LO lies completely within the uncertainty bands of

the NNLO calculation. It will be interesting to compare the measured cross sections at

13 TeV and 14 TeV to the two predictions to see if indeed σNNLO + ∆σN3LO
gg,nF

does a better

job of describing the data than σNNLO alone.

We now turn our attention to more differential quantities, namely the invariant mass of

the photon pair, mγγ (figure 7), the transverse momentum of the γγ system, pγγT (figure 8),

and the azimuthal angle between the two photons, ∆φγγ (figure 9). We note that, of these

predictions, only mγγ is non-trivial at LO since the back-to-back nature of the kinematics

at LO means that pγγT = 0 and φγγ = π. Such distributions that are trivial at LO are

particularly sensitive to higher order corrections. In the bulk of the phase space they first

appear at one order higher in αs than the total inclusive cross section. Sadly, most of the

distributions made publicly available by the experimental collaborations suffer from this

problem. It would be interesting to additionally compare true NNLO observables, such as

the transverse momenta and rapidities of the photons, in future analyses at higher energies.

We now examine the predictions for the invariant mass of the photon pair shown in

figure 7 in more detail. Note that the transverse momentum cuts on the photons requires
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Figure 8. As for figure 7, but for the transverse momentum of the photon pair, pγγT .

mγγ > 80 GeV at LO, so that the region of this distribution below that value is particularly

sensitive to higher order corrections. For all of the figures described here, the plots on

the left hand side are obtained using a pure NNLO prediction, while those on the right

represent the prediction obtained with the inclusion of the ∆σN3LO
gg,nF

contributions. The

NNLO prediction does a good job of describing the data obtained by CMS, although the

central values are typically a little on the low side compared to data. The situation is

improved in the right hand plot, after inclusion of the ∆σN3LO
gg,nF

pieces. In particular in the

region around 80 . mγγ . 150 GeV the prediction follows the shape of the data a little

more closely.

In figure 8 we turn our attention to the pγγT spectrum, using the same style as for the

mγγ plots. The pure NNLO prediction again describes the data very well, even in the

very soft pγγT < 10 GeV region of phase space. Including the gg pieces at NLO improves

the agreement with data in the region pγγT > 10 GeV. In the soft region of phase space

it is difficult to argue that the inclusion of the additional pieces improves the agreement

with data. This is understandable since the softest bins are described only after a delicate

cancellation between the various real and virtual pieces of the calculation. By only including

a subset of the N3LO calculation we are unlikely to improve this bin. However in the bulk

of the phase space we are typically interested in the types of correction that are sensitive to

the staggered phase space cuts. This is exactly the places where we expect the gg → γγg

contribution to be important. By including these pieces we therefore do a better job of

describing the data.
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Figure 9. As for figure 7, but for the azimuthal angle between the two photons, ∆φγγ .

The situation with the ∆φγγ distribution is similar. The NLO prediction for this

observable does a very bad job of describing the CMS data. However by including the

NNLO corrections we get much closer to the data, whilst still observing deviations from

the experimental data of order 20%. Thus, this observable clearly requires at least a full

N3LO prediction to match the experimental data. However, our partial prediction does not

do much better. Again we are exposed to the LO phase space sensitivity in the bins around

π where it is entirely possible that reasonably large corrections from the three-loop triple

virtual and real-double virtual may drive the theoretical prediction down towards the data.

4.2 Studies of γγ at high invariant masses

One of the most interesting phenomenological aspects of the diphoton production channel

during Run II at the LHC is its ability to search for new resonances that may manifest

themselves in the mγγ spectrum. In particular a recent observation of an excess around

750 GeV in the ATLAS experiment [16], with a smaller excess in the same region reported

by CMS [17], has caused considerable excitement in the theoretical community. In these

analyses the Standard Model background is accounted for by using a data-driven approach

that fits a smooth polynomial function to the data across the entire mγγ spectrum. A

resonance might then be observed as a local excess in this spectrum, deviating from the

fitted form. Although well-motivated, one might be concerned that the spectrum may not

be correctly modeled at high energies, where there is little data, and that small fluctuations

could unduly influence the form of the fit and result in misinterpretation of the data. Such

worries could be lessened by using a first-principles theoretical prediction for the spectrum

and it is this issue that we aim to address in this section.

