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1 Introduction

Superposition of quantum states and quantum entanglement are properties that distin-

guish quantum mechanics from any classical theory. Entangled states of a system cannot

be factorized into product of states of their respective subsystems. This feature clearly

exhibits the non-local nature of quantum mechanics. Moreover, entanglement resources

have became of interest since it is a key property in quantum information, quantum cryp-

tography and quantum computation [1–5]. Many proposals to generate entangled states in

systems of two-level atoms interacting with a bosonic field can be found in [6–9].

In the semiclassical theory the spontaneous emission of atoms is attributed to the

radiation reaction of an oscillating dipole. On the other hand, the quantization of the

electromagnetic field leads one to the concept of vacuum fluctuations. In fact, radiation

reaction and vacuum fluctuations provide complementary pictures for the interpretation of

spontaneous decay of atoms, depending of the particular ordering chosen for commuting

atomic and field operators [10, 11]. Here we assume a framework where the spontaneous

decay of atoms is only attributed to vacuum fluctuations effects.

By using time-dependent perturbation theory in first-order approximation, it can be

shown that the transition rate of an atom interacting with a quantized electromagnetic field

in the vacuum state is given by the Fourier transform of the positive frequency Wightman

function evaluated on the world line of the atom. In this framework, the probability of

transition per unit proper time of a two-level atom from an excited state to the lower-

energy state is induced by the vacuum fluctuation of the field on its world line [12–16].

Although radiative processes are forbidden for an inertial atom prepared in the ground

state interacting with the field in the Minkowski vacuum, for a more general trajectory the

asymptotic probability of transition can be different from zero. It is well known that an

atom moving with constant proper acceleration has a non-null asymptotic probability to

undergo a transition to the excited state. This is the Unruh-Davies effect [13, 14].

Since the fundamental work of Purcell and Kleppner on the enhancement and inhi-

bition of spontaneous transition rates of atoms inside a resonant cavity [17, 18], cavity
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quantum electrodynamics (CQED) have become an important research field for fundamen-

tal investigations and practical applications [19]. By using the techniques of CQED some

approaches have been realized in order to investigate accelerated atoms and the Unruh-

Davies effect in cavities [20, 21]. In turn, one can conceive a context in order to study

entangled atoms coupled with vacuum fluctuations confined in a cavity. Since the vacuum

fluctuations are affected by the presence of the boundaries, one should expect that the

atomic transition rates are modified in this scenario [22, 23].

In this paper, we are interested to analyze how the presence of boundaries affects ra-

diative processes of entangled states. Radiative processes of entangled states have been

systematically investigated in the literature. For a careful discussion about radiative pro-

cess of entangled states see [3–5]. In [24] the authors investigate the radiative processes

of emission from two entangled atoms coupled with an electromagnetic field in unbounded

space. A different scenario was discussed in [25]. These authors study the radiative pro-

cesses of entangled two-level atoms coupled individually to two spatially separated cavities.

The key point of this situation is that each atom indivually interact with vacuum fluctua-

tions inside of each cavity. One can imagine another scenario in which the two entangled

atoms interact with a scalar field defined inside only one cavity. It is interesting to ask how

the transition rates of entangled atoms are modified by the presence of boundaries [26].

The main purpose of the present work is to analyze quantitatively the effects of boun-

daries on the transition rates of entangled atoms. We assume two identical two-level atoms

coupled with a massless scalar field in Minkowski space-time. The organization of the pa-

per is as follows. In section II we discuss the Hamiltonian describing a system of entangled

atoms interacting with the scalar field. We present the spontaneous emission rate in empty

space. In section III we evaluate the transition rates of this system in the presence of an

infinite reflecting plane. In section IV we generalize our results to the case of two infinite

perfect reflecting planes. Conclusions and final remarks are presented in section V. In this

paper we use units ~ = c = kB = 1.

2 Transition rates for entangled atoms in empty space

Let us begin considering a single two-level atom coupled with a massless scalar field in

a four-dimensional Minkowski space-time [12, 15] . The atom follows an inertial world-

line x(τ), where τ is the atom’s proper time. The atom-field interaction is described

by the usual interaction Lagrangian gm(τ)ϕ[x(τ)], where g � 1 is a coupling constant

and m is the atom’s monopole moment operator. Suppose that the field is initially in

the Minkowski vacuum state |0M 〉 whilst the atom is in the state |ω0〉. By using time-

dependent perturbation theory in first-order approximation, one obtains the transition

probability amplitude to the final atom-field state |ω, φf 〉:

A|ω0,0M 〉→|ω,φf 〉 = ig 〈ω;φf |
∫ ∞
−∞

dτ m(τ)ϕ[x(τ)]|0M ;ω0〉. (2.1)

Within the interaction representation, one has

m(τ) = eiH0τm(0)e−iH0τ , (2.2)

– 2 –
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where H0 is the free Hamiltonian of the single atom. If we consider that |ω0〉 and |ω〉 are

stationary energy states of the atom, the probability of the atomic transition |ω0〉 → |ω〉,
for any final field configuration, is given by

P|ω〉→|ω0〉 = g2 |〈ω|m(0)|ω0〉|2 F (ω − ω0), (2.3)

where the response function reads

F (ω − ω0) =

∫ ∞
−∞

dτ

∫ ∞
−∞

dτ ′e−i(ω−ω0)(τ−τ ′)G+[x(τ), x(τ ′)]. (2.4)

In the above equation G+[x(τ), x(τ ′)] = 〈0M |ϕ(x)ϕ(x′)|0M 〉 is the positive frequency

Wightman function. The remaining factor in the right-hand side of eq. (2.3) represents the

selectivity of the atom which depends on the atomic internal structure.

