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1 Introduction

An attractive solution to the hierarchy problem is to require that the Higgs is not an

elementary particle, but a composite state arising from some strongly-coupled sector at

TeV energies. This possibility has important implications for the theory of flavor. Contrary

to models with an elementary Higgs in which the structure of Yukawa couplings can have

its origin at very high energies, as large as the Planck scale, in composite Higgs models

the origin of flavor must be addressed at much lower energies. This is because the Higgs is

associated with a composite operator of the strong sector OH whose dimension dH must

be larger than one to avoid the hierarchy problem,1 implying that f̄LOHfR has dimension

larger than 4, that is to say that the Yukawa couplings are irrelevant at low energies.

Therefore, if f̄LOHfR are generated at very high energies, e.g. the Planck scale, fermion

masses will be too small at the electroweak scale.

1For the hierarchy problem what is in fact needed is that the dimension of the gauge-singlet term OHO†H
is larger than ∼ 4, to avoid relevant operators in the theory. In strongly-coupled theories with a large-N

expansion this implies dH ≥ 2, but this is not true in general. Nevertheless, bounds from conformal

bootstrap [1] indicate that it is not possible to have dH ∼ 1 together with Dim[OHO†H ] & 4. Being

conservative, we will be considering here dH & 2.
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Different approaches to flavor in composite Higgs models have been considered. The

most popular one is partial compositeness, in which the SM fermions fi get masses by

mixing linearly with an operator of the strong sector:

Llin = εfi f̄iOfi . (1.1)

At the strong scale ΛIR ∼TeV, which determines the mass-gap of the model, and at which

the Higgs emerges as a composite state, the fermion Yukawa couplings are generated with

a pattern

Yf ∼ g∗εfiεfj , (1.2)

where 1 < g∗ . 4π characterizes the coupling in the strong sector. The appealing feature

of these scenarios, usually called “anarchic partial compositeness” [2–6], is the fact that

the smallness of the mixing εfi can simultaneously explain the smallness of the fermion

masses and mixing angles. Nevertheless, this approach also predicts flavor-violating higher-

dimensional operators of order [7]

g2∗
16π2

g∗v

Λ2
IR

εfiεfj f̄iσµνfj gF
µν ,

g2∗
Λ2
IR

εfiεfj εfkεfl f̄iγ
µfj f̄kγµfl , (1.3)

where v ' 174 GeV. The operators in eq. (1.3) lead for ΛIR ∼TeV to large contributions

to the electron and neutron electric dipole moment (EDM), µ → eγ and εK , above the

experimental bounds [8] (see also refs. [9–17]), as shown in table 3. Taking ΛIR above the

TeV is possible, but at the price of fine-tuning the electroweak scale.2

An interesting alternative to the above approach is to consider the right-handed quarks

to be fully composite [20, 21]. If the strong sector has an accidental SU(3) flavor symmetry

and CP symmetry (something not difficult to envisage as it occurs in QCD), the flavor

bounds can be easily satisfied. Indeed, in this case the whole flavor structure comes only

from the linear mixing of the left-handed fermions with the strong sector that must then be

proportional to the SM Yukawas Yf , as in models with minimal flavor violation (MFV) [22].

Therefore flavor bounds are easily satisfied for ΛIR ∼TeV. Nevertheless, due to the com-

positeness of the right-handed quarks, 4-fermion contact interactions, as for example,

g2∗
Λ2
IR

(ūRγµuR)2 , (1.4)

lead to large deviation in dijets distributions, pp→ jj, at high energies, and sizable produc-

tion cross sections for composite resonances in the multi-TeV mass range are predicted [23–

25]. All these effects have not been observed at the LHC and severely constrain these

models. Similar results can be found in variations of these ideas with other composite SM

fermions [26–32].

Wrapping up, composite Higgs models must address the SM flavor structure at low

energies, giving then unequivocal predictions for flavor observables. The models proposed

2Alternative constructions have been recently proposed based on composite Twin Higgs in which the

scale of compositeness can be pushed up without introducing additional tuning in the Higgs potential [18].

It is also possible to reduce some bounds by taking smaller g∗, but this implies reducing the UV cutoff (see

for example ref. [19]).
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so far seem to clash with some experimental data. Although extra flavor and CP symmetries

could be imposed, for example in the mixing terms εfi , to avoid certain experimental

bounds, it is unclear how these symmetries could emerge in the model. One needs to

specify the dynamics of the model to understand whether flavor and CP symmetries can

arise accidentally at low energies.

Here we would like to put forward a deviation from the anarchic paradigm that can

avoid these severe flavor and CP-violating constraints. The idea is to assume that the

operators Ofi of eq. (1.1), that mediate the mixing between the SM fermions and the

Higgs, get an effective mass at some energy scale Λfi � ΛIR ∼TeV, and then decouple

from the strong sector. This implies that Yukawa-like couplings

Lbil ∼ f̄iOHfj , (1.5)

are generated at scales larger than ΛIR, avoiding in this way sizable contributions to flavor

and CP-violating observables. The hierarchies in the fermion spectrum of the SM and the

small flavor mixing angles could be now explained by the different scales Λfi instead of the

small εfi . The larger the Λfi , the smaller the Yukawa coupling for fi. Without imposing

any extra symmetry in the model, we will derive by simple power-counting which are the

strongest flavor and CP-violating constraints, independently of the details of the models.

We find that top-mediated processes give the largest contribution to flavor-violating observ-

ables. These are characterized by only two operators. One operator generates the ∆F = 2

processes εK , ∆MBd
and ∆MBs at a level close to the present experimental constraints for

ΛIR ∼ few TeV. The second operator leads to flavor-violating Z-couplings, contributing

simultaneously to K → µ+µ−, ε′/ε, B → (X)`` and Z → bb̄ with a size also close to

the experimental bounds. There are also important contributions arising from the scale at

which the charm and strange masses are generated, 107–108 GeV, leading also to sizable

effects to εK , and forcing dH . 2. Contributions to the neutron EDM are dominated by

the top EDM, being not far from the present experimental bound. On the other hand,

in the lepton sector we find that the dominant contribution to the electron EDM comes

at the two-loop level from Barr-Zee type diagrams [33], and is around the experimental

bound, while µ → eγ is found to be very small. Therefore these scenarios provide realis-

tic examples where the flavor and hierarchy problem can be dynamically solved without

contradicting the present experimental data, and which near future experiments could be

able to explore. Having proposed a different origin for fermion masses, we also analyze the

expected deviations in Higgs couplings.

Our approach to the small fermion masses is a reminiscent of the old Extended-

Technicolor idea [34, 35], in which masses from eq. (1.5) were generated from an extended

gauge sector, or from integrating heavy fermions [36]. Earlier attempts along these lines

were considered recently in refs. [37, 38] for composite Higgs models. In these models, how-

ever, Yukawa-like couplings were generated at a single energy scale, and the light quark

families were connected by potentially large mixing angles. This leads to additional sizable

new-physics effects and to bounds typically more stringent than the ones we find here.

Furthermore, the lepton sector, where the experimental bounds are the most difficult to

satisfy, was not considered.
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The attempt of this work is to show that flavor bounds can be satisfied in composite

Higgs models without the need of imposing flavor symmetries. We do not provide an

explanation for the hierarchies in the fermion masses, as these are just traded for the

scales Λfi . Nevertheless, it is not hard to imagine a possible mechanism that explains the

largeness of Λfi , thus providing a reason for the smallness of the light-generations masses.

