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1 Introduction

The AdS/CFT correspondence [1–3] can be regarded as a concrete formulation of a theory

of quantum gravity in asymptotically anti-de Sitter space in terms of a conformal field

theory living on the boundary.

This equivalence immediately leads to the following puzzle about the spectrum of these

two theories. In the side of the large N conformal field theory, there are lots of heavy states

with fixed conformal dimension of order N2. In two dimensions the density of these states

is given by the Cardy formula. Yet, in the bulk gravity theory, it appears that there is only

a single state, i.e. an AdS black hole with fixed energy. This observation leads us to the

question of distinguishability of two black hole microstates. Indeed, this can be regarded

as the foundation of the statistical interpretation of black hole entropy [4–6], and it has

been shown that correlation functions of these microstates cannot be distinguished from

those of the thermal ensemble with the same energy [7–10].
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This non-distinguishability property of black hole microstates plays an important role

when we think about the information loss problem [11]. This is because one of the key

assumptions in Hawking’s calculation [12] is that one can use quantum field theory on a

fixed black hole background to capture the evaporation process. From the point of view

of the dual CFT, this means that one assumes that the difference between the microstates

creating the background is always small during the evaporation. In principle, one can check

whether this assumption holds or not by CFT calculations.1

In general, the CFT observers can access only a limited amount of information by

measurements, forcing them to describe the system by (coarse grained) reduced density

matrices. We will model this coarse graining by restricting our measurements to a particular

region A of the time slice of the CFT, i.e. our excited states will be described by reduced

density matrices derived by tracing out the complement of A.

With this background in mind, in this paper, we study two metric like structures which

enable us to measure the distance between two reduced density matrices in two dimensional

conformal field theories. By calculating these quantities we will see to what extent two

reduced density matrices are distinguishable by measurements confined to region A. There

are two quantities that we consider for this purpose.

One measure is the relative entropy S(ρ||σ) between two reduced density matrices ρ

and σ, which is defined by

S(ρ||σ) = tr ρ log ρ− tr ρ log σ. (1.1)

Note that this quantity is automatically free from UV divergences. Another intriguing

property of the relative entropy is its positive definiteness. This property has been ef-

ficiently used to shed light on some aspects of theories coupled to semiclassical gravity,

including the precise formulation of the Bekenstein bound [14], proof of the generalized

second law [15, 16], the quantum Bousso bound [17, 18], and when applied to theories with

a CFT dual, this positivity is related to certain positivity conditions of the bulk stress ten-

sor [19–21]. There are also related works on relative entropy involving holography [22–25].

With the aim of a purely CFT discussion, in a recent paper [27] a replica trick to

compute this quantity efficiently was discussed. Using this trick, the calculation of S(ρ||σ)

boils down to the computation of a bunch of correlation functions on a Riemann surface

with cuts. This formalism was used to study the relative entropy between two excited states

in the free boson theory in two dimensions [27]. See also [28] for an earlier discussion. The

computation is very similar to the computation of entanglement entropy of excited states,

see for example [26, 29–31, 39–43].

The other measure that we discuss in this paper is what we call trace square distance

T (ρ||σ) =
tr |ρ− σ|2

tr ρ2
(0)

, (1.2)

1One possible resolution of this non-distinguishability problem could be the fuzzball proposal [13], which

states that in the bulk each black hole microstate could be significantly different at the horizon scale. Here

we would like to formulate the problem entirely within the CFT framework.
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where tr ρ2
(0) denotes the second Rényi entropy of the vacuum. This factor removes the

unwanted UV divergence in the numerator coming from short distance entanglement. No-

tice that this is not the usual trace distance which is frequently used in the quantum

information community [44]. Nevertheless, we will find that this quantity is still useful.

This is partially because it is computable once we know certain four point functions on the

two sheeted replica manifold and hence higher n replicas or analytic continuations are not

needed. Furthermore, in certain cases that we will consider below, it essentially captures

the behavior of the relative entropy in the small subsystem limit. Note that the trace

square distance can be used to bound other information theoretic measures in the case of

quantum systems with a finite number of degrees of freedom. For example,2 a lower bound

on the relative entropy is [45]

S(ρ||σ) ≥ 1

2
tr|ρ− σ|2. (1.3)

However, it is clear that this bound must break down in field theory, as the right hand

side contains UV divergences while the left hand side is free of them.3 It is an interesting

question whether such a bound can be obtained with an appropriate regularization on the

right hand side. We will see that our regularization fails in this matter when c ≥ 93
15 .

The main statements of this paper are the following. Let |V 〉, |W 〉 be primary excited

states of a CFT on a cylinder and A be the subsytem defined on a time slice of the cylinder.

One can consider reduced density matrices associated with the excited states on the region

A, by tracing out the complement of A with respect to the time slice

ρV = tr|Ac |V 〉〈V | ρW = tr|Ac |W 〉〈W |. (1.4)

Also, when the cylinder is mapped to the plane, one can identify these states with some

primary operators using the state operator correspondence. Then,

(i) For any 2d CFT, and any pair of primary states |V 〉 and |W 〉 with the same conformal

dimension4 hV = hW , the relative entropy in the small interval limit |A| = 2πx� 1

is given by

S(ρV ||ρW ) =
Γ(3

2)Γ(∆ + 1)

2Γ(∆ + 3
2)

∑
α

(COαV V − COαWW )2 (πx)2∆ + · · · , (1.5)

where {Oα} is the set of the lightest primary operators with COαV V − COαWW 6= 0,

∆ = hα + h̄α is the scaling dimension and · · · stands for powers of x larger than

2∆. We choose the operators in this set to satisfy the orthonormality condition

〈O†α(∞)Oβ(0)〉 = δαβ , without the loss of generality.

2Another example is that the trace square distance forms a lower bound for the ordinary trace distance

due to the monotonicity of the Schatten p-norms.
3We thank Joan Simón for discussions on this matter.
4In this paper we consider excited states without spin, h = h̄. The generalization to h 6= h̄ should

be trivial.
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(ii) In the same limit with hV = hW , the relative entropy is related to the trace square

distance T (ρV ||ρW ) by5

S(ρV ||ρW ) = 22∆−1 Γ(3
2)Γ(∆ + 1)

Γ(∆ + 3
2)

T (ρV ||ρW ). (1.6)

(iii) Formula (1.5) also applies when the conformal dimensions are different hV 6= hW
provided that the lightest primaries {Oα} with COαV V − COαWW 6= 0 have scal-

ing dimensions ∆ = hα + h̄α < 2, i.e. they are lighter than the stress tensor, or

equivalently, they are relevant.

(iv) In the case when all the primaries with COαV V − COαWW 6= 0 have scaling weight

∆ > 2 (e.g. there is a gap in the primary spectrum), the relative entropy of any pair of

primary states |V 〉 and |W 〉 with hV 6= hW in the small interval limit |A| = 2πx� 1

takes the following universal form

S(ρV ||ρW ) =
16

15

1

c
(hV − hW )2 (πx)4 + · · · , (1.7)

where · · · stands for powers of x larger than 4.