As a concrete example, we will produce NNLO predictions for the invariant mass

spectrum at high energies using cuts that are inspired by the recent ATLAS analysis [16].
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Figure 10. The ratio of various different theoretical predictions to the NNLO nF = 5 differential

cross section. The different predictions correspond to: the inclusion of the top quark gg → γγ

box diagrams (green), the ∆σN3LO
gg,nF

correction (red) and the ∆σN3LO
gg,nF

and the top boxes with the

∆σN3LO
gg,nF

correction re-scaled by the ratio K(mt) described in the text (blue).

Specifically, these are:

pγ,hard
T > 0.4mγγ , pγ,soft

T > 0.3mγγ ,

|ηγ | < 2.37, excluding the region, 1.37 < |ηγ | < 1.52. (4.6)

We will only be interested in the region mγγ > 150 GeV, so these represent hard cuts on the

photon momenta. The small region of rapidity that is removed corresponds to the transition

from barrel to end-cap calorimeters. We maintain the same isolation requirements as the

previous section, which again differs slightly from the treatment in the ATLAS paper.

Our first concern is to address the impact of the gg pieces at NLO, represented by

the contribution ∆σN3LO
gg,nF

defined previously, and the contribution of the top quark loop.

We summarize our results in figure 10, in which we present several different theoretical

predictions, each normalized to the the default NNLO prediction with 5 light flavors. The

first alternative is one in which the NNLO prediction is augmented by the inclusion of

the top loops, i.e. the gg contribution corresponds to σgg(mt + 5lf ) in the notation of sec-

tion 2.3. In the second prediction we use the result for five light flavors but add the NLO

corrections to the gg channel, i.e. the term ∆σN3LO
gg,nF

. For the final alternative we include

the top quark loop contribution and attempt to account for the NLO corrections to all gg

loops by rescaling the ∆σN3LO
gg,nF

result by a factor K(mt) that is given by,

K(mt) =
σgg(5`f +mt)

σgg(5`f )
. (4.7)

This collection of predictions covers a range of theoretical options that may extend the

NNLO predictions described in the previous sections. The top loops, illustrated by the
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green curve in the figure typically represent around a 1% effect across the invariant mass

range of interest. For mγγ < 2mt there is a destructive interference, which reduces the cross

section, whilst at higher energies there is a small enhancement. Therefore, although the top

loops are an important contribution in terms of the nF box loops (as shown in section 2),

they are not particularly important in the total rate. At this order the gg pieces reside in

the Born phase space, which is particularly impacted by the staggered cuts at high mγγ .

As we found in the previous section the effects of the NLO corrections to the gg pieces

are larger, however their effects are much more pronounced at lower invariant masses. By

the time invariant masses of order 500 GeV are probed, the corrections are 2% or smaller.

The attempt to model the combined effect of corrections to both the light-quark and top

quark loops shows, as expected, the largest deviations from the NNLO(5`f ) prediction.

However the deviations are still of order 3% or smaller in the high invariant mass region.

Therefore, although the corrections to the gg loops and the effect of the finite top quark

mass can have about a 6% effect at invariant masses around 200 GeV, the effect at higher

masses is somewhat smaller. Since we aim to compare the ATLAS data, which is not

corrected for fakes or identification efficiencies, to our parton-level prediction we are not

concerned about effects at this level. As a result we will simply use the most consistent

prediction,3 corresponding to NNLO(5`f ), for comparison with the fitting function used

by ATLAS.

We compare our NNLO prediction to the ATLAS data in figure 11. We note that

to properly compare our prediction to the data requires knowledge of both the fake rate

and the photon efficiencies and acceptance corrections of the ATLAS detector. To try to

minimize the impact of such corrections we simply compare the shape of the ATLAS data

to the shape of our NNLO prediction, i.e. we normalize our prediction to 1/σNNLO and the

ATLAS data to 1/Nevents. From this comparison we can draw several conclusions. First,

we note that our prediction is in excellent agreement with the overall shape of the data,

indicating that the theoretical prediction for the shape of the mγγ distribution could easily

be used in place of the somewhat arbitrary fitting functions currently employed. Second,

the excellent agreement in shape suggests either a low number of fakes, or that the fake

events are distributed with a similar shape to the Standard Model prediction for the γγ

spectrum. Of course a combination of these two explanations is also possible. Finally, and

most excitingly, a comparison to the fitting function presented in ref. [16] illustrates that

there is no significant hardening from the prediction of the SM compared to the form of the

fitting function used in the ATLAS experiment. This can clearly be seen upon comparison

with figure 1 in ref. [16]. For instance, both the ATLAS fit and our NNLO prediction

pass directly through the data in the 1090 GeV bin, and just under the central value in

the 690 GeV bin. Therefore we can conclude that the interpretation of an excess of events

around 750 GeV appears to be supported by a first-principle calculation within the SM. It

is not diluted by a hardening of the SM spectrum relative to the fitting function used in

the analysis. If the excess is confirmed, NNLO predictions for the shape of the irreducible

