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1 Introduction

Conventional solutions to the hierarchy problem have been disfavoured by experimental

bounds that relegated them to fine-tuned corners of their parameter space. This situation

motivated a reconsideration of the hierarchy problem: no physical effects are associated

with quadratically divergent corrections to the Higgs squared masses, so maybe we are

over-interpreting quantum field theory when we require theories that tame such quadratic

divergences.

The hierarchy problem is bypassed if there are no particles much heavier than the

Higgs and significantly coupled to it, such that physical corrections to the Higgs mass are

naturally small. This heretic context was dubbed ‘finite naturalness’ in [1, 2].

Within the general finite naturalness scenario an interesting sub-set of theories are

those described by dimension-less Lagrangians, that assume that massive parameters do

not exist at fundamental level, such that all mass scales in nature are generated dynamically,

like the QCD scale in the Standard Model. Strictly speaking, finite-naturalness does not

necessarily require the absence of masses in the Lagrangian. What makes the dynamical

generation of masses attractive is the fact that it can lead to a separation of scales, which

depends exponentially on dimensionless couplings. Therefore, this specific setup allows us

to justify why the weak scale is many orders of magnitude smaller than the Planck scale,

which itself might be generated by dimension-less dynamics, with important implications

for inflation [3–11].

Notice that a dimension-less Lagrangian corresponds to a classical scale invariant

model. We do not wish to preserve scale invariance at the quantum level because we

eventually have to generate the observed scales. When the couplings of the theory are
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small, classical scale invariance is also an approximate symmetry of the model, otherwise

it is just the requirement that the masses are dynamically generated (with the motivations

stated above).

Various models where the weak scale arises in this way have been proposed. They can

be classified in two categories:

1. The weak scale is the scale where a scalar quartic coupling λ runs negative, inducing

vacuum expectation values à la Coleman-Weinberg [12–38].

2. The weak scale is the scale where a gauge coupling g runs to non-perturbative values,

inducing condensates [39–43].

It is interesting to ask whether these theoretical frameworks could lead to something

visible at the LHC. A particularly clean channel, which has therefore a great discovery

potential, is the one with two photons in the final state. We therefore study models where

one of the required new particles can be identified with a new resonance z decaying into

two photons (diphoton). As an example, we treat in some detail the case in which such

resonance is identified with the recent diphoton excess at 750 GeV reported by ATLAS and

CMS [44, 45]. Other numerical choices are of course possible and our work will remain

valuable even if such excess will turn out to be a statistical fluctuation.

Connections with conventional solutions to the hierarchy problem have been explored

by authors who tried to identify z with one or another supersymmetric particle [46–67] or

with resonances of composite Higgs scenarios [46, 68–70].

References [71, 72] tried to incorporate the diphoton hinted by ATLAS and CMS in

the weakly-coupled framework; however, in both cases couplings are so large that the

attempted models hit Landau poles just above the weak scale, such that no hierarchy is

dynamically generated.1

In section 2 we present weakly-coupled dimensionless models where z is the field

that dynamically generates the weak scale, while running down from the Planck scale. In

section 3 we present strongly coupled dimension-less models, where, among other things,

the diphoton excess is reproduced. In section 4 we present our conclusions.

2 Weakly coupled models

Various extensions of the SM where the weak scale is generated à la Coleman-Weinberg

have been proposed in the literature. They can be divided into two main categories,

depending on which correction renormalises a quartic coupling λz down to negative values

at low energy, such that the dimension-less potential λzz4 develops a minimum: either

λ) corrections due to other scalar quartics [13–32]; or

g) corrections due to a gauge coupling [12, 33–38].2

1Furthermore [71] also contain some explicit mass term. The model in [73, 74] can be extrapolated up to

infinite energy, but it employs explicit mass terms. It is possible that these mass terms could be generated

at a scale much higher than the weak scale. But finding an example of this sort goes beyond the scope of

the present paper.
2Yukawa couplings have the opposite effect of making a quartic larger at low energy.
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name spin SU(3)c SU(2)L U(1)Y SU(N)

X 0 1 1 0 1

S 0 1 1 0 N

U 1/2 3̄ 1 −2/3 N

Uc 1/2 3 1 +2/3 N̄

Table 1. Beyond the Standard Model field content of the model of type g) of section 2.1.

Models of type λ) are more problematic than models of type g), because a non-abelian

gauge coupling g can be sizeable without implying nearby Landau poles, while a sizeable

quartic coupling drives itself to larger values at higher energies. Models of type λ) in the

literature mitigate this effect by having a large number N of smaller quartics, and we will

follow this strategy. We present in section 2.1 (section 2.2) models of type g) (of type λ)

where the Coleman-Weinberg field is the diphoton, and where the RGE can be extrapolated

up to the Planck scale, such that a large hierarchy is dynamically generated.

Before starting, we mention a broader — but less interesting — class of scale-invariant

models, where the diphoton is added as an ad-hoc extra field that does not play a key role

in the dynamical generation of the weak scale. Roughly, one can choose any one of the N

diphoton models proposed in the literature, and any one of the M models that dynamically

generated the weak scale, and combine them into N ×M models.