These results are all consistent with previously known results [22, 27, 28, 31]. We also

check them by computing the relative entropy between two generalized free fields directly,

without using the above formulae. The generalized free fields are low energy excitations of

CFTs with a gravity dual in the large central charge limit. In the gravity side, they are

identified with free scalar fields in the bulk. Since the bulk theory is free, one can compute

their correlation functions by using Wick contractions.

This paper is organized as follows. In section 2 we explain how to compute the relative

entropy S(ρ||σ) and the trace square distance T (ρ||σ) by using the replica trick of [27]. In

section 3 we compute these quantities in a general CFT in the small interval limit and prove

the above statements. In section 4 we calculate the relative entropy and the trace square

distance for generalized free fields and in section 5 we calculate the trace square distance

between the spin and disorder fields of the critical two dimensional Ising model. We use

these results to check our fomulae. In section 6 we comment on possible applications of

the results and conclude the paper.

2 Review of the basic definitions

There has been a considerable amount of interest in studying entanglement properties

of quantum field theories in recent years. Particularly powerful techniques have been

developed with this aim in conformal field theories. Among such techniques are realizations

of the replica trick via the uniformization map or via the cyclic orbifold CFT, which have

been efficiently used to calculate e.g. the Rényi and entanglement entropy [29, 32–36, 46, 47]

5Notice that this formula implies that the bound (1.3) holds with our definition of T (ρV ||ρW ) when

hV = hW .
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W (∞1)
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V (∞3)
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V (∞1)
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V (∞2)

V (03)
V (∞3)

Figure 1. Illustration of the relevant correlation functions for the 3-sheeted manifold Σ3. The

left figure corresponds to Trρ3V while the right one to TrρV ρ
2
W . The cyclic Z3 replica symmetry

becomes the cyclic symmetry of the trace.

or the entanglement negativity [37, 38] of various states on various subregions. Here, we

briefly review these techniques and highlight some key ingedients to keep in mind when

one wishes to apply them to calculate distance measures, like the relative entropy.

2.1 Reduced density matrices of excited states

Consider a CFT on a cylinder. Let (T, φ) ∼ (T, φ + 2π) be the (Euclidean) timelike and

the spacelike coordinate of the cylinder respectively. The subsystem A is defined to be

the segment [0, 2πx] at T = 0. Let us denote the reduced density matrix of a state |V 〉
to the subsystem A by ρV . The n-th Rényi entropy of this density matrix, TrρnV is given

by the transition amplitude of n copies of |V 〉 between T = −∞ and T = ∞, on the n

sheeted cover of the cylinder glued together along the cut corresponding to the subsystem

A. Equivalently, one can regard the system to be defined on an n sheeted covering of the

plane Σn using the exponential map z = eT+iφ. On this n sheeted plane, the n copies of the

excited state are located at the origin and infinity of the each sheet. Because of the state

operator correspondence, we can create the state on the each sheet by a local operator

|V 〉 = V (0)|0〉, 〈V | = 〈0|V †(∞) = lim
z→∞
〈0|V (z)z2h̄V z̄2hV , (2.1)

where V † denotes the BPZ conjugate. The cut on the n sheeted cylinder is mapped to a

segment on the unit radius circle of the n sheeted plane Σn whose end points are

u = e2πix, v = 1. (2.2)

Then, the trace of the reduce density matrix tr ρnV can be written as a 2n point function

on Σn

tr ρnV = tr ρn(0) 〈
n−1∏
k=0

V †(∞k)

n−1∏
k=0

V (0k)〉Σn , (2.3)

where tr ρn(0) denotes the partition function on Σn. The operator locations {∞k, 0k} denote

the infinity and the origin of the k-th sheet respectively, see figure 1.
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There are two ways to study this 2n point function. One way is to use the equivalence

between a CFT C on Σn and its cyclic orbifold theory Cn/Zn on the plane.

We can write this 2n point function on Σn as a four point function involving the twist

operators σn,

〈
n−1∏
k=0

V †(∞k)
n−1∏
k=0

V (0k)〉Σn =
〈V †n (∞)σn(1)σ̃−n(w̃)Vn(0)〉Cn/Zn

〈σn(1)σ̃−n(w̃)〉
, (2.4)

where

Vn := V ⊗n, w̃ =
u

v
= e2πix, (2.5)

and the conformal dimension of the twist operator is given by hσn = h̄σn = cn(1 − 1/n2),

where c is the central charge of the seed theory C.
The other way to study this 2n point function is to use the uniformalization map

between the plane and its n sheet cover Σn.6 This map is given by

w(z) = n

√
z − u
z − v

. (2.6)

According to this map each operator on Σn is mapped to the location

∞k → wk = e
2πik
n , 0k → ŵk = e

2πi(k+x)
n . (2.7)

on the uniformized plane. By using the Jacobian factor

D(k, hV ) = lim
zk→∞

|zk|4hV
∣∣∣∂w
∂z

∣∣∣2hV
∞k

∣∣∣∂w
∂z

∣∣∣2hV
0k

=

[
2

n
sinπx

]4hV

, (2.8)

we find the relation between the 2n point function (2.3) on Σn and the 2n point function

on the plane

〈
n−1∏
k=0

V †(∞k)
n−1∏
k=0

V (0k)〉Σn =

[
2

n
sinπx

]4nhV

〈
n−1∏
k=0

V (wk)
n−1∏
k=0

V (ŵk)〉. (2.9)

Notice that in the small subsystem limit x → 0, each wk approaches ŵk, therefore the 2n

point function is factorized into a product of two point functions

〈
n−1∏
k=0

V (wk)
n−1∏
k=0

V (ŵk)〉 =
n−1∏
k=0

〈V (wk)V (ŵk)〉. (2.10)

2.2 Relative entropy

Now let us consider the relative entropy between two reduced density matrices ρ, σ

S(ρ||σ) = tr ρ log ρ− tr ρ log σ. (2.11)

6We denote the holomorphic coordinates on the plane and its n sheet cover Σn by w and z respectively.
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A replica trick to compute this was introduced in [27]

S(ρ||σ) = lim
n→1

Sn(ρ||σ)

= lim
n→1

1

n− 1

(
log tr ρn − log tr ρσn−1

)
. (2.12)

We may use this to express the relative entropy between the reduced density matrices

ρV , ρW of two excited states

|V 〉 = V (0)|0〉, |W 〉 = W (0)|0〉. (2.13)

with CFT correlation functions. We can write the trace involving different RDMs as

tr ρV ρ
n−1
W = tr ρn(0) 〈V

†(∞0)
n−1∏
k=1

W †(∞k)V (00)
n−1∏
k=1

W (0k)〉Σn ,

= 〈X†n(∞)σn(1)σ̃−n(w̃)Xn(0)〉Cn/Zn , Xn = V ⊗W⊗(n−1). (2.14)

Notice that the operator Xn is not symmetrized under cyclic permutations and hence it

is not part of the spectrum of the orbifold theory Cn/Zn. Nevertheless, it is still useful to

introduce an expression for (2.14) involving the twist operators, like (2.4), as we will now

explain. To do this, it is convenient to first transform Σn by the global transformation,

y(z) =
z − w̃
z − 1

. (2.15)

Now the cut is extending between 0 and ∞. Each operator on the kth sheet is mapped to

∞k → 1k, 0k → w̃k, (2.16)

where {1k, w̃k} denote 1 and e2πix on the kth sheet respectively. Using this, we can write

the operator product expansion of the operator insertions on each sheet as

V †(∞k)V (0k) = lim
zk→∞

|zk|4hV
∣∣∣∂y
∂z

∣∣∣2hV
zk

∣∣∣∂y
∂z

∣∣∣2hV
0k

V (1k)V (w̃k)

=
∑
Tk

CTkV V (1− w̃)hTk (1− ¯̃w)h̄TkTk(1k), (2.17)

where Tk denotes a state in the seed theory. A similar expansion holds for the W †×W OPE.

