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1 Introduction

Recently, CFT techniques have been extensively used to extract the critical behavior of the

various quantum field theories in dimensions larger than two. Among them, the numerical

conformal bootstrap is one of the most successful tools [2]. In a paper by Rychkov-Tan [1],

the multiplet recombination was used to gain the (irrelevant) critical exponents of the

Wilson-Fisher fixed point of the φ4-theory in (4 − ε) dimensions. They assumed that the

φ3 operator should be a descendant state of the elementary φ field and thus the quantum

dimension of φ3 is related to the one of φ and then the field φ3 should appear in the OPE

as the descendant. Although, at the Gaussian fixed point, these two operators are both

primary but for the WF fixed point, φ3 is a member of the φ conformal multiplet. They

called this situation “multiplet recombination”. They have studied the two-point functions

and the three-point functions by using the multiplet recombination and the OPE and they

have found the anomalous dimensions of the composite operators φn at the leading order

in ε without any diagrammatic calculation.

The method developed in [1] was immediately applied to other types of the “WF

fixed point”, for example, the φ6-theory in (3 − ε) dimensions [3] and the Gross-Neveu

model in (2 + ε) dimensions [4, 5], where the anomalous dimensions of various composite

operators are derived at the leading order in ε. In all these examples, it is important that

the anomalous dimension of the elementary field is O(ε2) and the ones of the composite

operators are O(ε). Then the naive application of the method [1] to the φ3-theory in (6−ε)
dimensions did not work due to the fact that in the six-dimensional φ3-theory the wave

function renormalization of the field φ starts with the one-loop graph. This method is quite

generic and does not require the perturbative treatment, which implies that potentially one

can predict the non-perturbative results beyond the leading order approximation. However
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the consideration of only the two- and three-point functions and the OPE give the leading

expression for the critical exponents at O(ε) or O(ε2).1

In this paper, we will study and re-organize the Rychkov-Tan method from the more

perturbative and more Lagrangian-based point of view in order to adapt the method also to

the six-dimensional φ3-theory. The similar analysis was already done in [7, 8] and recently

in [9–11]. The main point of the re-organized method is the use of the Schwinger-Dyson

equation without contact terms which do not contribute to the discussion here. This is

not the same as the multiplet recombination used in [1] since the multiplet recombination

generally can not be derived from the Lagrangian-based approach. However, for the leading

order calculation, these are effectively equivalent. The Schwinger-Dyson equation for the

scalar field theory is schematically written as

〈2xφ(x)O1(x1)O2(x2) · · ·〉 = 〈 g
3!
φ3(x)O1(x1)O2(x2) · · ·〉 , (1.1)

where we considered the φ4-theory and neglected the contact terms. This equation should

be quantum-mechanically regarded as the renormalized one. However, when we estimate

the right-hand side at O(g), the tree-level evaluation of the correlation function suffices

for our purpose and then all the quantities can be reduced to the bare quantities. The

Schwinger-Dyson equation reduces to the classical equation of motion. If we restrict our

attention to the conformal field theory and to the two- or three-point functions of the

conformal primary operators, the left-hand side can be fixed up to the constant coefficient.

Due to the derivative 2x, the left-hand side is proportional to the anomalous dimensions

of the primary operators. Equating both sides, we will find the values of the anomalous

dimensions as the function of the coupling.

For the Wilson-Fisher fixed point we need to know the critical coupling g∗. Our claim

in this paper is that considering the two- and three-point functions and employing the

Schwinger-Dyson equation (classical equation of motion), we can decide the value of g∗
without any input from the loop calculation. The use of the Schwinger-Dyson equation for

the calculation of the anomalous dimensions is very reminiscent of the story that the renor-

malized equation of motion was used for relating the critical exponents and for reducing

the number of the independent exponents [12, 13].

We will study the φ3-theory in (6− ε) dimensions2 and find the leading critical expo-

nent at O(ε) without any input from the Feynman diagrammatic calculation. The similar

analysis was recently carried out in [9–11], where however the critical coupling g∗ is de-

cided from the β function derived from the perturbative calculation. The calculation in

this paper is very respecting the method by Rychkov-Tan [1] in a sense that all the cal-

culations include no Feynman diagrammatic calculation and use the general forms of the

two- and three-point functions of the conformal primary operators although our method is

more closer to the perturbative method than the one by Rychkov-Tan [1]. As the result,

when we study the higher order behavior of the critical exponents, we will inevitably need

1The next leading order of the anomalous dimensions was studied in [6] by using the CFT techniques

and the unitarity.
2For a non-renoramalization group analysis, see [14, 15].
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the perturbative calculation of the Feynman graphs but the use of the equation of motion

will reduce the complexity of the perturbative calculation.

The organization of the paper is as follows. In first two sections we will study the φ6-

theory in (3−ε) dimensions and the φ4-theory in (4−ε) dimensions respectively. These two

sections serve as an explanation of our method. In section 4, we will consider the φ3-theory

in (6− ε) dimensions. In section 5, we generalize the result of section 4 by introducing the

additional O(N) scalar fields and modifying the interaction. In section 6, we summarize

the results and discuss the potential future directions.

2 φ6-theory in (3 − ε) dimensions

We will first consider the φ6-theory in d = 3−ε dimensions as an illustration of our strategy.