For example, it is possible to envisage scenarios where the Λfi could be generated from

dimensional transmutation, explaining in this way the size of the fermion masses as a

function of O(1) couplings. We will not pursue further the origin of Λfi , but assume that

they have the correct values to fit the SM fermion masses.

We would like to close this section by stressing that in most scenarios beyond the SM

(BSM) that address the hierarchy problem, including supersymmetry, one generically finds

large EDMs. This is because fermions have linear couplings to BSM fields. For example,

in supersymmetric models fermions couple linearly to sfermions and gauginos, leading

generically to sizable EDMs at the one-loop level. Therefore, unless ad hoc symmetries are

imposed in the BSM sector, the only way to avoid these large contributions is to restrict

the SM fermions to have bilinear couplings to the BSM states, as the scenarios proposed

here. In this case the dominant contributions to EDMs arise at the two-loop level (see

diagram figure 3) that can be accommodated just below the experimental constraint.

2 Multiple flavor scales in composite Higgs models

Our framework for flavor shares many features of previous composite Higgs models with

partly-composite fermions via eq. (1.1). The main crucial difference is the assumption that

the operators Ofi , which are the portals of the SM fermions to the strong sector, decouple

at some scale Λfi , generating the Yukawa terms f̄LOHfR at that scale instead of at ΛIR as

in the anarchic case. The decoupling of the operator Ofi can be due to the fact that some

of the constituents of Ofi get a mass ∼ Λfi , or that a dynamically generated mass-gap

makes heavy all composite states created by Ofi (those |Ψ〉 with 〈0|Ofi |Ψ〉 6= 0). Using the

AdS/CFT correspondence, we can easily visualize this type of scenarios by warped extra-

dimensional models with several branes, as the example shown in figure 5 of appendix A.

In what follows we will estimate the flavor structure of these scenarios without restricting

to any specific UV realization.

The scale at which the Yukawa coupling for the SM fermion f = u, d, e, . . . is generated

is determined by the scale Λf at which either OfR or OfL decouple from the strong sector.

We choose these scales following figure 1. This is our dynamical assumption. No further

symmetries will be imposed. Other options could also be possible, and we will consider

later more economical models with fewer scales Λf . Under the assumption of figure 1, the

Yukawa structure will be the following. Let us consider first the down-type quark sector.

At the lowest scale Λb, we have only one pair of operators OQL3
and ObR , to which only

one linear combination of SM left-handed and right-handed quarks can respectively mix

with. We name these linear combinations the 3rd family left-handed quark, QL3, and

right-handed bottom, bR:

L(3)lin = ε
(3)
bL
Q̄L3OQL3

+ ε
(3)
bR
b̄RObR . (2.1)
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OtR ,OQL3

OdR
,OQL1

Figure 1. Energy scale at which the fermionic operators Ofi decouple from the strong sector.

Below Λb, after integrating out ObR , the following Yukawa-like operator is expected to be

generated

L(3)bil =
1

ΛdH−1b

(ε
(3)
bL
Q̄L3)OH(ε

(3)
bR
bR) , (2.2)

where OH corresponds to the lowest-dimensional operator that at ΛIR projects into the

Higgs, 〈0|OH |H〉 6= 0, and dH is its energy dimension. At a larger scale Λs � Λb, we have

another pair of operators OQL2
and OsR present, coupled to a different linear combination

of SM fermions. By an SU(3) rotation that does not affect eq. (2.2) we can always go to

the basis where this linear combination contains only two quarks, QL3 and QL2 (this latter

is identified with the second family left-handed quark), and similarly for the right-handed

sector, bR and sR:

L(2)lin = (ε
(2)
bL
Q̄L3 + ε(2)sL Q̄L2)OQL2

+ (ε
(2)
bR
bR + ε(2)sR sR)OsR , (2.3)

that below Λs, after integrating OsR , leads to

L(2)bil =
1

ΛdH−1s

(ε
(2)
bL
Q̄L3 + ε(2)sL Q̄L2)OH(ε

(2)
bR
bR + ε(2)sR sR) . (2.4)

Finally, at Λd, after integrating OQL1
and OdR , we expect the most general form

L(1)bil =
1

ΛdH−1d

(ε
(1)
bL
Q̄L3 + ε(1)sL Q̄L2 + ε

(1)
dL
Q̄L1)OH(ε

(1)
bR
bR + ε(1)sR sR + ε

(1)
dR
dR) . (2.5)

Now, at ΛIR we identify the matrix elements of OH with those of the SM Higgs H, which

implies the replacement3

OH → g∗Λ
dH−1
IR H , (2.6)

3For simplicity we are assuming a single coupling g∗, but in principle the couplings at the scales Λf

could be different.
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in eq. (2.2), eq. (2.4) and eq. (2.5). Then, for the down sector, we have the following

“onion” Yukawa structure

Ydown = g∗


ε
(1)
dL
ε
(1)
dR

ε
(1)
dL
ε
(1)
sR ε

(1)
dL
ε
(1)
bR

ε
(1)
sL ε

(1)
dR

ε
(1)
bL
ε
(1)
dR

(ΛIR

Λd

)dH−1
+g∗


0 0 0

0 ε
(2)
sL ε

(2)
sR ε

(2)
sL ε

(2)
bR

0 ε
(2)
bL
ε
(2)
sR

(ΛIR

Λs

)dH−1

+g∗


0 0 0

0 0 0

0 0 ε
(3)
bL
ε
(3)
bR

(ΛIR

Λb

)dH−1
, (2.7)

where the entries that are not shown are terms that can be neglected in the limit in which

we take Λd � Λs � Λb. Eq. (2.7) leads to the approximate down Yukawa matrix

Ydown '


Yd αdsR Yd αdbR Yd

αdsL Yd Ys αsbRYs

αdbL Yd αsbL Ys Yb

 , (2.8)

where

Yf ≡ g∗ε(i)fLi
ε
(i)
fRi

(
ΛIR

Λf

)dH−1
, (2.9)

are approximately the SM Yukawas Yf ' mf/v. The αL and αR in eq. (2.8) are ratios of

epsilons:

αdsL ∼ ε(1)sL /ε
(1)
dL
, αdbL ∼ ε(1)bL /ε

(1)
dL
, αsbL ∼ ε(2)bL /ε

(2)
sL
, (2.10)

where L → R gives us the αR. Taking the largest values ε
(i)
fLi,Ri

∼ 1 and g∗ ∼ 4π, we

can obtain from eq. (2.9) the largest values of Λf that allow to reproduce the SM fermion

masses as a function of dH , that we show in figure 2. For the particular case dH = 2,

we have

Λf ∼
g∗
Yf

ΛIR , (2.11)

that, for ΛIR ∼ 3 TeV and g∗ ∼ 4π, gives

Λd ∼ 3× 109 GeV , Λs ∼ 108 GeV , Λb ∼ 3× 106 GeV . (2.12)

Eq. (2.8) can be diagonalized by unitary matrices whose structure is approximately

V down
L ∼

 1 αdsR
Yd
Ys

αdbR
Yd
Yb

1 αsbR
Ys
Yb

1

 , V down
R ∼

 1 αdsL
Yd
Ys

αdbL
Yd
Yb

1 αsbL
Ys
Yb

1

 , (2.13)

where we omit some ij-entries as they are of similar size as their transpose ji-entries.