For example, there is no obstacle in combining the dimension-less model in [12] (an

extra SU(2) gauge interaction with an extra scalar doublet S, that acquires a vacuum

expectation value through the Coleman-Weinberg mechanism) with the ‘diphoton every-

body’s model’ [46] (the diphoton is an extra scalar singlet z coupled to extra charged

scalars X or fermions ψ). The SU(2) massive vectors are DM candidates [12].

What are the generic features of this class of ad-hoc models? The new charged particles

cannot be arbitrarily heavier than the Higgs mass Mh, otherwise they contribute to it

unnaturally [1, 2]:

Mψ <∼ 4πMh/g
2
1,2 for fermions,

MX <∼Mh/g
2
1,2 for scalars,

(2.1)

where g1,2 are the electroweak gauge couplings. The measured diphoton rate indeed sug-

gests new particles with sub-TeV mass [46]. Furthermore, in the context of finite natural-

ness, the existence of extra colored fermions below a few TeV is necessary if the QCD θ

problem is solved by an KSVZ axion model [1, 2].

We now propose more interesting — but more constrained — models where the dipho-

ton z is the particle that dynamically acquires the vacuum expectation value that induces

the electroweak scale.

2.1 Model of type g)

We extend the SM by adding an extra gauge group SU(N) and the extra fields listed in

table 1: two scalars S and X, a quark U with the same quantum numbers of the SM
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right-handed up quarks that fill a N of SU(N), plus the conjugated fermion Uc in order

to form a vector-like quark. The dimension-less Yukawa couplings are

LY = L SM
Y + (ySSUcU + yX XUU c + h.c.), (2.2)

where U is the right-handed up quark of the SM. The dimension-less potential of the

theory is

V (H,S,X) = λH |H|4 +λXX
4 +λS |S|4−λHS |H|2|S|2−λHX |H|2X2−λSX |S|2X2. (2.3)

The tree-level potential is positive, V ≥ 0, when the quartic couplings satisfy [75]

λH ≥ 0, λS ≥ 0, λX ≥ 0,

λ̄HS ≡ −λHS + 2
√
λHλS ≥ 0,

λ̄HX ≡ −λHX + 2
√
λHλX ≥ 0,

λ̄SX ≡ −λSX + 2
√
λSλX ≥ 0,

−
√
λHλXS −

√
λSλHX −

√
λXλHS + 2

√
λHλSλX +

√
λ̄HSλ̄HX λ̄SX ≥ 0.

(2.4)

The RGEs of the model are listed in appendix A. Notice that λHS is unavoidably generated

from the Yukawa couplings, if the top is the quark mostly coupled to the new states U .

Masses. When the field S dynamically acquires a vacuum expectation value breaking

SU(N) → SU(N − 1) (to nothing if N = 2 [12]), H and X too can acquire vacuum

expectation values, in view of their λHS and λSX quartic couplings to S. In the unitary

gauge there are three physical scalars:

S =

(
vS +

s√
2
, 0, . . .

)
, X = vX + x, H =

(
v +

h√
2
, 0

)
. (2.5)

We assume that λHS and λHX are negligible, and that scale invariance gets broken when

the RGE running of λS , dominated by the gauge coupling g, violates the condition λ̄SX ≥ 0

of eq. (2.3). We can approximate the one loop potential by inserting a running

λS(S) =
λ2
SX

4λX
+ βλS ln

|S|
S∗

(2.6)

in the tree-level potential of eq. (2.3). Here S∗ is the scale at which the stability condition

λ̄SX ≥ 0 is violated. For |S| around S∗ there is an approximately flat direction, which is

lifted by quantum correction (the log term in eq. (2.6)) as illustrated in figure 1. This

generates the following absolute minimum of the potential

vS =
S∗

e1/4
, vX = vS

√
λSX
2λX

, (2.7)

which is visible in figure 1. There is another absolute minimum with the sign of vX switched,

but we assume vX > 0 without loss of generality. The scalar mass matrix at the minimum

in the (x, s) basis is

2v2
S

 2λSX −
√
λ3
SX/λX

−
√
λ3
SX/λX βλS + λ2

SX/2λX

 . (2.8)
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Figure 1. Potential defined in eq. (2.3) for λS chosen as in eq. (2.6) and H = 0. We set βλS
' 0.12,

λX ' 0.030 and λSX ' 0.071.

Neglecting the small mixing with the Higgs, the mass eigenstates are the diphoton z and

a similar heavier scalar z′{
z = s cos θ + x sin θ

z′ = x cos θ − s sin θ
where tan 2θ =

4λ
3/2
SXλ

1/2
X

4λXλSX − λ2
SX − 2λXβλS

. (2.9)

Their masses are

M2
z,z′ =

v2
S

2λX

[
A∓

√
A2 − 32βλSλ

2
XλSX

]
, A ≡ 4λXλSX + λ2

SX + 2λXβλS . (2.10)

The Higgs mass is M2
h ' 2(λHSv

2
S +λHXv

2
X). The mixing angle between the higgs and the

diphoton is experimentally constrained to be small [46, 76]

| sin θhz|<∼ 0.015
√

Γγγ/10−6Mz. (2.11)

In the present model such mixing angle is of order θhz ∼M2
hv/M

2
zvS,X , which is below its

experimental bound provided that vS,X >∼ 500 GeV.

