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Abstract: We study a single field axion inflation model in the presence of an SU(2) gauge

field with a small vev. In order to make the analysis as model-independent as possible, we

consider an arbitrary potential for the axion that is able to support the slow-roll inflation.

The gauge field is coupled to the axion with a Chern-Simons interaction λ
fF

a
µνF̃

µν
a where

λ
f ∼

O(10)
Mpl

. It has a negligible effect on the background evolution, ρYM

M2
plH

2 . ε2. However, its

quantum fluctuations make a significant contribution to the cosmic perturbation. In par-

ticular, the gauge field has a spin-2 fluctuation which explicitly breaks the parity between

the left- and right-handed polarization states. The chiral tensor modes are linearly coupled

to the gravitational waves and lead to a circularly polarized tensor power spectrum compa-

rable to the unpolarized vacuum power spectrum. Moreover, the scalar sector is modified

by the linear scalar fluctuations of the gauge field. Since the spin-0 and spin-2 fluctuations

of the SU(2) gauge field are independent, the gauge field can, at the same time, generate a

detectable chiral gravitational wave signal and have a negligible contribution to the scalar

fluctuations, in agreement with the current CMB observations.
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1 Introduction

Cosmic inflation is a successful, well-studied paradigm which offers an elegant solution

to many cosmological problems [1–4]. Besides, cosmological perturbations resulting from

quantum fluctuations during inflation generate the seeds of the structures which we observe

today. While many key predictions of inflation have been verified by CMB and LSS obser-

vations, still the primordial gravitational waves or B-mode polarization remains elusive [5].

In 2014, the lensing B-mode signal has been directly detected by Polarbear [6] and shortly

after, BICEP2 [7] pushed its constraints to a level that is competitive with temperature.

The current upper limit on tensor fluctuations (r0.05 < 0.07 at 95% CL) comes from the
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latest joint analysis of Planck and BICEP2/Keck array measurements [8]. We are living

in the golden age of observational cosmology and the quest for inflationary gravitational

waves is the major goal of several observational projects. The road ahead seems promising

for the detection of primordial gravitational waves and the discovery of new physics un-

derlying inflation [9–12]. In case of single scalar field scenarios of inflation, by observing

the primordial gravitational wave, we can determine both the energy scale of inflation,

V
1
4 ' 1016 Gev

(
r

0.01

) 1
4 , and the inflaton field excursion, ∆ϕ &

(
r

0.01

) 1
2Mpl [13]. However,

that relations can in principle be evaded in cases that the gravitational waves are coupled

to some new fields during inflation which has a negligible contribution to the scalar sector.

Axion fields are abundant in string theory and therefore very well-motivated candidates

for the inflaton field. Enjoying shift symmetry, their effective potential is protected from

dangerous quantum corrections which guaranteed the flatness of the potential. The axion

field, ϕ, is classically coupled to gauge fields through a topological term FF̃ , which is hence

invariant under shift transformations of the form ϕ→ ϕ+ϕ0 for an arbitrary ϕ0 shift. On

the other hand, quantum effects (i.e. instanton contributions) induce a perturbatively exact

cosine-type potential for the axion V (ϕ) = µ4
(
1 + cos(ϕ/f)

)
which breaks the continuous

shift symmetry to the discrete symmetry of ϕ → ϕ + 2πf [14]. Here, µ is the scale

of the (approximate) shift symmetry breaking and f is the axion decay constant. Since

super-Planckian axion decay constant is hard to realize in string theory [15, 16], the axion

potential is under theoretical control if H<f <Mpl. The lower limit on f comes from the

fact that the axion theory arises from integrating out modes heavier than f , hence, it can

only work in inflation scales lower than that. For an exhaustive review of axion inflation

see [17] and a comprehensive survey of axion inflation in string theory is presented in [18].

The first model of axion inflation has been proposed more than 25 years ago in [19,

20] and called natural inflation. Although natural inflation could rectify the naturalness

problem by means of the shift symmetry and radiative stability of the potential, does

not fully resolve it. In fact, to have a successful inflationary background, this model

needs a super-Planckian f parameter which is not a natural scale within particle physics

models. Natural inflation is now disfavoured by the joint BICEP2/Keck Array and Planck

data. One of the most popular and well-motivated axion models of inflation is monodromy

inflation [21–25]. This inflationary mechanism is a string theoretic construction based on

a single axion field and motivates a broad class of axion potentials of the form V (ϕ) =

µ4−pϕp + Λ4e
−c( ϕ

ϕ0
)pΛ

cos
(ϕ0

f ( ϕϕ0
)q + θ0

)
. While the underlying periodicity of the theory

continues to protect the inflaton potential from corrections, the periodic field space of the

axion is now effectively unfolded due to the monodromy.

Besides their appealing theoretical stability, models of axion inflation are attractive

phenomenologically due to their ability to generate observable primordial gravitational

waves. These models can create detectable gravitational waves either as vacuum fluctu-

ations of a large field model or sourced perturbations through their interaction with the

gauge fields. Axions can naturally couple to gauge fields, Abelian or non-Abelian, and

creates a richer phenomenology which leads to new observational and theoretical features.

One possible construction is an axion driven inflation which interacts with a U(1) gauge
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field via ϕFF̃ . The Abelian gauge field quanta is mixed to the gravitational waves at

the nonlinear level through the interaction δA + δA → δg. That mechanism generates

sourced chiral gravitational waves in addition to the standard (unpolarized) vacuum fluc-

tuations [26]. However, the U(1) gauge field quanta is also coupled to the inflaton via

δA+ δA→ δϕ and generates large amounts of non-Gaussianity. In other words, the result-

ing sourced gravity wave signal is correlated to the large scale non-Gaussianity. Therefore,

once the CMB constraints are imposed, the gravitational waves sourced by the U(1) gauge

field are undetectable [27–29]. Authors of [30] evades that issue by considering an infla-

tionary scenario in which the U(1) gauge field is coupled to a fast rolling axion field while

both fields are only gravitationally coupled to the inflaton field.

Another natural possibility to study as the matter content of axion inflation is a (dark)

SU(2) gauge field, Aaµ. Thanks to the SU(2) algebra in such scenarios, there exists a homo-

geneous and isotropic field configuration for the gauge field [31–33]. Therefore, the mixing

between the non-Abelian gauge field and perturbations in the scalar and tensor sectors

are at the linear order and coming from different fluctuations. Hence, the enhancement

of gravitational wave and the modification in the scalar perturbations are uncorrelated.

One of the possible realizations of axion inflationary models involving non-Abelian gauge

fields is chromo-natural inflation [34]. In this model, the axion has a standard cosine po-

tential and is coupled to the gauge field with − λ
4f tr(F aµνF

µν
a ). The gauge field has an

energy density ρYM ∼ εM2
plH

2 and λ
f ∼

O(103)
Mpl

which leads to slow-roll inflationary back-

ground, without requiring super-Planckian f [35–39]. Moreover, the tensor fluctuations of

gauge field source a chiral spectrum of gravitational waves. Despite its technical naturality,

chromo-natural inflation has been disfavored by Planck data [40, 41]. In particular, the

scalar perturbations of the model are stable if the magnetic to electric ratio of the vev

gauge field is more than
√

2, and it is otherwise unstable. The source of instability in the

scalar sector is coming from the interaction term λ
f

(ρYM

H2

) 1
2 1
kτ which gets relevant at the

intermediate regime −kτ = λ
f

(ρYM

H2

) 1
2 ∼ O(102). The tensor perturbations are however

enhanced at large magnetic to electric ratio. Therefore, depending on the parameters, this

model can either overgenerate gravitational waves or predicts a too red spectral tilt [41, 42].

In this paper, we focus on a single field axion inflation in the presence of an SU(2)

gauge field with a small vev (ρYM . ε2M2
plH

2). For the sake of generality, here we consider

an arbitrary potential for the axion that is able to support the slow-roll inflation. The

gauge field is coupled to the axion through a Chern-Simons interaction − λ
4f tr(F aµνF

µν
a )

with λ
f ∼ O(10). This interaction with the gauge field is expected as it is compatible with

all the symmetries of the axion. Moreover, due to the SU(2) algebra, the gauge field can

have an isotropic and homogeneous field configuration. It has a negligible effect on the

background evolution as ρYM . ε2M2
plH

2 and the coupling between the gauge field and

the axion is small. The quantum fluctuations of the gauge field, however, makes a signifi-

cant contribution to the cosmic perturbation. In particular, the spin-2 fluctuations of the

perturbed gauge field linearly coupled to the primordial gravitational waves and explicitly

breaks the parity between the left- and right-handed polarization states. Therefore, our

gravity waves has a circularly polarized power spectrum proportional to ρYM

M2
plH

2 which can
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be comparable to the power spectrum of its vacuum fluctuations. That results in parity odd

CMB correlations between E and B-modes and T and B-models. Moreover, the perturbed

gauge field has some scalar degrees of freedom which are linearly coupled to the curvature

perturbations via λ
f

( ρYM

M2
plH

2

) 1
2 1
kτ . In this scenario, the interaction terms are more relevant

after horizon crossing, −kτ ∼ O(0.1). Therefore, the scalar sector is modified by the SU(2)

gauge field at large scales. Our scalar perturbations are stable and almost adiabatic in case

that the background magnetic to electric ratio of the gauge field is more than
√

2 while

otherwise deviates from the adiabatic solution. There are parameter regimes in which the

gauge field, at the same time, generates a detectable chiral gravitational wave signal and

has a negligible contribution to the scalar fluctuations, in agreement with the current CMB

observations. Hence, it satisfies in a modified version of the Lyth bound and the tensor

power spectrum does not specify the scale of inflation.

This paper is organized as follows. Section 2 presents the basic setup of the model.

In section 3, we classify its cosmic perturbation theory and work out the field equations.

The scalar and tensor perturbations are studied in section 4 and 5 respectively. Finally,

we summarize in section 6. Some technical details are presented in appendices A and B.

2 Theoretical setup

We consider a generic axion-driven inflation model with a gauge field sector, both minimally

coupled to Einstein gravity

Linf =
R

2
− 1

2
∂µϕ∂

µϕ− V (ϕ) + LA(Aaµ, gµν , ϕ) , (2.1)

where ϕ is the axion field, V (ϕ) is the axion potential and LA is the gauge field sector.

Here and throughout, the reduced Planck mass is set to unity, unless otherwise specified.

For the purpose of this work and in order to be as model-independent as possible, V (ϕ)

is an arbitrary potential that is able to support the slow-roll inflation. In addition to the

inflaton, we have a SU(2) gauge field which through the Chern-Simons interaction couples

to the axion field

LA(Aaµ, gµν , ϕ) = −1

4

(
F aµνF

µν
a +

λ

f
ϕF aµνF̃

µν
a

)
, (2.2)

where λ is a dimensionless parameter, f is the axion decay constant and F̃ aµν = 1
2ε
µνλσF aλσ.