We can proceed in a similar way for the up sector. The large Yukawa coupling of the

top implies that this must arise at ΛIR as in the anarchic case, so we associate Λt ∼ ΛIR.

– 6 –
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Figure 2. Upper bound on the scale Λf (for f = e, u, d, s, µ, c, τ, b, t from top to down) at which

the fermion Yukawas can originate from a bilinear term (eq. (2.9) with ε
(i)
fLi,Ri

∼ 1, g∗ ∼ 4π and for

ΛIR = 3 TeV) as a function of dH , the dimension of the Higgs composite operator OH . To derive the

numerical results we identified the fermion masses with the running masses at 1 TeV [8], neglecting

the effect of running mf from TeV to Λf .

The Yukawa matrix is expected to have the structure

Yup '


Yu αucR Yu αutR Yu

αucL Yu Yc αctRYc

αutL Yu αctLYc Yt

 . (2.14)

We must point out however that there can be extra contributions coming from Λd,s,b. The

most important ones come from Λd where it is possible to generate

∆L(1)bil =
1

ΛdH−1d

ε
(1)
dL
Q̄L1ÕH(ε̃

(1)
tR
tR + ε̃(1)cR cR) , (2.15)

that leads to contributions to the entries (Yup)13 ∼ (Yup)12 ∼ Yd that can be slightly larger

than those in eq. (2.14) since Yd > Yu. We absorb these contributions in eq. (2.14) by

a redefinition of αuc,utR . Similarly, Ydown can receive extra contributions from Λu,c,t. The

largest expected one is from Λc where we can have

1

ΛdH−1c

Q̄L2OHbR , (2.16)

that leads to (Ydown)23 ∼ Yc that is parametrically a factor Yc/Ys ∼ 10 larger than the

corresponding entry in eq. (2.8). Again, we absorb this contribution in a redefinition of

αsbR . We must add however that if the strong sector had an SU(3) flavor symmetry, the

contributions in eq. (2.15) and eq. (2.16) would be zero, as they originate from the off-

diagonal interactions in the strong sector, OQL1
ÕHOtR,cR and OQL2

OHObR respectively.
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Since the mass hierarchies in the up sector are larger than in the down sector, we have

that the CKM matrix VCKM is mainly dominated by the down rotation:

VCKM ∼ (V down
L )† , (2.17)

impliying the following conditions on the αL’s of the down-Yukawa matrix:

αdsR
md

ms
' (VCKM)21 ' λc , αsbR

ms

mb
' (VCKM)32 ' λ2c , αdbR

md

mb
' (VCKM)31 ' λ3c , (2.18)

where λc ' 0.22 is the Cabibbo angle. From the estimate

md

ms
∼ ms

mb
∼ λ2c , (2.19)

we obtain using eq. (2.18) that αds,dbR must be slightly larger than one, in particular,

αdsR ∼ αdbR ∼ 1/λc , αsbR ∼ 1 . (2.20)

This can be easily accommodated by having ε
(1)
sR,bR

slightly smaller than one (and a sup-

pression of eq. (2.16)). On the other hand, the αL are not constrained at all by the CKM

angles, and could even be very small if some mixings are zero. For example, this could

be the case if ε
(1)
sL,bL

≈ 0 due to some accidental discrete symmetry at Λd, as discussed in

appendix B. Notice that in the limit ε
(1)
sL,bL

→ 0 the rotation matrix V down
R is not anymore

given by eq. (2.13) but by eq. (B.1). Nevertheless, we emphasize that the framework for

flavor proposed here does not need any accidental symmetry to pass the phenomenological

constraints, as we discuss below.

3 Implications in flavor and CP-violation physics

At each scale Λf we have potentially new flavor-violating contributions, arising from higher-

dimensional operators made of SM fermions. We can estimate these effects using power-

counting arguments, since no flavor symmetries are assumed in our scenarios. The most

important higher-dimensional operators are 4-quark operators, that contribute to ∆F = 2

transitions, 2-quark-2-Higgs operators that generate ∆F = 1 effects, and dipole opera-

tors contributing to processes such as µ → eγ or EDMs. We collect the most important

experimental bounds in table 1.

3.1 ∆F = 2 transitions

We start considering 4-quark operators arising at the lowest scale Λt ∼ ΛIR. These are

operators containing only top components, QL3 and tR, namely4

Y 2
t x

2
t

Λ2
IR

(QL3γ
µQL3)

2 ,
Y 2
t

Λ2
IR

(QL3tR)(tRQL3) ,
Y 2
t /x

2
t

Λ2
IR

(tRγ
µtR)2 , (3.1)

where we defined xt = ε
(3)
tL
/ε

(3)
tR

.

4These estimates are valid even if Λt > ΛIR and the top partners are heavier than ΛIR. Nevertheless,

for top partners lighter than ΛIR, as could be needed in these scenarios to obtain a viable Higgs mass and

minimize the amount of tuning [39–43], the 4-fermion operators get enhanced. For a discussion see ref. [17].
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Observable Operator Re part Im part Reference

∆MK ; εK

Qsd1 = (sLγ
µdL)2 1.1× 103 1.7× 104

[22, 44]Qsd2 = (sRdL)2, Q̃sd2 = (sLdR)2 7.3× 103 1.2× 105

Qsd4 = (sRdL)(sLdR) 1.2× 104 2.0× 105

∆MBd
;SψKS

Qbd1 = (bLγ
µdL)2 6.6× 102 9.5× 102

[22, 44]Qbd2 = (bRdL)2, Q̃bd2 = (bLdR)2 1.2× 103 1.7× 103

Qbd4 = (bRdL)(bLdR) 1.6× 103 2.3× 103

∆MBs ;Sψφ

Qbs1 = (bLγ
µsL)2 1.4× 102 2.4× 102

[22, 44]Qbs2 = (bRsL)2, Q̃bs2 = (bLsR)2 1.3× 102 2.2× 102

Qbs4 = (bRsL)(bLsR) 3.4× 102 5.9× 102

∆MD; |q/p|, φD

Qcu1 = (cLγ
µuL)2 1.3× 103 3.2× 103

[22, 44]Qcu2 = (cRuL)2, Q̃cu2 = (cLuR)2 2.5× 103 5.8× 103

Qcu4 = (cRuL)(cLuR) 4.2× 103 9.5× 103

(QLi(YupY†up)ijγ
µQLj)

2 5 [44]

b→ s`+`− (sLγ
µbL)H†i

←→
D µH 23 16 [45, 46]

KL → µ+µ−,

K+ → π+νν, ε′/ε
(sLγ

µdL)H†i
←→
D µH 225 [15, 47]

Z → bb (bLγ
µbL)H†i

←→
D µH 5.5 |δgbL | . 10−3 [48, 49]

B → Xsγ

mb sLσ
µνeFµνbR 8.9 35 18

[16]
mb sRσ

µνeFµνbL 18 16

mb sLσ
µνgsGµνbR 4.3 17 8.6

mb sRσ
µνgsGµνbL 8.5 8.5

B → Xdγ

mb dLσ
µνeFµνbR 47 19 37 24

[16]
mb dRσ

µνeFµνbL 30 30

mb dLσ
µνgsGµνbR 22 9 18 12

mb dRσ
µνgsGµνbL 14 14

K → 2π, ε′/ε ms sL,Rσ
µνgsGµνdR,L 35 [16]