Coming to fermion masses, U and Uc split into N − 1 vector-like up quarks with mass

MN−1 = yXvX and into one with mass M1 =
√

(ySvS)2 + (yXvX)2, having neglected

smaller electroweak contributions. Recasting LHC searches for similar objects [77], we

estimate a bound M >∼ 1.2 (1.3) TeV on their masses for N = 1 (5).

Diphoton rate. The U heavy quarks mediate diphoton decays into SM vectors. In the

limit where the particles ℘ that induce loop decays of a generic scalar ϕ into SM vectors

are much heavier than the energy involved in the decay, their contribution to the decay

amplitude is related to their contributions to the β function coefficients ∆b℘i of the SM
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gauge couplings as [78, 79]

Leff =
∑
i,℘

∆b℘i
αi
8π

(F iµν)2 ln
M℘(ϕ)

M℘
(2.12)

where M℘(ϕ) is the ℘ mass for a generic vev of ϕ. In our model ϕ = {x, s} = {z,z′} and

the loop particles ℘ are the quark triplets with mass MN−1 = yXX (∆bem = 16/9) and

with mass M1 =
√
yXX2 + yS |S|2 (∆bem = (N − 1)16/9). The other ∆bi coefficients are

given by eqs. (A.1i) and (A.1k). So

L γ
eff =

αem

9π
F 2
µν

[√
2syS

√
M2

1 −M2
N−1

M2
1

+ 2xyX
(N − 1)M2

1 +M2
N−1

M2
1MN−1

]
. (2.13)

Rotating to the mass eigenstates one finds the z width into γγ:

Γ(z→ γγ)

Mz
=

4M2
zα

2
em

81π3

(√
2y2
SvSvX cos θ+2(Ny2

Xv
2
X+(N−1)y2

Sv
2
S) sin θ

vX(y2
Sv

2
S + y2

Xv
2
X)

)2

, (2.14a)

Γ(z′ → γγ)

Mz′
=

4M2
z′α2

em

81π3

(√
2y2
SvSvX sin θ−2(Ny2

Xv
2
X+(N−1)y2

Sv
2
S) cos θ

vX(y2
Sv

2
S + y2

Xv
2
X)

)2

. (2.14b)

In the limit of small βλS the pseudo-Goldstone of scale invariance is the lighter state z:

M2
z '

2v2
SβλS

1 + λSX/4λX
�M2

z′ ' 4v2
SλSX

(
1 +

λSX
4λX

)
, tan θ =

vX√
2vS
'
√
λSX
2λX

(2.15)

and eq. (2.14a) reduces to

Γ(z→ γγ)

Mz
'

8N2M2
zα

2
em

81π3(v2
S + v2

X/2)
. (2.16)

In the less relevant opposite limit of small λSX (and thereby vX � vS) the pseudo-

Goldstone of scale invariance is the heavier scalar z′:

M2
z ' 4v2

SλSX �M2
z′ ' 2v2

SβλS , tan θ ' βλS

√
λX
λ3
SX

(2.17)

and eq. (2.14b) reduces to

Γ(z′ → γγ)

Mz′
'

8M2
z′α2

em

81π3v2
S

. (2.18)

Going beyond the approximation of eq. (2.12) requires computing Feynman diagrams

with two different masses in the loop. In the limit yS = 0, such that M1 = MN−1, the full

expression is

Γ(z→ γγ)

Mz
=

4N2M2
1α

2
emy

2
X sin2 θ

9π3M2
z

∣∣∣∣S (4M2
1

M2
z

)∣∣∣∣2 (2.19)

where the loop function S is

S(x) = 1 + (1− x) arctan2

(
1√
x− 1

)
x�1' 2

3x
. (2.20)

In the limit M1 �Mz eq. (2.19) reduces to (2.16).
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Figure 2. Running of the couplings for central values for the SM parameters and for N = 5,

g(S∗) ' 1.5, vS ' 2.2 TeV, λHX(S∗) ' −0.015, λSX(S∗) ' 0.071, λX(S∗) ' 0.030, yS(S∗) = 0.023

and yX(S∗) = 0.53.

Numerical example. By performing a global fit of run 1 and run 2 ATLAS and CMS

data assuming a narrow width and dominant gg → z production we find the diphoton rate

σ(pp→ z→ γγ) = (2.8± 0.7) fb at s = (13 TeV)2, which is reproduced for

Γγγ
Mz

=
sσ(pp→ γγ)

KggCgg
= (3.8± 0.9) 10−7, (2.21)

where KggCgg = 1.5× 2140 are partonic factors [46].

In the limit of small βλS the diphoton mass and decay width are reproduced for

vS = N
310 GeV√
1 + tan2 θ

√
10−6Mz

Γγγ
, βλS =

5.9

N2
(1 + tan2 θ)2 Γγγ

10−6M
. (2.22)

Even for N = 2 this corresponds to a perturbative value of g, with Ng2/(4π)2 becoming

smaller at larger N .