The gauge field strength tensor is

F aµν = ∂µA
a
ν − ∂νAaµ − gεabcAaµAbν , (2.3)

where g is the gauge coupling, a, b, c . . . are the indices of the su(2) algebra with generators

{Ta}, defined by the commutation relation [Ta, Tb] = iε c
ab Tc.

2.1 Geometry of the isotropic configuration

In the flat FLRW metric

ds2 = −dt2 + a(t)2δijdx
idxj , (2.4)
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and after choosing the temporal gauge for the gauge field (Aa0 = 0), we have the following

isotropic and homogeneous field configuration

ϕ = ϕ(t) and Aaµ(t) = ψ(t)eaµ , (2.5)

where {eαµ} are tetrads of FRW metric (with ea0 = 0) and the effective field value of the

gauge field ψ is a pseudo-scalar. The tetrad fields are the noncoordinate orthonormal basis

satisfying

gµν = eαµe
β
νηαβ , (2.6)

where α, β = 0, 1, 2, 3 and ηαβ is the Minkowski metric. For the FRW metric, {eαµ} are

specified as

e0
µ = nµ and eaµ = a(t)δaµ a = 1, 2, 3 , (2.7)

where nµ = (1, 0, 0, 0) is the 4-velocity of the comoving observer.

The reason for the existence of such a homogeneous and isotropic solution is as fol-

lows [31, 32]. Working in the temporal gauge Aa0 = 0, under the action of an infinitesimal

rotation R(~θ) = e
~θ. ~M , Aai transforms as

Aai
R7−→
(
R(~θ)Aa

)
i

= (δji − θkε
jk
i )Aaj , (2.8)

where Mis are generators of SO(3) in 3-dimensional vector space, (Mi)jk = −εijk. On the

other hand, setting Aa0 = 0, only fixes Aai up to global SU(2) gauge transformations1 of the

form Λ(λ) = eiλaT
a
. The residual (global) gauge transformation is in the form

Aai
Λ7−→
(
Λ−1(~λ)AiΛ(~λ)

)a
= (δab − λcεabc)Abi = R(~λ)abA

b
i . (2.9)

From the combination (2.8) and (2.9) we find that for all θks there exists a λc = −δkc θk, so

that Aai ∝ eai is invariant under the action of their combination. That then explains the

existence of the isotropic and homogeneous configurations of the form (2.5). The isomor-

phism of su(2) and so(3) Lie algebras plays a key rule here and makes the identification of

algebra and spatial indices of the local frame possible.

2.2 Background evolution and slow-roll inflation

The isotropic and homogeneous solution in (2.5) gives the electric and magnetic field com-

ponents as

Eai = −(Hψ + ψ̇)δai and Ba
i = −gψ2δai . (2.10)

The background energy densities of the axion and the gauge field are respectively

ρϕ =
1

2
ϕ̇2 + V (ϕ) , (2.11a)

ρYM =
1

2
( ~Ea. ~Ea + ~Ba. ~Ba) . (2.11b)

1Under the action of a generic (local) gauge transformation Λ
(
λ(t,x)

)
= eiλaT

a

, the gauge field trans-

forms as Aµ 7→ Aµ − i
g
Λ−1DµΛ, where Dµ = ∂µ + igAµ is the covariant derivative.

– 5 –
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The field equations of ϕ and ψ are

ϕ̈+ 3Hϕ̇+ Vϕ = −3
λg

f
ψ2(ψ̇ +Hψ) , (2.12a)

ψ̈ + 3Hψ̇ + (2H2 + Ḣ)ψ + 2g2ψ3 =
λg

f
ψ2ϕ̇ , (2.12b)

which are coupled by the Chern-Simons interaction term. Moreover, the continuity equa-

tions are

ρ̇ϕ + 3H(ρϕ + Pϕ) = −λ
f
ϕ̇ ~Ea. ~Ba , (2.13a)

ρ̇YM + 4HρYM =
λ

f
ϕ̇ ~Ea. ~Ba . (2.13b)

As we see explicitly in (2.13b), in the absence of the interaction term with the axion, ρYM

damps like a−4. However, the Chern-Simons interaction breaks the conformal symmetry

and prevents the damping of the gauge field (when ϕ̇ 6= 0).

Considering the standard slow-roll inflation, we can quantify the slow-roll dynamics by

ε ≡ − Ḣ

H2
and η ≡ − Ḧ

2HḢ
= −(εH2)̇

2εH3
. (2.14)

We also demand the gauge field to have a slow varying evolution, therefore from (2.12b)

we realize that the dimensionless time derivatives of ψ

εψ ≡
ψ̇

Hψ
and ηψ ≡ −

ψ̈

Hψ̇
, (2.15)

should also be very small during slow-roll inflation. It is useful to define two new parameters

ξ ≡ λϕ̇

2fH
and ξψ ≡

B

E
, (2.16)

where E = ( ~Ea. ~Ea)
1
2 and B = ( ~Ba. ~Ba)

1
2 . The ratio of the energy of dark radiation to total

energy is
ρYM

ρ
' ψ2

2
(1 + ξ2

ψ) , (2.17)

in which we neglect the sub-dominant term εψ. Hereafter, a “ '” means up to the dominant

order in slow-roll.

In our model, we are interested in the regime that

ρYM

ρ
. ε2, (2.18)

thus, our slow-roll parameters are

ε ' 1

2

ϕ̇2

H2
and η ' − ϕ̈

Hϕ̇
. (2.19)

– 6 –
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Up to the dominate order in slow-roll, we have ξψ ' gψ
H and ξ '

√
ε
2
λ
f which are related as

ξ '
(1 + ξ2

ψ)

ξψ
. (2.20)

During the slow-roll inflation, the energy density of the gauge field is almost constant and

ρYM ' ξ
2
~Ea. ~Ba. For a ξ ∼ 1, we have ξψ ∼ 1, λ

f ∼ 1/
√
ε and ψ ∼ ε. Since the large

coupling is hard to achieve in a controlled string compactification [44], we are interested in

small λ, e.g. f ∼ 0.01 and λ ∼ 0.1. As the axion rolls down its potential, ϕ̇/H increases

and part of the energy of the axion gradually injects to the gauge field, therefore ρYM (as

well as ψ and ξψ) slowly increases during inflation. After the end of inflation on the other

hand, ϕ̇ starts oscillating around the minimum of the potential and the gauge field acts

like a dark radiation sector, i.e. Aai ∝ a−1.

3 Cosmic perturbation theory

In this section, we work out the cosmic perturbation theory of the axion model (2.1) in the

presence of an SU(2) gauge field. We are interested in linear perturbations in this paper.

At the perturbation level, fields are perturbed around the isotropic and homogeneous con-

figuration (2.5). Due to the quantum fluctuations, all the non-Abelian gauge field modes

are turned on and can contribute to the perturbation theory. Dealing with non-Abelian

gauge fields bring new features and complications compared to the standard axion scalar

models. However, because of the isotropy of the background, one can still use the scalar,

vector, and tensor decomposition for the perturbations [33].

3.1 Classification of the fluctuations

In this subsection, we turn to classify the field and metric fluctuations around the homo-

geneous and isotropic background solution. The most general form of the perturbed FRW

metric can be parametrized as

ds2 = −(1 + 2A)dt2 + 2a(∂iB+Vi)dx
idt+ a2

(
(1− 2C)δij + 2∂ijE+ 2∂(iWj) + γij

)
dxidxj ,

(3.1)

where ∂i denotes partial derivative respect to xi and A, B, C and E are scalar perturbations,

Vi, Wi parametrize vector perturbations (these are divergence-free three-vectors) and γij ,

which is symmetric, traceless and divergence-free, is the tensor mode. The axion and the

SU(2) gauge field are also perturbed around their homogeneous and isotropic background

configurations (eq. (2.5))

ϕ(t,x) = ϕ(t) + δϕ̃(t,x) and Aaµ(t,x) =

{
aψ(t)δai + δAai(t,x) , µ = i

δAa0(t,x) , µ = 0
(3.2)

– 7 –
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where (as explained in appendix A) the 12 components of δAaµ(t,x) are

δAai = aδai (δψ − ψC) + δaj

(
∂ij(Z̃ + aψE) + ∂i(vj + aψWj) + a

(
γ̃ij +

ψ

2
γij

))
(3.3a)

+ εa ji
(
gaψ∂j(Z − Z̃) + wj

)
,

δAa0 = δka∂k(Y + aψĖ) + δja(uj + ψVj) . (3.3b)

Because of the gauge transformations generated by space-time diffeomorphisms as well

as the gauge transformations of Aaµ, not all the above 23 metric and fields perturbations

are physically meaningful. Eliminating all the gauge symmetries, 4 coordinate freedoms

and 3 internal gauge transformations, we then can construct 16 gauge invariant degrees of

freedom.

• On the scalar sector, one can construct six independent gauge-invariant combina-

tions, two standard Bardeen potentials, the perturbed axion field and three gauge

invariant combinations coming from the gauge field fluctuations

Ψ = C + a2H
(
Ė − B

a

)
Φ = A− d

dt

(
a2
(
Ė − B

a

)) and

δϕ = δϕ̃− ϕ̇a2
(
Ė − B

a

)
,

δψ = δψ ,

M = g2ψ3aZ ,

M̃ = Hψ( ˙̃Z − Y ) .

(3.4)

• There are three gauge invariant divergence-free vector perturbations, one from the

metric fluctuation and two from the gauge field perturbations

Zi = aẆi − Vi , and
Ui = 1

g ẇi + ui ,

Vi = 1
gwi + vi .

(3.5)

• On the tensor sector, we have two tensor perturbations γij and γ̃ij , which are both

gauge invariant with two degrees of freedom. The tensor perturbations are, by defi-

nition, symmetric, traceless and divergence-free.

3.2 Independent field equations

Working out the gauge-invariant combinations, we are now ready to field the linearized

field equations that govern their dynamics. The linear order perturbed energy-momentum

tensor around a background perfect fluid can be decomposed as

δTij = P̄ δgij + a2

(
δij

(
δP − 1

3
∇2πS

)
+ ∂ijπ

S + ∂iπ
V
j + ∂jπ

V
i + πTij

)
,

δTi0 = P̄ δgi0 − (ρ̄+ P̄ )(∂iδu+ δuVi ) ,

δT00 = −ρ̄δg00 + δρ ,

where ρ̄ and P̄ are the background energy and pressure densities. Moreover, πS , πVi ,

πTij represent the anisotropic inertia, characterizing departures from the perfect fluid form

– 8 –
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of the energy-momentum tensor, while δuVi is the vorticity. They satisfy the following

conditions

∂iπ
V
i = ∂iπ

T
ij = ∂iδu

V
i = 0 .