We substitute these OPEs into the first line of (2.14) which yields a sum over correlators

on Σn with only a single insertion on each sheet. Applying the cyclic orbifold prescription

to each of these correlators and grouping of the terms results in the formula

tr ρV ρ
n−1
W =

∑
T

ĈTXnXnĈTσnσ̃−n(1− w̃)hT (1− ¯̃w)h̄T . (2.18)

Here, T denotes an untwisted state in the orbifold theory,

T = [T1 ⊗ · · · ⊗ Tn]sym , (2.19)

– 7 –
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where [· · · ]sym means that we symmetrize the operator in the parenthesis under cyclic

permutations by summing up all orbits and divide it by n. The coefficients ĈTXnXn , ĈTσnσ̃−n
are defined by

ĈTXnXn ≡ n

[
CT1V V

n∏
k=2

CTkWW

]
sym

ĈTσnσ̃−n = 〈σn(∞)T (1)σ̃−n(0)〉Cn/Zn . (2.20)

Based on this, we can define the four point function in the second line of (2.14) as

〈X†n(∞)σn(1)σ̃−n(w̃)Xn(0)〉Cn/Zn ≡
∑
T

ĈTXnXnĈTσnσ̃−n(1− w̃)hT−2hσn (1− ¯̃w)h̄T−2hσn ,

Xn ≡ V ⊗W⊗(n−1). (2.21)

Although we will use this four point function because of the notational simplicity, we should

keep in mind that Xn is not an operator in the orbifold theory, therefore the definition is

rather formal. Whenever the left hand side of (2.21) appears, this always means the right

hand side of (2.21).

We can write Sn(ρV ||ρW ) in terms of the correlation functions of V and W in the

following three ways

Sn(ρV ||ρW ) =
1

n− 1
log

〈
∏n−1
k=0 V

†(∞k)
∏n−1
k=0 V (0k)〉Σn

〈V †(∞0)
∏n−1
k=1 W

†(∞k)V (00)
∏n−1
k=1 W (0k)〉Σn

=
1

n− 1
log
〈V †n (∞)σn(1)σ̃−n(w̃)Vn(0)〉Cn/Zn
〈X†n(∞)σn(1)σ̃−n(w̃)Xn(0)〉Cn/Zn

, (2.22)

=
1

n− 1
log

(
〈
∏n−1
k=0 V (wk)

∏n−1
k=0 V (ŵk)〉

〈V (w0)
∏n−1
k=1 W (wk)V (ŵ0)

∏n−1
k=1 W (ŵk)〉

[
2

n
sinπx

]4(n−1)(hV −hW )
)
.

2.3 Trace square distance

Now consider the quantity

T (ρV ||ρW ) =
tr |ρV − ρW |2

tr ρ2
(0)

. (2.23)

It is clear that T (ρV ||ρW ) is manifestly positive and zero only when ρV = ρW . We will

call T (ρV ||ρW ) the trace square distance in order to distinguish it from the trace distance,

which in the quantum information literature is usually used for the distance in the nuclear

norm Tr
√
AA†. One can express the trace square distance with the use of four point

functions as

T (ρV ||ρW ) = 〈V †(∞1)V †(∞2)V (01)V (02)〉Σ2 + 〈W †(∞1)W †(∞2)W (01)W (02)〉Σ2

− 2〈V †(∞1)W †(∞2)V (01)W (02)〉Σ2

=
〈V †⊗2(∞)σ2(1)σ̃−2(w̃)V ⊗2(0)〉C2/Z2

〈σ2(1)σ̃−2(w̃)〉C2/Z2

+
〈W †⊗2(∞)σ2(1)σ̃−2(w̃)W⊗2(0)〉C2/Z2

〈σ2(1)σ̃−2(w̃)〉C2/Z2

− 2
〈V † ⊗W †(∞)σ2(1)σ̃−2(w̃)V ⊗W (0)〉C2/Z2

〈σ2(1)σ̃−2(w̃)〉C2/Z2

, (2.24)

where the four point function involving V ⊗W is defined by (2.21).

– 8 –
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3 S(ρV ||ρW ) and T (ρV ||ρW ) in the small interval limit

In this section we would like to compute both the relative entropy S(ρV ||ρW ) and the trace

square distance T (ρV ||ρW ) for generic two dimensional conformal field theories when the

subsystem size |A| = 2πx is small.

3.1 Contributions of the vacuum

In the limit x� 1 we expect the contribution of the vacuum exchange7 to dominate in each

relevant correlation function which leads to factorization into two point funtions, see (2.10).

Now we would like to identify this contribution. We will later see that it is possible that

the leading behaviour is not determined by the vacuum contribution.

Let us consider the trace square distance first. It is decomposed into a sum over all

states in the CFT,

T (ρV ||ρW ) =
(
〈V †(∞)V (0)〉Σ2 − 〈W †(∞)W (0)〉Σ2

)2
+ · · · , (3.1)

where · · · denotes the contribution of excited states. Since the two point function on Σn

is given by

〈V †(∞)V (0)〉Σn =

[
sin(πx)

n sin(πxn )

]4hV

, (3.2)

the contribution of the vacuum exchange to the trace square distance is

Tvac(ρV ||ρW ) =

[(
cos

πx

2

)4hV
−
(

cos
πx

2

)4hW
]2

. (3.3)

This expression can only be valid in the small subsystem limit x� 1 where it takes the form

Tvac(ρV ||ρW ) =
1

4
(hV − hW )2(πx)4 +O(x6). (3.4)

It is important to note that although in the small subsystem limit the vacuum exchange

dominates in each four point function in (2.24), it might happen that Tvac(ρV ||ρW ) does

not give the leading term in the trace square distance in this limit. This is because the

vacuum exchange contribution can cancel among the four point functions in (2.24) which

manifestly happens when hV = hW .

This cancellation of the vacuum exchange contribution is exact in the case of the

relative entropy:

Sn(ρV ||ρW ) =
[
log〈V †(∞)V (0)〉Σn − log〈W †(∞)W (0)〉Σn

]
+ · · · . (3.5)

In the n→ 1 limit this clearly vanishes.