D → KK,ππ mc cL,Rσ
µνgsGµνuR,L 27 [16]

Neutron EDM

md dLσ
µνeFµνdR 39

|dn| < 2.9× 10−26 e cm [16, 50–53]

mu uLσ
µνeFµνuR 14

md dLσ
µνgsGµνdR 48

mu uLσ
µνgsGµνuR 18

mc cLσ
µνgsGµνcR 15

mb bLσ
µνgsGµνbR 8.4

mt tLσ
µνgsGµνtR 3.7

Electron EDM me eLσ
µνeFµνeR 480 |de| < 0.87× 10−28 e cm [50]

µ→ eγ mµ µσ
µνeFµνeR,L 900 BR(µ→ eγ) < 5.7× 10−13 [50]

τ → µγ mτ τσ
µνeFµνµR,L 34 BR(τ → µγ) < 4.4× 10−8 [50]

τ → eγ mτ τσ
µνeFµνeR,L 37 BR(τ → eγ) < 3.3× 10−8 [50]

Table 1. Experimental bounds on new physics contributions to flavor and CP-violating operators.

The bounds are computed at an energy scale µ = 1 TeV and are expressed as constraints on the

Λ scale (in TeV units) parametrizing the coefficients of the operators as C = 1/Λ2. Separate

bounds for the real and imaginary part of the coefficients are given. When the bounds are highly

asymmetric, separate ones are listed for a positive and a negative value of the coefficient.
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Let us first look at the implications in the down sector, whose flavor constraints are

the strongest. These are only coming from the first operator of eq. (3.1) that, after rotating

to the physical basis using eq. (2.17),5 gives a contribution to the operators Qsd1 , Qbd1 and

Qbs1 , as defined in table 1, with a coefficient

C(Qsd1 ) ' Y 2
t x

2
t

Λ2
IR

[
(V †CKM)23(VCKM)31

]2
' 10−7

x2t
Λ2
IR

eiθCKM , (3.2)

where θCKM denotes the complex phase appearing in the product of the CKM elements, and

C(Qbd1 )

[(V †CKM)33(VCKM)31]2
=

C(Qbs1 )

[(V †CKM)33(VCKM)32]2
=

C(Qsd1 )

[(V †CKM)23(VCKM)31]2
. (3.3)

Eq. (3.3) leads to interesting consequences. It predicts no new phases in K − K̄ and

B − B̄ mixing beyond the SM one. Furthermore, it implies that the contributions to the

three observables εK , ∆MBd
and ∆MBs are all of the order of the present experimental

sensitivity. Indeed, by looking at the constraints on ∆F = 2 operators reported in table 1,

we find that the three observables εK , ∆MBd
and ∆MBs give roughly the same bound.

The correlation eq. (3.3) also arises in MFV scenarios, and a bound has been derived on

the size of these effects (see table 1) that leads in our case to

ΛIR & 5xt TeV . (3.4)

For xt ∼ 1/2 we can accommodate eq. (3.4) for values of ΛIR as low as those needed to pass

EWPT, ΛIR & 3 TeV [17, 48]. The correlations in eq. (3.3) are an interesting smoking gun

for these scenarios of flavor, that could be tested in the future with a better determination

of the observables. In particular, we must observe a different value of ∆MBd,s
from the SM

one, with the ratio fixed:
∆MBd

∆MBs

' ∆MBd

∆MBs

∣∣∣∣
SM

. (3.5)

The impact in the up sector is negligible, since the mixing angles (∝ Yu,c/Yt) are

much smaller than in the down sector. The largest effect comes from the third operator in

eq. (3.1), which gives a contribution

C(Qcu4 ) ' Y 2
t

Λ2
IR

(V up
R )∗32(V

up
L )31(V

up
L )∗32(V

up
R )31 ∼

Y 2
u Y

2
c /Y

2
t

Λ2
IR

' 10−15
1

Λ2
IR

, (3.6)

where we have taken αL,R ∼ 1. This is many orders of magnitude below the experimental

bound for ΛIR ∼TeV.

Let us now move to the effects at the scales Λf � ΛIR. It is clear that contributions at

Λb are smaller than those of eq. (3.1), as they are suppressed by a larger scale Λb � ΛIR.

Contributions from Λc and Λs can however be sizable as they involve second family quarks.

5In an abuse of notation we will be using the same notation for the quarks in the physical and interaction

basis.
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The most relevant contributions are6

g2∗ε
(2)4
cL

Λ2
c

(QL2γ
µQL2)

2,
g2∗ε

(2)3
cL ε

(2)
tL

Λ2
c

(QL2γ
µQL3)(QL2γµQL2),

g2∗(ε
(2)
sL ε

(2)
sR )2

Λ2
s

(QL2sR)(sRQL2).

(3.7)

Using eq. (2.9), we can trade the scales Λc,s by ΛIR, and write eq. (3.7) for dH = 2 as

Y 2
c x

2
c

Λ2
IR

(QL2γ
µQL2)

2 ,
Y 2
c x

2
cα

ct
L

Λ2
IR

(QL2γ
µQL3)(QL2γµQL2) ,

Y 2
s

Λ2
IR

(QL2sR)(sRQL2) , (3.8)

where xc = ε
(2)
cL /ε

(2)
cR . After rotating to the physical basis, the operators in eq. (3.8) give

respectively

C(Qsd1 ) ' Y 2
c x

2
c

Λ2
IR

[
(V †CKM)22(VCKM)21

]2
' 4× 10−7

x2c
Λ2
IR

, (3.9)

C(Qsd1 ) ' Y 2
c x

2
cα

ct
L

Λ2
IR

(V †CKM)222(VCKM)21(VCKM)31 ' 1.6× 10−8
x2cα

ct
L

Λ2
IR

, (3.10)

C(Qsd4 ) ' Y 2
s

Λ2
IR

(V †CKM)22(V
down
R )21(V

down
R )∗22(VCKM)21 ' 9× 10−10

αdsL
Λ2
IR

. (3.11)

The first contribution is real and therefore only affects ∆MK , while the other two can be

complex and contribute to εK . Their experimental bounds lead to7

ΛIR & 0.6xc TeV , ΛIR & 1.8xc

√
αctL TeV , ΛIR & 5

√
αdsL TeV . (3.12)

To derive these bounds we have assumed that the contributions eq. (3.10) and eq. (3.11)

have maximal complex phase ∼ π/4, as we will assume throughout the article. The bounds

in eq. (3.12) are roughly comparable to the one in eq. (3.4), and can be accommodated

for ΛIR of few TeV. These extra contributions to εK spoil the correlation in eq. (3.3), but

preserve eq. (3.5). Indeed, it is easy to realize that contributions at Λc,s to B physics (and

also D physics) are negligible.

Finally, we also have contributions arising at Λd. The most relevant ones are those to

the operator Qsd4 . For dH = 2 we have

C(Qsd4 ) ' Y 2
d α

ds
L α

ds
R

Λ2
IR

' 9× 10−10
αdsL
Λ2
IR

, (3.13)

where we have used eq. (2.20). This contributions are as sizable as eq. (3.11).