This theory has an analog of the Wilson-Fisher fixed point in (4 − ε) dimensions. The

perturbative treatment can be found, for example, in [16–18] and the conformal method

using the multiplet recombination was performed in [3]. In the following calculation, we

assume that all the φn operators except for n = 5 are the primary operators and that the

conformal symmetry appears at the “Wilson-Fisher fixed point”.

Set-up. The action of the φ6-theory is

S =

∫
ddx

(
1

2
∂φ2 +

gµ2ε

6!
φ6

)
, d = 3− ε (2.1)

and we will maintain the coupling constant in a dimensionless one. We are only interested

in the leading order calculations and then the µ2ε factor does not play any role. Therefore

we will omit this factor in the following discussion. For the purpose of the perturbative

(Feynman diagrammatic) calculation, we have to include the other renormalizable terms,

but in our calculation these are not required. The scaling dimensions for the field φ and

the composite operators φn are defined as

∆1 := ∆φ =
1− ε

2
+ γ1 (2.2)

∆n := ∆φn = n

(
1− ε

2

)
+ γn. (2.3)

For the calculation of the lowest order anomalous dimension, the multiplet recombination

employed in [1] is nothing but the classical equation of motion

2φ =
gµ2ε

5!
φ5. (2.4)

in our approach. In the paper [1], the multiplet recombination relation is defined as 2[φ]R =

α(ε)[φ5]R, where [· · · ]R means the renormalized operator at the Wilson-Fisher fixed point

and α(ε) is a certain function which becomes zero at the ε → 0 limit. Although this is a

more generic operator identity and would be necessary for the higher order calculation, but

in the lowest order calculation of the anomalous dimensions, the tree-level relation, namely

the classical equation of motion is adequate.
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Two-point function. As a first step of determining the anomalous dimension from the

conformal symmetry and the classical equation of motion, we will study the two-point

function of the elementary field φ. This step is completely the same as [1, 3, 11]. The

two-point function is given by

〈φ(x)φ(y)〉 tree−level
=

1

4π

1

|x− y|
(2.5)

〈φ(x)φ(y)〉 = c |x− y|−2∆1 , (2.6)

where the tree-level value of c is 1/4π. Correctly speaking, in the second equation, the op-

erator should be a renormalized one [φ]R. In the following calculation we will multiply the

above function by the differential operator 2 := ∂µ∂
µ twice and use the equation of motion

2φ = gµ2ε

5! φ
5. Since the equation of motion introduces the coupling dependence and all the

correlation functions will be evaluated at the tree-level, we can replace all the renormalized

operator with the tree-level (bare) ones. Therefore we can neglect the wave function renor-

malization in the following discussion. For the same reason, the renormalization factor of

the coupling constant can be dropped.

As mentioned above, taking the derivatives of the above two-point function first by

2x, we have

〈2xφ(x)φ(y)〉 = c2x|x− y|−2∆1

= 2c∆1(2∆1 + 2− d)|x− y|−2∆1−2

∼ γ1

2π
|x− y|−5, (2.7)

where in the last line we have evaluated this at the lowest level in the coupling constant and

the epsilon parameter. Since we eventually find the critical coupling g∗ = g(ε), neglecting

the ε-dependence above will suffice for our purpose. We can alternatively calculate the

above correlation functions by using the classical equation of motion as

〈2φ(x)φ(y)〉|lowest =
gµ2ε

5!
〈φ5(x)φ(y)〉

∣∣∣∣
lowest

= 0, (2.8)

which means γ1 = O(g2). Next we will further apply the differential operator 2y in addition

to 2x,

〈2φ(x)2φ(y)〉 = c2x2y|x− y|−2∆1

= 2c∆1(2∆1 + 2)(2∆1 + 2− d)(2∆1 + 4− d)|x− y|−2∆1−4

∼ 3

π
γ1|x− y|−5. (2.9)

We can again evaluate the two-point function of 2φ by using the classical equation of motion

as follows. At O(g2), all the calculations are carried out in a tree-level approximation.

〈2φ(x)2φ(y)〉|O(g2) =

(
gµ2ε

5!

)2

〈φ5(x)φ5(y)〉

=
g2

5!

1

(4π)5
|x− y|−5 (2.10)
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In the calculation above we again retain the lowest order. Comparing these two results, we

obtain

γ1 =
1

3 · 45 · 5!π4
g2. (2.11)

As the calculation above shows, all the renormalized quantities [φ]R and gR can be replaced

by the bare quantity for the lowest order calculation. Notice that here we are using the

conformal properties of the primary operators so we should tune the coupling constant g to

a special value to realize the Wilson-Fisher fixed point. Usually we can calculate g∗ = g(ε)

by the Feynman diagrammatic approach, but we will alternatively find this critical value

by considering the three-point functions without any diagrammatic input, which is based

on the philosophy of [1] (and for the extended works see [3–5]).

Three-point functions. Next we will study the three-point functions. The confor-

mal symmetry restricts the coordinate dependence of the three-point function of the

(quasi-)primary operators as

〈φ(x)φn(y)φn+1(z)〉 = C1,n,n+1|x− y|∆n+1−∆1−∆n |y − z|∆1−∆n−∆n+1 |x− z|∆n−∆1−∆n+1 ,

(2.12)

where we assume n ≥ 2 and the tree-level value of C1,n,n+1 is given by

Ctree
1,n,n+1 = (n+ 1)!