Let us now investigate the case of two identical two-level atoms interacting with a

massless scalar field. For simplicity we assume that both atoms remain at rest and we

assume that there is not a direct interaction between them. We employ a similar procedure

as developed in ref. [4], namely the Hamiltonian consisting of these two uncoupled identical

two-level atoms can be suitably diagonalized and the resulting energies and corresponding

eigenstates of the two-atom system are given by [3, 4]

Ee = ω0 |e〉 = |e1〉|e2〉,
Ege = 0 |ge〉 = |g1〉|e2〉,
Eeg = 0 |eg〉 = |e1〉|g2〉,
Eg = − ω0 |g〉 = |g1〉|g2〉, (2.5)

where |g1〉 and |g2〉 are the ground states of the isolated atoms, and |e1〉 and |e2〉 are

the respective excited states. In the expressions above ω0 is the energy gap between the

individual atoms states. The eigenstates of eq. (2.5) are known as the product states

of two non-interacting atoms. Instead of working with this product-state basis, we can

conveniently choose the Bell state basis. In terms of the product states, one has:

|Ω±〉 =
1√
2

(|e1〉|g2〉 ± |g1〉|e2〉)

|Φ±〉 =
1√
2

(|g1〉|g2〉 ± |e1〉|e2〉) . (2.6)

The Bell states are known as the four maximally entangled two-qubit Bell states, and they

form a convenient basis of the two-qubit space. In view of the degeneracy associated with

the eigenstates |ge〉 and |eg〉, any linear combination of these degenerate eigenstates is

also an eigenstate of the atomic Hamiltonian corresponding to the same energy eigenvalue.

Therefore, the Bell states |Ω±〉 are eigenstates of HA. In this work we only consider the

entangled states |Ω±〉. Henceforth, we conveniently denote such Bell states as |Ω+〉 = |s〉
and |Ω−〉 = |a〉, with respective energies Es = 0 = Ea. This notation is to better highlight

the (anti)symmetric nature of the state (|a〉) |s〉.
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The interaction Lagrangian between each atom and the field is given by gm1(τ)ϕ[x1(τ)]

and gm2(τ)ϕ[x2(τ)]. These terms depend implicitly on each of the atomic world-lines,

x1(τ) and x2(τ). Here the operators m1 and m2 are the monopole moments of each

atom expressed in the extended Hilbert space of the two atoms, i.e., m1 = m ⊗ 12 and

m2 = 11 ⊗ m, m being the monopole moment operator of the isolated atoms. In order

to analyze the transition rates of system, let us assume that the field is in the Minkowski

vacuum state |0M 〉 and the two-atoms system is in a state |ω′〉. Then the transition

probability to the collective state |ω〉 for the atoms reads

P|ω′〉→|ω〉 = g2
[
|m(1)

ωω′ |2F11(∆ω) + |m(2)
ωω′ |2F22(∆ω)

+m
(1)
ωω′ m

(2)∗
ωω′ F21(∆ω) +m

(2)
ωω′ m

(1)∗
ωω′ F12(∆ω)

]
, (2.7)

where we have defined ∆ω = ω − ω′ and the matrix elements are given by

m
(1)
ωω′ = 〈ω|m⊗ 12|ω′〉

m
(2)
ωω′ = 〈ω|11 ⊗m|ω′〉. (2.8)

In eq. (2.7) we have considered that the states |ω〉 and |ω′〉 belong to the collective set

{|g〉, |a〉, |s〉, |e〉}, discussed above. Respectively ω and ω′ can be any of the atomic energies

{Eg, Ea, Es, Ee}. The corresponding response functions are given by

Fij(∆ω) =

∫ ∞
−∞

dτ

∫ ∞
−∞

dτ ′e−i∆ω(τ−τ ′)G+[xi(τ), xj(τ
′)], (2.9)

where i, j = {1, 2} and G+[xi(τ), xj(τ
′)] = 〈0M |ϕ(xi(τ))ϕ(xj(τ

′))|0M 〉. We see from

eq. (2.7) that the transition probability of the two-atoms system presents contributions

from the isolated atoms, F11 and F22, and also contributions due to cross-correlations be-

tween the atoms mediated by the field, F12 and F21. This interference is a consequence

of the interaction of each atom with the field. The information of the entangled state is

encoded in the matrix elements m
(i)
ωω′ , i = 1, 2. Let us discuss the transition probability

per unit proper time. For the general transition of the two-atom system from |ω′〉 to |ω〉,
we obtain the following transition rate

R|ω′〉→|ω〉 = g2
[
|m(1)

ωω′ |2F11(∆ω) + |m(2)
ωω′ |2F22(∆ω)

+m
(1)
ωω′ m

(2)∗
ωω′F21(∆ω) +m

(2)
ωω′ m

(1)∗
ωω′F12(∆ω)

]
, (2.10)

where the response function per unit time is defined as

Fij(∆ω) =

∫ ∞
−∞

d(∆τ)e−i∆ω∆τG+[xi(τ), xj(τ
′)], (2.11)

where ∆τ = τ − τ ′ and i, j = {1, 2}. Some remarks about the matrix elements given by

eq. (2.8) are in order. Since the monopole matrix of the i-th atom is defined as mi =

|ei〉〈gi| + |gi〉〈ei|, one can calculate the monopole matrix elements for specific transitions

|ω′〉 → |ω〉. The matrix elements that correspond to the transition from the symmetric

– 4 –
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Figure 1. Possible transitions for the two-atom system caused by field vacuum fluctuations. In

each transition is indicated the the matrix elements of the isolated monopole operators of the atoms

(m
(1)
ω′ω,m

(2)
ω′ω). For example, from above one sees that the transition |e〉 → |a〉 hasm

(1)
ae = −1/

√
2 and

m
(2)
ae = 1/

√
2. The direct transition |e〉 → |g〉 has null monopole matrix element, m

(1)
ge = m

(2)
ge = 0,

hence this transition is forbidden and is not represented in the diagram above.

entangled state to the ground state are m
(1)
gs = m

(2)
gs = 1/

√
2. For the transition from the

antisymmetric entangled state to the ground state one gets m
(1)
ga = −m(2)

ga = 1/
√

2. The

transition |e〉 → |g〉 is forbidden due to selection rules, since m
(1)
ge = m

(2)
ge = 0. All the

permitted transitions are depicted in figure 1.