In figure 2 we provide a numerical example with Mz = 750 GeV, Mz′ ' 1.7 TeV, Γγγ ≈
3.5×10−7Mz, M1 'MN−1 ≈ 1.3 TeV. There are no Landau poles at energies much smaller

than the Planck scale, and the stability conditions of eq. (2.4) are violated only at low

energy, when the desired Coleman-Weinberg mechanism takes place. We assumed central

values for the SM parameters, and the Higgs quartic λH remains positive up to the Planck

scale, unlike in the SM: the new dynamics eliminated the SM vacuum instability [80–82].3

2.2 Model of type λ)

Models of type λ) — those where the diphoton quartic is driven negative by RGE effects of

other quartics — need a multiplicity of N scalars in order to avoid Landau poles nearby by

3Needless to say, new physics at the Planck scale can give new sources of vacuum decay faster than the

SM instability scale and faster than the diphoton lifetime. The first part of this statement was strongly

emphasised in [83]. For other diphoton models addressing the vacuum instability of the SM see [84–90].
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name spin SU(3)c SU(2)L U(1)Y SU(N)

X 0 3 1 Y N

S 0 1 1 0 1

N 1/2 1 1 0 N

N c 1/2 1 1 0 N̄

Table 2. Beyond the Standard Model field content of the model of type λ) of section 2.2.

sharing the needed relatively large quartics. Some diphoton models introduce a multiplicity

of N states for a different reason: in order to mediate a sufficiently large z→ γγ rate. We

thereby identify the charged particles that mediate z→ γγ with the scalars that drive the

diphoton quartic to negative values.

We now show that a successful model of this type is obtained by considering the

massless limit of the diphoton model proposed in [91], where the multiplicity of N states

is justified by adding an extra gauge group SU(N) with gauge coupling g. The model

employs the field content listed in table 2. The three scalars are: the SM Higgs doublet

H, a neutral singlet S that will contain the diphoton z, and a charged and colored scalar

X in the fundamental N of SU(N), that mediates z→ γγ, gg at one loop.

Including the most generic dimension-less quartic couplings, the scalar potential of the

model is:

V (H,S,X) = λH |H|4 − λHS |H|2S2 + λSS
4 + λHX |H|2|X|2

+λXSS
2|X|2 + λX Tr(XX†)2 + λ′X Tr(XX†XX†). (2.23)

The tree-level potential satisfies V ≥ 0 when the quartic couplings satisfy [75]

λS > 0, λH > 0, λX + αλ′X ≥ 0,

λ̄HS ≡ −λHS + 2
√
λHλS ≥ 0,

λ̄HX ≡ λHX + 2
√
λH(λX + αλ′X) ≥ 0,

λ̄XS ≡ λXS + 2
√
λS(λX + αλ′X) ≥ 0,

√
λHλXS+

√
λSλHX−

√
λX+αλ′X λHS+2

√
λHλS(λX + αλ′X) +

√
λ̄HSλ̄HX λ̄XS ≥ 0,

(2.24)

for α = 1 and for α = 1/Nc (for N ≥ Nc = 3), which are the extremal values of

α = Tr(XX†XX†)/Tr(XX†)2.

A Coleman-Weinberg minimum is generated when the RGE running of the quartics

crosses the boundary of one of these conditions. In practice, we are interested in the case

where λS becomes negative while running to low energy, while λHS > 0 (such that the

Higgs too acquires a vev) and λHX > 0 (such that X does not acquire any vev).

Furthermore, the model contains Nf extra fermions N ⊕ N c with no SM gauge in-

teractions and in the N ⊕ N̄ representation of SU(N). Such fermions receive mass from

– 8 –
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SNN c Yukawa couplings. The lightest among them and among the SU(N) vectors are

Dark Matter candidates. The Yukawa couplings X∗UN (allowed if Y = 2/3) induces X

decays into SM up quarks and N . Recasting LHC searches for similar objects [77], we es-

timate a bound MX >∼ 1.0 (1.2) TeV on their masses for N = 3 (10). We assume that such

extra Yukawa couplings are small enough that we can neglect their contributions to the

RGE. In the presence of these extra fermions, the RGE acquire infra-red fixed points which

allow the model to be RGE-extrapolated up to the Planck scale with a stable potential.

The RGE of the model are listed in appendix B. They allow λHS and λXS to be

naturally small, while λHX ∼ g4
1, λS ∼ g4, λH ∼ g4

2.