One can construct the following four gauge invariant combinations from δρ, δP and δq

δρg = δρ− ˙̄ρa2

(
Ė − B

a

)
,

δPg = δP − ˙̄Pa2

(
Ė − B

a

)
,

δqg = δq + (ρ̄+ P̄ )a2

(
Ė − B

a

)
,

while πS , πVi , πTij and δuVi are gauge invariant quantities, where δq = (ρ̄ + P̄ )δu. It is

useful to decompose the energy-momentum tensor into the contribution of the axion and

the gauge field as

δTµν = δTµνϕ + δTµνYM .

The axion sector, δTµνϕ , is specified by

δqϕ = −ϕ̇δϕ , (3.6a)

δρϕ = ϕ̇δϕ̇− ϕ̇2Φ + Vϕδϕ , (3.6b)

δPϕ = ϕ̇δϕ̇− ϕ̇2Φ− Vϕδϕ , (3.6c)

while δTµνYM has the following momentum, energy and pressure densities

δqYM = −2Ṁ + 2H(M + ξ2
ψM̃ − ψδψ + ψ2Ψ) , (3.7a)

δρYM = 3H2ψ2

(
1

H

(
δψ

ψ

)̇
− Φ + (1 + 2ξ2

ψ)
δψ

ψ

)
− k2

a2
(M̃ + 2M) , (3.7b)

δPYM =
1

3
δρYM . (3.7c)

Unlike the axion energy-momentum tensor, δTµνYM deviates from the perfect fluid form. In

other words, although the background energy-momentum tensor is in the form of a perfect

fluid, at the perturbation level, δTµνYM is an imperfect fluid with non-vanishing anisotropic

inertia and vorticity as

a2πS = 2(M − M̃) , (3.8a)

aπVi = Hψ
(
Hξ2

ψVi + (Ui − V̇i − ψZi)
)
, (3.8b)

πTij = 2Hψ

(
(ξ2
ψ − 1)Hγ̃ij − ˙̃γij −

ψ

2
γ̇ij + ξψ∂kε

kl
(i

[
γ̃j)l +

ψ

2
γj)l

])
, (3.8c)

δqVi = Hψ
(
ξψ∇× (~̇V − ~U + ψ ~Z)− 2ξ2

ψH
~U − ξψH(∇× ~V)

)
i
. (3.8d)

As follows from (3.12a)–(3.12d), (3.16a)–(3.16b) and (3.18), there are ten independent

Einstein equations, four scalars, two vectors and one tensor. Since they are less than
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Gauge-invariants Einstein equations
(
δS
δA

)
(1)

(
δS
δϕ

)
(1)

Scalar 6 4 1 1

Vector 3 2 1 0

Tensor 2 1 1 0

Table 1. Gauge-invariant perturbation modes and independent field equations.

the number of (physical) gauge-invariant quantities, one needs more equations to have a

complete set of equations. These extra equations are provided by the field equations which

are given by the second order action. In fact, the scalar and vector parts of the gauge field

equations can be written as2

δka∂k

(
∂δ2(
√
−gL)

∂Y

)
= 0 , (3.9a)

δai

(
∂δ2(
√
−gL)

∂ui

)
= 0 , (3.9b)

where δ2 stands for second order in perturbations. The equation of motion for the perturbed

axion field δϕ and the tensor mode γ̃ij will also be obtained from the corresponding parts

of the second order action. In the following table, we summarize the number of gauge-

invariant perturbations and the independent equations governing the dynamics of each

part of the system.

In the table 1,
(
δS
δA

)
(1)

and
(
δS
δϕ

)
(1)

represent the linear order field equations of the

gauge field and the axion field which are determined by the second order action. Here, we

only present the final results, for more details we refer to [33].

For later convenience, here we introduce two Fourier space variables in terms of con-

formal time τ and comoving momentum k

τ̃ ≡ −kτ and H̃ ≡ H
k
, (3.10)

where H = aH. During the slow-roll inflation in which H ' −(1 + ε)/τ , we have

τ̃ '
kphy

H
and H̃ ' (1 + ε)

τ̃
, (3.11)

in which kphy is the physical momentum k/a.

3.2.1 Scalar sector

In the scalar sector of the perturbations, we have six gauge-invariant combinations of (3.4),

{δϕ, δψ,M, M̃,Ψ,Φ}. These perturbations are governed by four scalar Einstein equations,

the field equation of δAa0 (eq. (3.9)) and δϕ.

2These extra equations are the field equation of Aa0 component which are constraints enforcing the

gauge invariance of the action. Note that dealing with a gauge invariant action, Ȧa0 does not appear in the

Lagrangian density, L, and the momentum conjugate to Aa0 is identically zero.
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The scalar part of the perturbed Einstein equations take the form

a2∂ijπ
s = ∂ij(Ψ− Φ) , (3.12a)

∂i
(
δqg + 2(Ψ̇ +HΦ)

)
= 0 , (3.12b)

δρg − 3Hδqg + 2
k2

a2
Ψ = 0 , (3.12c)

δPg + δ̇qg + 3Hδqg + 2εH2Φ− 2

3

k2

a2
(Ψ− Φ) = 0 . (3.12d)

Moreover, the scalar part of the field equation of δAa0 (eq. (3.9)) is the constraint below

Hδqg −Hψ2

(
δψ

ψ

)̇
+

(
ϕ̇+

λgψ3

f

)
Hδϕ+H2ψ2

(
δψ

ψ
+ Φ

)
+
k2

a2
M̃ = 0 . (3.13)

The field equation of δϕ is

δϕ̈+ 3Hδϕ̇+

(
k2

a2
+ Vϕϕ

)
δϕ = 2(ϕ̈+ 3Hϕ̇)Φ + ϕ̇(Φ̇ + 3Ψ̇)− λ

f
δ( ~Ea. ~Ba) (3.14)

where δ( ~Ea. ~Ba) is the linear order perturbation of ~Ea. ~Ba which is

δ( ~Ea. ~Ba) = 3gψ3H

(
1

H

(
δψ

ψ

)̇
+ 3

(
δψ

ψ

)
− Φ− k2

3a2

(
2M

g2ψ4
+

M̃

H2ψ2

))
. (3.15)

Equations (3.12a)–(3.12d), (3.13) and (3.14) provides enough number of equations for δϕ,

δψ, Ψ, Φ, M and M̃ . In section 4, we solve these equations and study scalar fluctuations

during the slow-roll inflation.

3.2.2 Vector sector

The vector perturbations of the metric and the gauge fields have three gauge invariant

combinations of eq. (3.5), {Vi,Ui,Zi}. The perturbed Einstein equations involves two

vector equations, one constraint and one dynamical equation, given as

∂i

(
2a2πVj −

1

a
(a2Zj )̇

)
= 0 , (3.16a)

2aδqVi +∇2Zi = 0 . (3.16b)

Dealing with three unknowns, the last equation is provided by the vector part of the field

equation of δAa0. Explicitly, using (3.16b) in the vector part of (3.9) yields to

gψ2~∇× ~Ui −
ψ

a
∇2(Ui − V̇i − ψZi) +

1

2a
∇2Zi = 0 . (3.17)

This completes the set of equations we need for solving vector perturbations. Then, the

combination of (3.16a)–(3.16b) and (3.17) indicates that Z exponentially damps during

inflation. From the combination of (3.8) and (3.16), we then find that Zi vanishes after

horizon crossing. Despite having gauge fields in our matter content, the power spectrum

of the vector modes are unimportant in inflationary cosmology and CMB anisotropies.
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3.2.3 Tensor sector

In the tensor sector, we have two gauge invariant tensors each with two degrees of freedom:

the spin-2 fluctuations of the metric γij (gravitational waves) and the gauge field γ̃ij , which

we call tensor waves. These tensor modes are governed by the tensor part of the Einstein

equation and the field equation of γ̃ij given by the second order action. Tensor fluctuations

of the SU(2) gauge field interact with the tensor perturbations of the metric and modify

its linear order field equation. These new interactions in the quadratic action involve

parity odd terms which generate chiral tensor modes. Here, we only focus on the tensor

perturbations of the axion inflation in (2.1). However, the above property is the generic

feature of inflationary models in the presence of a non-Abelian gauge field [43].

The perturbed Einstein equations involve one equation for γij

γ̈ij + 3Hγ̇ij −
∇2

a2
γij = 2πTij , (3.18)

in which πTij is the tensor part of the anisotropic inertia3

πTij = 2Hψ
(
(ξ2
ψ − 1)Hγ̃ij − ˙̃γij + ξψ∂kε

kl
(iγ̃j)l

)
. (3.19)

Note that πTij is proportional to ψ, the effective field value of the gauge field in the back-

ground level. Therefore, in order to have a linear order anisotropic inertia, the gauge fields

should be turned on at the background level. Moreover, the field equation of the tensor

perturbation of the gauge field γ̃ij is provided by its second order action

δ2Sh̃ '
1

2

∫
d3xdta3

((
˙̃γij
)2 − (∂kγ̃ij

a

)2

− 2ξξψH
2γ̃2
ij + 2(ξ + ξψ)Hεijkγ̃kl

∂iγ̃jl
a

+ 2Hψ

(
γ̇ij + ξεikl

∂kγjk
a

)
γ̃ij

)
. (3.20)

Interestingly, both γij and γ̃ij have sound speeds equal to one. It is noteworthy to mention

that the quadratic action above involves all the possible combinations of γ̃γ̃ with n ≤ 2

derivatives. Among them, we have two parity violating terms, εijkγ̃kl∂iγ̃jl and εijkγ̃kl∂iγjl,

which are originated from the Yang-Mills and Chern-Simons terms in the action.

Going to the Fourier space, we can diagonalize the system in terms of circular polariza-

tions. In terms of the right- and left-handed polarizations, γij and γ̃ij are decomposed as

γij(τ,x) =
1√
2a

∑
σ=R,L

∫
d3k

(2π)
3
2

hσ(τ,k)eσij(k)eik.x, (3.21a)

γ̃ij(τ,x) =
1

2
√

2a

∑
σ=R,L

∫
d3k

(2π)
3
2

h̃σ(τ,k)eσij(k)eik.x, (3.21b)

3Comparing with the exact form of πTij in (3.8), here in (3.19) we dropped two slow-roll suppressed

derivatives of γij of the form ρYM
H
γ̇ij and ρYM

H
εkli∂kγjl.