The positive frequency Wightman function in Minkowski space-time for a massless

scalar field is given by [12]

G+[x, x′] = − 1

4π2

1

[(t− t′ − iε)2 − |x− x′|2]
, (2.12)

where the space-time points are x = (t,x) and we have introduced an infinitesimal positive

parameter ε to specify the singularities of the function. Since we consider that the atoms

remain at rest, they will follow inertial world lines xi(τ) = (τ,xi). In this way the space-

time interval between the atoms at different proper times is ∆x = x1(τ)−x2(τ ′) = (∆τ,d−),

where we have defined the relative position vector between the atoms as d− = x1 − x2.

Hence the Wightman functions in eq. (2.11) are given respectively by

G+[xi(τ), xj(τ
′)] = − 1

4π2

1

(∆τ − iε)2
, (i = j),

G+[xi(τ), xj(τ
′)] = − 1

4π2

1

[(∆τ − iε)2 − |d−|2]
, (i 6= j). (2.13)

The integrals in the right-hand side of eq. (2.11) and as well as some others that arise along

this work can be performed using the residue’s theorem. These are of the form

− 1

4π2

∫ ∞
−∞

dy
e−iby

(y − iε)2 − z2
= −θ[−b]

2π

sin(bz)

z
, (2.14)
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where b and z are constants and θ is the Heaviside step function. Hence, the total transition

rate of the two-atom system in empty space is given by

R|ω′〉→|ω〉 =
g2

2π
θ(−∆ω)|∆ω|

[
|m(1)

ωω′ |2 + |m(2)
ωω′ |2

+
(
m

(1)
ωω′ m

(2)∗
ωω′ +m

(2)
ωω′ m

(1)∗
ωω′
)sin (∆ω|d−|)

∆ω|d−|

]
. (2.15)

Observe that the first two terms above are the expected contributions from the individual

atomic transitions. However the energy gap is that of an entangled state. The other

two terms in eq. (2.15) exhibit the existence of cross-correlations of the field evaluated

at the different world-lines of the atoms, x1 and x2. From eq. (2.15) we see that the

spontaneous transition rate can be enhanced or inhibited depending on the matrix elements

of each transition and the separation between the atoms. The cross-correlations generate

an interference pattern in the transition rate which has a similar behavior for both possible

transitions. It depends on the distance between the atoms d−, and is characterized by the

wavelength λ = 2π/|∆ω| associated with the transition energy gap.

Symmetric state transition: in order to see how the transition rates of the two-atoms

system can be enhanced or inhibited, let us consider specifically the transition |s〉 → |g〉.
By using the corresponding matrix elements of this transition m

(1)
gs = m

(2)
gs = 1/

√
2, we get

the transition rate

R|s〉→|g〉 =
g2

2π
|Egs|

[
1 +

sin (|Egs||d−|)
|Egs||d−|

]
, (2.16)

where |Egs| = |Eg − Es| = ω0. Because of the positive matrix elements, the probability

transition rate is increased in comparison with the case where the entangled atoms are far

enough separated. The modes of the field which are resonant with this transition are those

for which ω ∼ |Egs|. For this case whenever Esgd− = (2n + 1/2)π, n being a positive

integer, one has a constructive interference. It means that if the distance between the

atoms is |d−| = (n+ 1/4)λgs, where λgs = 2π/|Egs|, the transition rate gets increased. On

the other hand, destructive interference happens for Esgd− = (2n+ 3/2)π which implies a

lower transition probability rate for relative distances |d−| = (n+3/4)λgs. For |d−| = nλgs
these cross-correlations terms vanish. In addition, for small distances between both atoms

|d−| � λgs, there is an increase of the transition rate by a factor of two in comparison with

the case in which the distance between the atoms is very large |d−| � λgs. It means that

the quantum correlations between the atoms mediated by the field generates a constructive

interference when the atoms are near enough each other and these interference terms vanish

for large spatial separations between entangled atoms. It is clear that there is a natural

lower bound for this separation given by the sizes of the atoms. A picture of the behavior

described above is illustrated in figure 2.

Antisymmetric state transition: the spontaneous transition rate for the two-atom

system decay |a〉 → |g〉 can be obtained in a similar way. In this case, recalling that the

– 6 –
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Figure 2. Spontaneous transition rate for two-level entangled atoms at rest separated a distance

|d−| = |d1 − d2|. The two-atoms system decay from the symmetric (continuous line) and from the

antisymmetric (dashed line) state to the ground collective state. We take the energies ω0 = 2.0,

measured in units of 2πλ−1
gw. For simplicity we orient the z-axis along the line joining the two

point-like atoms.

matrix elements are m
(1)
ga = −m(2)

ga = 1/
√

2, we obtain:

R|a〉→|g〉 =
g2

2π
|Ega|

[
1− sin (|Ega||d−|)

|Ega||d−|

]
, (2.17)

with the energy gap of the transition being |Ega| = |Eg − Ea| = ω0. Associated with

this transition we define the wavelength λga = 2π/|Ega|. For the antisymmetric state we

have an opposite behavior as compared with the symmetric case. For distances between

the atoms such that |d−| = (n + 1/4)λga we get a lower transition rate and for distances

|d−| = (n + 3/4)λga the interference operates in order to enhance the transition rate, see

figure 2. Also, unlike the symmetric state, for small distances |d−| � λga, we now have

a complete inhibition of the spontaneous transition rate due to destructive interference of

quantum correlations between the atoms mediated by the field. On the other hand, note

that for large separations between the atoms the quantum interference effects for both

transitions produce vanishing contributions. It implies that the influence of the quantum

interference is stronger for short distances between the atoms. For large separations the

fact that the system is in an entangled state remains only coded in the energy gap of

the transition. This scenario was also considered in ref. [27]. In such a reference the

authors showed that for two detectors at rest interacting with a massless scalar field as

their environment, the entanglement dynamics depends on the spatial separation between

detectors and vanishes for large distances.