7In this subsection, by vacuum exchange, we mean the vacuum of the original theory and not the orbifold.
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3.2 Small subsystem expansion

It is possible to give an expansion for Sn(ρV ||ρW ) and T (ρV ||ρW ) in the subsystem size x

in terms of the states of the orbifold theory Cn/Zn. Recall the orbifold prescription for the

correlation functions (2.4) and (2.14)

GVn =
〈V †n (∞)σn(1)σ̃−n(w̃)Vn(0)〉Cn/Zn

〈σn(1)σ̃−n(w̃)〉
, GXn =

〈X†n(∞)σn(1)σ̃−n(w̃)Xn(0)〉Cn/Zn
〈σn(1)σ̃−n(w̃)〉

.

(3.6)

These four point functions can be written, using the definition (2.21), as a sum over all

states in the orbifold theory Cn/Zn

GXn = 〈X†n(∞)Xn(0)〉+
∑
T 6=vac

ĈXnXnT Ĉ
T
σnσ̃−n(1− w̃)hT (1− ¯̃w)h̄T . (3.7)

We can expand GVn in a similar way. In the small subsystem limit 1− w̃ ∼ 2πix� 1, the

second term is much smaller than the first term and we can expand the logaritm so

Sn(ρV ||ρW ) =
1

n− 1
(logGVn − logGXn)

≈ 1

n− 1

∑
T 6=vac

(ĈXnXnT − ĈVnVnT )ĈTσnσ̃−n(1− w̃)hT (1− ¯̃w)h̄T , (3.8)

where the second line gives the correct leading behaviour in x. Similarly, the trace square

distance can be expanded as

T (ρV ||ρW ) = GV2 +GW2 − 2GX2

=
∑
T 6=vac

(ĈV2V2T + ĈW2W2T − 2ĈX2X2T )ĈTσ2σ̃−2
(1− w̃)hT (1− ¯̃w)h̄T . (3.9)

Note that these sums are over all non-twisted sector states (not just primaries!) of the

orbifold theory except its vacuum.

3.3 Small interval limit for operators with equal weight

Now we would like to apply the formula (3.8) to the case when the two operators have

equal weight hV = hW . Let us first focus on the contribution of the states of the form

T =

[
n−1⊗
k=0

L
(k)
−{mik}

]
sym

, (3.10)

where, {mik} = {m1k ,m2k , · · · } is a sequence of non negative integers, L
(k)
−{mk} denotes a

product of the Virasoro generators L(k)

L
(k)
−{mik}

= L
(k)
−m1k

L
(k)
−m2k

· · ·L(k)
−mlk

· · · . (3.11)

acting on k-th component of the tensor product. The OPE coefficients ĈXnXnT , ĈVnVnT of

these states can be computed from the two point functions 〈X†n(∞)Xn(0)〉, 〈V †n (∞)Vn(0)〉
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by using the conformal Ward identity. This means that these OPE coefficients only depend

on the conformal dimensions hV , hW , therefore

ĈXnXnT = ĈVnVnT , when hV = hW . (3.12)

This shows that none of the vacuum descendants8 contribute to either (3.8) or (3.9) when

hV = hW . Therefore, the lightest states in the orbifold theory Cn/Zn which can appear in

the final result come from the lightest (non-vacuum) primary operators {Oα} in the seed

theory C. Let us denote with hα and h̄α the conformal weights, with ∆ = hα + h̄α the

scaling dimension (independent of α) and with sα = hα − h̄α the spin of these primary

operators. Then, the lightest contributing orbifold operators have the following form9

Ojα =
[
Oα ⊗ I⊗(j−1) ⊗Oα ⊗ I⊗(n−j−1)

]
sym

, j ≤ n

2
(3.13)

The coefficients Ĉ
OjαXnXn

, Ĉ
OjαVnVn

defined in (2.20) are given for these operators by

Ĉ
OjαXnXn

= 2COαV V COαWW + (n− 2)C2
OαWW , Ĉ

OjαVnVn
= nC2

OαV V . (3.14)

Similarly, the OPE coefficients involving the twist operators are given by [49]10

Ĉ
Ojα,σnσ̃−n

=
1

(−1)sα
1[

2n sin
(
πj
n

)]2∆
. (3.15)

We need to sum these up over j. By taking the Zamoldchikov metric into account, we get

(−1)sα

n
2∑
j=1

CO
j
α

σnσ̃−n
=
n

2

n−1∑
j=1

1[
2n sin

(
πj
n

)]2∆
≡ f(∆, n)

2(2n)2∆
. (3.16)

where the above equation defines f(∆, n). We obtain Sn(ρV ||ρW ) in the small subsystem

limit, 1 − w̃ = 2πix � 1 by inserting these OPE coefficients in (3.8) and summing up all

the lightest primaries {Ojα}

Sn(ρV ||ρW ) =
1

n− 1

∑
α

f(∆, n)

2n2∆

(
nC2

OαV V − 2COαV V COαWW − (n− 2)C2
OαWW

)
(πx)2∆.

(3.17)

Notice that the factor (−1)sα in (3.15) cancels with the identical factor coming from (1 −
w̃)2hα(1 − ¯̃w)2h̄α in (3.8). To obtain the relative entropy we need to perform the analytic

continuation to n = 1. The sum

f(α, n)

2
≡

n−1∑
l=1

n− l(
sin πl

n

)2α =
n−1∑
m=1

m(
sin πm

n

)2α =
n

2

n−1∑
m=1

1(
sin πm

n

)2α , (3.18)

8Note that this argument also elliminates contribution from any primary of the orbifold theory which is

built out of vacuum descendants of the original theory.
9Note that operators of the form

[
Oα ⊗ I⊗(n−1)

]
sym

do not contribute as their OPE coefficients with

the twist fields are proportional to their one point functions on the plane which, of course, vanishes.
10These OPE coefficients are obtained from two point functions on Σn calculated via uniformization. We

have adjusted the formula in [49] to incorporate nonzero spin.
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can be analytically continued to n→ 1 by using the result of [47]

f(α, n) = (n− 1)
Γ(3

2)Γ(α+ 1)

Γ(α+ 3
2)

+O((n− 1)2). (3.19)

Using this, we finally get the expression for the relative entropy

S(ρV ||ρW ) =
Γ(3

2)Γ(∆ + 1)

2Γ(∆ + 3
2)

∑
α

(COαV V − COαWW )2 (πx)2∆. (3.20)

If the lightest primaries satisfy COαV V = COαWW then their descendants satisfy this as

well. Therefore, we can actually take {Oα} to be the set of the lightest primaries for which

the above OPE differences do not vanish.