1

(4π)n+1
. (2.13)

These three-point functions actually include the non-primary operator for n = 4, 5 since

φ5 is assumed to be a descendant at the conformal fixed point we want to analyze. Then

for n = 4, 5 the right-hand side is not correct and includes the various terms like∑
a,b

Ca,b|x− y|a|y − z|b|z − x|−a−b−∆1−∆n−∆n+1 . (2.14)

However, since we are now interested in the lowest order values of the anomalous dimen-

sions, the above restricted form is adequate even for n = 4 and 5. This will be proven in

the last paragraph of this section.

In the same way as the two-point function, we apply the differential operator 2x and

evaluate it at the lowest-level,

〈2xφ(x)φn(y)φn+1(z)〉 ∼ C1,n,n+1γ1|y − z|−n|x− z|−3

− C1,n,n+1(γ1 + γn − γn+1)|x− y|−2|y − z|−n+2|x− z|−3.

(2.15)

The terms proportional to γ1 will start with O(g2), then these do not contribute to the

following discussion with O(g). Using the classical equation of motion, we find

〈2xφ(x)φn(y)φn+1(z)〉 =
gµ2ε

12(4π)n+3
n(n− 1)(n+ 1)!|x− y|−2|y − z|−n+2|x− z|−3.

(2.16)

Equating these two results we obtain the recursion relation

γn+1 − γn =
n(n− 1)

12(4π)2
g +O(g2) for n ≥ 2, (2.17)

where we have used the tree-level value of C1,n,n+1.
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Next we will consider the following three-point function

〈φ(x)φ(y)φ2(z)〉 = C1,1,2|x− y|∆2−2∆1 |y − z|−∆2 |x− z|−∆2 , (2.18)

where the tree-level value of the coefficient C1,1,2 is given by

Ctree
1,1,2 =

1

8π2
. (2.19)

First, we take the derivative by 2x and evaluate it at the lowest order.

〈2xφ(x)φ(y)φ2(z)〉 = C1,1,2(2∆1−∆2)(2∆1+2−d)|x− y|∆2−2∆1−2|y − z|−∆2 |x− z|−∆2

+ C1,1,2∆2(2∆1 + 2− d)|x− y|∆2−2∆1 |y − z|−∆2 |x− z|−∆2−2

− C1,1,2∆2(2∆1 −∆2)|x− y|∆2−2∆1−2|y − z|−∆2+2|x− z|−∆2−2

∼ 2C1,1,2γ1|y−z|−1|x−z|−3 − C1,1,2(2γ1 − γ2)|x−y|−2|y−z||x−z|−3

(2.20)

If we use the equation of motion and evaluate the left-hand side at the lowest order, the

result is vanishing, which means that the non-vanishing terms will start with O(g2). This

implies that the anomalous dimension γ2 will start at O(g2). We further take a derivative

by 2y and we find

〈2xφ(x)2yφ(y)φ2(z)〉 ∼ −2C1,1,2(2γ1 − γ2)|x− y|−4|y − z|−1|x− z|−1 +O(g3). (2.21)

By using again the equation of motion, the left-hand side becomes

〈2xφ(x)2yφ(y)φ2(z)〉 =
( g

5!

)2
〈φ5(x)φ5(y)φ2〉

∼ g2

12(4π)6
|x− y|−4|y − z|−1|x− z|−1 (2.22)

Comparing these two results we find

2γ1 − γ2 = − g2

3 · 46π4
(2.23)

and the recursion relation above can be solved by noticing that γ2 = 0 · g1 +O(g2),

γn =
g

3243π2
n(n− 1)(n− 2) +O(g2), for n ≥ 2 (2.24)

Note again that the above derivation uses the conformal properties so we need to find the

critical coupling g∗. This will be given in the following.

Determination of g∗. We should notice that ∆5 can be represented in two ways,

∆5 = ∆1 + 2 =
5− ε

2
+ γ1 (2.25)

= 5

(
1− ε

2

)
+ γ5 (2.26)
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Then we get the relation

γ5 − γ1 = 2ε. (2.27)

At O(g), this means γ5 = 2ε, which fixes the value of g∗ as

g∗ =
25 · 3π2

5
ε (2.28)

Inserting this to the anomalous dimensions obtained above, we find

γ1 =
1

1000
ε2 +O(ε3), γ2 =

3

100
ε2 +O(ε3) (2.29)

γn≥3 =
1

30
n(n− 1)(n− 2)ε+O(ε2). (2.30)

These results are consistent with the perturbative calculation [17, 18] and the conformal

method [3]. In the paper [3], the value of γ2 is not derived.

OPE coefficients. Next we will consider the OPE coefficients which are vanishing in

the limit g → 0. Let us consider the following three-point function

〈φ(x)φ(y)φ4(z)〉 = C1,1,4|x− y|∆4−2∆1 |y − z|−∆4 |x− z|−∆4

〈2xφ(x)φ(y)φ4(z)〉 ∼ 2C1,1,4|x− y|−1|x− z|−4. (2.31)

Again, by the use of the equation of motion, the left-hand side becomes

〈2xφ(x)φ(y)φ4(z)〉 =
g

5!
〈φ5(x)φ(y)φ4(z)〉

∼ g

(4π)5
|x− y|−1|x− z|−4. (2.32)

Then we obtain the lowest order coefficient

C1,1,4|O(g) =
g

2(4π)5
. (2.33)

In a similar way, considering the three-point function 〈φ(x)φ(y)φ6(z)〉, we obtain

C1,1,6|O(g) =
g

(4π)6
. (2.34)

Justification of the form of the 3-pt function for n = 3, 4. In the above calculation,

we assume the following form of the three-point function. This is correct for the (quasi-

)primary operators but not for their descendants. For the descendant fields, we generically

have the different terms. Here we will justify that in the lowest order calculation it is

enough to restrict the form of the three-point function to the following form.