We remark that the eq. (2.17) is very similar to the results obtained in [23], where

the distance between the atoms is replaced by twice the distance between the atom and

a mirror boundary and the gap energy is that for a single atom. In the latter situation

it also was regarded that the atom is coupled with the vacuum fluctuations of the field

rather than interacting directly with its mirror image. We can picture the decay of the

– 7 –
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antisymmetric state as the decay of a single atom in the presence of an infinite plane

interacting with scalar field satisfying Dirichlet boundary conditions, whereas the decay of

the symmetric state would be similar to the decay of an atom in the presence of an infinite

plane interacting with scalar field satisfying Neumann boundary conditions. The difference

of considering the influence of either a real object or a mirror image on the entanglement

dynamics between an atom and a quantum scalar field in the presence of a mirror was

analized in [28].

3 Transition rates for entangled atoms in the presence of a mirror

In this section we investigate the transition rates of the two atoms described before in

the presence of perfectly reflecting mirrors. Let us assume the case of an infinite plane in

unbounded four-dimensional Minkowski space. We impose Dirichlet boundary conditions

on the field at the plane’s surface x3 = 0, given by

ϕ(x3 = 0) = 0. (3.1)

The positive frequency Wightman function is given by

G+[x, x′] = − 1

4π2

[
1

(∆t− iε)2 −∆x2
⊥ − (x3 − x′3)2

− 1

(∆t− iε)2 −∆x2
⊥ − (x3 + x′3)2

]
, (3.2)

with ∆x2
⊥ = (x1−x′1)2 +(x2−x′2)2. As previously, we assume that the atoms are at rest at

a distance d1 and d2 from the plane. Respectively, their world-lines are xµi (τ) = (τ, 0, 0, di),

for i = {1, 2}. Correspondingly, the Wightman functions in eq. (2.11) are given by

G+[xi(τ), xj(τ
′)] = − 1

4π2

[
1

(∆τ − iε)2
− 1

(∆τ − iε)2 − (2di)2

]
, (i = j), (3.3)

G+[xi(τ), xj(τ
′)] = − 1

4π2

[
1

(∆τ − iε)2 − (d−)2
− 1

(∆τ − iε)2 − (d+)2

]
, (i 6= j), (3.4)

where d+ = d1 + d2. Now we insert these results into the right-hand side of eq. (2.10) and

perform the integral as indicated in eq. (2.14). The total transition probability per unit

proper time is given by

R|ω′〉→|ω〉 = g2 θ(−∆ω)|∆ω|
2π

{
|m(1)

ωω′ |2
[
1− sin (2d1∆ω)

2d1∆ω

]
+ |m(2)

ωω′ |2
[
1− sin (2d2∆ω)

2d2∆ω

]

+
[
m

(1)
ωω′m

(2)∗
ωω′ +m

(2)
ωω′m

(1)∗
ωω′

] [sin (∆ωd−)

∆ωd−
− sin (∆ωd+)

∆ωd+

]}
. (3.5)

A schematic representation of the physical situation is illustrated in figure 3. We can

interpret this result in a similar way as was done in the previous section. The terms in

the first line of eq. (3.5) correspond to the decay rates of a pair of two-level atoms isolated

– 8 –
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Figure 3. Schematic representation of the quantum interference for two identical two level atoms

interacting with a massless scalar field in the presence of one mirror. For two isolated atoms to each

other (left), the field detected in the point p far away at right of a mirror is the sum of the emmited

radiation by each individually atom and the corresponding radiation due to the reflected waves on

the mirror [first line of Eq (3.5)]. If we consider that both atoms form a system (right), we must

add two contributions to the last case due to the cross-correlations between the atoms mediated by

the field. There is one contribution depending on the distance between the atoms d−, and other

depending on the sum of the distances of atoms to the mirror d+ [second line of eq. (3.5)].

from each other in the presence of a mirror. These interference terms, as in [23], are given

by the reflected field on the mirror and depend on the distance of each atom to the mirror.

The next terms in the second line of eq. (3.5) are the cross-correlation between the atoms

due to the entangled state as was shown in the eq. (2.15). The first term depends on

the distance between the atoms d−, whereas the second term in eq. (3.5) describes the

cross-correlation between the atoms depending on the distance d+. It is the distance that

a reflected wave on the mirror needs to travel from one atom to reach the other. In a

naive way, this is the distance from one atom to the mirror image of the other. However

these are two different physical phenomena as has been remarked in [28]. If we compare

the eq. (2.15) with the eq. (3.5), we see that the presence of a mirror generates interference

terms in the spontaneous transition rate. For a detailed analysis, now let us consider the

two specific transitions from the maximally entangled states of the system to its collective

ground state.

Symmetric state transition: for the decay of the symmetric state to the collective

ground state the transition probability per unit proper time in the presence of an infinite

mirror reads

R|s〉→|g〉 =
g2|Egs|

2π

[
1 − sin (2d1|Egs|)

4d1|Egs|
− sin (2d2|Egs|)

4d2|Egs|

+
sin (d−|Egs|)
d−|Egs|

− sin (d+|Egs|)
d+|Egs|

]
. (3.6)

The presence of the mirror also modifies slightly the sinusoidal behavior of transition rate.

Interference contributes to lower the transition rate if the atoms are located at d1 = d2 =

– 9 –
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Figure 4. Decay per unit time as function of distances d1 and d2 of the two atoms to the plate.

The transition rates are given in units of g−2 and the energies and distances are given in terms of

the natural units associated to each transition. This means that the distances for Rgs are in units

of λgs whilst the distances for Rga are in units of λga.

(n+ 1/4)λgs/2, n a positive integer; in turn interference effects enhance the transition rate

if d1 = d2 = (n+ 3/4)λgs/2.