– 12 –



J
H
E
P
0
7
(
2
0
1
6
)
1
0
4

where {hR,L, h̃R,L} are the canonically normalized fields and eR,Lij are the circular polariza-

tion tensors which satisfy the conditions

eσije
σ′∗
ij = 2δσσ

′
, (3.22a)

εijkk̂ie
σ
kl = iλσe

σj
l , with λR,L = ±1 . (3.22b)

For a wave vector k = (0, 0, k), the right- and left-handed modes are defined as hR,L ≡
a(γ11 ± iγ12)/2. From the second order action (3.20), we obtain the field equation of

h̃R,L(τ,k) as

h̃′′R,L +
(
k2 ∓ 2(ξ + ξψ)kH+ 2ξξψH2

)
h̃R,L ' 2ψH(h′R,L −HhR,L ± kξhR,L) , (3.23)

in which we have parity odd terms that have different signs for the right- and left-handed

polarizations. Using the slow-roll relation (2.20) in the above and recalling that hR,L ∝ a,

we realize that the r.h.s. of (3.23) vanishes in the long wavelength limit. In section 5, we

solve the field equations of {hR,L, h̃R,L} and study tensor fluctuations during the slow-roll

inflation.

4 Scalar perturbations

In the scalar sector, we have six independent fields and six equations. Upon using variable

redefinition (3.10), it is straightforward to see that all of our equations can be written in

terms of τ̃ and H̃. For instance, we can write the field equation of δϕ (eq. (3.14)) as

(aδϕ)τ̃ τ̃ +
(
1− (2− 3η − ε)H̃2

)
aδϕ '

6ϕ̇

H
H̃2aΦ− 3λgψ3

fH

(
H̃2

(
2aδψ

ψ
− aΦ

)
− H̃

(
aδψ

ψ

)
τ̃

− 1

3ψ2

(
2aM

ξ2
ψ

+ aM̃

))
. (4.1)

Assuming slow-roll inflation, all of the coefficients in our equations are slow varying with

time and approximately constant up to the dominant order in slow-roll. Thus, all of our six

fields are functions of τ̃ with a coefficient of k which is given by the initial value. Setting

the initial value of the canonically normalized fields by the standard Bunch-Davis, solutions

has the following formal forms

XI(τ, k) =
1√
k
fI(τ̃) and YJ =

1√
k3
f̃J(τ̃) where τ̃ ≡ −kτ ,

where XI are canonically normalized fields and YI are non-dynamical fields which are gov-

erned by the constraint equations. Using constraints to eliminate non-dynamical quantities,

and solving the equations, we can decompose the dynamical fields as

XI(τ, k) = XG
I (τ, k) +XS

I (τ, k) , (4.2)

where XG
I (τ, k) is the solution of the homogeneous equation and XS

I (τ, k) is the particular

part which is sourced by the other dynamical fields. Formally, we have

XS
I (τ, k) =

1√
k

∫ τ̃

0
GI(τ̃ , τ̃

′)SI(τ̃
′)dτ̃ ′, (4.3)
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where GI(τ̃ , τ̃
′) and SI(τ̃

′) are the Green’s function and source term of equation I respec-

tively. As we may expect, using the Mukhanov-Sasaki variable

aδϕΨ ≡ a
(
δϕ+

ϕ̇

H
Ψ

)
, (4.4)

and using the constraint equations in (4.1), we obtain the field equation of the homogeneous

part of aδϕΨ as

(aδϕGΨ)τ̃ τ̃ +
(
1− (2 + 5ε− 3η)H̃2

)
aδϕGΨ = 0 , (4.5)

which is the standard equation of a single scalar field model. Imposing the standard

Banch-Davis initial value for aδϕGΨ, we can solve the above equation in terms of Hankel

functions as

aδϕGΨ(k, τ) =

√
πτ̃

2
√
k
H(1)
νG

(τ̃) , where νG '
3

2
+ 3ε− η . (4.6)

In order to study the contribution of the gauge field to the perturbations and determine the

dynamics of the system, we will write the equations in two asymptotic limits of deep inside

horizon (τ̃ � 1) and super-horizon (τ̃ � 1). The former gives us the canonically normalized

fields, {XI}s, as well as the non-dynamical fields, {YI}s, while the latter determines the

spectral tilt and super-horizon behavior of the solutions. The validity of our super-horizon

limit analysis is crucially dependent on the stability of the scalar perturbations in the

intermediate regime. That issue should be established by means of numerical study and

we will address that matter in the last subsection.

4.1 Canonically normalized fields

At this point, after using the constraints to eliminate the non-dynamical fields in the

second order action, we determine the canonically normalized fields. Setting the Banch-

Davis vacuum for them, we then obtain the initial value of the rest of the variables. In the

deep inside horizon limit in which τ̃ � 1, the constraint equation (3.12b) is

τ̃ ∂τ̃ (Ψ−M) + ψδψ +
1

2

ϕ̇

H
δϕ = 0 , (4.7)

while the combination of (3.12c) and (3.13) can be written as below

ϕ̇

H
∂τ̃δϕ− τ̃(Φ + Ψ) = 0 , (4.8a)

∂τ̃

(
ψδψ +

1

2

ϕ̇

H
δϕ

)
− τ̃(Ψ−M) ' 0 . (4.8b)

From the combination of constraints (4.7) and (4.8b), up to the dominant order, we obtain

∂2
τ̃

(
ψδψ +

1

2

ϕ̇

H
δϕ

)
+

(
ψδψ +

1

2

ϕ̇

H
δϕ

)
' 0 . (4.9)

Inserting (4.7) and (4.9) into (3.12d) leads to ∂2
τ̃Ψ + Ψ = 0, which combining with (4.7)

gives

∂2
τ̃M +M = 0 . (4.10)
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Moreover, the field equation of δϕ (3.14) at the deep inside horizon reads as

∂2
τ̃ δϕ+ δϕ = 0 . (4.11)

The second order action up to the leading orders in τ̃ is given by

δ2S =

∫
a3d3kdt

(
1

2
δϕ̇2

Ψ −
1

2

k2

a2
δϕ2

Ψ +
3

2
δψ̇2 − k2

a2
δψ2 +

k2

a2

(
Ṁ2 − k2

a2M
2
)

g2ψ4
+

1

2

k4

a4

M̃2

H2ψ2

+
k2

a2

(
− M̃

Hψ
+

2λϕ

f

M

gψ2

)
δψ̇ +

2k2

a2

λϕ

f

Ṁ

gψ2
δψ

)
. (4.12)

Using constraint (4.8), we can simply that to the following quadratic action

δ2S '
1

2

∫
k2d3kdτ

[
(aϕΨ)2

τ̃ − (aϕΨ)2 +2
(
(aδψ)2

τ̃ − (aδψ)2
)

+
2

(ξψψ)2

(
(τ̃ aM)2

τ̃ − (τ̃ aM)2
)]
.

The quadratic action above specifies our 3 canonically normalized (dynamical) fields as

XI = {aϕΨ,
√

2aδψ,−i
√

2/(ψξψ)τ̃ aM} .

As a result, the non-dynamical fields are

YJ = {aΨ, aΦ, aM̃} .

Finally, imposing the standard Banch-Davis vacuum condition specifies our initial

conditions as follows4

aδϕΨ =
eiτ̃√
2k

, aδψ =
eiτ̃

2
√
k

and aM =
iψξψ
τ̃

eiτ̃

2
√
k
. (4.14)

4.2 Long wavelength Limit and scalar spectrum

We now turn to study the long wavelength behavior of the scalar fluctuations. The validity

of our analytical calculations depends on the stability of scalar perturbations which should

be established by means of numerical study. We tackle that issue in the next subsection.

At the super-horizon limit, the constraint equation (3.12c) has the following form

Vϕδϕ+ 6H(Ψ̇ +HΦ)− ϕ̇2Φ + 3

(
φ̇2

a2
+ 2

g2φ4

a4

)
δψ

ψ
= 0 , (4.15)

and the constraint equation (3.13) is(
Hϕ̇+

λgφ2φ̇

fa3

)
δϕ+

φ̇2

a2

δψ

ψ
− 2H(Ψ̇ +HΦ) = 0 . (4.16)

4It is noteworthy to mention that the above initial conditions leads to a non-vanishing scalar anisotropy

a2πS =
iHψ(1 +

√
ξψ)

√
k3

eiτ̃ , (4.13)

which is of the order of Ψ and Φ themselves.
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From them, we then have

2ρ̄YM
δψ

ψ
+ ϕ̇2Φ + ϕ̈δϕ = 0 , (4.17a)

Vϕδϕ+ 6(Ψ̇ +HΦ) ' 0 , (4.17b)

where the former is the combination of (4.15) and (4.16), while the latter is simply equa-

tion (4.15) up to dominate orders in slow-roll. From (3.12b), (4.4) and (4.17b), we therefore

have comoving curvature perturbation (R = Ψ− H
ρ+P δqg) as

R ' H

ϕ̇
δϕΨ , (4.18)

in terms of the Mukhanov-Sasaki variable. In (4.6), we have the homogeneous part of δϕΨ,

δϕGΨ, which in super-horizon is

δϕGΨ(τ, k) ' H
√

2k
3
2

τ̃−(3ε−η). (4.19)

Moreover, the long wavelength value of the special part,5 δϕSΨ can be parametrized as

δϕSΨ(τ, k) = α(ξψ, τ̃)
H
√

2k
3
2

τ̃−(3ε−η), (4.20)

in terms of α(ξψ, τ̃) which is a function of τ̃ and the parameter ξψ. We emphasis that (4.20)

is only a relation between wave functions, while their operators are uncorrelated. In case

of stable solutions, α(ξψ, τ̃) would be a slow-varying function6 of τ̃ , i.e. α(ξψ, τ̃) ∝ τ̃O(ξψ ,ε).

In order to determine α(ξψ, τ̃) and its contribution to the spectral tilt d lnα
d ln k , we need to

do numerical analysis. In the next subsection, we present the details of our numerical study

of a system with ρYM
ρ = ε2 and here we only summarize the final results. The homogeneous

part of the comoving curvature is given as RG = H
ϕ̇ δϕ

G
Ψ which is an adiabatic mode and

hence constant after horizon crossing. However, from the combination of (4.18) and (4.20),

we can present the special part as RS = α(ξψ, τ̃)RG (which is a functional parametrization,

while the operators are uncorrelated.). Due to the prefactor α,RS can have some deviations

from adiabaticity.