〈φ(x)φn(y)φn+1(z)〉 = C1,n,n+1|x− y|∆n+1−∆1−∆n |y − z|∆1−∆n−∆n+1 |x− z|∆n−∆1−∆n+1 ,

(2.35)

Let us first consider the three-point function,

〈φ(x)φ4(y)φ5(z)〉 . (2.36)

– 7 –
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Since φ5(z) is a descendant of a single φ(z) field, this is proportional to

1

g
〈φ(x)φ4(y)2zφ(z)〉 . (2.37)

This correlation function is constrained by the conformal symmetry as follows.

〈φ(x)φ4(y)2zφ(z)〉 = C1,4,12z
(
|x− y|−∆4 |y − z|−∆4 |x− z|∆4−2∆1

)
= C1,4,1∆4(2∆1 + 2− d)|x− y|−∆4 |y − z|−∆4−2|x− z|∆4−2∆1

+ C1,4,1(2∆1−∆4)(2∆1+2−d)|x−y|−∆4 |y−z|−∆4 |x−z|∆4−2∆1−2

− C1,4,1∆4(2∆1 −∆4)|x− y|−∆4+2|y − z|−∆4−2|x− z|∆4−2∆1−2

(2.38)

Since the first and second lines have the pre-factors 2∆1 +2−d = 2γ1 = O(g2) and C1,4,1 =

O(g), then including the 1/g factor, these two lines are totally the O(g2) contributions.

Since we are calculating the O(g) contribution to the anomalous dimensions for γn≥3, these

terms can be neglected. On the other hand, the third line is 1
g C1,4,1∆4(2∆1−∆4) = O(g0)

and remains at the lowest-order calculation. If we notice the relation

∆5 = ∆1 + 2, (2.39)

the last term can be recast in

C1,4,5|x− y|−∆1−∆4+∆5 |y − z|−∆4−∆5+∆1 |x− z|∆4−∆1−∆5 , (2.40)

where we combine all the O(g0) coefficients into C1,4,5. This is the reason why the above

form of the three-point function is adequate for our purpose. For the correlation function

〈φ(x)φ5(y)φ6(z)〉, the same argument can be applied. This situation is applied for the

φ4-theory in (4− ε) dimensions. But for the φ3-theory in (6− ε) dimensions, the situation

is quite different since the wave function renormalization start from the one-loop graph.

Then for the φ3-theory, we should include the terms neglected here.

3 φ4-theory in (4 − ε) dimensions

A next example is a φ4-theory in (4 − ε) dimensions. This can be analyzed in the same

manner as the previous section, where the forms of the three-point functions including the

descendant field can be approximated as if they are the correlation functions only with the

primaries.

Set-up. The action and the anomalous dimensions are defined as

S =

∫
ddx

(
1

2
∂φ2 +

gµε

4!
φ4

)
, d = 4− ε (3.1)

∆1 := ∆φ =
(

1− ε

2

)
+ γ1, ∆n := ∆φn = n

(
1− ε

2

)
+ γn. (3.2)

The classical equation of motion relates 2φ to φ3,

2φ =
gµε

3!
φ3. (3.3)

– 8 –
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Two-point function. We start with the two-point function of φ:

〈φ(x)φ(y)〉 tree−level
=

1

4π2

1

|x− y|2
(3.4)

〈φ(x)φ(y)〉 = c |x− y|−2∆1 . (3.5)

Taking the derivatives of the above function, we have

〈2φ(x)2φ(y)〉 = c2x2y|x− y|−2∆1

= 2c∆1(2∆1 + 2)(2∆1 + 2− d)(2∆1 + 4− d)|x− y|−2∆1−4

∼ 8

π2
γ1|x− y|−6 (3.6)

We can evaluate the left-hand side at O(g2) by using the classical equation of motion.

〈2φ(x)2φ(y)〉 =

(
gµε

3!

)2

〈φ3(x)φ3(y)〉

=
g2

3!

1

(4π2)3
|x− y|−6 (3.7)

Therefore we obtain

γ1 =
1

3 · 43

( g

4π2

)2
. (3.8)

Three-point function. Next, we will study the three-point functions in order to derive

the anomalous dimensions of the composite operators and to find the critical value of

the coupling g∗. Let us start with the correlator 〈φ(x)φ(y)φ2(z)〉, whose general form is

constrained from the conformal symmetry as

〈φ(x)φ(y)φ2(z)〉 = C1,1,2|x− y|∆2−2∆1 |y − z|−∆2 |x− z|−∆2 , (3.9)

where the tree-level coefficient of C1,1,2 is obtained from the simple calculation of the Wick

contractions and it is

Ctree
1,1,2 =

1

8π4
. (3.10)

First, we will take the derivative by 2x and evaluate the right-hand side at the lowest order.