Antisymmetric state transition: for the decay of the antisymmetric state to the col-

lective ground state the transition probability per unit proper time in the presence of an

infinite mirror one has

R|a〉→|g〉 =
g2|Ega|

2π

[
1 − sin (2d1|Ega|)

4d1|Ega|
− sin (2d2|Ega|)

4d2|Ega|

−sin (d−|Ega|)
d−|Ega|

+
sin (d+|Ega|)
d+|Ega|

]
. (3.7)

We obtain an opposite behavior due to quantum correlations. The contribution depending

on the distance between atoms tends to decrease the transition rate. However, the reflection

of the field in the mirror tends to enhance the spontaneous transition rate and has the same

spatial dependency as in the symmetric case, see eq. (3.6). For distances such that d1 = d2,

the spontaneous transition rate is completely inhibited. In general, the interference pattern

is qualitatively similar to the symmetric transition. For instance, if the atoms are located at

distances such that d1 = (n+ 1/4)λag/2 and d2 such that their sum a constant d1 +d2 = l,

where l is arbitrary, and d2 6= d1, the transition rate will be reduced. But if they are located

at distances such that d1 = (n + 3/4)λag/2 and d1 + d2 = l with l the same constant as

before and d2 6= d1, the transition rate gets increased.

The transition rates of both symmetric and antisymmetric states to the collective

ground state are illustrated in figure 4. If we compare the results of figure 2 and figure 4

we see that the presence of the mirror induces in the transition rate a slight increasing for

the antisymmetric state and a slight decreasing for the symmetric state. The asymptotic

behavior of the transition rate remains qualitatively the same as the case without mirror

for large distances between the atoms.

– 10 –
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4 Transition rates for entangled atoms in the presence of two mirrors

In this section we extend our studies of radiative processes of two entangled atoms by

considering boundaries that fully confine the quantum field in one spatial direction. We

consider the presence of two parallel reflecting planes located along the x3-axis and adopt

Dirichlet boundary conditions for the scalar field at the mirror’s surfaces

ϕ(x3 = 0) = ϕ(x3 = L) = 0, (4.1)

where L is the distance between the two mirrors. The positive frequency Wightman func-

tion is given by the series

G+[x, x′] = − 1

4π2

∞∑
k=−∞

[
1

(∆t− iε)2 −∆x2
⊥ − (x3 − x′3 − kL)2

− 1

(∆t− iε)2 −∆x2
⊥ − (x3 + x′3 − kL)2

]
, (4.2)

which vanishes at points on the plates at x3 or x′3 = 0 and x3 or x′3 = L, as required. In the

above expression ∆x⊥ = x⊥ − x′⊥ is the distance between the points perpendicular to the

x3-axis. As above, let us consider the two identical atoms at rest on the x3-axis at distances

d1 and d2 from the x3 = 0 plane. We only consider configurations in which the atoms are

placed on the line perpendicular to the mirrors. In this case the world lines are again given

by xµi (τ) = (τ, 0, 0, di), for i = 1, 2, respectively. In order to calculate the transition rates

of the two-atom system given by eq. (2.10), we need to evaluate the eq. (4.2), at the world

lines of the atoms. Hence we obtain that

G+[xi(τ), xj(τ
′)]
∣∣
i=j

= − 1

4π2

∞∑
k=−∞

[
1

(∆τ − iε)2 − (kL)2
− 1

(∆τ − iε)2 − (2di − kL)2

]
,

G+[xi(τ), xj(τ
′)]
∣∣
i 6=j = − 1

4π2

∞∑
k=−∞

[
1

(∆τ−iε)2−(d− ± kL)2
− 1

(∆τ−iε)2 − (d+−kL)2

]
,

(4.3)

We can insert the above results into eq. (2.11) to evaluate the transition rates of the

entangled atomic system in the presence of two mirrors. Hence, the general transition

rates in this set up is given by

R|ω′〉→|ω〉 = − g
2

2π
θ(−∆ω)

∞∑
k=−∞

{
|m(1)

ωω′ |2
[

sin (kL∆ω)

kL
− sin ((2d1 − kL)∆ω)

2d1 − kL

]
+|m(2)

ωω′ |2
[

sin (kL∆ω)

kL
− sin ((2d2 − kL)∆ω)

2d2 − kL

]
+
[
m

(1)
ωω′m

(2)∗
ωω′ +m

(2)
ωω′m

(1)∗
ωω′

] [sin ((d− − kL)∆ω)

d− − kL
− sin ((d+ − kL)∆ω)

d+ − kL

]}
.

(4.4)
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Each term of the Wightman function in eq. (4.3) can be written in the frequency domain as

S(z,∆ω,L) = − 1

4π2

∞∑
k=−∞

∫ ∞
−∞

d(∆τ)
e−i∆ω∆τ

(∆τ − iε)2 − (z − kL)2
,

= −θ[−∆ω]

2π

∞∑
k=−∞

sin [(z − kL)∆ω]

(z − kL)
, (4.5)

where we find the contributions to the transition rates replacing in the above expressions

the values z = {0, 2d1, 2d2, d−, d+}. As we are interested in the decay channels ∆ω < 0,

thus expanding the summation in eq. (4.5) we obtain

S(z,∆ω,L) = −sin(z∆ω)

2πz
− z sin(z∆ω)

π

∞∑
k=1

cos(kL∆ω)

z2 − (kL)2
+
L cos(z∆ω)

π

∞∑
k=1

k sin(kL∆ω)

z2 − (kL)2
.

(4.6)

The series above are further simplified using the relations [29]

∞∑
k=1

sin(kx)

k
=
π − x

2
, 0 < x < 2π, (4.7)

∞∑
k=1

cos(kx)

k2 − α2
=

1

2α2
− π

2

cos {α[(2m+ 1)π − x]}
α sin(απ)

, 2mπ ≤ x ≤ (2m+ 2)π, α /∈ Z, (4.8)

∞∑
k=1

k sin(kx)

k2 − α2
=
π sin {α[(2m+ 1)π − x]}

2 sin(απ)
, 2mπ < x < (2m+ 2)π, α /∈ Z, (4.9)

where m is a positive integer. We can prove then, that for all the values of the parameters,

the general series reads

S(z,∆ω,L) =



−∆ω/2π,
z

L
∈ Z,

∆ωL

π
∈ Z,

−1/2L,
z

L
∈ Z,

∆ωL

π
/∈ Z,

− z

2L2
sin(z∆ω) cot(zπ/L),

z

L
/∈ Z,

∆ωL

2π
∈ Z,

− 1

2L

sin[z(2m+ 1)π/L]

sin[zπ/L]
,

z

L
/∈ Z, m <

∆ωL

2π
< m+ 1.