3This is because a consistent inclusion of the effect of top quark loops would require alterations to the

running of αs and additional top quark loops in the qqgγγ one-loop amplitude.
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Figure 11. The rate-normalized shapes of the mγγ distribution from the ATLAS collaboration

and the MCFM NNLO prediction for µ = mγγ . The lower panel indicates the ratio of the data to

the NNLO prediction.

background will be able to significantly enhance analyses designed to discriminate between

different model hypotheses, by providing predictions for the properties of background events

that cannot be captured by a simple spectrum fit.

5 Conclusions

The process pp→ γγ is a flagship process for Run II phenomenology. Besides its intrinsic

interest as a tool to understand the perturbative nature of QCD at high energies, it repre-

sents an important background in studies of the Higgs boson that are a cornerstone of the

Run II physics program. In addition it is a clean and well-measured final state that can

be used in the search for new heavy resonances. Often these analyses require staggered

photon transverse momentum cuts that induce large corrections at higher orders in per-

turbation theory. Essentially the NLO prediction behaves like a LO prediction since the

staggered cuts are first accessible at this order. This therefore necessitates the inclusion

of NNLO corrections to capture the corrections to the rate in this larger phase space and

hence adequately describe data.

In this paper we have presented a NNLO calculation of the process pp→ γγ and stud-

ied the phenomenology of this process at the LHC. We have used the recently-developed
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N -jettiness slicing procedure to manage the infrared singularities present in the NNLO

calculation and have implemented the calculation into the Monte Carlo MCFM. The cal-

culation will be made available in a forthcoming release of the code. Given the signficant

effect of the NNLO corrections to this process, our slicing procedure is subject to large

power corrections and care must be taken to ensure that a small enough value of the slic-

ing parameter is employed. We have compared our results to an existing calculation of the

same process and found that we could not reproduce the results present in the literature,

despite extensive testing and investigation. However we have communicated with the au-

thors of ref. [22] and believe that, after correction of a bug in their numerical code, their

results will be consistent with ours.

We have used our calculation to compare to data obtained at 7 TeV by CMS and to

13 TeV data collected by the ATLAS experiment. The latter is particularly exciting given

the excess reported in the data at around mγγ ∼ 750 GeV. We found that the shape of our

NNLO prediction does a good job of describing the experimental data, and simultaneously

has a good agreement with the fitting function used by the ATLAS collaboration. We

therefore do not expect further data at high energies to dramatically alter the form of the fit

used by the collaboration. Furthermore, we do not believe that the excess is due to the use

of a fitting function that underestimates the prediction of the SM at high invariant masses.
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A Ingredients for qq → γγ at NNLO

A.1 Below τ cut: hard function

The virtual matrix elements needed to compute qq → γγ to O(α2
s) accuracy can be found

in ref. [57]. In order to be utilized in N -jettiness slicing these results must be translated

into the form of a SCET hard function. This can be achieved using the procedure outlined,

for instance, in refs. [78, 79]. We begin by defining the UV-renormalized matrix element

as follows,

|Mqqγγ〉 = 4πα

[
|M(0)

qqγγ〉+
(αs

2π

)
|M(1)

qqγγ〉+
(αs

2π

)2
|M(2)

qqγγ〉+O
(
α3
s

)]
, (A.1)

where αs is the renormalized strong coupling, and α is the (bare) electromagnetic coupling.

The matrix elements are defined in terms of Mandelstam invariants s = (p1 + p2)2, t =

(p1 + p3)2 and u = (p1 + p4)2, with s + t + u = 0. For the process under investigation

p(−p1) + p(−p2)→ γ(p3) + γ(p4) we have s > 0 while t, u < 0. Following the notation of
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ref. [57] we define the matrix element squared as follows,∑
|M(q(−p1) + q(−p2)→ γ(p3) + γ(p4))|2 = Aqqγγ(s, t, u) . (A.2)

Expanding to O(α2
s) we define,

Aqqγγ(s, t, u) = 16π2α2

[
ALO
qqγγ(s, t, u) +

(αs
2π

)
ANLO
qqγγ (s, t, u)