The above conclusions however drastically depend on dH . For dH > 2 we have that

the contributions from Λc,s,d are enhanced, with respect to eqs. (3.9)–(3.11) and eq. (3.13),

6Notice that contributions to the Q2 and Q̃2 operators require two Higgs insertions and are thus highly

suppressed.
7In computing the bounds on operators generated at Λf � ΛIR, running effects should also be taken

into account. These include the running of Yf (which decrease at high energy), as well as the running of

the 4-fermion effective interactions (which determine a mild increase in the bounds for the Q4 operators).

These two effects partially compensate each other. Since the numerical impact is not large, for simplicity

we will not take into account the running in our estimates.
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by a factor (Λf/ΛIR)2dH−4. Therefore dH > 2 can only be consistent with the experimental

bounds if Λf ∼ ΛIR that corresponds to the anarchic scenario. This implies that generating

the mass for the charm, strange or down from bilinear mixing at Λf � ΛIR is only possible

for dH . 2.

3.2 Neutron EDM

Dipole operators can also be induced at Λf . These operators are strongly constrained,

in particular from the measurement of the neutron EDM, which place a bound on quark

dipole operators of the form

cqedm q̄Lσ
µνgsGµνqR , (3.14)

or analogous operators involving the photon field-strength (see table 1). In the anarchic

case the current measurements lead to very severe bounds, ΛIR & 48 (g∗/4π) TeV from the

down-quark EDM, and ΛIR & 18 (g∗/4π) TeV from the up-quark EDM. These bounds were

calculated under the assumption that dipole operators are induced at the one-loop level

and therefore must carry a factor g2∗/16π2 [8], as it occurs in holographic descriptions of

the model [7]. Obviously, for maximal coupling g∗ ∼ 4π this loop factor is of order one,

not introducing any extra suppression. Hereafter we will also follow this assumption for

our estimates.

In our scenarios for flavor the contributions to cu,dedm are all very small, due to either

small mixings or a large scale Λf suppressing the processes. In fact, the main contribution

to the neutron EDM comes from a top EDM that can be induced at ΛIR with a size

ctedm '
g2∗

16π2
mt

Λ2
IR

. (3.15)

According to the bound in table 1, we obtain ΛIR & 3(g∗/4π) TeV, implying that we

expect in these scenarios a neutron EDM below, but not much smaller than, its present

experimental limit.

Contributions originating at Λf are much smaller. The reason is that EDM operators

must involve the Higgs field that at high energies corresponds to the composite operator

OH of dimension larger than one. Therefore the contribution to EDMs is suppressed by

dH + 1 powers of Λf . For example, at Λb, we expect a bottom-EDM from the operator

g2∗
16π2

ε
(3)
bL
ε
(3)
bR

ΛdH+1
b

Q̄L3OHσµνgsGµνbR , (3.16)

which gives

cbedm '
g2∗

16π2
mb

Λ2
b

. (3.17)

This is much smaller than present bounds unless Λb ∼ ΛIR.

3.3 ∆F = 1 transitions

Similarly to EDMs, contributions to flavor dipole transitions can also be present, the most

relevant ones being sR,Lσ
µνeFµνbL,R that contributes to b → sγ, and sR,Lσ

µνgsGµνdL,R
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that contributes to ε′/ε. The estimates of these effects are similar to the ones for the

neutron EDM in eq. (3.16), leading to small contributions to these observables.

There are also non-dipole contributions to ∆F = 1 transitions arising from operators

like s̄Lγ
µdLH

†←→D µH that on the EWSB vacuum give flavor-changing Z-couplings, which

are severely constrained by KL → µ+µ− and ε′/ε, or equivalent operators with the bottom,

s̄LγµbLH
†←→D µH, which give contributions to the processes B → `+`−, X`+`−. The largest

contribution arises from top operators induced at ΛIR that give

(g∗ε
(3)
tL

)2

Λ2
IR

Q̄L3γ
µQL3iH

†←→D µH '
g∗Ytxt

Λ2
IR

(
(V †CKM)33 b̄L + (V †CKM)23 s̄L + (V †CKM)13 d̄L

)
γµ

×
(

(VCKM)33 bL + (VCKM)32 sL + (VCKM)31 dL

)
iH†
←→
D µH ,

(3.18)

similarly to the anarchic case. Interestingly, eq. (3.18) shows that the contributions to

KL → µ+µ− (and ε′/ε), B → (X)`` and corrections to Zb̄LbL are correlated and all are

close to the experimental bounds; we obtain respectively the constraints

ΛIR & 4
√
g∗xt TeV , ΛIR & 3

√
g∗xt TeV , ΛIR & 5

√
g∗xt TeV . (3.19)

We must point out however that there is another dimension-six operator contributing to

these observables, Q̄L3σ
aγµQL3H

†σa
←→
D µH, that in the case of a custodial PLR symmetry

in the strong sector cancels the contribution from eq. (3.18) [54]. This symmetry is present

in simple models of composite Higgs and for this reason these effects could be further

suppressed.

Finally, there can be also contributions to operators like s̄LγµdLDνF
µν
Z , where FµνZ is

the field-strength of the Z. These operators, however, are suppressed by a factor g2/g2∗
with respect to those in eq. (3.18).

3.4 Electron EDM, µ→ eγ and τ → µγ

Assuming that the origin of the lepton masses is the same one as for the down-type quark

masses described above, we expect Ylepton and the rotation matrices to have the same

structure as eq. (2.8) and eq. (2.13) respectively, with the obvious replacement d, s, b →
e, µ, τ . The corresponding αL,R for the lepton sector are free parameters, that we will take

to be order one for our estimates.

The main experimental constraints on possible effective operators induced at the scales

Λe,µ,τ are the electron EDM, µ→ eγ and τ → µγ, that come from similar dipole structures:

ceedm eLσ
µνeFµνeR , cmeg eLσ

µνeFµνµR , ctmg µLσ
µνeFµντR , (3.20)

and analogous ones obtained interchanging the chiralities, L ↔ R. In the anarchic case

the first two operators in eq. (3.20) put the most severe constraints (see table 3). In our

scenarios, however, we find that these contributions are very small for the same reason as

for the neutron EDM. The largest contribution arises at Λτ , and give for dH = 2

ceedm '
( g∗

4π

)2
(V lepton
L )∗31(V

lepton
R )31

g∗vΛIR

Λ3
τ

∼
( g∗

4π

)2 YeYτ
g2∗

me

Λ2
IR

, (3.21)
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γ

γh
e e

tL 〈h〉

Figure 3. A representative two-loop contribution to the electron EDM. The double-line represents

a resonance from the strong sector.

which is extremely small. Similarly, for µ→ eγ and τ → µγ, we get at Λτ :

cmeg '
( g∗

4π

)2
(V lepton
L )∗32(V

lepton
R )31

g∗vΛIR

Λ3
τ

∼
( g∗

4π

)2 YeYτ
g2∗

mµ

Λ2
IR

, (3.22)

ctmg '
( g∗

4π

)2
(V lepton
L )∗32

g∗vΛIR

Λ3
τ

∼
( g∗

4π

)2 YµYτ
g2∗

mτ

Λ2
IR

, (3.23)

that are several orders of magnitude below the experimental bound.