Similarly one can pick up the leading term of the (3.9) expansion for the trace square

distance

T (ρV ||ρW ) =
1

22∆

∑
α

(COαV V − COαWW )2 (πx)2∆, (3.21)

therefore, they are essentially the same in the small interval limit

S(ρV ||ρW ) = 22∆−1 Γ(3
2)Γ(∆ + 1)

Γ(∆ + 3
2)

T (ρV ||ρW ). (3.22)

Note that we have assumed V and W to be Hermitian operators in this section. When this

is not the case, the formula clearly generalizes as

S(ρV ||ρW ) =
Γ(3

2)Γ(∆ + 1)

2Γ(∆ + 3
2)

∑
α

(COαV ∗V − COαW ∗W )2 (πx)2∆. (3.23)

Here, the α sum runs over a Hermitian basis.

3.4 Leading universal contribution when hV 6= hW

Now we would like to return to the general expansions (3.8) and (3.9) and determine the

leading behaviour in the subsystem size x. First, let us assume that there are no primaries

in the original theory lighter than the stress tensor. In this case the leading contribution

will come from some vacuum descendant states.

Let us first show that, similarly to the case of primary operators, single sheet insertions

of vacuum descendants do not contribute to our expansions. Such a single sheet insertion

has the form

T{mi1} = [L
(1)
−{mi1}

⊗ I⊗(n−1)]sym, (3.24)

see (3.11) for the definition of L
(1)
−{mi1}

.The subtlety compared to the case of primary

operators is that the twist OPE coefficient Ĉ
T(k)
σnσ̃−n

can be nonvanishing. Still, because the

OPE coefficients with the states Vn and Xn are

ĈT{mi1}XnXn
= C

L
(1)
−{mi1}

V V
+ (n− 1)C

L
(1)
−{mi1}

WW
, ĈT{mi1}VnVn

= nC
L
(1)
−{mi1}

V V
, (3.25)
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the combination (ĈV2V2T{mi1}
+ ĈW2W2T{mi1}

− 2ĈX2X2T{mi1}
) in the expansion (3.9) for

the trace square distance automatically cancels. In the case of the relative entropy (3.8)

one has

(ĈXnXnT{mi1}
− ĈVnVnT{mi1}) = (n− 1)(C

L
(1)
−{mi1}

V V
− C

L
(1)
−{mi1}

WW
), (3.26)

so that the 1
n−1 factor in front of Sn(ρV ||ρW ) cancels. The OPE coefficient Ĉ

T{mi1}
σnσ̃−n

is

proportional to the one point function 〈L(1)
−{mi1}

〉Σn which can then safely be taken to

n = 1 where it vanishes.

Now let us move on to discuss double sheet insertions, just like (3.13), but now with

Oα relpaced by some vacuum descendant. The lightest such operator comes from inserting

two copies of the seed stress tensor T

T j = [T ⊗ I⊗(j−1) ⊗ T ⊗ I⊗(n−j−1)]sym, j ≤ n

2
. (3.27)

The OPE coefficients with the states Vn and Xn are the same as in (3.14) with CV V T =

〈T (∞)V (1)V (0)〉 = hV and CWWT = hW . The twist OPE (3.15) is slightly modified by

the one point function of the stress tensor on Σn:

ĈT j ,σnσ̃−n =
c
2[

2n sin
(
πj
n

)]2∆
+ 〈T (0)〉2Σn , (3.28)

where 〈T (0)〉Σn = c
24

(
1− 1

n2

)
is the Schwartzian derivative of the uniformization

map11 (2.6). As it turns out this has no effect on the n→ 1 continuation as clearly

lim
n→1

1

2(n− 1)

n−1∑
j=1

[
c

24

(
1− 1

n2

)]2

= 0. (3.29)

We raise the index on ĈT j ,σnσ̃−n by using the Zamolodchikov metric

gT
iT j = δijn

(
2

c

)2

, j ≤ n

2
− 1, gT

iT j = δij
n

2

(
2

c

)2

, j =
n

2
. (3.30)

The analytic continuation can then be done in the same way as in the case of (3.20) and

the result is

S(ρV ||ρW ) =
16

15

1

c
(hV − hW )2 (πx)4 + · · · , (3.31)

where we have inserted the scaling weight ∆ = h + h̄ = 2 for the holomorphic stress

tensor and an extra factor of 2 to take into account the identical contribution of the

antiholomorphic stress tensor.12 The universal contribution to the relative entropy between

the vacuum and an excited state can be calculated in a different way, using the well known

11Note that Σn in this context has cuts between u = 1 and v =∞.
12Double sheet insertions containing a single holomorphic and a single antiholomorphic stress tensor

vanish because the 〈T T̄ 〉 two point function contains only contact terms.
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expression for the modular Hamiltonian of the vacuum. We use this to check (3.31) in

appendix A.

We can calculate the contribution of the operators (3.27) for the trace square distance

in a similar manner. There is one key difference compared to the relative entropy: the

Schwartzian derivative term in (3.28) does not drop out. We find that

T (ρV ||ρW ) =
1

4

(
1 +

2

c

)
(hV − hW )2 (πx)4 + · · · . (3.32)

The O(1
c ) term comes from the first term in (3.28) just like in the case of the relative

entropy, while the O(c0) term comes from the contribution of the Schwartzian derivative

in (3.28). Notice that this latter term gives the contribution of the vacuum of the original

theory, as can be seen by comparing this formula to (3.4). Notice also that because of this

term, the bound (1.3) is violated whenever13 c ≥ 98
15 .

Finally, consider the case when there are primaries Oα in the spectrum with ∆ < 2

and COαV V − COαWW 6= 0. In this case the leading small x behaviour is given by (3.20),

even when hV 6= hW , as both the lightest vacuum sector states and descendants of Oα
contribute with higher powers of x. To see this result in action consider the example of a

free scalar X(z, z̄). The relative entropy between vertex operators Vα = eiαX(z) of weight

(h, h̄) =
(
α2

2 , 0
)

was calculated in [27]

S(ρVα ||ρVβ ) = (α− β)2(1− πx cot(πx)) =
1

3
(α− β)2(πx)2 +O(x4). (3.33)

This is consistent with (3.20) as we will now explain. We have two U(1) currents i∂X(z) and

i∂̄X(z̄) of dimension ∆ = 1. The OPE coefficients are Ci∂XVαV−α = −α and Ci∂̄XVαV−α = 0 [51].

The prefactor in (3.20) for ∆ = 1 is 1
3 . We need to insert these into (3.23). Note that the

current i∂X is Hermitian.

4 Generalized free fields

4.1 Relative entropy

In this section we discuss the relative entropy S(ρV ||ρW ) of conformal field theories with a

gravity dual. Generalized free fields {O} are low energy excitations of such theories, whose

correlation functions can be calculated by Wick contraction

〈O∗(w0) · · · O∗(wn)O(ŵ0) · · · O(ŵn)〉 =
∑
σ∈Sn

n−1∏
j=0

〈O∗(wj)O(ŵσ(j))〉, (4.1)

where Sn denotes the symmetric group of order n and σ denotes an element of this group.14

In the dual gravity side these operators are identified with the minimally coupled bulk

scalar fields.