Masses. The potential at one loop order can be approximated by inserting a running λS
in the tree-level potential of eq. (2.24):

λS ' βλS ln
S

S∗
, (2.25)

where S∗ is the scale below which λS becomes negative and βλS is given in eq. (B.1a). We

can here neglect the running of the other couplings. Expanding the scalars as

S = w + s, H =
1√
2

(
0

v + h

)
(2.26)

the effective potential is minimised by

w = S∗ exp

[
− 1

4
+

λ2
HS

4λHβλS

]
, v = w

√
λHS
λH

. (2.27)

The scalar mass matrix at the minimum in the (h, s) basis is

2v2

(
λH −

√
λHλHS

−
√
λHλHS λHS + 2βλSλH/λHS

)
. (2.28)

The mass eigenstates are the physical higgs and the diphoton z. In the limit of small

ε ≡ λ2
HS/2λHβλS , which corresponds to a Higgs mass smaller than the diphoton mass, the

mass eigenvalues are

M2
h ' 2v2λH(1− ε+ · · · ), M2

z ' 4w2βλS (1 + ε+ · · · ). (2.29)

The diphoton mass Mz is suppressed by a one loop factor because the diphoton is identified

here with the pseudo-Goldstone boson of scale invariance. The h/z mixing angle

θhz '
M2
h

M2
z

v

w
(2.30)

is below the experimental bound of eq. (2.11) for w>∼ 500 GeV. Finally, X acquires the

mass MX ' w
√
λXS , the extra fermions receive mass MN = ySw from yS SNN c Yukawa

couplings, and the SM particles acquire the usual masses through the Higgs vacuum ex-

pectation value.

– 9 –



J
H
E
P
0
7
(
2
0
1
6
)
1
0
1

Diphoton rate. The Γγγ ≡ Γ(z→ γγ) rate is given by

Γγγ
Mz

=
9N2α2

emY
4

256π3

∣∣∣∣wλXSMz

M2
X

F

(
4M2

X

M2
z

) ∣∣∣∣2 (2.31)

where the loop function F is

F (x) = x

[
x arctan2

(
1√
x− 1

)
− 1

]
x→∞

=
1

3
. (2.32)

In the limit MX � Mz/2 the Γγγ rate does not depend on λHS , as can be understood

using the Low Energy Theorem of eq. (2.12), taking into account that, in the present

model, ℘ = X with MX(z)/MX = z/w + · · · .
As usual a large multiplicity N enhances Γγγ ; in our context it also enhances Mz. In

order to reproduce desired values of Mh = 125 GeV, Mz = 750 GeV, MX and Γγγ , the

model parameters are fixed to the following values

λXS ≈ 0.24Y 4

(
TeV

MX

)6( 10−6

Γγγ/Mz

)
, w ≈ 2.0 TeV

Y 2

(
MX

TeV

)4(Γγγ/Mz
10−6

)1/2

,

λHS ≈ 0.002Y 4

(
10−6

Γγγ/Mz

)
, N ≈ 30

Y 4

(
MX

TeV

)4(Γγγ/Mz
10−6

)
.

(2.33)

at leading order in Mh/Mz � 1, and neglecting higher order corrections such as the

running of the coupling constants between Mz and S∗. We see that N is large (tens) for

Y = 2/3 and depends strongly on Y , such that a small N is obtained for Y = 4/3 or 5/3.

Numerical examples. In figure 3 we provide two numerical examples with Mz =

750 GeV, with no Landau poles at energies much smaller than the Planck scale and with all

the stability conditions of eq. (2.24) satisfied. We assumed central values for the SM param-

eters, and the Higgs quartic λH remains positive up to the Planck scale unlike in the SM.

In the upper example we have Y = 2/3 and MX ≈ 1.2 TeV The example leads to

Γγγ/Mz ' 3.1 × 10−7 and to a diphoton decay rate in two gluons Γgg/Mz ' 4.7 × 10−5.

This example employs N = 12, which is compatible with experimental bounds.

Given that such a large N might look implausible from a low-energy perspective, we

provide in the lower row a second example with N = 5, achieved by increasing Y = 4/3.

This example has MX = 1.6 TeV, Γγγ ' 4.4× 10−7Mz, Γgg ' 4.2× 10−6Mz.

In both cases the SU(N) gauge constant becomes relatively large at the diphoton scale

such that the couplings (in particular λXS) have a fast running; we tried to include such

corrections by renormalising couplings at appropriate scales.

3 Strongly coupled models

In this section we try to build dimensionless models where a new gauge interaction (we use

for it the old-fashioned name TechniColor, or TC) becomes strong around the weak scale,

inducing the weak scale and the diphoton z. Like in the weakly-coupled case, it is easy to

reproduce the diphoton excess by adding one extra ad-hoc diphoton scalar (see [43] for one
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Figure 3. Running of the couplings for central values for the SM parameters, that we took from [80],

and g2(Mz) = (4π)2/N . We find that that varying the values of λX(Mz), λ′X(Mz), λHX(Mz)

have a very small impact on the running at energies much bigger than z∗. Upper plots: we assumed

Y = 2/3, N = 12, w = 1890 GeV, 5N fermions in the N ⊕ N̄ representation of SU(N); we also take

λX(Mz) = 0.15, λ′X(Mz) = 0.28, λHX(Mz) = 0.17. Lower plots: we assumed Y = 4/3, N = 5,

w = 2000 GeV, 26 fermions in the N ⊕ N̄ representation of SU(N); we also take λX(Mz) = 0.15,

λ′X(Mz) = 0.28, λHX(Mz) = 0.47.

such model). We are interested in models where the diphoton automatically emerges as a

bound state of the TC dynamics. In view of strong LHC bounds on extra bound states,

especially the ones with color, plausible models identify the diphoton with a bound state

that is much lighter than the others. The diphoton could be a TCη (here discussed in

section 3.1) or a TC-dilaton (here discussed in section 3.2). The TC-dilaton is especially

interesting from our point of view, given that it is the pseudo-Goldstone boson of scale

invariance.