Our scalar perturbations are stable and almost adiabatic for ξψ &
√

2 while otherwise

deviates from the adiabatic solution. In particular for the parameter regime ξψ &
√

2,

α(ξψ, τ̃) is almost a numerical factor of the order one ( d lnα
d ln k . 10−3). Therefore, in the

parameter regime ξψ &
√

2, we have the formal form of super-horizon power spectrum R as

PR =
4πk3

(2π)3
(|RG |2 + |RS |2) '

(
1 + α2(ξψ)

)
2ε

(
H

2π

)2

, (4.21)

5It is noteworthy to mention that in our non-Abelian gauge theory, δϕSΨ is coming from the contribution

of linearized F aF̃a to the field equation of δϕ. In case of U(1) gauge field, however, the linearized FF̃

vanishes and the contribution of the Abelian gauge field starts from δ2(FF̃ ). In that setup, the U(1) gauge

field sources the axion via inverse decay, which is now a very well studied mechanism [27–29].
6Note assuming slow-roll inflation, we neglect the time variation of background parameters during the

first few e-folds in which CMB fluctuations have been generated.
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Figure 1. The amplitude and the spectral index of δϕSΨ/δϕ
G
Ψ after horizon crossing. Left panel

shows 1 + α2(ξψ, τ̃) and d lnα
d ln k at τ̃ = 10−3 with respect to ξψ. In the right panel, we present d lnα

d ln k

vs. τ̃ for different values of ξψ. The small box in the left panel shows that for ξψ >
√

2, the values

of d lnα
d ln k is less than 10−3 and therefore we can approximately consider α(τ̃ , ξψ) as a numerical

prefactor. However, as we go to smaller values of ξψ, both of α and d lnα
d ln k increases quickly.

and up to the leading order in the slow-roll parameters, the spectral tilt is

nR − 1 ' −2(3ε− η) . (4.22)

As a result, the total comoving curvature is almost adiabatic. For smaller values of ξψ, the

prefactor α can not be considered as a numerical factor as d lnα
d ln k & 10−3. For instance, in

ξψ = 1.2, we have d lnα
d ln k = 10−2 and it increases rapidly as we approach smaller ξψs (see

figure 1).

4.3 Stability analysis of scalar perturbations

In the previous subsections, we analytically studied the system in two limits of sub- and

super-horizon regimes. An important question that may arise and the validity of our long

wavelength study tightly depends on it is the stability of scalar fluctuations in the interme-

diate regime. In this part, we address this important question and find the inhomogeneous

solution of axion fluctuation δϕS in the presence of the gauge field. Here, we neglect the

time variation of the slow-roll parameters and the metric perturbations. These slow-roll

suppressed corrections may be relevant in super-horizon scales and add some small correc-

tions to the spectral index of ϕSΨ(τ̃) which we leave for future work.

The special part of the axion field, δϕSΨ(τ̃), is sourced by the gauge field through the

Chern-Simons interaction. The source term is proportional to λψ
fτ̃ which since λψ

f ∼
√
ε, it

is mostly relevant after horizon crossing. Our numerical studies show that in small scales,

δϕSΨ is negligible comparing to δϕGΨ, while it gradually increases as the mode approaches

the horizon. After horizon crossing, for modes with ξψ &
√

2, we have d lnα
d ln k . 10−3 and

therefore Rs is almost adiabatic (figure 1). For smaller values of ξψ, on the other hand,

δϕSΨ deviates from adiabatic solution. In particular, for the parameter values ξψ = 1.2 and

ξψ = 1, we have d lnα
d ln k & 10−2 and d lnα

d ln k & 10−1 respectively. Thus, the super-horizon scalar
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perturbations are not adiabatic at ξψ . 1.2 and not even stable at ξψ . 1. We can also see

the ξψ . 1 instability in the amplitude of α(ξψ, τ̃) as well. In the left panel of figure 1, we

present α2 + 1 vs. ξψ. This quantity is almost equal to one for ξψ > 3, while it is around

and larger than one for
√

2 < ξψ < 3. As a result, our scalar perturbations are stable and

almost adiabatic for ξψ &
√

2. In smaller values of ξψ, however, it deviates from adiabatic

solution and eventually becomes unstable at long wavelengths.

5 Tensor perturbations

Working out the field equations of tensor fluctuations in section 3, here, we turn to study the

evolution of gravitational waves. The spin-2 fluctuation of the SU(2) gauge field contributes

to the anisotropic stress and acts as a source term for gravitational waves. The field

equation of hR,L(τ,k) in eq. (3.18) can be read as

∂2
τ̃hR,L +

(
1− (2− ε+ 2ψ2)H̃2

)
hR,L ' STR,L(h̃R,L) , (5.1)

where STR,L(h̃R,L) is a linear source term given in (3.19)

STR,L(h̃R,L) ' 2ψH̃
(
∂τ̃ h̃R,L + (ξ2

ψH̃ ∓ ξψ)h̃R,L
)
. (5.2)

The solution of equation (5.1) can be written as

hR,L(k, τ̃) = hGR,L(k, τ̃) + hSR,L(k, τ̃) , (5.3)

where hG is the homogeneous part, coming from vacuum fluctuations while hS is the

particular part coming from the gauge field spin-2 fluctuation. We can expand hGR(k, τ̃)

and h̃R(k, τ̃) as below in terms of the creation and annihilation operators7

hGR(τ,k) =
1√
k

(
â†kh(τ̃) + â−kh

∗(−τ̃)
)
, (5.4a)

h̃R(τ,k) =
1√
k

(
b̂†R,kh̃R(τ̃) + b̂L,−kh̃

∗
L(−τ̃)

)
, (5.4b)

where the creation and annihilation operators satisfy the standard commutation relations[
bσ,k, b

†
σ,k′
]

= δσ,σ′δ
(3)(k− k′) ,

[
bσ,k, bσ,k′

]
=
[
b†σ,k, b

†
σ,k′
]

= 0 . (5.5)

By definition, the left-handed polarization is given as hL(τ,k) = h∗R(τ,−k). Note that

the mode functions 1√
k
h̃R,L(τ̃) and 1√

k
h(τ̃) satisfy the Banch-Davis normalization, i.e.

1
k

(
h(τ̃)h∗

′
(τ̃) − h′(τ̃)h∗(τ̃)

)
= i. As a result, the particular part of the gravitational wave

can be expanded in terms of bσ and b†σ as

hSR(τ,k) =
1√
k

(
b̂†R,kh

s
R(τ̃) + b̂L,−kh

s∗
L (−τ̃)

)
. (5.6)

7In (3.23), one can negligent the r.h.s. of the equation. Therefore, gravitational waves has negligible

effect on evolution of the tensor wave h̃R,L (see equation (5.8)).
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Note that the general solution of the tensor modes are unpolarized and is specified by

one function h(τ̃). After imposing the Banch-Davis inertial condition to (5.4), we have h as

h(τ̃) ' −
√
πτ̃

2
H(1)
νT

(τ̃) for νT '
3

2
+ ε . (5.7)

In order to solve the particular part of gravitational wave hsR,L(τ̃), we need to determine

h̃R,L(τ̃) in the following.

5.1 Particular gravitational waves

During the slow-roll, we can neglect r.h.s. of (3.23), and the field equation of h̃R,L is

∂2
τ̃ h̃R,L(k, τ) +

(
1∓

2(ξ + ξψ)

τ̃
+

2ξξψ
τ̃2

)
h̃R,L(k, τ) ' 0 , (5.8)

in which we used the slow-roll relations (3.10). Upon re-definitions below

z = −2iτ̃ , κR,L = ∓i(ξ + ξψ) and µ2 =
1

4
− 2ξξψ , (5.9)

we can rewrite (5.8) in form of the Whittaker equation

∂2
zWκ,µ(z) +

(
− 1

4
+
κ

z
+

1/4− µ2

z2

)
Wκ,µ(z) = 0 . (5.10)

The most general solutions of the above equation are Whittaker functions Wκ,µ(z) and

Mκ,µ(z)

h̃σ(τ̃) = c1Wκσ ,µ(−2iτ̃) + c2Mκσ ,µ(−2iτ̃) . (5.11)

Imposing the usual Minkowski vacuum state for the gauge field’s canonically normalized

field h̃R,L in the asymptotic past,8 we obtain h̃R,L(τ̃)

h̃σ(τ̃) = eiκσπ/2Wκσ ,µ(−2iτ̃) , (5.13)

up to a phase factor. Moreover, the particular part of the solution is given as below

hsR,L(τ̃) =

∫ ∞
τ̃

G(τ̃ , τ̃ ′)STR,L(τ̃ ′)dτ̃ ′, (5.14)

in which G(τ̃ , τ̃ ′) is the retarded Green’s function of eq. (5.1)

G(τ̃ , τ̃ ′) '

(
τ̃ ′ − τ̃
τ̃ ′τ̃

cos(τ̃ ′ − τ̃)−
(

1 +
1

τ̃ τ̃ ′

)
sin(τ̃ ′ − τ̃)

)
Θ(τ̃ ′ − τ̃) , (5.15)

8The Wκ,µ(z) has the following asymptotic from at the limit | z |→ ∞

Wκ,µ(z)→ zκe−z/2, Mκ,µ(z)→ Γ(2µ+ 1)

(
i(−1)µ−κzκe−z/2

Γ(−κ+ µ+ 1
2
)

+
z−κez/2

Γ(−κ+ µ+ 1
2
)

)
for | arg z |< 3

2
π .

(5.12)

Thus, the function Wκ,µ(−2iτ̃) represents the positive frequency solutions.
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Figure 2. The right panel shows γ̃R,L with respect to τ̃ where the solid (red) line shows the

right-handed and dashed (black) one presents the left-handed polarization. In the left panel, we

plotted the particular part of gravitational waves γsR vs. τ̃ . In this system, we choose ρYM = ε2H2

and ξψ =
√

3 and since ψ > 0, the right-handed circular polarization is enhanced by evolution.

where Θ(τ̃−τ̃ ′) is the Heveside’s delta function. It is useful to parametrize hsR,L(τ̃) in (5.14)

as below

hsR,L(τ̃) =

(
ρ̄YM

ρ̄

)1
2

GR,L(κ, µ, τ̃)hdeS(τ̃) , (5.16)

where hdeS(τ̃) is the homogeneous solution of (5.7) in de Sitter space

1√
k
hdeS(τ̃) =

1√
2k

(
1 +

i

τ̃

)
eiτ̃ , (5.17)

and GR,L(κ, µ, τ̃) is defined as

GR,L(κ, µ, τ̃) =
eiκR,Lπ/2√
(1 + ξ2

ψ)/32

∫ ∞
τ̃

G(τ̃ , τ̃ ′)

hdeS(τ̃)τ̃ ′

(
∂τ̃ ′ +

(
ξ2
ψ

τ̃ ′
∓ ξψ

))
WκR,L,µ(−2iτ̃ ′)dτ̃ ′.

(5.18)

Before analytically computing the integral (5.18) and working out the explicit form

of hsR,L(τ̃), here we summarize the qualitative properties of the solutions. As indicated

by (5.8), the frequency of h̃ gets negative for one of the polarizations for a short period

before horizon crossing. Thus, that particular polarization of h̃σ experiences a short phase

of tachyonic growth which eventually leads to its sharp decay after horizon crossing. The

polarization with the tachyonic phase acts as an impulse function for its corresponding

polarization of hsσ. That then enhances the amplitude of one of the polarizations while keeps

the other polarization unchanged. In figure 2, we presented the result of the numerical study

of tensor fluctuations. In the following, we determine the analytic form of the particular

solution of gravitational waves (5.14), in the long wave length limit of the power spectrum.

Super-horizon behavior of hs
R,L. In order to study the super-horizon behavior of

gravitational waves, one needs to do the Green’s integral (5.18) in the limit that τ̃ � 1.