13While this number is clearly regularization dependent, it is interesting to note that the diagonal coset

model SO(8)3×SO(8)6
SO(8)9

has precisely this central charge.
14See appendix B for a summary of the properties of the generalized free fields.
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Now we would like to compute the relative entropy between states created by two

generalized free fields, V,W with the same conformal dimension hW = hV = h, by using

the replica trick (2.12). These operators are located at

wj = e
2πij
n , ŵj = e

2πi(j+x)
n , (4.2)

on the plane and each two point function appearing in (4.1) is given by

〈O∗(wj)O(ŵσ(j))〉 =
1(

2 sin π(j−σ(j)−x)
n

)2∆O
. (4.3)

The 2n point function (4.1) does not contain the effects of Virasoro descendants. However,

this does not cause any problems in the small subsystem limit |A| = 2πx � 1 because of

the following reason. First of all, as we saw in the previous section, the vacuum descendants

do not contribute to the relative entropy. Furthermore, to get the leading result what we

need to do is keeping only the first nontrivial primary exchange in the 2n point function,

in this limit, so the inclusion of the stress energy exchanges in (4.1) do not change the

leading result.

To compute the relative entropy S(ρV ||ρW ) with the use of the replica trick (2.12), we

need to perform the sum in (4.1) explicitly, then analytically continue the result in n. In

general they are both difficult tasks, however, we can perform them in the small interval

limit x � 1. This is because in this limit, the dominant contribution in the sum over all

elements of the symmetric group Sn in (4.1) is coming from the identity, and the next to

leading contributions are coming from the set of pair exchanges σa,b

σa,b(a) = b, σa,b(b) = a, σa,b(k) = k, ∀k 6= a, b, 0 ≤ a, b, k ≤ n− 1. (4.4)

In the small interval limit, we can neglect the contribution of the other elements of the

group. The 2n point function of the operator V on the plane C in this approximation is

given by

〈
n−1∏
k=0

V ∗(wk) · · ·
n−1∏
k=0

V (ŵk)〉C

=
n−1∏
k=0

〈V ∗(wk)V (ŵk)〉+
n−1∑

a,b=0,a 6=b
〈V ∗(wa)V (ŵb)〉〈V ∗(wb)V (ŵa)〉

∏
k 6=a,b
〈V ∗(wk)V (ŵk)〉

=
1[

2 sin
(
πx
n

)]4nh +
1[

2 sin
(
πx
n

)]4(n−2)h

n−1∑
l=1

(n− l)[
2 sin

(
πl
n

)]8h ,
(4.5)

Including the Jacobian factor (2.8), we obtain the 2n point function on the n sheeted plane

〈
n−1∏
k=0

V †(∞k)
n−1∏
k=0

V (0k)〉Σn =

[
2

n
sinπx

]4nh

〈
n−1∏
k=0

V ∗(wk)
n−1∏
k=0

V (ŵk)〉 (4.6)

=

(
sinπx

sin π
nx

)4nh [
1 +

f(4h, n)

2

(
sin

πx

n

)8h
]
, (4.7)
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where f(4h, n) is the same function as the one defined in (3.18). Similarly, we can compute

the other 2n point function

〈V †(∞0)

n−1∏
k=1

W †(∞k)V (00)

n−1∏
k=1

W (0k)〉Σn

=

(
sinπx

sin πx
n

)4nh [
1 +

∣∣∣〈V |W 〉∣∣∣2 f(4h, n)

n

(
sin

πx

n

)8h
+

(n− 2)f(4h, n)

2n

(
sin

πx

n

)8h
]
.

(4.8)

By using expressions (4.8) and (4.1) in (2.14) along with the analytic continuation (3.19)

of f we find the following formula for the relative entropy in the small interval limit x� 1,

S(ρV ||ρW ) =
Γ(3

2)Γ(4h+ 1)

Γ(4h+ 3
2)

[
1−

∣∣∣〈V |W 〉∣∣∣2] (πx)8h. (4.9)

Note that the expression is symmetric under the exchange V ↔W . It is satisfying that one

can indeed reproduce (4.9) from the general formula (3.23) by using the OPE coefficients

for the generalized free fields computed in appendix B. In particular, the first nontrivial

primary appearing in the V ∗(z)× V (0) OPE is just (V ∗V )(0), therefore ∆ = 2hV ∗V = 4h.

This explains the (πx)8h behavior. Note that the state created by V (0) is a single particle

state of the bulk free field dual to V . Thus the holographic interpretation of (4.9) is just the

relative entropy between two single particle states of equal energy on a fixed background.

4.2 Trace square distance

Now we compute the exact trace square distance of generalized free fields. For these

operators, the four point functions on the plane are given by

〈V ∗(w1)V ∗(w2)V (w3)V (w4)〉 =
1

|w13w24|4h
+

1

|w23w14|4h
(4.10)

〈V ∗(w1)W ∗(w2)V (w3)W (w4)〉 =
1

|w13w24|4h
+

∣∣〈V |W 〉∣∣2
|w23w14|4h

. (4.11)

The positions of the insertions on the uniformized plane are given by

w1 = 1, w2 = −1, w3 = ŵ1 = eiπx , w4 = ŵ2 = −eiπx, (4.12)

and using the Jacobian (2.8) we obtain the four point function on the two sheeted Riemann

surface Σ2

〈V ∗(∞1)V ∗(∞2)V (01)V (02)〉Σ2 =
(

cos
πx

2

)8h
+
(

sin
πx

2

)8h
, (4.13)

〈V ∗(∞1)W ∗(∞2)V (01)V (02)〉Σ2 =
(

cos
πx

2

)8h
+
∣∣∣〈V |W 〉∣∣∣2 (sin

πx

2

)8h
. (4.14)

By using these and (2.24) we get

T (ρV ||ρW ) = 2
(

sin
πx

2

)8h
[
1−

∣∣∣〈V |W 〉∣∣∣2] , (4.15)

which can again be compared to (3.21) using the formulae in appendix B.
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5 Critical Ising model

Another excellent playground to test the validity of our formulae is the smallest minimal

model, the critical Ising model in 2 dimensions. This theory posesses two distinct (h, h̄) =(
1
16 ,

1
16

)
operators, the spin field σ(z, z̄) and the disorder operator µ(z, z̄). Therefore,

formula (3.21) can be tested. They both fuse into the identity and the energy operator

ε(z, z̄) which has dimensions
(

1
2 ,

1
2

)
. According to (3.21), the trace square distance between

σ and µ is given by

T (ρσ||ρµ) =
1

4
(Cεσσ − Cεµµ)2(πx)2 +O(x3). (5.1)

The needed OPE coefficients are Cεσσ = 1
2 and Cεµµ = −1

2 [51] and hence

T (ρσ||ρµ) =
1

4
(πx)2 +O(x3). (5.2)

Now as all the n-point functions are known for minimal models, T (ρσ||ρµ) can be calculated

exactly using (2.24) and (2.9). The needed four point functions are [51]

〈σ(z1, z̄1)σ(z2, z̄2)σ(z3, z̄3)σ(z4, z̄4)〉

=

(
1

2

|z13z24|
1
2

|z14z23z12z34|
1
2

[
1 +
|z12z34|
|z13z24|

+
|z14z23|
|z13z24|

]) 1
2

,

〈σ(z1, z̄1)µ(z2, z̄2)σ(z3, z̄3)µ(z4, z̄4)〉

=

(
1

2

|z13z24|
1
2

|z14z23z12z34|
1
2

[
−1 +

|z12z34|
|z13z24|

+
|z14z23|
|z13z24|

]) 1
2

,

(5.3)

where zij = zi − zj and the 〈µµµµ〉 four point function agrees with 〈σσσσ〉. Some algebra

reveals that

T (ρσ||ρµ) = 2
(

1− cos
πx

2

)
=

1

4
(πx)2 +O(x4), (5.4)

in accordance with our result.