+
(αs

2π

)2
ANNLO
qqγγ (s, t, u) +O(α3

s)

]
. (A.3)

In terms of the matrix elements defined above we have

ALO
qqγγ(s, t, u) = 〈M(0)

qqγγ |M
(0)
qqγγ〉 , (A.4)

ANLO
qqγγ (s, t, u) = 〈M(0)

qqγγ |M
(1)
qqγγ〉+ 〈M(1)

qqγγ |M
(0)
qqγγ〉 , (A.5)

ANNLO
qqγγ (s, t, u) = ANNLO(0×2)

qqγγ (s, t, u) +ANNLO(1×1)
qqγγ (s, t, u) . (A.6)

where

ANNLO(0×2)
qqγγ (s, t, u) = 〈M(0)

qqγγ |M
(2)
qqγγ〉+ 〈M(2)

qqγγ |M
(0)
qqγγ〉 , (A.7)

ANNLO(1×1)
qqγγ (s, t, u) = 〈M(1)

qqγγ |M
(1)
qqγγ〉 . (A.8)

The aim of this section is to re-write the above expressions in the SCET renormalized form,

which is obtained via the following re-definitions [78, 79]

|M(1),ren
qqγγ 〉 = |M(1),fin

qqγγ 〉+
(
I(1)(ε) +Z(1)(ε)

)
|M(0)

qqγγ〉 , (A.9)

|M(2),ren
qqγγ 〉 = |M(2),fin

qqγγ 〉+
(
I(1)(ε) +Z(1)(ε)

)
|M(1),fin

qqγγ 〉

+
(
I(2)(ε) +

(
I(1)(ε) +Z(1)(ε)

)
I(1)(ε) +Z(2)(ε)

)
|M(0)

qqγγ〉 . (A.10)

I(1)(ε) and I(2)(ε) are obtained via Catani’s IR-subtraction formula [80]. For the qqγγ

process under investigation here I(1)(ε) and I(2)(ε) are defined as follows

I(1)(ε) = −CF
eεγE

Γ(1− ε)

(
1

ε2
+

3

2ε

)(
µ2

−s

)ε
(A.11)

I(2)(ε) = −1

2
I(1)(ε)

(
I(1)(ε) +

β0

ε

)
+
eεγEΓ(1− 2ε)

Γ(1− ε)

(
γcusp

1

8
+
β0

2ε

)
I(1)(2ε) +H2

R.S.(ε) . (A.12)

In the above equation the H2
R.S.(ε) is a scheme dependent function, containing 1/ε poles

that for this process is defined as [80]4

H2
R.S.(ε) =

1

8ε

(
γq1 −

γcusp
1

4
γq0 +

π2

16
β0γ

cusp
0 CF

)
. (A.13)

4While not fully specified for general process in ref. [80], an all-orders form was derived in refs. [78, 79].
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H2
R.S.(ε) is thus defined in terms of the coefficients of the cusp anomalous dimension γcusp,

quark field anomalous dimension γq, and the β function, that are are given by,

γcusp
0 = 4,

γcusp
1 =

(
268

9
− 4π2

3

)
CA −

80

9
Tfnf , (A.14)

γq0 = −3CF ,

γq1 =

(
−3

2
+ 2π2− 24ζ3

)
C2
F + CFCA

(
−961

54
− 11π2

6
+ 26ζ3

)
+ CFTfnf

(
130

27
+

2π2

3

)
.

and

β0 =
11

3
CA −

4

3
Tfnf , (A.15)

Z is defined, for our process and order in perturbation theory as [78, 79]

Z(1)(ε) = − Γ′0
8ε2
− Γ0

4ε
, (A.16)

Z(2)(ε) =
(Γ′0)2

128ε4
+

3β0 + Γ′0 + 2Γ′0Γ0

64ε3
+

4β0Γ0 + 2Γ2
0 − Γ′1

64ε2
− Γ1

ε
. (A.17)

where

Γ′0 = −γcusp
0 (2CF ), (A.18)

Γ′1 = −γcusp
1 (2CF ), (A.19)

Γ0 = −CFγcusp
0 log

(
µ2

−s

)
+ 2γq0 , (A.20)

Γ1 = −CFγcusp
1 log

(
µ2

−s

)
+ 2γq1 . (A.21)