〈2xφ(x)φ(y)φ2(z)〉 = C1,1,2(2∆1−∆2)(2∆1 + 2− d)|x− y|∆2−2∆1−2|y − z|−∆2 |x− z|−∆2

+ C1,1,2∆2(2∆1 + 2− d)|x− y|∆2−2∆1 |y − z|−∆2 |x− z|−∆2−2

− C1,1,2∆2(2∆1 −∆2)|x− y|∆2−2∆1−2|y − z|−∆2+2|x− z|−∆2−2

= C1,1,2(2γ1 − γ2)2γ1|x− y|∆2−2∆1−2|y − z|−∆2 |x− z|−∆2

+ C1,1,2∆22γ1|x− y|γ2−2γ1 |y − z|−∆2 |x− z|−∆2−2

− C1,1,2∆2(2γ1 − γ2)|x− y|∆2−2∆1−2|y − z|−∆2+2|x− z|−∆2−2

∼ 4C1,1,2γ1|y − z|−∆2 |x− z|−∆2−2 − 4C1,1,2γ1|x− y|−2|x− z|−4

+ C1,1,2∆2γ2|x− y|γ2−2|y − z|−∆2+2|x− z|−∆2−2 +O(g3)

∼ 2C1,1,2γ2|x− y|−2|x− z|−4 +O(g2), (3.11)
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where we used the fact that γ1 starts with O(g2), which is the result from the study of the

two-point function. By using the classical equation of motion, the left-hand side becomes

〈2xφ(x)φ(y)φ2(z)〉 =
g

3!
〈φ3(x)φ(y)φ2(z)〉

∼ g

(4π2)3
|x− y|−2|x− z|−4 +O(g2) (3.12)

Then, comparing these two, we find

γ2 =
g

16π2
. (3.13)

One may expect that if we apply further the derivative 2y to the above three-point function,

we get the O(g2) result of the anomalous dimension γ2. However this is not the case since

we will get the uninteresting relation

γ2
2 = O(g2). (3.14)

For the composite operators φn, we study the following three-point functions.

〈φ(x)φn(y)φn+1(z)〉 = C1,n,n+1|x− y|∆n+1−∆1−∆n |y − z|∆1−∆n−∆n+1 |x− z|∆n−∆1−∆n+1

(3.15)

For n = 2, 3, the correlator includes a descendant field φ3, then the right-hand side generally

involves other terms. However the coefficients of such terms start with O(g) or more higher

power of g. In the following we will consider the O(g) contribution, so these terms can be

neglected as before. Notice that we take a derivative of this correlator and this manipulation

gives rise to another O(g) pre-factor, so in the above we have to only retain the terms with

O(g0) coefficients. The tree-level coefficient C1,n,n+1 is given by

Ctree
1,n,n+1 =

(n+ 1)!

(4π2)n+1
. (3.16)

As mentioned above, we will take a derivative by 2x and compare it with the result from

the classical equation of motion.

〈2xφ(x)φn(y)φn+1(z)〉 = 2C1,n,n+1(γn+1 − γn)|x− y|−2|y − z|−2n+2|x− z|−4 +O(g2)

(3.17)

〈2xφ(x)φn(y)φn+1(z)〉 =
g

3!
〈φ3(x)φn(y)φn+1(z)〉

∼ g n! n+1C2
1

(4π2)n+2
|x− y|−2|y − z|−2n+2|x− z|−4 (3.18)

Then we find the following recurrence relation

γn+1 − γn =
g

4π2

n

4
. (3.19)

Remembering the result (3.13), γ2 = g
16π2 , this is easily solved as

γn =
g

32π2
n(n− 1), for n ≥ 2. (3.20)
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From the assumption ∆3 = ∆1 + 2, we have

γ3 − γ1 = ε (3.21)

and the critical coupling is found to be

g∗ =
16π2

3
ε. (3.22)

The anomalous dimensions of the composite operators are summarized as

γ1 =
ε2

108
, γn≥2 =

1

6
n(n− 1)ε+O(ε2), (3.23)

which is consistent with the perturbative results [19, 20] and the conformal method devel-

oped in [1].

4 φ3-theory in (6 − ε) dimensions

In this section we study the φ3-theory in (6−ε) dimensions. As claimed earlier, in this case

we should be very careful about the three-point functions including the φ2 fields since φ2 is

a descendant and the three-point functions become more involved. The bare Lagrangian is

S =

∫
ddx

(
1

2
∂φ2 +

gµε/2

3!
φ3

)
, d = 6− ε (4.1)

and the scaling dimensions are defined as

∆1 := ∆φ =
(

2− ε

2

)
+ γ1, ∆n := ∆φn = n

(
2− ε

2

)
+ γn. (4.2)

The classical equation of motion is

2φ =
gµε/2

2
φ2. (4.3)

Two-point function. For two-point functions, the manipulation is completely the same

as the previous two sections.