6 Conclusions

In this paper have we found the leading small interval behaviour of the relative entropy

between two excited states with the same conformal dimension in 2d CFTs. We have also

showed that in this limit the relative entropy is proportional to the trace square distance.

The reason for this is that the correlation functions which are necessary to compute the

relative entropy in this limit are approximated by the same four point functions as the ones

appearing in the trace square distance. We have checked our general results by computing

the relative entropy between two generalized free fields by directly evaluating many point

functions of these operators in the small interval limit.

In addition, we have calculated the leading behaviour of the relative entropy when

the conformal dimensions of the states are different. We have found that when there is a
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relevant primary in the OPE channel between the two excited states the leading behaviour

of the relative entropy is dominated by this operator. Otherwise, the leading term is

universal which is the case for CFTs with a gap. This is expected to be the case e.g.

for theories describing pure gravity in three dimensions (given that they exist). For a

general holographic theory we might have light excitations, for example bulk scalar fields.

This modifies the leading behaviour of the relative entropy [22] in accordance with the

statement (iii) of the introduction.

Immediate generalizations of our results include their extension to higher dimensional

CFTs. In principle, there is no obstruction to determine the leading behavior of the relative

entropy on a small ball shaped region between arbitrary primaries in higher dimensions but

the calculation will involve some different techniques than the ones used here. Details of

this will be presented in a separate paper. Another possibly tractable generalization could

be the determination of the complete vacuum contribution beyond the small subsystem

limit for large c holographic theories when hV 6= hW , i.e. the extension of (3.31). The

monodromy method [52, 53] can be a powerful technique in this case. For example, we

expect that the results of [54] on the factorization of the n-point conformal blocks can be

directly used to determine the vacuum contribution to the relative entropy between light

states.15 We leave the investigation of these questions to future work.

Since formula (3.20) is quite general, it would be nice if we could use it to learn

more about some aspects of the dynamics of black hole microstates. One of the key

questions in recent debates about black holes is how much can we trust bulk effective field

theories i.e. quantum field theories living on a fixed black hole background. One of the

necessary condition for the validity of the bulk EFT is that the difference between black hole

microstates is negligible. Therefore, the relative entropy provides a quantitative measure

to check the validity of the bulk EFT or how much is it broken. According to [25, 55],

our results should quantify distinguishability of bulk states with respect to measurments

performed in the entanglement wedge of region A. For static spacetimes, the deepest reach

of this region into the bulk is given by the Ryu-Takayanagi surface anchored to A. In our

case A is small and this region is close to the boundary where we do not expect significant

deviations from EFT.16 In order to quantify the distinguishability of general states when

the measurements are conducted close to the horizon one needs the relative entropy beyond

our small subsystem limit. Indeed, the geodesic distance between the peak of the Ryu-

Takayanagi surface and the closest point to it on the horizon in a static BTZ spacetime is

given by

δ = log
(

coth
πrhx

2

)
≈ e−πxrh , (6.1)

where rh is the location of the horizon in Schwartzschild coordinates and the geodesic

reaches the boundary at angular coordinates −πx and πx. The last approximation is valid

when rhx is large. The horizon radius can be expressed with CFT data via rh =
√

8GM =

15A serious obstacle for heavy states is that vacuum blocks with all operators being heavy insertions are

not yet known even in the large c limit.
16It seems reasonable to expect the OPE coefficients in (3.20) to be of order e−c which is nonperturbative

in 1
c

as it should be. This is the case e.g. for three point functions in Liouville theory.
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2
√

3∆/c, where ∆ = h+ h̄. Therefore, we may probe a state |V 〉 up to distances

δ & e−2πx
√

3∆/c (6.2)

from its event horizon. To keep this small when x → 0, we need to consider states with
∆
c ∼

1
x2

. It is clear that we are loosing control of the approximation (3.20) in this regime as

the OPE coefficients implicitly depend on x via ∆ and this might change which intermediate

state gives the leading behaviour. Equivalently, to probe EFT close to the horizon of a

static black hole corresponding to a fixed value of ∆/c, one needs the relative entropy

accurately for interval sizes 2πx &
√

c
3∆ .

It would also be interesting to quantify more precisely the distinguishability of two

black hole microstates by computing the semiclassical limit of the OPE coefficients appear-

ing in our formula. Notice that (3.20) intrinsically contains details of the microscopics.

Indeed, if we use some universal, classical limit for the OPE coefficients depending only

on the operators weights and the central charge, (3.20) gives zero automatically. Never-

theless, such a limit would be useful to obtain a more precise constraint on the magnitude

of (3.20) for large c. In [48] it is argued from the semiclassical bootstrap analysis that for

large c CFTs with a sparse spectrum, the square of the OPE coefficients summed over pri-

mary states with a fixed conformal dimension is universal and determined by the conformal

blocks. Unfortunately, this universality is only confirmed when the conformal dimension

of the internal operator is much larger than the dimensions of the external operators.17 It

would be interesting to generalize this result and obtain a universal bound for the relative

entropy between two black hole microstates.

Finally, note that there is a subtle connection with the eigenstate thermalization hy-

pothesis (ETH) [56–58]. According to ETH, at least when the relative size of the sub-

system goes to zero, the reduced density matrix of any state should approach a thermal

one ρV → ρβV with some universal modular Hamiltonian. For 2d CFTs the temperature

is related to the primary weight as 2π
βV

=
√

24hV
c − 1. It is easy to compute the relative

entropy of two thermal states with β1 ≈ β2. It reads as

S(ρβ1 ||ρβ2) = − 1

β1

∂S(ρβ1)

∂β1
(β1 − β2)2 +O((β1 − β2)3), (6.3)

where S is just the von Neumann entropy. For a 2d CFT, this formula predicts a

S(ρβ1 ||ρβ2) ∼ x2 start in the small subsystem limit which, according to the expansion (3.8),

is only possible if there is a relevant primary with scaling dimension ∆ = 1 in the spectrum.