(4.10)

This function is shown in the figure 5 for different sizes of the cavity as a function of

parameter z. This is a continuous and symmetric function with respect to the midpoint

between the boundaries. We see a sinusoidal behavior depending on the size of the cavity

being small at its center. This feature characterizes the profile of the spontaneous transition

rate for collective states as function of the positions of the atoms inside the cavity. With

the result obtained in eq. (4.10), we can find the transition rate for any specific state. Let

us again consider the two transitions decay from the maximally entangled states as before.
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Figure 5. Behavior of the function S(z,∆ω,L) defined by eq. (4.10), for different sizes of the cavity

as a function of parameter z. We have chosen the energy gap ∆ω = Eag = 2.0 measured in units

of 2πλ−1
ga .

Symmetric state transition: the spontaneous decay rate of the two-atoms system from

the symmetric entangled state |s〉 to the ground state |g〉 in the presence of two infinite

plane mirrors reads

R|s〉→|g〉 = g2

{
S(0, |Egs|, L) − 1

2
S(2d1, |Egs|, L)− 1

2
S(2d2, |Egs|, L)

+S(d−, |Egs|, L)− S(d+, |Egs|, L)

}
. (4.11)

The results of this transition rate for different values of the distance between the plates

are shown on the left sides of figure 6. In all of these plots we note that for symmetrical

positions of the atoms with respect to the center of the line perpendicular to the mirrors,

d1+d2 = L, the decay rate is zero. This means that the symmetric state remains stationary

and unperturbed by the vacuum fluctuations if the atoms are located symmetrically inside

the cavity formed by the mirrors.

Antisymmetric state transition: let us investigate the transition from the antisym-

metric entangled state |a〉 to the ground state |g〉. Considering the corresponding matrix

elements of this transition, we obtain the decay rate inside the two-mirrors cavity given by

R|a〉→|g〉 = g2

{
S(0, |Ega|, L) − 1

2
S(2d1, |Ega|, L)− 1

2
S(2d2, |Ega|, L)

−S(d−, |Ega|, L) + S(d+, |Ega|, L)

}
. (4.12)

The results of this transition rate for different values of L are shown on the right side of

figure 6. We can understand these last results by noting that the Wightman function for

– 13 –
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Figure 6. Spontaneous transition rates Rsg (left) and Rag (right) as functions of the atom’s

positions d1 and d2 from the x3 = 0-plane inside the cavity. Upper plots are for a distance between

mirrors equals to L = 7, middle plots for L = 15, and bottom plots for L = 23. There is a complete

inhibition of the transition rate for the symmetric state if both atoms are located in a symmetric

way with respect to the center of the cavity and close to the mirrors. For the antisymmetric state

the transition rate vanishes if the atoms are close enough. Again the energies and distances are

given in terms of the natural units associated with each transition as in the case of one mirror.
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the case of two mirrors, eq. (4.2), has the property

G+[∆τ,∆x⊥, x3;x′3] = −G+[∆τ,∆x⊥, x3;L− x′3],

= −G+[∆τ,∆x⊥, L− x3;x′3]. (4.13)

This property shows the reflection symmetry of the system in the x3-direction and char-

acterizes the relation between the transition rate profiles for entangled states. Using the

eq. (2.10), eq. (2.11) and eq. (2.8), we can write the transition rates for both entangled

states as

Rag(|Ega|, d1, d2) =
g2

2

[
F11(|Ega|, d1) + F22(|Ega|, d2)

−F21(|Ega|, d2, d1)−F12(|Ega|, d1, d2)

]
, (4.14)

Rsg(|Egs|, d1, d2) =
g2

2

[
F11(|Egs|, d1) + F22(|Egs|, d2)

−F21(|Egs|, L− d2, d1)−F12(|Egs|, d1, L− d2)

]
, (4.15)

where in the last equation we used the eq. (4.13). These results unveil us two features. First,

omitting the dependence on |Egs| in Fij , if both atoms are very close to each other (d1 ≈
d2 = d) in the antisymmetric state F11 ≈ F22 and F12 ≈ F21 ≈ F11, thus Rag(d, d) → 0

(see figure 6, right). For the symmetric case something similar takes place if the atoms are

located at symmetric positions with respect to the center of the cavity, i.e., d1 +d2 = L. In

this case, since F11(d1) = F22(d1), then F22(L−d1) = −F22(d1) = −F11(d1). Also we have

that F12(d1, L− d1) = −F12(d1, d1) = −F11(d1) and for a similar reason F21(d2, L− d2) =

−F22(d2) = F22(L − d2) = F22(d1) which implies that Rsg(d, L − d) → 0, (see figure 6,

left). At these configurations, it is possible to verify that the antisymmetric state |a〉 (for

atoms sufficiently close to each other) and the symmetric state |s〉 (for atoms at symmetric

positions with respect to the center of the cavity) are eigenstates of the total Hamiltonian

(including the interaction with the field), and therefore the presence of the interaction does

not change the stationary feature of these states.

On the other hand, to show how the transition rates are related, we focus on the

top-right plot of figure 6 for the antisymmetric state. We can dislocate the origin of the

plot to the end of the d2-axis, then we reverse the direction of this axis and turn up to

down the plot to match the orientations of the axis with those of the top-left plot of the

figure 6. Indeed, we will obtain exactly the transition rate for the symmetric state. It

shows precisely the property of the correlation function eq. (4.13). Thus, the reflection

symmetry of the system relates the transition rates for the maximally entangled states.