〈φ(x)φ(y)〉 tree−level
=

1

4π3

1

|x− y|4
(4.4)

〈φ(x)φ(y)〉 = c |x− y|−2∆1 (4.5)

For the case where a single d’Alembertian 2x acts on the above two-point function, the re-

sulting correlation function 〈φ2(x)φ(y)〉 is vanishing at the tree-level approximation. Then
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we need to take the derivatives of the two-point function by 2x and 2y,

〈2φ(x)2φ(y)〉 = c2x2y|x− y|−2∆1

= 2c∆1(2∆1 + 2)(2∆1 + 2− d)(2∆1 + 4− d)|x− y|−2∆1−4

∼ 42 · 6cγ1|x− y|−2∆1−4

∼ 24

π3
γ1|x− y|−8, (4.6)

〈2φ(x)2φ(y)〉 =

(
gµε/2

2

)2

〈φ2(x)φ2(y)〉

=
g2

2

1

(4π3)2
|x− y|−8 (4.7)

Therefore we find that the O(g) contribution to γ1 is absent and

γ1 =
1

3 · 43

g2

4π3
. (4.8)

Three-point function. First, let us assume that the field φn is a conformal primary

with the scaling dimension ∆n except for n = 2. The three-point function of φ is fixed by

the conformal symmetry as

〈φ(x)φ(y)φ(z)〉 = C1,1,1|x− y|−∆1 |y − z|−∆1 |x− z|−∆1 . (4.9)

Since the above three-point function is zero for the free theory limit, C1,1,1 = O(g). By

taking a derivative by 2x, we obtain

〈2xφ(x)φ(y)φ(z)〉 = C1,1,1∆1(2∆1 + 2− d)|x− y|−∆1−2|y − z|−∆1 |x− z|−∆1

+ C1,1,1∆1(2∆1 + 2− d)|x− y|−∆1 |y − z|−∆1 |x− z|−∆1−2

− C1,1,1(∆1)2|x− y|−∆1−2|y − z|−∆1+2|x− z|−∆1−2

∼ − 4C1,1,1|x− y|−4|x− z|−4 +O(g2). (4.10)

Using the classical equation of motion, we find

〈2xφ(x)φ(y)φ(z)〉 =
g

2
〈φ(x)2φ(y)φ(z)〉

∼ g

(4π3)2
|x− y|−4|x− z|−4 +O(g2), (4.11)

and then

C1,1,1 = − g

64π6
+O(g2). (4.12)

Next, we will consider the three-point function including the descendant φ2. This can be

obtained from the three-point function 〈φ(x)φ(y)φ(z)〉 since we are now assuming φ2 is a

descendant. At the leading order we find

〈φ(x)φ(y)φ2(z)〉 =
2

g
〈φ(x)φ(y)2zφ(z)〉

∼ − γ1

8π6
|x− y|−2|y − z|−4|x− z|−2 − γ1

8π6
|x− y|−2|y − z|−2|x− z|−4

+
1

8π6
|x− y|−∆1+2|y − z|−∆1−2|x− z|−∆1−2, (4.13)
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where we omitted the unnecessary terms and factors for our purpose of the O(g2) compu-

tation. For example, in the second line, the terms are proportional to γ1, so the powers

of |x − y|, |y − z| and |x − z| can be replaced with the classical values. Notice that the

difference between this expression and the 3d or 4d ones. In the previous two sections, we

can drop the first two terms since the anomalous dimension γ1 started with O(g2) and the

one of the descendant field starts with O(g). However, in the six-dimensional φ3-theory,

these two quantities would start with the same order, then we should retain all the three

terms above.

Being multiplied by 2x and 2y, the right-hand side becomes

〈2xφ(x)2yφ(y)φ2(z)〉 =

(
4γ1

π6
+

(2γ1 − ε)
π6

)
|x− y|−4|y − z|−4|x− z|−4. (4.14)

On the other hand, applying the classical equation of motion, we find

〈2xφ(x)2yφ(y)φ2(z)〉 =
g2

4
〈φ2(x)φ2(y)φ2(z)〉

∼ g223

4(4π3)3
|x− y|−4|y − z|−4|x− z|−4. (4.15)

Comparing these two results, we obtain

γ1 =
ε

6
+

g2

3 · 43π3
. (4.16)

Combining this with

γ1 =
1

3 · 43

g2

4π3
, (4.17)

we find the critical coupling and the critical exponent

g2
∗ = −2 · 43π3

3
ε+O(ε2), γ1(g2

∗) = − 1

18
ε+O(ε2). (4.18)

This result is consistent with the perturbation results (see, for example, [21–23]). The

conformal method developed in [1] was not applicable to this theory since they crucially

used the conditions that γ1 = O(ε2) and γn>1 = O(ε). However our method does not rely

on these condition and can be widely applied.

5 φiφiσ interaction in (6 − ε) dimensions

This section generalizes the φ3-theory in d = (6 − ε) dimensions by adding the φiφiχ

interaction. We will also include the χ3 term.

S =

∫
ddx

1

2
(∂φi)

2 +
1

2
(∂χ)2 +

g1

2
χφiφi +

g2

3!
χ3, i = 1, · · · , N (5.1)

The theory was recently studied in [11, 24] (for an old reference, see for example, [25]).

The β function of g1 is very similar to the one of the four-dimensional QCD. When we

limit to the case with g2 = 0 and ε = 0, the theory is asymptotically free for N < 8 and

– 13 –
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we have the IR free phase for N > 8, . For N = 8, the β function is vanishing at least

from the one-loop analysis and it would show the conformal symmetry and we can use the

conformal method. The theory can also have the Lee-Yang zero for the imaginary values

of the couplings. For the large N limit, the Wilson-Fisher fixed point is realized at the real

values of the couplings. The classical equations of motion for φi and χ are

2φi = g1χφi, 2χ =
g1

2
φkφk +

g2

2
χ2 (5.2)

The scaling dimensions are defined as

∆φ = (2− ε

2
) + γφ, ∆χ = (2− ε

2
) + γχ (5.3)

Two-point function. The theory includes the two types of the scalar fields, φi and χ,

then we have the two propagators.