We presented details of calculations in appendix B and in the following we only report
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Figure 3. The left panel shows the pre-factor G±(|ξψ|) with respect to |ξψ|. Since hs±/hdeS =(
ρYM

ρ

) 1
2G± where

(
ρYM

ρ

) 1
2 . 10−2 in our model, here we presented the rescaled G±. In the right

panel, the spectral tilt of the enhanced particular mode nγs
+

is illustrated with respect to τ̃ which

damps like a−
3
2 .

the final result. The particular solution of gravitational wave function in (5.16) has the

following super-horizon form

hsR,L(τ̃) '
(
ρ̄YM

ρ̄

)1
2

GR,L(ξψ)hdeS(τ̃) , (5.19)

where the explicit form of GR,L is presented in (B.11). Depending on the sign of ψ, the

prefactor Gσ is subleading for one of the polarization states in which iκσ is negative, while

it can be significant for the other one in which iκσ > 0. We call the former integral G−
and the latter one G+ and have

hsR,L(τ̃) '
(
ρ̄YM

ρ̄

)1
2

G±(ξψ)hdeS(τ̃) where ψ > 0 , (5.20a)

hsR,L(τ̃) '
(
ρ̄YM

ρ̄

)1
2

G∓(ξψ)hdeS(τ̃) where ψ < 0 . (5.20b)

In the left panel of figure 3, we present G± with respect to |ξψ|. Here, we rescaled G±
to make a more straightforward connection between the amplitude of hs and hdeS (in our

model ρ̄YM
ρ̄ . ε2).

As we see, G− is always subleading and we can ignore it. However, G+ has a significant

value (except around |ξψ| = 3
2) and its explicit form is

G+(ξψ) ' e
iπ
2
κ+

2
√

(1+ξ2
ψ)

ξ2
ψ

(
(iξψ+1)Γ(−κ+)

Γ
(

1
2−κ+−µ

)
Γ
(

1
2−κ++µ

)+
(iξψ−1)

Γ(1−κ+)

)
Γ

(
1

2
−µ
)

Γ

(
1

2
+µ

)
,

where iκ+ =
1+2ξ2

ψ

|ξψ | . As a result, the particular solution of gravitational waves are circu-

larly polarized. In fact, depending on the sign of ψ, one of its polarizations gets sizeable

around and after horizon crossing, while the other polarization is very small and negligible.
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Recalling that γsσ(τ, k) =
√

2hsσ(τ̃)
a , we have the super-horizon form for the gravitational

waves (kτ � 1)

γs+(τ, k) '
(
ρ̄YM

ρ̄

)1
2

G+(ξψ)
H

k
3
2

and γs−(τ, k) ' 0 . (5.21)

The power spectrum of the particular solution of gravitational waves is given as

Pγs+ =
8πk3

(2π)3
|γs+|2 '

(
ρ̄YM

ρ̄

)
G2

+(ξψ)

(
H

Mplπ

)2

and Pγs−(τ, k) ' 0 , (5.22)

which is circularly polarized, unlike the unpolarized vacuum fluctuation.

Due to its prefactor ( ρ̄YM
ρ̄ )

1
2G+(ξψ) in (5.21), γs+ does not exactly freeze out after

horizon crossing, but it evolves slowly as

d ln γs+(τ, k)

d ln τ
= −ϑ− (ε+ ϑ)

d ln
(√

(1 + ξ2
ψ)G+

)
d ln ξψ

, (5.23)

and therefore is slightly deviates from the adiabatic solution,
d ln γs+(τ,k)

d ln τ = O(ε). The

spectral tilt of γs+ has a rather complicated behavior which is presented in the right panel

of figure 3. It has damped oscillations which decays as a−
3
2 at large scales and fades away.

5.2 Modified Lyth bound and tensor spectrum

Given the fact that hG and hS are uncorrelated and working out (5.7) and (5.20), we obtain

the power spectrum of gravitational waves as

PT '
(

2 +
ρ̄YM

ρ̄
G2

+(ξψ)

)(
H

πMpl

)2

. (5.24)

In fact, the gauge field’s tensor fluctuations modified the gravitational waves power spec-

trum proportional to ρ̄YM
ρ̄ and a function of ξψ. However, the tensor spectral tilt of vacuum

fluctuations is the same as the standard one

nT = −2ε , (5.25)

One of the polarization states of γij has the power spectrum of graviton vacuum fluc-

tuations, Pvac(τ̃) '
(

H
πMpl

)2
, while the other is enhanced by the gauge field (see equa-

tion (5.22)). We can parametrize the chirality of CMB power spectrum by the dimension-

less parameter

χ ≡ PR − PL
Pvac

= sG2
+(ξψ)

ρ̄YM

ρ̄
, where s = sign(ψ) . (5.26)

In the left panel of figure 4, we present χ with respect to ξψ. As we see, it is negligible if

|ξψ |. 3
2 , however it increases monotonously for |ξψ |> 3

2 .

The other important observational quantity is tensor to scaler ratio r and using (4.21)

and (5.24), the prediction of our models is

r = 16εβ where β ≡
(

1 + ρ̄YM
2ρ̄ G

2
+(ξψ)

1 + α2(ξψ)

)
. (5.27)
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Figure 4. The chirality parameter χ and β with respect to τ̃ for a system with ρ̄YM

ρ̄ = ε2.

The right panel of figure 4, shows β for ρ̄YM
ρ̄ ∼ ε2 with respect to ξψ. As we see here, β

increases by |ξψ | for |ξψ |< 3
2 and |ξψ |> 2.5. β is less than one for |ξψ |< 2.5, while is more

than one and increases sharply by |ξψ | otherwise.

Lyth (1997) noted that for standard single scalar slow-roll inflation, we can relate the

change in the inflaton during inflation, ∆ϕ, to the tensor to scalar ratio and the number

of e-folds N , as ∆ϕ ∼ MplN
√

r
8 [13]. In our setup, slow-roll inflation is driven by the

axion potential. The SU(2) gauge field is negligible on the background level, however, it

has a significant contribution on the scalar and tenor perturbations. Therefore, our model

satisfies in the following modified version of Lyth bound

∆ϕ ∼MplNCMB

√
r

8β
, (5.28)

which relates the axion excursion and r.

5.3 Generic features of tensor fluctuations

In this subsection, we summarize the generic features of the tensor perturbations in our

model.

• We have two tensor fluctuations γij and γ̃ij which are coupled to each other. The

former is the gravitational wave coming form the perturbed metric while the latter

is the spin-2 fluctuations of the perturbed SU(2) gauge field, tensor waves.

• The sound speed of both γij and γ̃ij are equal to one.

• Our system is diagonalized in terms of the circular polarizations. In particular, there

are parity odd terms in the perturbed action which have different signs for the right-

and left-handed polarization states.

• Due to its parity odd interactions, one of the polarization states of γ̃ij experiences a

short period of tachyonic growth before horizon crossing, around k
aH = 2(ξψ + ξ) ∼

O(1). Shortly after that, however, it starts to decay and fade away.
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• The effective mass of γ̃ij is equal to 2(1 + ξ2
ψ)H2 which leads to decay of its both

polarizations after horizon crossing.

• γ̃ij contributes to the anisotropic stress πTij and acts as a source term for the gravita-

tional waves. Thus we can decompose γij into its vacuum fluctuations, γGij , and the

particular solution γSij which is sourced by the SU(2) gauge field.

• Our vacuum solutions γGij is unpolarized and has the same amplitude as the standard

vacuum gravitational waves in the scalar inflationary models.

• The particluar part of gravitational waves, γSij , is circularly polarized. Both of its

polarization states are subdominate inside the horizon. However, one of its polar-

izations γs+, is enhanced around horizon crossing while the other one, γs−, is always

negligible.

• If ψ is positive/negative, the right-/left-handed polarization of γSσ would get en-

hanced by its corresponding γ̃σ field around the horizon crossing. Therefore, the

total tensor power spectrum is modified by a factor proportional to ρ̄YM
ρ̄ . Since this

modification is only on one polarization state, that generates a chirality equal to
PR−PL
Pvac

= sign(ψ)G2
+(ξψ) ρ̄YM

ρ̄ . As a result, our setup predicts non-vanishing parity

odd CMB correlations, 〈TB〉 and 〈EB〉.

• Because of the spin-2 fluctuations of the SU(2) gauge field, the total power spectrum

is enhanced with respect to the vacuum fluctuations, i.e. PT =
(
1 + ρ̄YM

2ρ̄ G
2
+

)
P vac

T .

That breaks the direct relation between the power spectrum of the gravitational

waves and the scale of inflation.

• The tensor to scalar ratio and the Lyth bound are also modified. In particular,

the tensor to scalar ratio and the axion excursion are now given as r = 16βε and

∆ϕ ∼MplN
√

r
8β where β is presented in figure 4.

6 Discussion

In this paper, we have studied the very well-motivated axion inflation models in the presence

of an SU(2) gauge field with a small (but non-vanishing) vev. We found that although the

gauge field has a small energy density ρYM . ε2H2, yet it leads to a rich phenomenology

and new observables in the CMB anisotropy. The inflaton field is the axion ϕ which for

the sake of generality has an arbitrary potential. Thanks to the non-Abelian nature of the

gauge field, it can have a homogeneous and isotropic solution and therefore a background

energy density. Moreover, the Chern-Simons interaction ( λϕ4f F̃
aFa) breaks the conformal

invariance of the gauge field and prevents its decay during inflation. As the axion rolls

down its potential, ϕ̇/H increases and part of the energy of the axion gradually injects to

the gauge field, hence ρYM slowly increases during inflation. After the end of inflation, on

the other hand, ϕ̇ starts oscillating around the minimum of the potential and the gauge

field acts like a dark radiation, ρYM ∝ a−4. Therefore, in this scenario, inflation ends in a
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self-interacting dark radiation dominated Universe which may have interesting features for

the (pre)reheating era. Moreover, the interaction ϕF aF̃a provides a natural decay channel

for the inflaton during (pre)reheating which is beyond the scope of this paper. The slow-roll

dynamics of the gauge field requires that λ
f ∼

O(10)
Mpl

. Since large coupling is hard to achieve

in a controlled string compactification [44], here we are interested in small values of λ.