– 11 –



J
H
E
P
0
7
(
2
0
1
6
)
1
0
1

name spin SU(3)c SU(2)L U(1)Y SU(N)

Q 1/2 3 2 +1/6 N

Qc 1/2 3̄ 2 −1/6 N̄

U 1/2 3̄ 1 −2/3 N

Uc 1/2 3 1 +2/3 N̄

Table 3. Beyond the Standard Model field content of the strongly-coupled model of section 3.1.

3.1 The diphoton as a TCη

A class of strongly-coupled models that aims at reproducing the diphoton excess are those

where the diphoton z is identified with a TCη composite pseudo-scalar, given that this field

is a light pseudo-Goldstone boson with anomalous couplings to SM vectors. The various

models proposed in the literature [46, 68, 70, 92–100] employ massive techni-quarks, and

a massive SM Higgs doublet. The masses are assumed to be comparable to the TC scale,

but the coincidence is left unexplained.

Our goal is exploring whether such masses can be all set to zero, obtaining a dimension-

less model. For concreteness, we consider a model with GTC = SU(N) and the techni-quark

content of table 34 which allows for two Yukawa couplings to the SM Higgs doublet H:

y1HQU + y2H
†QcUc + h.c. = HΨ̄Q(y + iγ5ỹ)ΨU + h.c. (3.1)

In the latter expression we introduced Dirac spinors Ψ and the scalar coupling y = (y1 +

y∗2)/2 and the pseudo-scalar coupling ỹ = i(y1 − y∗2)/2, such that |y| � |ỹ| and |ỹ| � |y|
are radiatively stable special cases, that can be justified by assuming a CP-like symmetry.

We now discuss the composite states. Among the many states around the TCρ mass,

mρ ∼ gρfTC with gρ ∼ 4π/
√
N , there is the TC η′ ∼ QQc + UU c singlet which receives

a mass from TC anomalies. The TC dynamics breaks the global accidental symmetry

SU(9)L⊗ SU(9)R → SU(9)V giving 80 lighter techni-pions, with the following SM quantum

numbers:

(1, 1)0 ⊕ (1, 2)±1/2 ⊕ (1, 3)0 ⊕ 2(8, 1)0 ⊕ (8, 2)±1/2 ⊕ (8, 3)0. (3.2)

Taking into account that we assume massless techni-quarks, the techni-pions consist of:

72) 9 color octets, QQc, UU c, QU c, QcU , which get positive squared masses at loop level

from QCD interactions, m ≈
√

3
4πα3Cm

2
ρ ∼ 0.2mρ, where C = (N2 − 1)/2N ;

3) a SU(2)L triplet QQc, which similarly gets a positive squared mass from weak inter-

actions;

1) a TC η ∼ UU c − 1
2QQ

c singlet (to be identified with the diphoton), which gets a

squared mass from Yukawa loop corrections with unknown sign and of order mη ∼
ymρ/4π, see appendix A.3 of [39];

4A similar model with up-type quarks replaced by down-type quarks has been considered in [101] because

the lightest TCbaryon is a good Dark Matter candidate.
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Figure 4. Correction to the Higgs and diphoton mass coming from the Yukawa couplings.

4) a TCpion π2 from QU c, QcU with the same gauge quantum numbers as the Higgs

doublet forms whenever gauge quantum numbers allow for a Yukawa coupling to H. It

gets a mass mπ2 ∼ g2mρ/4π from weak gauge interactions, plus another contribution

from y1,2.

Furthermore, π2 acquires a tree level mixing with the Higgs boson. The resulting mass

matrix is ( π∗2 H∗

π2 (O(g2
2)±O(y2))/(4π)2 O(y)

√
N/(4π)

H O(y)
√
N/(4π) −O(y2)N/(4π)2

)
m2
ρ (3.3)

The tree-level mixing induces a negative see-saw contribution ∆m2
H ∼ −ỹ2m2

ρf
2
TC/m

2
π2 to

the Higgs mass parameter. This contribution is too big, given that the diphoton only gets

a mass at loop level.

Such tree-level contribution vanishes if we assume ỹ = 0 — a natural special case that

respects a CP-like parity. Indeed, H is a scalar, while π2 and η are pseudo-scalars. Their

tree-level potential includes a CP-conserving term ∼ ymρHπ
∗
2η + h.c. As a result, both

H and of η receive loop-level masses of order ymρ/4π, with no symmetry relation among

them, given that H is elementary while η is composite, see figure 4. With a relatively large

value of y ∼ few the model can give Mz ≈ 750 GeV together with fTC ≈ 100 GeV ×N as

demanded by the diphoton rate suggested by preliminary ATLAS and CMS results. The η

eigenstate has a vanishing color anomaly (see table 2 of [98]); this is not a problem because,

taking into loop corrections, the mass eigenstate z ≈ η+ η′y2/(4π)2 acquires a sufficiently

large coupling to gluons.