〈φi(x)φj(y)〉 = cφδij |x− y|−2∆φ (5.4)

〈χ(x)χ(y)〉 = cχ|x− y|−2∆χ (5.5)

Applying the two differential operators, 2x and 2y, we obtain the following result.

γφ =
1

6

g2
1

(4π)3
(5.6)

γχ =
1

12

(
g2

1N

(4π)3
+

g2
2

(4π)3

)
, (5.7)

where we used the classical equations of motion. This is precisely identical to the one-loop

calculation.

Three-point function. Next, let us study the three-point functions which effectively

determine the β functions at the leading order and the critical values of the couplings. The

analysis of the three-point function is more subtle since now the theory has the two types

of the scalar fields and the equations of motion should involves the various terms.

We start with the correlation function, 〈φi(x)φj(y)χ(z)〉. By the assumption that the

fields φi and χ are the primary fields, the coordinate dependence is completely fixed as

〈φi(x)φj(y)χ(z)〉 = Cijχ|x− y|∆χ−2∆φ |y − z|−∆χ |x− z|−∆χ , (5.8)

where the three-point function above is classically vanishing, then the coefficient is O(g1).

We will first determine the leading behavior of Cijχ. We multiply the above function by

the differential operator 2z, we find

〈φi(x)φj(y)2zχ(z)〉 = Cijχ2z|x− y|∆χ−2∆φ |y − z|−∆χ |x− z|−∆χ

∼ −4Cijχ|y − z|−4|x− z|−4 (5.9)

〈φi(x)φj(y)2zχ(z)〉 = 〈φi(x)φj(y)
(g1

2
φkφk +

g2

2
χ2
)
〉

∼ g1δij
(4π3)2

|y − z|−4|x− z|−4, (5.10)
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where in the third line above, we used the classical equation of motion for χ. Comparing

the second and fourth lines, the coefficient is determined to be

Cijχ|lowest = − g1

64π6
δij (5.11)

at the leading order of the perturbation. The similar manipulation for the three-point

function 〈χ(x)χ(y)χ(z)〉 gives

Cχχχ|lowest = − g2

64π6
. (5.12)

Next we will study the correlation functions which involve the descendant field. The

form of the correlation function is fixed by the equation of motion and the three-point

function of the primary fields.

〈φi(x)φj(y)(φkφk)(z)〉 =
2

g1
〈φi(x)φj(y)(2χ− g2

2
χ2)(z)〉

=
2

g1
2z 〈φi(x)φj(y)χ(z)〉 − g2

g1
〈φi(x)φj(y)χ2(z)〉 (5.13)

We multiply the above expression by the derivatives 2x and 2y,

〈2φi(x)2φj(y)(φkφk)(z)〉 =
2

g1
Cijχ2x2y2z|x− y|∆χ−2∆φ |y − z|−∆χ |x− z|−∆χ

− g2

g1
〈2φi(x)2φj(y)χ2(z)〉 (5.14)

The left-hand side at the leading order can be evaluated by the classical equation of mo-

tion as

〈2φi(x)2φj(y)(φkφk)(z)〉 = g2
1 〈χφi(x)χφj(y)(φkφk)(z)〉

∼ 2g2
1δij

64π9
|x− y|−4|y − z|−4|x− z|−4 (5.15)

The right-hand side in (5.14) is also evaluated as foliows.

2

g1
Cijχ2x2y2z|x− y|∆χ−2∆φ |y − z|−∆χ |x− z|−∆χ

∼ 2δij
π6

(2γφ + γχ −
ε

2
)|x− y|−4|y − z|−4|x− z|−4 (5.16)

−g2

g1
〈2φi(x)2φj(y)χ2(z)〉 = −g1g2 〈χφi(x)χφi(y)χ2(z)〉

∼ −2g1g2δij
64π9

|x− y|−4|y − z|−4|x− z|−4 (5.17)

Comparing the both sides we find

2γφ + γχ =
ε

2
+

g2
1

64π3
+
g1g2

64π3
. (5.18)

If we substitute the results (5.6) and (5.7) in the above, we find

− ε

2
+

1

(4π)3

(N − 8)g2
1 − 12g1g2 + g2

2

12
= 0 (5.19)
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This is precisely the same as the β function for g1,

β1 = − ε
2
g1 +

1

(4π)3

(N − 8)g3
1 − 12g2

1g2 + g1g
2
2

12
(5.20)

and it is consistent with the fact that for g2 = 0, N = 8 and ε = 0, the theory is conformal

at the leading order of the perturbation.

Next, we would like to find the β function for g2. Then it is plausible to study the

correlation functions, 〈χ(x)χ(y)χ2(z)〉 and 〈χ(x)χ(y)χ(z)〉. Since χ2 is related to 2χ and

φkφk by the equation of motion, we have the following relation.