The SU(2) gauge field has a negligible contribution to the inflation dynamics, however,

it leaves notable features on the cosmic perturbations. Its fluctuations can be decomposed

into scalar, vector and tensor modes. The scalar perturbations are modified by the gauge

field at large scales while the vector fluctuations are still damping and unimportant. The

scalar perturbations are stable and almost adiabatic for ξψ &
√

2 while otherwise devi-

ates from the adiabatic solution. Moreover, in the parameter regime ξψ . 1, the scalar

perturbation is unstable. Tensor perturbations are also modified by the gauge field. In

particular, the SU(2) gauge field has a spin-2 perturbation which is coupled to the primor-

dial gravitational waves. This new tensor fluctuation explicitly breaks the parity between

the left- and right-handed polarization states. Our gravitational waves are the standard

vacuum fluctuations plus the particular solution coming from the spin-2 fluctuations of the

gauge field. The former has the standard power spectrum P vac
T = 2

(
H

πMpl

)2
while the latter

has a polarized power, proportional to the background energy density of the gauge field

and a prefactor function of ξψ, P+
T = ρ̄YM

ρ̄ G
2
+(ξψ)

(
H

πMpl

)2
. P+

T is the circularly polarized

part of the gravity waves power spectrum and quantifies the amounts of chirality in the

super-horizon power spectrum. That results in parity odd CMB correlations between E

and B-modes and T and B-models. In the parameter regime
√

2 < ξψ < 3, the gauge

field generates simultaneously a detectable chiral gravitational wave signal with negligible

contribution to the scalar fluctuations, in agreement with the current CMB observations.

Hence the axion excursion satisfies in a modified version of the Lyth bound and scale of

inflation is not directly related to the tensor power spectrum.

We emphasise that the perturbed SU(2) gauge field is linearly coupled to the gravita-

tional wave. This is in contrast to the case of U(1) gauge field in which the Abelian gauge

field quanta is mixed to the gravitational waves at the nonlinear level through ϕFF̃ . In that

construction of axion driven inflations, the U(1) gauge field quanta are also coupled to the

curvature and generates large amounts of non-Gaussianity. Therefore, the resulting gravity

wave signal is correlated to the large scale non-Gaussianity [28, 29]. In the non-Abelian

case, however, the mixing between the gauge field and perturbations in the scalar and

tensor sectors i) are coming from different fluctuations and ii) at the linear order. Hence,

the enhancement of gravitational wave and the modification in the scalar perturbations

are uncorrelated. Given the mixing between the inflaton field and the SU(2) gauge field,

perhaps the most important question that is left to answer is the non-Gaussianity of this

scenario, which we postpone for future work.

One of the interesting and robust features of this setup is the generation of intrinsic

chiral gravity waves which makes it distinguishable from the unpolarized vacuum fluctua-

tions. Interestingly, the spin-2 fluctuations of the SU(2) gauge field provide a source of CP

violation during inflation. Inspiring by the gravitational leptogenesis scenario introduced

in [45], one may explore the possibility of the lepton production during inflation. In [46],
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using the gravitational anomaly in the standard model of particle physics, we studied that

possibility. We found that this setup can serve as a leptogenesis mechanism during inflation

and explain the observed baryon asymmetry in the Universe.
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A Geometry of gauge invariant combinations

The perturbed FRW metric can be parametrized as

ds2 = −(1 + 2A)dt2 + 2a(∂iB+Vi)dx
idt+ a2

(
(1− 2C)δij + 2∂ijE+ 2∂(iWj) + γij

)
dxidxj ,

(A.1)

where A, B, C and E parametrize scalar perturbations, Vi, Wi are vector perturbations

and γij is the symmetric, traceless and divergence-free tensor mode. We can also define

the tetrad field eaµ
gµν = ηαβe

α
µe
β
ν , (A.2)

where ηα,β is the Minkowski metric and α, β runs from 0 to 3. One can choose the

background tetrads as

ē0
µ = nµ and ēaµ = a(t)δaµ , (A.3)

where nµ = (1, 0, 0, 0) is the 4-velocity of the comoving observer. From the perturbed

metric we can set

δe0
µ = δnµ − δea0ēaµ and eai = δgij ē

aj , (A.4)

where δnµ = (−A, a∂iB + aVi). For later convenience, we choose the perturbed tetrad

fields as

δeai = a

(
− Cδai + δaj

(
∂ijE + ∂(iWj) +

1

2
γij

))
, δe0

i = −a2∂i

(
Ė − B

a

)
,

δea0 = δaj(a∂jĖ + Vj) , δe0
0 = −A . (A.5a)

The axion and SU(2) gauge field are also perturbed around their homogeneous and isotropic

background configurations (eq. (3.2)) as

ϕ(t,x) = ϕ(t) + δϕ̃(t,x) and Aaµ(t,x) = ψ(t)ēaµ(t) + δAaµ(t,x) , (A.6)

where δAaµ involves 3× 4 components. Therefore, the 13 field perturbations together with

the 10 components of the perturbed metric, add up to 23 degrees of freedom. Due to the

gauge transformations, not all of that metric and field perturbations are gauge invariant. In

particular, we have two types of gauge freedoms: we call them “xµ-gauge” and “Aa-gauge”.
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• xµ-gauge are the space-time gauge transformations

xµ 7→ xµ + ξµ(t,x) (A.7)

which acts on the perturbed metric and fields as follows

δgµν 7→ δgµν − Lξ ḡµν = δgµν − δt ˙̄gµν − 2ḡλ(ν∂µ)δx
λ, (A.8a)

δϕ̃ 7→ δϕ̃− ϕ̇δt , (A.8b)

δAaµ 7→ δAaµ − ˙̄Aaµδt− Āaν∂µξν = δAaµ − ψ̇ēaµδt− ψLξ ēaµ , (A.8c)

where Lξ is the Lie derivative with respect to ξµ.

As we see in (A.8c), due to its vector nature, the perturbed gauge field changes under

the action of the space-time gauge transformations. Thus, it is useful to decompose

δAaµ as

δAaµ = δxA
a
µ + δgfA

a
µ ,

in which δxA
a
µ is the induced space-time transformations on the gauge field, and

δgfA
a
µ is the genuine gauge field fluctuations which is invariant under the action of

xµ-gauge. As one may expect from (A.6), equation (A.8c) then specifies δxA
a
µ as

δxA
a
µ = ψδeaµ . (A.9)

• Aa-gauge is the infinitesimal internal gauge field transformation which acts on the

gauge field as

δgfA
a
µ 7→ δgfA

a
µ +

1

g
Dµλ

a, (A.10)

where Dµ = ∂µ + igAµ is the covariant derivative. The gauge transformation param-

eter λa(t,x) can be decomposed as

λa = δai∂iλ+ δai λ
i
V ,

in which λ is the scalar and λVi is the divergence-free vector parts.

Thus, 12 components of δAaµ(t,x) can be decomposed as (eq. (3.3))

δAai = aδai δψ + δaj(∂ijZ̃ + ∂ivj + aγ̃ij) + aψεa ji
(
g∂j(Z − Z̃) + wj

)
+ ψδeai ,

δAa0 = δka∂kY + δjauj + ψδea0 , (A.11a)

in which {δψ, Y, Z̃, Z, ui, vi, wi, h̃ij} are the genius gauge fluctuations and therefore invari-

ant under the infinitesimal space-time gauge transformations [33]. The explicit form of

δeαµ is presented in (A.5).

Now we are ready to construct the gauge invariant combinations of each sector.
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Scalar modes. In the scalar sector of the perturbations, A, B, C, E are coming from the

perturbed metric and, δψ, Y , Z and Z̃ from the perturbations of the gauge field. Under

the action of the transformation (A.7) (ξ0 = δt, ξi = ∂iδx), the scalar fluctuations of the

metric transform as

A 7→ A− δ̇t , C 7→ C +Hδt ,

B 7→ B +
δt

a
− a ˙δx , E 7→ E − δx ,

(A.12)

and δϕ̃ changes as

δϕ̃ 7→ δϕ̃− ϕ̇δt . (A.13)

By definition, the genuine gauge scalars {δψ, Y, Z, Z̃} are invariant under the xµ-gauge

transformations. On the other hand, under the action of the internal gauge field transfor-

mation of the form (A.10), the gauge field perturbations transform as

δψ 7→ δψ , Y 7→ Y − 1

g
λ̇ ,

Z 7→ Z , Z̃ → Z̃ − 1

g
λ .

(A.14)

From the combination of (A.12) and (A.14), we then can construct six independent gauge-

invariant combinations; the standard Bardeen potentials from the metric perturbations

Ψ = C + a2H

(
Ė − B

a

)
, (A.15a)

Φ = A− d

dt

(
a2

(
Ė − B

a

))
, (A.15b)

as well as the matter combinations

δϕ = δϕ̃− ϕ̇a2

(
Ė − B

a

)
, δψ = δψ , (A.16a)

M =
g2φ3

a2
Z , M̃ = φ̇( ˙̃Z − Y ) , (A.16b)

which are coming from the axion and gauge field fluctuations.

Vector modes. In the vector sector, we have Vi, Wi, ui, vi and wi which under the action of

an infinitesimal “vector” coordinate transformation (A.7) (ξ0 = 0, ξi = δxiV ), transform as

Vi 7→ Vi − aδẋiV , Wi 7→Wi − δxiV . (A.17)

ui and vi remain invariant under the coordinate transformations, however, under the in-

finitesimal gauge transformation (A.10), they change as

ui 7→ ui −
1

g
λ̇iV , vi 7→ vi −

1

g
λiV , wi 7→ wi + λiV . (A.18)

The metric fluctuations Vi and Wi obviously remain unchanged under (A.10).

– 28 –



J
H
E
P
0
7
(
2
0
1
6
)
1
0
4

δgµν δgfA
a
µ xµ-gauge Aa-gauge Gauge-invariant

Scalar 4 4 −2 −1 5

Vector 2 3 −1 −1 3

Tensor 1 1 0 0 2

Total d.o.f. 10 12 −4 −3 15

Table 2. Perturbed fields and gauge invariant combinations.

We can construct three gauge invariant divergence-free vector perturbations, one from

the metric fluctuation

Zi = aẆi − Vi , (A.19)

and two from our genuine gauge field perturbations

Ui =
1

g
ẇi + ui , and Vi =

1

g
wi + vi . (A.20)

Tensor modes. The symmetric, traceless and divergence-free tensors, γij and γ̃ij , are both

gauge invariant and each has two degrees of freedom. Here, γij is the gravitational wave

coming from the metric fluctuations, while γ̃ij is the tensor part of the SU(2) gauge field

fluctuations.

We summarize the above discussion of scalar, vector and tensor modes in table 2. From

left to right of the table, we have the fields d.o.f., gauge transformations and finally the

number of independent gauge invariant combinations of each part.

In table 2, δgfA
a
µ denotes the genuine gauge field fluctuations, “xµ-gauge” represents

the space-time gauge transformations and the “Aa-gauge” is the internal gauge field trans-

formations.