3.2 The diphoton as a TC-dilaton or TCσ

In strongly coupled TC models with a QCD-like dynamics the mass of the pseudo-Goldstone

boson of scale invariance is not suppressed with respect to the other composite states,

because strong interactions give a fast running that strongly breaks scale invariance. On

the other hand, such state is somehow lighter than the other bound states in models with

a ‘walking’ dynamics (namely, a β function of the new gauge interaction which remains

somewhat small), which is obtained in TC models with a larger matter content than QCD.

This lightness is beneficial for the diphoton phenomenology, given that other colored bound

states must be heavier than 750 GeV in order to satisfy LHC bounds.
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From a low-energy perspective, such light state is the σ field sometimes explicitly

included in effective chiral Lagrangians, where its vacuum expectation value, σ = fTC +z,

breaks scale invariance as well as a global chiral symmetry, such that fTC becomes the

techni-pion decay constant. See [102] for a recent discussion of the σ, and [46, 103–105]

for recent discussions of the dilaton. In the limit where z is lighter than the other bound

states, its coupling to SM vectors is dictated by eq. (2.12): using lnM℘(z)/M℘ ' z/fTC

we find

Γγγ
Mz

= 10−6

(
120 GeV

fTC

)2

∆b2em (3.4)

where ∆bem is the techniquark contribution to the running of the electromagnetic coupling.

For example, a color triplet techni-fermion with hypercharge Y (such as U ⊕U c in table 1)

contributes as ∆bem = 4NY 2, while a techni-scalar contributes 4 times less. The SM

∆bY,2,3 must be smaller than about 10, in order to avoid sub-Planckian Landau poles for

the SM gauge couplings.

The dynamically generated Higgs mass depends on the model. In the minimal case

where the Higgs has no direct coupling to techni-particles, electro-weak loop effects induce

a contribution to its squared mass of order M2
h ∼ −α2

Y f
2
TC [39], which is negative but

small, in view of eq. (3.4). A larger model-dependent tree-level contribution is obtained if

the Higgs has a Yukawa coupling to techni-fermions or a quartic coupling to techni-scalars.

4 Conclusions

We proposed dimension-less models where a new resonance z decaying into two photons

dynamically breaks scale invariance, generating a weak scale hierarchically smaller than

the Planck scale. The diphoton channel is interesting as it is particularly clean and has

therefore a great discovery potential. All particles acquire their masses from their couplings

to z: thereby the smoking gun of this scenario is observing that z couples to all particles

proportionally to their mass.

As a benchmark case we identified z with the 750 GeV resonance hinted by LHC data.

Although it could very well be that this excess is a statistical fluctuation, it nevertheless

provides an interesting example. The z → γγ rate suggested by LHC data is obtained

adding extra charged particles, heavier than the SM particles and thereby more strongly

coupled to z.

Diphoton models of this type generically need that such extra particles have masses

around the weak scale. Unlike the SM fermions, such extra particles have no chirality

reason to be around the weak scale. Scale invariance provides one possible reason: like the

Higgs, these extra charged particles acquire a mass from z. All particles are massless until

the diphoton develops a vev or condensate w.

A generic scalar that acts as the ‘Higgs of the Higgs’ can have a w and/or a mass M

much larger than the weak scale, provided that it is very weakly coupled to the Standard

Model (SM). This is not possible if such scalar is identified with the diphoton: w and M

are now fixed by the diphoton mass and rate in γγ.
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In section 2.1 we presented a weakly-coupled dimension-less model where the diphoton

is charged under extra gauge interactions, which induce the Coleman-Weinberg mechanism.

In section 2.2 we presented a weakly-coupled dimension-less model where the Coleman-

Weinberg mechanism is induced by quartic interactions of the diphoton with the charged

scalars that mediate z→ γγ.

Both models can be RGE-extrapolated up to the Planck scale, thereby generating

the large hierarchy with respect to the weak scale. Both models contain Dark Matter

candidates. Both models remove the instability of the SM potential. Both models give

rise to an extended phase transition when the diphoton and the Higgs acquire vacuum

expectation values. Such phase transition can be of first order, possibly giving gravitational

wave signals [106] and the baryon asymmetry [107].

In section 3.1 we discussed dimension-less strongly-coupled models where the dipho-

ton is a pseudo-scalar bound state analogous of the η in QCD. In section 3.2 we discussed

dimension-less strongly-coupled models where the diphoton is a scalar bound state analo-

gous of the σ in chiral effective Lagrangians, or of a dirty dilaton in fundamental strongly

coupled models with walking dynamics. Both scenarios can produce a weak scale lighter

than the diphoton mass by Mh/Mz ∼ 1/6, but this needs extra model building features.
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A RGE for model g)

Defining βg = dg/d lnµ, the one-loop RGE for the new couplings are

(4π)2βλS = 4(4 +N)λ2
S +

3(N − 1)(N2 + 2N − 2)

4N2
g4

+2(λ2
SX + λ2

HS)− 6y4
S + λS

[
12y2

S − 6
N2 − 1

N
g2

]
,

(4π2)βλHS
= 12y2

Sy
2
t − 4λ2

HS − 4λHXλSX (A.1a)