We can then define our hard functions in terms of the renormalized matrix elements as

follows,

ÃXqqγγ = AXqqγγ(M(i)
qqγγ →M

(i),ren
qqγγ ). (A.22)

For brevity we present the results obtained at µ2 = s; the full scale dependence may be

obtained by inspection of the distributed MCFM routines, or analytically by appropriate

usage of the renormalization group equations. The hard function for the NLO process is

given by

ÃNLO
qqγγ (s, t, u, µ2 = s) =

4CF
3tu

(
12 tu (X + Y +X2 + Y 2) (A.23)

+ u2
(
7π2 − 6(7− 3X −X2 − 2Y 2)

)
+ t2

(
7π2 − 6(7− 3Y − 2X2 − Y 2)

))
,

where we have introduced the following notation [57]

X = log

(
− t
s

)
, Y = log

(
−u
s

)
, (A.24)
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and at NNLO

ÃNNLO
qqγγ (s, t, u, µ2 = s) = F1×1

inite(µ
2 = s) + F2×0

inite(µ
2 = s)

− CACF
(t2 + u2)

54tu

(
−2764π2 + 75π4 + 396ζ3

)
− CFNF

4(t2 + u2)

27tu

(
56π2 − 9ζ3

)
+ C2

F

7π2

9

(
24
(
X +X2 + Y + Y 2

)
+
t

u

(
7π2 + 12

(
−7 + 2X2 + 3Y + Y 2

))
+
u

t

(
7π2 + 12

(
−7 + 3X +X2 + 2Y 2

)))
. (A.25)

The functions F1×1
inite and F2×0

inite are defined in eq. (5.3) and eq. (4.6) of ref. [57]. We have

adjusted the results of ref. [57] to account for a number of small typos in the manuscript,

two of which were also noted in ref. [81]. Firstly, we have altered the factor Γ(1−ε)/Γ(1−2ε)

in their eq. (3.13) to Γ(1−2ε)/Γ(1− ε). Secondly, the overall sign in equations (C.1), (C.2)

and (C.3) must be flipped. Finally, the dressing of the electroweak charges in their eq. (4.6)

is ambiguous. As written the whole of their eq. (4.6) is multiplied by the charge of the

quark present in the LO matrix element, Q4
j . However the first term in the equation, which

is associated with a closed loop of fermions, should only be dressed with a factor of Q2
j .

This point is not made explicitly clear in ref. [57] but is easily corrected.

A.2 Above τ cut

For τ > τ cut the calculation corresponds to an NLO calculation of the γγj process. An

implementation of this process and the γγγ process in the MCFM framework was pre-

sented in ref. [58]. We use the results of this calculation, which corresponds to an analytic

calculation using helicity amplitudes and D-dimensional unitarity methods to obtain our

above-τ cut pieces. We refer the interested reader to ref. [58] for more details.

B gg → γγ: mt loops

In this section we present the calculation of the gg → γγ process that proceeds through a

top-quark loop. We use the spinor helicity formalism to define our amplitudes, and refer

readers unfamiliar with the notation and conventions to one of the many comprehensive

reviews of the topic (for instance ref. [82]). Throughout our calculation of these amplitudes

we made frequent use of the Mathematica package S@M [83].

We define the partial amplitude for this process as follows,

A
(1),mt

4 (1h1g , 2
h2
g , 3

h3
γ , 4

h4
γ ) = 2Q2

t e
2α2

sδ
a1a2A(1),mt

4 (1h1g , 2
h2
g , 3

h3
γ , 4

h4
γ ) . (B.1)

The simplest amplitude corresponds to the case where all of the bosons have the same

helicity

A(1),mt

4 (1+
g , 2

+
g , 3

+
γ , 4

+
γ ) = 2

[12] [34]

〈34〉 〈12〉

(
1

2
−m4

t

(
I4(s13, s12,m

2
t )

+ I4(s14, s12,m
2
t ) + I4(s13, s14,m

2
t )
))

. (B.2)
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The next simplest case corresponds to either a single photon or single gluon having negative

helicity.