Additional contributions to the electron EDM can come from Barr-Zee-type 2-loop

diagrams [33] as shown in figure 3. These involve CP-violating one-loop induced vertices

such as H†D2
ρHF̃µνF

µν arising from the strong sector, mainly from a loop of top reso-

nances.8 The estimate of the size of these couplings are very model dependent. In the

particular motivated case of a pseudo-Nambu-Goldstone boson (PNGB) Higgs these cou-

plings cannot be generated from the strong sector alone, as they are protected by the global

symmetry under which the Goldstone Higgs transforms. Therefore we need a SM particle

to be involved in the loop. We can take as an estimate the contribution involving the tL
(see figure 3) that induces the vertex H†D2

ρHF̃µνF
µν with a coefficient ∼ e2xtYtg∗/(16π2)

(omitting powers of ΛIR). Using the results of ref. [55], in which the Barr-Zee contribution

to the electron EDM is computed in the presence of CP-violating Higgs interactions to

the top, −iκ̃tYt(tγ5t)h/
√

2, and found |κ̃t| < 0.01, we have, after the proper rescaling for

our case,

xtYtg∗
Λ2
IR

. 0.01
Y 2
t

m2
t

, (3.24)

that leads to the bound

ΛIR & 1.6
√
g∗xt TeV . (3.25)

The size of this correction is thus comparable with the present experimental bounds and

should be visible in future experiments. Notice that in the cases in which the Higgs is not

a PNGB, this effect is enhanced by a factor g∗/Yt.

8There is also the possibility to have a vertex involving a Z, but this contribution to the EDM is

suppressed as a consequence of C invariance that makes only the (very small) vector part of the Z coupling

to the electron to contribute [33].
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Barr-Zee-type contributions to µ→ eγ are also sizeable in anarchic models [56], but in

our scenarios for flavor these contributions are very small since the Higgs flavor-changing

couplings to leptons are highly suppressed — see section 5.

4 Alternative scenarios

Although so far we considered a scenario in which the different fermion masses arise at

different UV scales Λf , we could also consider simpler cases with fewer UV scales or with

more particles than the top with masses arising from partial compositeness at ΛIR. In the

following we present several alternative scenarios pointing out in which cases there is a

clash with the experimental bounds.

• First-family masses generated at the same scale Λ1.

We could take the economical assumption that all first-family fermion masses arise

at the same scale Λ1 ∼ Λd ∼ 3× 108 GeV, corresponding to the scale of the heaviest

fermion, the down quark. The fact that me < mu < md could be accommodated in

this case by taking the mixing terms ε
(1)
eR,eL and ε

(1)
uR to be slightly smaller than one.

None of the estimates made in the previous section are changed in this case. The

reason is that none of the main contributions were originating at Λu or Λe, as these

were very small.

• Second-family masses generated at the same scale Λ2.

Similarly, we could assume that all second-family fermions get their masses at one

single scale Λ2 ∼ Λc ∼ 106 GeV. Again, it is easy to show that the estimates of the

previous section are not affected. Of course, contributions at the scale Λ2 to up quark

and electron EDM, as well as µ→ eγ are larger now as Λ2 � Λs,µ, but these are still

few orders of magnitude below the experimental bounds. Contributions to ∆F = 2

4-fermion interactions are however not affected, since for dH ' 2 they can be written,

using eq. (2.9), as a function of Ys and ΛIR, independently of Λs.

• Partly-composite third-family fermions at ΛIR.

Following the above approach of family reunion, we can consider the case in which

all third family fermions are, analogously to the top, partly composite, i.e., having

their masses arising at ΛIR.

– Partly-composite bottom : in this case there are new contributions to ∆F = 2

that have the same structure as eq. (3.1) but with the replacement tR → bR and

Yt → Yb. Due to the Yb suppression, one gets contributions much smaller than

the present bounds. There is also now a larger contribution to the bottom-quark

EDM, arising at ΛIR:

cbedm '
( g∗

4π

)2 mb

Λ2
IR

, (4.1)

which saturates the experimental bound for ΛIR ∼ 7 (g∗/4π) TeV. Additional

contributions to the b→ s and s→ d transitions as well as to the Zbb coupling
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are also generated, which are slightly suppressed with respect to the ones coming

from the top partial compositeness (see table 3).

– Partly-composite tau : in this case the most relevant observable is µ → eγ that

receives at ΛIR a contribution of order

cmeg '
( g∗

4π

)2 mτ

Λ2
IR

(V lepton
L )∗23(V

lepton
R )13 ' αµτL αeτR

( g∗
4π

)2 Ye
Yτ

mµ

Λ2
IR

' 3× 10−4αµτL αeτR

( g∗
4π

)2 mµ

Λ2
IR

, (4.2)

and a similar contribution with αR ↔ αL. From eq. (4.2) and the experimental

bound in table 1, we get

ΛIR & 15
√
αµτL αeτR

( g∗
4π

)
TeV , (4.3)

which shows that these corrections can be close to the experimental bound, mo-

tivating a better measurement of µ→ eγ as a probe for this scenario. Similarly,

the electron EDM and τ → µγ are also enhanced if the tau is partly composite,

leading to the estimates

ceedm '
αeτL
αµτL

me

mµ
cmeg , ctmg '

1

αeτR

Yµ
Ye

mτ

mµ
cmeg , (4.4)

which saturates the present experimental bounds respectively for

ΛIR & 7
√
αeτL α

eτ
R

( g∗
4π

)
TeV , ΛIR & 8

√
αµτL

( g∗
4π

)
TeV . (4.5)

Similar bounds apply for αR ↔ αL.

In summary, if all the third-family fermions are partly composite at ΛIR, we could

in the near future see a positive result from searches for neutron and electron EDM,

µ→ eγ or τ → µγ.

• Partly-composite second-family fermions at ΛIR.

As a last example, it can be instructive to consider a case where all except the first-

family fermions get their mass from partial compositeness at ΛIR.

– Partly-composite charm : if the charm is partly composite, there are new con-

tributions to εK , but they go exactly as those in eq. (3.9). The are also larger

contributions to ∆MD. We find that they can be a factor Y 2
t /Y

2
c ∼ 105 larger

than those in eq. (3.6), nevertheless they are still below the experimental bound.

The most important new contribution arises for the charm-EDM:

ccedm '
( g∗

4π

)2 mc

Λ2
IR

, (4.6)

which saturates the experimental bound for ΛIR ∼ 13 (g∗/4π) TeV.
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∆F = 2 t partly-comp. s partly-comp. bilin. mixing (2nd fam.) bilin. mixing (1st fam.) Anarchic

Qsd1 ΛIR & 5xt ΛIR & 4xt ΛIR & 1.8xc
√
αctL ΛIR & 0.2xd ΛIR & 4xt

Qsd2 — ΛIR & 1
√
g∗ · · ΛIR & 1

√
g∗

Q̃sd2 — ΛIR & 0.5
√
g∗αdsL · · ΛIR & 1

√
g∗

Qsd4 — ΛIR & 5
√
αdsL ΛIR & 5

√
αdsL ΛIR & 5

√
αdsL ΛIR & 10

Qbd1 ΛIR & 5xt ΛIR & 6xt · · ΛIR & 6xt

Q̃bd2 — ΛIR & 0.3
√
g∗αdsL · · ΛIR & 0.6

√
g∗

Qbd4 — ΛIR & 0.4
√
αsdL ΛIR & 0.3

√
αdbL · ΛIR & 0.8

Qbs1 ΛIR & 5xt ΛIR & 7xt ΛIR & 0.6αcbRxc · ΛIR & 7xt

Q̃bs2 — ΛIR & 0.4
√
g∗ · · ΛIR & 0.4

√
g∗

Qbs4 — ΛIR & 1 ΛIR & 0.1
√
αsbL · ΛIR & 1

Qcu1 · · · · ΛIR & 1xt

Qcu2 · · · · ΛIR & 0.7
√
g∗

Qcu4 · · · · ΛIR & 1.1

Table 2. Bounds on ΛIR for the different scenarios considered in the text. The effects are separated

according to their origin: from the top (or strange) partial compositeness at ΛIR, or from the UV

scale Λf at which the second and first families get bilinear mixings to the Higgs. The results

are given in TeV. Entries with a “·” correspond to negligible bounds, while “—” means that the

corresponding operator is not generated. The most relevant constraints are highlighted in boldface.