+λHS

[
−3g2N

2 − 1

N
− 9g2

1

10
− 9g2

2

2
+ 6y2

S + 6y2
t + 12λH + (4N + 4)λS

]
,

(4π2)βλHX
= −8λ2

HX − 2NλHSλSX (A.1b)

+λHX

[
−9g2

1

10
− 9g2

2

2
+ 6y2

t + 12Ny2
X + 12λH + 24λX

]
, (A.1c)

(4π2)βλSX
= 12y2

Sy
2
X − 8λ2

SX − 4λHSλHX

+λSX

[
−3g2N

2 − 1

N
+ 6y2

S + 12Ny2
X + (4N + 4)λS + 24λX

]
, (A.1d)

– 15 –



J
H
E
P
0
7
(
2
0
1
6
)
1
0
1

(4π2)βλX = −6Ny4
X + 24NλXy

2
X + 2λ2

HX +Nλ2
SX + 72λ2

X , (A.1e)

(4π2)βyX = (6N + 3)y3
X + yX

[
−3

N2 − 1

N
g2 − 8g2

1

5
− 8g2

3 +
y2
S

2

]
, (A.1f)

(4π2)βyS =
N + 7

2
y3
S + yS

[
−3

2
g2N

2 − 1

N
− 8g2

1

5
− 8g2

3 + y2
t +

y2
X

2

]
, (A.1g)

(4π2)βg =

(
13

6
− 11N

3

)
g3. (A.1h)

Finally, the RGE for the SM couplings are

(4π2)βg1 =

(
41

10
+ ∆b1

)
g3

1, ∆b1 =
16N

15
, (A.1i)

(4π2)βg2 = −19g3
2

6
, (A.1j)

(4π2)βg3 = (−7 + ∆b3) g3
3, ∆b3 =

2N

3
, (A.1k)

(4π2)βyt =
9y3
t

2
+ yt

[
−17g2

1

20
− 9g2

2

4
− 8g2

3 +
Ny2

S

2

]
, (A.1l)

(4π2)βλH =
27g4

1

200
+

9g2
2g

2
1

20
+

9g4
2

8
− 6y4

t + 24λ2
H +Nλ2

HS + 2λ2
HX (A.1m)

+λH

[
12y2

t −
9g2

1

5
− 9g2

2

]
. (A.1n)

B RGE for model λ)

Defining βg = dg/d lnµ, the RGE for the new couplings are

(4π)2βλS = 72λ2
S + 3Nλ2

XS + 2λ2
HS , (B.1a)

(4π)2βλX = 4(3N + 4)λ2
X + 12λ′2X + 2λ2

XS + 2λ2
HX

+λX

[
8(3 +N)λ′X −

6(N2 − 1)

N
g2 − 16g2

3 −
36Y 2g2

1

5
+

54Y 4

25
g4

1

]
(B.1b)

+
3(N2 + 2)

4N2
g4 +

11

12
g4

3 +
3N + 1

N
g2g2

3 −
18Y 2g2g2

1

5N
− 6Y 2g2

3g
2
1

5
,

(4π)2βλ′X = 4(3 +N)λ′2X + λ′X

[
24λX −

36Y 2g2
1

5
− 6(N2 − 1)

N
g2 − 16g2

3

]
+

3(N2 − 4)

4N
g4 +

5g4
3

4
− N + 3

N
g2g2

3 +
18Y 2g2g2

1

5
+

18Y 2g2
3g

2
1

5
, (B.1c)

(4π)2βλXS
= 8λ2

XS − 4λHSλHX + 4λXS

[
(1 + 3N)λX + (3 +N)λ′X

+6λS −
9Y 2g2

1

10
− 3(N2 − 1)

4N
g2 − 2g2

3

]
, (B.1d)

(4π)2βλHX
= λHX

[
4(1 + 3N)λX + 4(3 +N)λ′X −

(36Y 2 + 9)g2
1

10
− 9g2

2

2
+ 12λH + 6y2

t

]
−4λHSλXS + 4λ2

HX +
27g4

1Y
2

25
− 3(N2 − 1)

N
λHXg

2 − 8λHXg
2
3, (B.1e)
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(4π)2βλHS
= λHS

[
24λS −

9g2
1

10
− 9g2

2

2
+ 6y2

t + 12λH

]
− 6NλXSλHX − 8λ2

HS , (B.1f)

(4π)2βg = g3

(
−11

3
N +

1

2
+

2

3
Nf

)
. (B.1g)

Finally, the RGE for the SM couplings are

(4π)2βg1 = g3
1

41 + 6NY 2

10
, (B.1h)

(4π)2βg2 = −19g3
2

6
, (B.1i)

(4π)2βg3 = g3
3

(
−7 +

N

6

)
, (B.1j)

(4π)2βλH = 2λ2
HS + 3Nλ2

HX +
27g4

1

200
+

9g2
1g

2
2

20
+

9g4
2

8

+λH

(
−9g2

1

5
− 9g2

2 + 12y2
t

)
+ 24λ2

H − 6y4
t , (B.1k)

(4π)2βyt = yt

(
9

2
y2
t −

17g2
1

20
− 8g2

3 −
9g2

2

4

)
. (B.1l)
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