A(1),mt

4 (1+
g , 2

−
g , 3

+
γ , 4

+
γ ) = m2

t

(
〈12〉2 [31]2

〈14〉2
− 2m2

t

[31] [41] [43]

〈34〉 [32] [42]

)
I4(s13, s12,m

2
t )

+m2
t

(
〈12〉2 [41]2

〈13〉2
− 2m2

t

[31] [41] [43]

〈34〉 [32] [42]

)
I4(s14, s12,m

2
t )

+m2
t

(
[31]2 [41]2

[21]2
− 2m2

t

[31] [41] [43]

〈34〉 [32] [42]

)
I4(s13, s14,m

2
t )

+ 2m2
t

[31]

[21]

(
〈12〉 [31]

〈24〉2
− 〈23〉 [41]

〈13〉 〈34〉

)
I3(s13,m

2
t )

+ 2m2
t

[41]

[21]

(
〈12〉 [41]

〈23〉2
+
〈24〉 [31]

〈14〉 〈34〉

)
I3(s14,m

2
t )

− 2m2
t

(
〈12〉3 [21]

〈13〉2 〈14〉2
− 〈12〉 [31] [41]

〈14〉 〈13〉 [21]

)
I3(s12,m

2
t )

− [31] [41] [43]2

〈12〉 [21] [32] [42]
. (B.3)

The helicity amplitude for two negative helicity particles is

A(1),mt

4 (1−g , 2
−
g , 3

+
γ , 4

+
γ ) = m2

t

(
〈12〉 [43]2

[21]
− 2m2

t

[43]2

[21]2

){
I4(s13, s12,m

2
t ) + I4(s14, s12,m

2
t )

}

+

{(
s14s13 [43] (〈14〉 [32] [41]2 − 〈24〉 [31] [42]2)

2 〈12〉 [21]4

)

+m2
t

(
〈12〉 [43]2

[21]
− 4

s14s13 [43]2

〈12〉 [21]3
− 2m2

t

[43]2

[21]2

)}
I4(s13, s14,m

2
t )

+

(
−(〈14〉 [32] [41]2 − 〈24〉 [31] [42]2)

〈34〉 [21]2
+ 4m2

t

〈12〉 [32] [41]

〈34〉 [21]2

)

×
{
s14I3(s14,m

2
t ) + s13I3(s13,m

2
t )

}
+

(
〈24〉2 (s13 − s14) [43]

〈34〉3 [31]2

){
I2(s13,m

2
t )− I2(s14,m

2
t )

}
− 〈12〉3 [32] [41]

〈14〉 〈23〉 [21]2
. (B.4)

Due to the Bose symmetry of these amplitudes, and trivial color ordering, all remaining

helicity amplitudes can be obtained by applying the appropriate re-orderings and conjuga-

tion operations to those listed above. In the expressions above, the quantities I4(s, t,m2
t ),

I3(s,m2
t ) and I2(s,m2

t ) represent the zero mass box, one mass triangle and the bubble

integral, respectively. In all cases the internal propagators have a common mass, mt.
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In the notation of the QCDLoop library [84], which we use to evaluate the integrals,

I4(s, t,m2
t ) ≡ I4(0, 0, 0, s, t;m2

t ,m
2
t ,m

2
t ), I3(s,m2

t ) ≡ I3(s, 0, 0;m2
t ,m

2
t ,m

2
t )

and I2(s,m2
t ) ≡ I2(s;m2

t ,m
2
t ) . (B.5)

C Rational amplitudes for qqgγγ: nF loops

One of the components of the N3LO γγ contribution that we have computed consists of

the one-loop squared qqgγγ amplitudes. All of these amplitudes can be found in ref. [58],

with the exception of the q−q+g+γ+γ+ helicity assignment that does not contribute in that

calculation since it interferes with a vanishing tree-level amplitude.

We define the amplitude as in ref. [58], namely,

A(1)(1+
q , 2

−
q , 3

+
g , 4

+
γ , 5

+
γ ) =

√
2Q2

i

αs
2π
e2gs(T

a3
i1,i2

)Anf (1+
q , 2

−
q , 3

+
g , 4

+
γ , 5

+
γ ) . (C.1)

That is, we define our partial amplitude for a single loop of quarks of charge Qi. We

note that all closed-loop diagrams in which the photon is radiated from the final state

quark line vanish either due to Furry’s theorem (a single photon radiated from an external

qq) or proportionality to tadpole diagrams (two photons emitted from external qq). Our

amplitude of interest is then given by

Anf (1+
q , 2

−
q , 3

+
g , 4

+
γ , 5

+
γ ) = 2

〈23〉 〈45〉 [41] [53]− 〈24〉 〈34〉 [31] [54]

〈12〉 〈34〉 〈35〉 〈45〉 [21]
. (C.2)

As must be the case for any amplitude that vanishes at tree-level, the one-loop amplitude

is a rational function of the external momenta.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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