– Partly-composite strange: in this scenario we find the same contribution as in

the anarchic case in K physics, shown in table 3. Sizable contributions to the

down-quark EDM are also generated:

cdedm '
( g∗

4π

)2 ms

Λ2
IR

(VCKM)∗21(V
down
R )12 ' 0.2αdsL

( g∗
4π

)2 md

Λ2
IR

, (4.7)

which leads to the bound ΛIR & 19 (g∗/4π)
√
αdsL TeV.

– Partly-composite muon : in this case the estimate for the contribution to µ→ eγ

and electron EDM are enhanced with respect to those to the partly-composite

tau (see eq. (4.2) and eq. (4.4)) by a factor Yτ/Yµ ∼ 17. This pushes the bound

on ΛIR beyond the TeV scale, dominantly due to µ→ eγ.

We conclude that the option with partly-composite second family at ΛIR seems dis-

favored by the present experimental data, mainly due to EDMs and µ → eγ. A

summary of all bounds is presented in tables 2 and 3.

5 Higgs couplings to fermions

The predictions for Higgs couplings depend on the origin of the fermions masses. Here

we will present the predictions for the models of flavor considered above. We will focus

on models in which the Higgs arises as a PNGB from the strong sector. These models,
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∆F = 1 t partly comp. b partly comp. s partly comp. Anarchic

sLσ
µνeFµνbR — ΛIR & 0.12g∗ ΛIR & 0.12g∗ ΛIR & 0.12g∗

sRσ
µνeFµνbL — · ΛIR & 0.8g∗ ΛIR & 0.8g∗

sLσ
µνgsGµνdR — · ΛIR & 0.5g∗ ΛIR & 1.1g∗

sRσ
µνgsGµνdL — · ΛIR & 1.1g∗ ΛIR & 1.1g∗

sLγ
µbLH

†i
←→
D µH ΛIR & 3

√
g∗xt (*) ΛIR & 0.4

√
g∗xb ΛIR & 0.4

√
g∗xb ΛIR & 3

√
g∗xt

sLγ
µdLH

†i
←→
D µH ΛIR & 4

√
g∗xt (*) ΛIR & 0.50

√
g∗xb ΛIR & 0.5

√
g∗xb ΛIR & 4

√
g∗xt

∆F = 0 t partly-comp. b partly-comp. s partly-comp. Anarchic

bLγ
µbLH

†i
←→
D µH ΛIR & 5

√
g∗xt (*) ΛIR & 0.6

√
g∗xb ΛIR & 0.6

√
g∗xb ΛIR & 5

√
g∗xt

Neutron EDM t partly-comp. b partly-comp. s partly-comp. Anarchic

dLσ
µνeFµνdR — ΛIR & 0.24g∗

√
αdbL ΛIR & 1.2g∗

√
αdsL ΛIR & 2.5g∗

uLσ
µνeFµνuR · · · ΛIR & 0.9g∗

dLσ
µνgsGµνdR — ΛIR & 0.3g∗

√
αdbL ΛIR & 1.5g∗

√
αdsL ΛIR & 3.2g∗

uLσ
µνgsGµνuR · · · ΛIR & 1.2g∗

cLσ
µνgsGµνcR · · · ΛIR & 1g∗

bLσ
µνgsGµνbR — ΛIR & 0.6g∗ · ΛIR & 0.6g∗

tLσ
µνgsGµνtR ΛIR & 0.24g∗ · · ΛIR & 0.24g∗

Leptons t party comp. τ partly-comp. µ partly-comp. Anarchic

eLσ
µνeFµνeR ΛIR & 1.6

√
g∗xt ΛIR & 0.5g∗

√
αeτL α

eτ
R ΛIR & 2g∗

√
αeµL α

eµ
R ΛIR & 32g∗

µσµνeFµνeL,R · ΛIR & 1.2g∗
√
αeτL,Rα

µτ
R,L ΛIR & 5g∗

√
αeµL,R ΛIR & 19g∗

τσµνeFµνµL,R · ΛIR & 0.7g∗
√
αµτL,R ΛIR & 1.3g∗ ΛIR & 1.3g∗

τσµνeFµνeL,R · · ΛIR & 0.1g∗
√
αeµL,R ΛIR & 0.4g∗

Table 3. Bounds on ΛIR from assuming that the top, bottom, etc. are partly composite at ΛIR.

The results are given in TeV. Entries with a “·” correspond to negligible bounds, while “—” means

that the corresponding operator is not generated. The most relevant constraints are highlighted in

boldface. If a custodial PLR symmetry [54] is present in the top mixings, the bounds denoted by

(*) are absent.

motivated by the lightness of the Higgs, are able to provide quantitative predictions de-

pending only on how the global group G of the strong sector is broken. We will consider in

particular the MCHM based on the G/H = SO(5)/ SO(4) coset [57, 58]. Either in the case

of partly-composite fermions at ΛIR or at a larger scale Λf , the Higgs couplings depend on

how the symmetry G is broken by eq. (1.1), and this is determined by specifying how Ofi
is embedded into a representation of G. Therefore for both cases, the Higgs couplings to

fermions can be written as

ghff

gh SMff

=
1− (1 + n)v2/f2h√

1− v2/f2h
, (5.1)
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where n = 0, 1, 2, . . . and fh is the Higgs decay constant, fh ∼ ΛIR/g∗. For Ofi ∈ 4 (or 5) of

SO(5), as in the MCHM4 (MCHM5), one finds n = 0 (n = 1) [43, 59]. This is also the case

even if fermion masses come from bilinears f̄LOHfR with unknown UV origin. Indeed, in

this case we need to specify into which representation of G we embed OH , or, equivalently,

to specify an embedding for f̄LfR. This latter can be formally written as a product of the

representations of the individual embeddings for f̄L and fR. Therefore, by specifying these

individual embeddings, we can determine again the Higgs couplings. As an example, let

us consider OH ∈ 5,14. Since 5 ∈ 4̄× 4 and 14 ∈ 5× 5, we find respectively n = 0, 1, as

in the MCHM4 and MCHM5.

It is also interesting to analyze the predictions for flavor-changing Higgs couplings.