〈χ(x)χ(y)χ2(z)〉 =
2

g2
〈χ(x)χ(y)

(
2zχ−

g1

2
φkφk

)
(z)〉 (5.21)

〈2xχ(x)2yχ(y)χ2(z)〉 =
2

g2
2x2y2z 〈χ(x)χ(y)χ(z)〉 − g1

g2
〈2xχ(x)2yχ(y)φkφk(z)〉

(5.22)

The left-hand side in (5.22) can be evaluated as

〈2xχ(x)2yχ(y)χ2(z)〉 = 〈
(g1

2
φkφk +

g2

2
χ2
)

(x)
(g1

2
φkφk +

g2

2
χ2
)

(y)χ2(z)〉

∼ g2
2

4
〈χ2(x)χ2(y)χ2(z)〉

∼ 2g2
2

64π9
|x− y|−4|y − z|−4|x− z|−4. (5.23)

The two terms in the right-hand side of (5.22) become

2

g2
2x2y2z 〈χ(x)χ(y)χ(z)〉 =

2

π6

(
3γχ −

ε

2

)
|x− y|−4|y − z|−4|x− z|−4 (5.24)

−g1

g2
〈2χ(x)2χ(y)φkφk(z)〉 = −2Ng3

1

g2
|x− y|−4|y − z|−4|x− z|−4, (5.25)

where we used the general form of the three-point function 〈χ(x)χ(y)χ(z)〉, which can be

constrained by the conformal symmetries by the assumption that χ is a primary field.

Comparing the both sides we obtain

2g2
2

64π3
= −2Ng3

1/g2

64π3
+

2

π6

(
3γχ −

ε

2

)
, (5.26)

which is equivalent to

− ε

2
+

1

(4π)3

−4Ng3
1 +Ng2

1g2 − 3g3
2

4g2
= 0. (5.27)

Again, this is consistent with the β function for g2

β2 = − ε
2
g2 +

−4Ng3
1 +Ng2

1g2 − 3g3
2

4(4π)3
. (5.28)

In this way we correctly reproduce the anomalous dimensions for φi and χ and the condi-

tions that the β functions vanish. It seems difficult to study the composite operators φkφk
and χ2 since these two operators mix with each other and solving the mixing will inevitably

require the one-loop computation. It would be interesting to calculate the mixing matrix

from the tree-level calculation and this direction will be left as a future direction.
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6 Summary and discussion

Motivated by the recent paper [1], we here derived the leading expression of the anomalous

dimensions of the operators φn for the φ6-, φ4-, and φ3-theories in (3 − ε), (4 − ε) and

(6− ε) dimensions respectively. The method developed here does not rely on the Feynman

diagrammatic technique but on the conformal symmetry and on the classical equations of

motion. This is very parallel and similar to the method developed in [1].

One of the differences is that in [1], the operator relation, 2φ = αφ3 is not the same

as the equation of motion but just an operator identity coming from the assumption that

φ3 is a descendant of the conformal primary field φ at the Wilson-Fisher fixed point. In

this sense, the method in [1] does not rely on the perturbative approach. On the other

hand, in this paper, we used the classical equation of motion, which is just the lowest order

form of the Schwinger-Dyson equation without the contact term and clearly relying on the

Lagrangian-based (perturbative) approach.

The other difference is that in [1] they studied the three-point functions,

〈φn(x)φn+1(y)φ(z)〉 and 〈φn(x)φn+1(y)φ3(z)〉, by using the OPE between φn and φn+1.

Then this is effectively equivalent to studying the three-point functions, 〈φn(x)φn+1(y)φ(z)〉
and 〈φn(x)φn+1(y)2φ(z)〉, in our approach. However, as we have mentioned in section 4, it

is important to study the three-point functions, 〈φ(x)φ(y)φ2(z)〉 and 〈2φ(x)2φ(y)φ2(z)〉
in the φ3-theory in (6− ε) dimensions. Since the later one includes the two differential op-

erators, the information on 〈2φ(x)2φ(y)φ2(z)〉 is not taken into account in the method [1].

This is the reason why the method [1] can not be directly applied to the six-dimensional

φ3-theory.

In this paper, we found the critical coupling g∗ = g∗(ε) at the leading order without

any perturbative input. This can be carried out by considering the two- and three-point

functions and their derivatives. The coordinate dependence of these functions is constrained

from the conformal symmetry. By combining these results with the classical equations

of motion we obtained the anomalous dimensions and the critical coupling. It would be

interesting to go beyond the leading order approximation. For example, if we want to know

the next-leading order, we will need to do the one-loop computation since the use of the

equation of motion reduces the loop order required for calculating the physical quantities.

Thus we must inevitably deal with the regularization and the renormalization at this order.

In section 5, we study the theory with the N + 1 scalar fields,

S =

∫
d6x

1

2
(∂φi)

2 +
1

2
(∂χ)2 +

g1

2
χφiφi +

g2

3!
χ3, i = 1, · · · , N (6.1)

and we found the anomalous dimensions of the operators φi and χ. For the composite op-

erators, we have to be careful with the operator mixing, for example, between φiφi and χ2.

In our approach it seems difficult to solve the mixing only from the tree-level calculation.

It would be interesting to find the techniques to avoid the one-loop computation.

It would be important to apply the method to more complicated theories including

the various kinds of the scalar and fermion fields [4, 5] and also important to know if the

conformal techniques developed here can be applied to the gauge theories.
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