This is the case e.g. for a free scalar, for which the relative entropy was computed in [27]. It

would be interesting to learn more about the connection of this requirement to the nature

of the limit ρV → ρβV .
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A Relative entropy from the modular Hamiltonian

In this appendix we check the formula (3.31) in the large central charge limit, when one

of the excited states |W 〉 is replaced by the ground state |0〉, by combining some known

results [22, 31, 59]. We start from the following expression of the relative entropy

S(ρV ||ρ0) = trρV log ρV − trρV log ρ0

= ∆〈Hvac〉 −∆S, (A.1)

where ∆S denotes the difference between the entanglement entropy of the excited state

and the ground state and Hvac denotes the modular Hamiltonian of the vacuum reduced

density matrix

Hvac ≡ − log ρ0, ∆〈Hvac〉 = tr[ρVHvac]− tr[ρ0Hvac]. (A.2)

In the large central charge limit with the ratio hV /c held fixed, the entanglement entropy

of the excited state |V 〉 is given by [31]

SV =
c

3
log

βV
πε

sinh
πl

βV
, βV =

2π√
24hV
c − 1

, l = 2πx. (A.3)

Combining this with the vacuum entanglement entropy

S0 =
c

3
log

2

ε
sin

l

2
, (A.4)

in the small interval limit we get

∆S =
hV
3
l2 +

(
hV
180
−
h2
V

15c

)
l4 +O(l6). (A.5)

The Modular Hamiltonian of the cylinder vacuum is given by [22]

Hvac = 2π

∫ l

0
dφ

[
cos(φ− l

2)− cos l
2

sin l
2

]
T00, (A.6)

where T00 denotes the time component of the stress energy tensor on the cylinder. By

using the relation

2π〈V |T00|V 〉 = ∆V = 2hV , (A.7)

we have

∆〈Hvac〉 =
hV
3
l2 +

hV
180

l4 +O(l6). (A.8)

Therefore, we get

S(ρV ||ρ0) =
h2
V

15c
l4 +O(l6). (A.9)

Since l = 2πx we reproduce the result (3.31).
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B Correlation functions of generalized free fields

In this appendix we calculate the correlation functions of generalized free fields.18 These

operators are expanded as if they were free fields. For Hermitian fields the expansion is

given by

Vi =
∑

(n,n̄)∈Z+

1

N(n,n̄)

(
aVinn̄

z2h+nz̄2h+n̄
+ znz̄n̄aVi†(n,n̄)

)
, 0 ≤ i ≤ K (B.1)

where Nn,n̄ is a normalization factor, N(0,0) = 1, and h is the conformal dimension of Vi. We

can prescribe the following commutation relations between these creation and annihilation

operators [
aVinn̄, a

Vj
mm̄

]
=
[
aVi†nn̄ , a

Vj†
mm̄

]
= 0,

[
aVinn̄, a

Vj†
mm̄

]
= δijδnmδn̄m̄, (B.2)

and the definition of the vacuum

aVinn̄|0〉 = 0, (B.3)

which yield the following two point functions between the operators of (B.1)

〈Vi(z, z̄)Vj(0, 0)〉 =
δij

(zz̄)2h
. (B.4)

In the calculation of the relative entropy, it is convenient to choose the complex basis,

V =
V1 + iV2√

2
, V ∗ =

V1 − iV2√
2

, (B.5)

so that the two point functions are

〈V ∗(z, z̄)V (0, 0)〉 =
1

(zz̄)2h
, 〈V (z, z̄)V (0, 0)〉 = 〈V ∗(z, z̄)V ∗(0, 0)〉 = 0. (B.6)

By taking some linear combination of Vi, one can introduce another generalized free field W

W = 〈V |W 〉V + 〈V ⊥|W 〉V ⊥, 〈V |V ⊥〉 = 0. (B.7)

with the same conformal dimensions. The relevant two point functions are given by

〈W ∗(z)V (0)〉 =
〈W |V 〉
(zz̄)2h

, 〈W (z)V (0)〉 = 〈W ∗(z)V ∗(0)〉 = 0. (B.8)

If we decompose this operator as

W =
W1 + iW2√

2
, W ∗ =

W1 − iW2√
2

, (B.9)

then the annihilation operators {aVinn̄, a
Wi
nn̄}, i = 1, 2 satisfy[

aW1
nn̄ , a

V1†
mm̄

]
=
[
aW2
nn̄ , a

V2†
mm̄

]
= 〈W |V 〉δnn̄δmm̄, (B.10)[

aW1
nn̄ , a

V ⊥1 †
mm̄

]
=
[
aW2
nn̄ , a

V ⊥2 †
mm̄

]
= 〈W |V ⊥〉δnn̄δmm̄[

aW2
nn̄ , a

V1†
mm̄

]
=
[
aW1
nn̄ , a

V2†
mm̄

]
=
[
aW2
nn̄ , a

V ⊥1 †
mm̄

]
=
[
aW1
nn̄ , a

V ⊥2 †
mm̄

]
= 0. (B.11)

18For a review of generalized free fields, see [50].
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One can also infer the OPE structure of these generalized free fields. For example, by using

the oscillator mode decomposition, we get

V ∗(z)× V (0)→ 1

(zz̄)2h
+ (V ∗V )(0) + · · · , (B.12)

where () denotes oscillator normal ordering. Therefore,

CV ∗V (V ∗V ) = 1. (B.13)

Similarly, one can compute the OPE coefficients involving W

CW ∗W (V ∗V ) = |〈V |W 〉|2, CW ∗W (V ⊥∗V ⊥) = |〈V ⊥|W 〉|2, CW ∗W (V ∗V ⊥) = 〈V ⊥|W 〉〈W |V 〉.
(B.14)

To calculate the small interval relative entropy from (3.23) keep in mind that the interme-

diate operators in this formula must be Hermitian. The operator (V ∗V ⊥) is not Hermitian,

therefore we need to introduce linear combinations

O1 =
(V ∗V ⊥) + (V V ⊥∗)√

2
, O2 =

(V ∗V ⊥)− (V V ⊥∗)√
2i

, (B.15)

for which the OPE coefficients are

CW ∗WO1 =
〈V ⊥|W 〉〈W |V 〉+ 〈V |W 〉〈W |V ⊥〉√

2

CW ∗WO2 =
〈V ⊥|W 〉〈W |V 〉 − 〈V |W 〉〈W |V ⊥〉√

2i

(B.16)

The dimension of these indermediate operators is ∆ = 4h so the relative entropy (3.23)

reads as

S(ρV ||ρW ) =
Γ(3

2)Γ(4h+ 1)

2Γ(4h+ 3
2)

×
(

(1− CW ∗W (V ∗V ))
2 + C2

W ∗W (V ⊥∗V ⊥) + C2
W ∗WO1

+ C2
W ∗WO2

)
(πx)8h.

(B.17)

Now using that 〈W |W 〉 = |〈V |W 〉|2 + |〈V ⊥|W 〉|2 = 1 we end up with

S(ρV ||ρW ) =
Γ(3

2)Γ(2h+ 1)

2Γ(2h+ 3
2)

(
2− 2|〈V |W 〉|2

)
(πx)8h. (B.18)

Similarly, the trace square distance reads as

T (ρV ||ρW ) =
1

28h

(
2− 2|〈V |W 〉|2

)
(πx)8h. (B.19)
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