B Computation of the Green’s integral of hs
R,L

In this appendix, we determine the explicit form of the inhomogeneous (particular) solution

tensor modes, hsR,L, after horizon crossing. The special part of the gravitational wave is

sourced by the gauge field (eq. (5.14)) and its wave function can be decomposed as

hsR,L(τ̃) =

(
ρ̄YM

ρ̄

)1
2

GR,L(κ, µ, τ̃)hdeS(τ̃) , (B.1)

where τ̃ ≡ −kτ , hdeS(τ̃) is the homogeneous wave function solution of (5.7) in de Sitter

space
1√
k
hdeS(τ̃) =

1√
2k

(
1 +

i

τ̃

)
eiτ̃ , (B.2)

and GR,L(κ, µ, τ̃) is defined by eq. (5.14) as

GR,L(κ, µ, τ̃) =
eiκR,Lπ/2√
(1 + ξ2

ψ)/32

∫ ∞
τ̃

G(τ̃ , τ̃ ′)

hdeS(τ̃)τ̃ ′

(
∂τ̃ ′ +

(
ξ2
ψ

τ̃ ′
∓ ξψ

))
WκR,L,µ(−2iτ̃ ′)dτ̃ ′.

(B.3)
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Here G(τ̃ , τ̃ ′) is the retarded Green’s function9

G(τ̃ , τ̃ ′) '

(
τ̃ ′ − τ̃
τ̃ ′τ̃

cos(τ̃ ′ − τ̃)−
(

1 +
1

τ̃ τ̃ ′

)
sin(τ̃ ′ − τ̃)

)
Θ(τ̃ ′ − τ̃) , (B.4)

where Θ(τ̃ − τ̃ ′) is the Heveside’s delta function.

Inserting (B.4) into (B.1), the integral at super-horizon scales is given as

Gσ(κσ, µ) ' 8eiκR,Lπ/2√
(1 + ξ2

ψ)

∫
1

τ̃ ′

(
cos τ̃ ′ − sin τ̃ ′

τ̃ ′

)(
∂τ̃ ′Wκσ ,µ +

(
ξ2
ψ

τ̃ ′
∓ ξψ

)
Wκσ ,µ

)
dτ̃ ′|τ̃ ′=τ̃0 ,

(B.5)

where τ̃0 ≡ −kτ0 and τ0 is the beginning of inflation (τ̃0 � 1).

The Whittaker functions satisfy the following integral identities

∫
xne−ixWµ,κ(−2ix)dx =

xn+1G2,2
2,3

(
− 2ix

∣∣∣∣ −n, 1 + κ
1
2 − µ, µ+ 1

2 , −n− 1

)
Γ
(

1
2 − κ− µ

)
Γ
(

1
2 − κ+ µ

) , (B.6)∫
xneixWµ,κ(−2ix)dx = xn+1G2,1

2,3

(
− 2ix

∣∣∣∣ −n, 1− κ
1
2 − µ, µ+ 1

2 , −n− 1

)
. (B.7)

Making use of the above identities and doing the integral (B.5), we obtain

G(κ, µ) ' eiκπ/2√
(1 + ξ2

ψ)/2

−(i+ ξψ)


G2,1

2,3

(
−2iτ̃

∣∣∣∣ 1, 1+κ
1
2−µ,

1
2 +µ, 0

)
Γ
(

1
2 − κ− µ

)
Γ
(

1
2 − κ+ µ

) + G2,2
2,3

(
−2iτ̃

∣∣∣∣ 1, 1−κ
1
2−µ,

1
2 +µ, 0

)
− 1

τ̃
G2,2

2,3

(
−2iτ̃

∣∣∣∣ 2, −κ
1
2−µ,

1
2 +µ, 1

)
+

(1− κ− iξψ + ξ2
ψ)

τ̃
G2,2

2,3

(
−2iτ̃

∣∣∣∣ 2, 1−κ
1
2−µ,

1
2 +µ, 1

)

− 1

τ̃

G2,1
2,3

(
−2iτ̃

∣∣∣∣ 2, 2+κ
1
2−µ,

1
2 +µ, 1

)
Γ
(
− 1

2 − κ− µ
)
Γ
(
− 1

2 − κ+ µ
) − (1 + κ− iξψ − ξ2

ψ)

τ̃

G2,1
2,3

(
−2iτ̃

∣∣∣∣ 2, 1+κ
1
2−µ,

1
2 +µ, 1

)
Γ
(

1
2 − κ− µ

)
Γ
(

1
2 − κ+ µ

)
+
i(ξ2

ψ − κ)

τ̃2

G2,2
2,3

(
−2iτ̃

∣∣∣∣ 3, 1−κ
1
2−µ,

1
2 +µ, 2

)
−

G2,1
2,3

(
−2iτ̃

∣∣∣∣ 3, 1+κ
1
2−µ,

1
2 +µ, 2

)
Γ
(

1
2 − κ− µ

)
Γ
(

1
2 − κ+ µ

)


− i

τ̃2
G2,2

2,3

(
−2iτ̃

∣∣∣∣ 3, −κ
1
2−µ,

1
2 +µ, 2

)
+

i

τ̃2

G2,1
2,3

(
−2iτ̃

∣∣∣∣ 3, 2+κ
1
2−µ,

1
2 +µ, 2

)
Γ
(
− 1

2 − κ− µ
)
Γ
(
− 1

2 − κ+ µ
)
|τ̃ ′=τ̃0 . (B.8)

9The exact form of the retarded Green’s function is

G(τ̃ , τ̃ ′) =
h(τ̃)h∗(τ̃ ′)− h(τ̃ ′)h∗(τ̃)

W
(
h(τ̃ ′), h∗(τ̃ ′)

) Θ(τ̃ ′ − τ̃) =
π
√
τ̃ τ̃ ′

2

(
JνT (τ̃ ′)YνT (τ̃)− JνT (τ̃)YνT (τ̃ ′)

)
Θ(τ̃ ′ − τ̃),

in which W(h, h∗) is the Wronskian of h and h∗, W(h, h∗) = i, while Jν and Yν are the first and second

kind of Bessel functions. However, the source term ΠT
R is only important during the tachyonic phase of

h̃R which is before horizon crossing and hence we can neglect the slow-roll terms in h. Using the de Sitter

approximation h(τ̃) ' 1√
2k

(
1 + i

τ̃

)
eiτ̃ in the above Green’s function, we then obtain (B.4).
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The G-function with Re(p) > 0, Re(q) > 0 and p − q 6= 0, has the following asymptotic

form for x� 1

1

xp−1
G2,1

2,3

(
−2ix

∣∣∣∣ p, q
1
2 − µ,

1
2 + µ, p− 1

)
' i(−2i)p

2
Γ

(
3

2
− p− µ

)
Γ

(
3

2
− p+ µ

)
Γ(p− q) ,

+
i(−2i)q

2(q − p)
Γ

(
3

2
− q − µ

)
Γ

(
3

2
− q + µ

)
xq−p.

1

xp−1
G2,2

2,3

(
−2ix

∣∣∣∣ p, q
1
2 − µ,

1
2 + µ, p− 1

)
' i(−2i)p

2

Γ
(

3
2 − p− µ

)
Γ
(

3
2 − p+ µ

)
Γ(1− p+ q)

. (B.9)

Upon using the above relations in (B.8), we obtain

G(κ, µ) '[
−

2(κ−ξ2
ψ)Γ(2−κ)Γ

(
− 3

2−µ
)
Γ
(
− 3

2 +µ
)

Γ
(

1
2−κ−µ

)
Γ
(

1
2−κ+ µ

) −
(1−κ+ξ2

ψ−iξψ)Γ
(
− 1

2−µ
)
Γ
(
− 1

2 +µ
)

Γ(−κ)

−2i
Γ(−κ)Γ

(
− 1

2−µ
)
Γ
(
− 1

2 +µ
)
−2Γ(1−κ)Γ

(
− 3

2−µ
)
Γ
(
− 3

2 +µ
)

Γ
(
− 1

2−κ−µ
)
Γ
(
− 1

2−κ+µ
) +

(iξψ−1)Γ
(

1
2−µ

)
Γ
(

1
2 +µ

)
2Γ(1−κ)

+
(iξψ−1)Γ(−κ)Γ

(
1
2−µ

)
Γ
(

1
2 +µ

)
+2(1+κ−iξψ−ξ2

ψ)Γ(1−κ)Γ
(
− 1

2−µ
)
Γ
(
− 1

2 +µ
)

2Γ
(

1
2−κ−µ

)
Γ
(

1
2−κ+µ

)
+

Γ
(
− 1

2−µ
)
Γ
(
− 1

2 +µ
)
+2(κ−ξ2

ψ)Γ
(
− 3

2−µ
)
Γ
(
− 3

2 +µ
)

Γ(−1−κ)
+2

Γ
(
− 3

2−µ
)
Γ
(
− 3

2 +µ
)

Γ(−2−κ)

]
4eiκπ/2√
(1+ξ2

ψ)
.

Using the slow-roll relation (2.20), we can read µ and κ in terms of ξψ as

κR,L = ∓i
(

1 + 2ξ2
ψ

ξψ

)
and µ2 =

1

4
− 2(1 + ξ2

ψ) , (B.10)

which implies that G(κ, µ) is simply a function of ξψ. Recalling the functional equation

Γ(x+ 1) = xΓ(x) for Re(x) ≥ 0, we can write G(κσ, µ) as

Gσ(ξψ) '
[
−
(

(iξψ+1)

2
+
κσ(iξψ+ξ2

ψ+2)(
1
4−µ2

) +
2κσ(κσ−1)(2+ξ2

ψ)(
1
4−µ2

)(
9
4−µ2

) ) Γ(−κσ)Γ
(

1
2−µ

)
Γ
(

1
2 +µ

)
Γ
(

1
2−κσ−µ

)
Γ
(

1
2−κσ+µ

)
+

(
(2+ξ2

ψ−iξψ)(
1
4−µ2

) −
(1−iξψ)

2κσ
−

2(1+κσ)(2+ξ2
ψ)(

9
4−µ2

)(
1
4−µ2

))Γ
(

1
2−µ

)
Γ
(

1
2 +µ

)
Γ(−κσ)

]
4eiκσπ/2√

(1+ξ2
ψ)
.

(B.11)

Recalling that iκR,L ∈ R

iκR,L = ± sign(ψ)

(
1 + 2ξ2

ψ

|ξψ|

)
, (B.12)

equation (B.11) implies that G(ξψ) is subleading for the polarization state with iκσ < 0. As

a result, we only need to determine Gσ(ξψ) for the polarization with iκσ > 0, G+(ξψ). Using

the slow-roll relations 9
4 − µ

2 ' (2 + ξ2
ψ) and iκ+ '

(1+2ξ2
ψ)

|ξψ | , we can mostly simplify G+ as

G+(ξψ) ' e
iκ+π

2

2
√

(1+ξ2
ψ)

ξ2
ψ

(
(iξψ+1)Γ(−κ+)

Γ
(

1
2−κ+−µ

)
Γ
(

1
2−κ++µ

)+
(iξψ−1)

Γ(1−κ+)

)
Γ

(
1

2
−µ
)

Γ

(
1

2
+µ

)
.

(B.13)

The functions G±(ξψ) are plotted with respect to ξψ in figure 3.
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