These considerations imply that we have a complete inhibition of the spontaneous transition

rate for two distinct situations. We remark that from figure 6, we see that even if one of

the atoms is placed on one of the mirrors (for instance d1 = 0) where the field vanishes,

there exists a probability for the transition to take place. Moreover, this probability can

be greater than the probability evaluated for atoms located inside the cavity.
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5 Conclusions and perspectives

By using a first-order approximation in time-dependent perturbation theory, we investi-

gated radiative processes of two-level atoms in an entangled state interacting with a mass-

less scalar field. We studied the transition probability per unit proper time for inertial

atoms in empty space and also in the presence of boundaries. In the former, we see that

the spontaneous decay rates can be enhanced or inhibited depending only on the specific

entangled state and on the separation between the atoms. For the symmetric state, if both

atoms are separated by distances smaller than the wavelength associated with the transi-

tion energy gap, the spontaneous transition rate will be enhanced with respect to the case

where the entangled atoms are separated by large distances. For the antisymmetric state

for such distances the spontaneous decay rate presents a total inhibition. It implies that

for the former case the quantum cross-correlations generate a constructive interference,

whereas in the latter case the interference is destructive. For large distances compared

with the resonant wavelength of the transitions, the spontaneous decay rates present a

decreasing sinusoidal behavior.

For the case of a single mirror, the decay rates of the atoms from the maximally entan-

gled states are slightly modified and described by the expressions eq. (3.6) and eq. (3.7).

Therefore, the mirror can enhance or decrease the spontaneous transition rates depending

on the entangled state considered and the relative positions of the atoms with respect to

the mirror. For the case of two parallel mirrors we obtained that the transition rates of the

two-atom system are summarized in eq. (4.11) and eq. (4.12). These decay rates from the

entangled states of the system are presented in figure 6. There we see that the transitions

rates from the maximally entangled states form patterns of interference inside the cavity.

Therefore, depending of the size of the cavity and the relative positions of both atoms

inside the cavity there exist a series of maxima and minima for the decay rates.

On the other hand, we are aware that recent results show that in the (1+1)-dimensional

case long-time behavior of the dynamics of atoms will be largely altered by the echoes of the

retarded quantum field emitted by the atoms [30–32]. The effects on higher dimensional

space-time deserve further investigations. However, in the situation studied in the present

paper we adopt a conservative approach which ignores the back-reactions. This amounts

to consider our atoms as point-like objects.

A natural generalization of this paper is the investigation of atoms interacting with the

electromagnetic field using the Heisenberg picture [33, 34]. This approach allows an easy

comparison of quantum mechanical and classical concepts. In these studies, the notion of

vacuum fluctuations was connected with the free solutions of the Heisenberg equations for

the quantum field. Radiation reaction was incorporated via the source field, which is the

part of the field caused by the presence of the atom itself. An interesting application of

such formalism can be found in ref. [35]. In this context, one can analyze the contributions

of vacuum fluctuations and radiation reaction to the disentanglement of the same atomic

system considered here [36]. It is interesting to ask how this formalism can be employed

in the situation of atoms confined in a cavity.

The notion of locality by Einstein implies that no information can travel faster that the

speed of light. This idea appears in the quantum field theory in the construction of the S
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matrix [37]. Let us we consider processes in which transitions occur in different space-time

regions Ωx and Ωy separated by a distance R. If the energy of the system defined inside

Ωx decreases by ω0 at time t = 0 accompanied by the increase of the energy of the system

defined inside Ωy by the same amount ω0 at time t, then we must have that t > R/c.

This problem was discussed in the 1930′s by Fermi. An interesting possibility is to discuss

the Fermi problem with a different experimental set up [38–42]. The idea is to investigate

causality problems in the system which consists of a free atom prepared in a ground state

and two atoms prepared in an entangled state. The two entangled atoms and the free

atom are localized in disjoint regions separated by a distance d. These subjects are under

investigation by the authors.

Acknowledgments

We would like to thank Jorge Stephany Ruiz and Tobias Micklitz for useful discussions, and

the referees for their suggestions to improve our work. This paper was supported by Brazil-

ian agencies: Conselho Nacional de Desenvolvimento Cientifico e Tecnológico do Brasil

(CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] D. Bonwnerster, A. Ekert and A. Zeilingue, The physics of quantum information, Springer,

Germany (2000).

[2] J.M. Raimond, M. Brune and S. Haroche, Manipulating quantum entanglement with atoms

and photons in a cavity, Rev. Mod. Phys. 73 (2001) 565 [INSPIRE].

[3] Z. Ficek and S. Swain, Quantum interference and coherence: theory and experiments,

Springer, Germany (2004).

[4] Z. Ficek e R. Tanás, Entangled states and collective nonclassical effects in two-atom systems,

Phys. Rep. 372 (2002) 369.

[5] P. Lambropoulos and D. Petrosyan, Fundamentals of quantum optics and quantum

information, Springer, Berlin, (2007).

[6] M.B. Plenio, S.F. Huelga, A. Beige and P.L. Knight, Cavity loss induced generation of

entangled atoms, Phys. Rev. A 59 (1999) 2468 [quant-ph/9811003] [INSPIRE].

[7] Z. Ficek and R. Tanás, Entanglement induced by spontaneous emission in spatially extended

two-atom systems, J. Mod. Op. 50 (2003) 2765.

[8] R. Tanás and Z. Ficek, Entangling two atoms via spontaneous emission, J. Opt. B 5 (2004)

90.

[9] L. Amico, R. Fazio, A. Osterloh and V. Vedral, Entanglement in many-body systems, Rev.

Mod. Phys. 80 (2008) 517 [quant-ph/0703044] [INSPIRE].

– 17 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1103/RevModPhys.73.565
http://inspirehep.net/search?p=find+J+%22Rev.Mod.Phys.,73,565%22
http://dx.doi.org/10.1103/PhysRevA.59.2468
http://arxiv.org/abs/quant-ph/9811003
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,A59,2468%22
http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1103/RevModPhys.80.517
http://arxiv.org/abs/quant-ph/0703044
http://inspirehep.net/search?p=find+J+%22Rev.Mod.Phys.,80,517%22


J
H
E
P
0
7
(
2
0
1
6
)
1
4
7

[10] G.S. Agarwal, Quantum statistical theories of spontaneous emission and their relation to

other approaches, Springer, Berlin (1974).

[11] P.W. Milloni, Semiclassical and quantum-electrodynamical approaches in nonrelativistic

radiation theory, Phys. Rep. 25 (1976) 1.

[12] N.D. Birrell e P.C.W. Davis, Quantum fields in curved space, Cambridge University Press,

Cambridge U.K. (1982).

[13] P.C.W. Davies, Scalar particle production in Schwarzschild and Rindler metrics, J. Phys. A

8 (1975) 609 [INSPIRE].

[14] W.G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].

[15] B.S. DeWitt, Quantum field theory in curved spacetime, Phys. Rep. 19C (1976) 295.

[16] B.F. Svaiter and N.F. Svaiter, Inertial and noninertial particle detectors and vacuum

fluctuations, Phys. Rev. D 46 (1992) 5267 [INSPIRE].

[17] E.M. Purcell, Spontaneous emission probabilities at radio frequencies, Phys. Rev. 69 (1946)

681.

[18] D. Kleppner, Inhibited Spontaneous Emission, Phys. Rev. Lett. 47 (1981) 233 [INSPIRE].

[19] S. Haroche and J.M. Raimond, Exploring the quantum: atoms, cavities, and photons, Oxford

University Press, Oxford, U.K. (2006).

[20] M.O. Scully, V.V. Kocharovsky, A. Belyanin, E. Fry and F. Capasso, Enhancing acceleration

radiation from ground-state atoms via cavity quantum electrodynamics, Phys. Rev. Lett. 91

(2003) 243004 [INSPIRE].

[21] A. Belyanin et al., Quantum electrodynamics of accelerated atoms in free space and in

cavities, Phys. Rev. A 74 (2006) 023807.

[22] D. Meschede, Radiating atoms in confined space: from spontaneous emission to micromasers,

Phys. Rep. 211 (1992) 201.

[23] A. Davidson, L. Michel, M.L. Sage and K.C. Wali, Quark mass hierarchies from universal

seesaw mechanism, Phys. Rev. D 49 (1994) 1378 [INSPIRE].

[24] G. Can Guo and C. Ping Yang, Spontaneous emission from two two-level entangled atoms,

Physica A 260 (1998) 173.

[25] T. Yu and J.H. Eberly, Finite-Time disentanglement via spontaneous emission, Phys. Rev.

Lett. 93 (2004) 140404.

[26] J.M. de Almeida Martucheli Jr., Radiative processes of entangled states in the presence of

boundaries, M.A. Thesis, Centro Brasileiro de Pesquisas F́ısicas — CBPF, Rio de Janeiro,

Brasil (2014).

[27] S.-Y. Lin and B.L. Hu, Temporal and spatial dependence of quantum entanglement: quantum

‘nonlocality’ in EPR from field theory perspective, Phys. Rev. D 79 (2009) 085020

[arXiv:0812.4391] [INSPIRE].

[28] R. Zhou et al., Boundary effects on quantum entanglement and its dynamics in a

detector-field system, JHEP 08 (2013) 040.

[29] A.P. Prudnikov, Yu.A. Brychkov and O.I. Marichev, Integrals and series, volume 1, Gordon

and Breach, London U.K. (1986).

– 18 –

http://dx.doi.org/10.1088/0305-4470/8/4/022
http://dx.doi.org/10.1088/0305-4470/8/4/022
http://inspirehep.net/search?p=find+J+%22J.Phys.,A8,609%22
http://dx.doi.org/10.1103/PhysRevD.14.870
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D14,870%22
http://dx.doi.org/10.1103/PhysRevD.46.5267
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D46,5267%22
http://dx.doi.org/10.1103/PhysRevLett.47.233
http://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,47,233%22
http://dx.doi.org/10.1103/PhysRevLett.91.243004
http://dx.doi.org/10.1103/PhysRevLett.91.243004
http://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,91,243004%22
http://dx.doi.org/10.1103/PhysRevD.49.1378
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D49,1378%22
http://dx.doi.org/10.1103/PhysRevLett.93.140404
http://dx.doi.org/10.1103/PhysRevLett.93.140404
http://dx.doi.org/10.1103/PhysRevD.79.085020
http://arxiv.org/abs/0812.4391
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D79,085020%22
http://dx.doi.org/10.1007/JHEP08(2013)040


J
H
E
P
0
7
(
2
0
1
6
)
1
4
7

[30] B.L. Hu, S.-Y. Lin and J. Louko, Relativistic quantum information in detectors-field

interactions, Class. Quant. Grav. 29 (2012) 224005 [arXiv:1205.1328] [INSPIRE].

[31] E. Martin-Martinez, A.R.H. Smith and D.R. Terno, Spacetime structure and vacuum

entanglement, Phys. Rev. D 93 (2016) 044001 [arXiv:1507.02688] [INSPIRE].

[32] S.-Y. Lin, C.-H. Chou and B.-L. Hu, Entanglement dynamics of detectors in an Einstein

cylinder, JHEP 03 (2016) 047 [arXiv:1508.06221] [INSPIRE].

[33] J. Dalibard, J. Dupont-Roc and C. Cohen-Tannoudji, Vacuum fluctuations and radiation

reaction: identification of their respective contributions, J. Phys. (Paris) 43 (1982) 1617.

[34] J. Dalibard, J. Dupont-Roc and C. Cohen-Tannoudji, Dynamics of a small system coupled to

a reservoir: reservoir fluctuations and self-reaction, J. Phys. (Paris) 45 (1984) 637.

[35] J. Audretsch and R. Muller, Spontaneous excitation of an accelerated atom: The

Contributions of vacuum fluctuations and radiation reaction, Phys. Rev. A 50 (1994) 1755

[gr-qc/9408019] [INSPIRE].

[36] G. Menezes and N.F. Svaiter, Vacuum fluctuations and radiation reaction in radiative

processes of entangled states, Phys. Rev. A 92 (2015) 062131 [arXiv:1508.04513] [INSPIRE].

[37] E.C.G. Stueckelberg and D. Rivier, Caisalité et structure de la matrice S, Helv. Phys. Acta
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