The coupling hτ̄µ is of special interest, as this is the one which experimental constraints

have been presented from h → τµ [60, 61]. We find however that contributions to this

coupling are very small. For example, even for the case of a τ partly-composite at ΛIR,

we get

BR(h→ µτ) '
(
g2∗v

2

Λ2
IR

mµ

mτ

)2

BR(h→ ττ) ∼ 2× 10−4
(
g∗v

ΛIR

)4

, (5.2)

that is much below the present limit BR(h → µτ) < 1.51% from CMS [60] (1.85% from

ATLAS [61]). A larger effect is found if µ is partly composite at ΛIR:

BR(h→ µτ) '
(
g2∗v

2

Λ2
IR

√
mµ

mτ

)2

BR(h→ ττ) ∼ 4× 10−3
(
g∗v

ΛIR

)4

. (5.3)

This result is very close to the experimental bound, but we must in this case face the large

contribution to µ→ eγ discussed above.

6 Neutrino masses

In this section we would like to comment on the possible origin of the neutrino masses in

these scenarios. In principle, the origin of neutrino masses could be the same as the one

discussed above for the other fermions, if right-handed neutrinos are introduced in the SM.

Nevertheless, a simpler option is to assume that lepton number is broken at some UV scale

Λν by higher-dimensional operators:

1

Λ2dH−1
ν

L̄cOHOHL , (6.1)

where L generically denotes a left-handed lepton. Eq. (6.1) leads to neutrino masses of

order

mν '
g2∗v

2

ΛIR

(
ΛIR

Λν

)2dH−1
. (6.2)

For dH = 2, g∗ ∼ 4π and ΛIR ∼ 3 TeV, eq. (6.2) gives

mν ∼ 0.1–0.01 eV for Λν ∼ 0.8–1.5× 108 GeV . (6.3)

This scale Λν could be related to the scale at which other fermion masses are generated,

for example, to Λs or Λd. On the other hand, large mixing angles in the neutrino sector

between two families can be easy obtained by requiring the corresponding neutrino masses

to be generated at the same scale Λν .
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7 Conclusions

In this work we have proposed a new realization of the flavor structure in composite Higgs

scenarios. The new construction is based on a departure from the usual partial composite-

ness framework for the light (i.e. not the top quark) SM fermions, both in the quark and

lepton sector. The main idea is to assume that the light SM fermions get their mass through

effective interactions involving fermion bilinears, namely operators of the form f̄LOHfR,

where OH is a composite operator associated with the Higgs field. These Yukawa-like oper-

ators for the various fermion species are generated at hierarchically different energy scales

Λf , thus effectively giving rise to the hierarchy of SM fermion masses and to the structure

of the CKM matrix.

The only field that does not follow this construction is the top quark, whose large

Yukawa coupling points towards a partial-compositeness origin at ΛIR ∼TeV, the scale

at which the Higgs emerges as a composite state. The left-handed and right-handed top

components are thus linearly mixed with suitable composite operators, εfi f̄iOfi , following

the usual anarchic flavor structure.

The new framework leads to a significant improvement of the compatibility of the

composite Higgs models with the flavor constraints. The most remarkable difference with

respect to the anarchic scenarios is the suppression of new-physics effects in dipole oper-

ators. The most severe bounds of the anarchic scenario, namely the ones coming from

the neutron and electron EDMs and from µ → eγ, are absent in the new framework (see

table 3).

The most important contributions in our scenario come from two flavor-violating op-

erators arising from the top partial compositeness. Up to an unknown coefficient expected

to be of order one, these are given by

1

Λ2
IR

(
gij d̄Liγ

µdLj
)2
,

g∗v
2

Λ2
IR

gij
(
d̄Liγ

µdLj
) gZµ

cos θW
, (7.1)

where

gij ≡ Ytxt(V †CKM)i3(VCKM)3j , (7.2)

and dLi denotes the left-handed down-type quark component in the i-th family. A remark-

able feature of these corrections is the fact that they automatically follow a MFV structure.

The first operator contributes to ∆F = 2 transitions and generates correlated effects in

the εK , ∆MBd
and ∆MBs observables, which are of the order of the present experimental

sensitivity if we take ΛIR ∼TeV and we allow for a slight reduction of the left-handed top

compositeness, xt < 1. The second operator of eq. (7.1) gives flavor-changing Z-couplings.

At present it only pushes the ΛIR scale in the few TeV range. In the future it can be seen

either in deviations in the decays K → µµ or B → (X)``. This contribution can however

be significantly smaller if the strong sector is invariant under a custodial PLR symmetry,

which protects the down-type quark couplings to the Z boson [54].

Additional contributions to ∆F = 2 operators can also be generated at the scales Λc,s,d

at which the second and first family quarks get their masses. These corrections however only

give a sizable effect on εK for ΛIR below the multi-TeV range, a much smaller contribution

than the anarchic one. It must however be stressed that these bounds depend on the
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Figure 4. Lower bounds on ΛIR on the various flavor scenarios. The first set of bounds corresponds

to our scenario with multiple flavor scales, the second and third sets assume partial compositeness

at ΛIR for the whole third and second family respectively, while the last set gives the bounds for

the anarchic flavor scenario. To derive the numerical values we have taken g∗ ' 3, xt ' xc ' 0.5,

and set all free αL,R parameters to one.

coefficients of the effective operators which are affected by some degree of uncertainty.

These contributions to εK severely constrain the maximal dimension of the OH operator,

requiring dH . 2.

We also considered possible variations of the framework described above. For example,

a more economical scenario has been proposed in which each family is associated to a

single flavor scale at which the bilinear mass operators are generated. A few additional

new-physics flavor effects are generated in this case, which are of the same order of the

experimental bounds. In particular, assuming τ partial compositeness at ΛIR (as the top

and bottom) leads to corrections to the electron EDM and to the lepton-number violating

processes µ→ eγ and τ → µγ which could be visible in forthcoming experiments. On the

other hand, reducing down to ΛIR the scale at which the Yukawa interactions are generated

for the second family seems disfavored, since it leads to large corrections to the neutron

and electron EDMs as well as to µ→ eγ.

Finally, we have also presented the size of deviations in Higgs couplings, eq. (5.1),

predictions for h→ τµ, and discussed the possible origin of the neutrino masses.

A comparison of the bounds in the various scenarios we considered in our analysis is

shown in figure 4 for a typical choice of parameters. We have also included for compari-

son the constraints for the anarchic flavor scenario. Figure 4 shows the main point of the

article: there are natural scenarios where the origin of flavor and electroweak scale can be

determined dynamically, and where, without tuning or imposing extra symmetries, contri-

butions to flavor and CP-violating observables can still be below (or better say, saturating)

the present bounds, providing then a motivation for an experimental improvement in the

near future.
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Figure 5. Five-dimensional model which, by AdS/CFT, corresponds to a model of flavor for the

down sector and Higgs of the SM giving the same Yukawa structure as eq. (2.7).
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A Warped five-dimensional models with multiple flavor scales

For AdS/CFT practitioners it can be useful to depict warped five-dimensional models

which, by means of the AdS/CFT correspondence, lead to the scenarios of flavor considered

above.

As an example, we consider a model for the down-type quark sector and Higgs of the

SM. This is shown in figure 5. It corresponds to a warped extra dimension with 3 branes

located at different positions and therefore associated with 3 different energy scales Λd,s,b.

We assume that only one left-handed and right-handed quark can propagate up to the

brane at Λb, what we call the bottom quark, while two can propagate up to the brane

at Λs. On the other hand, the three quarks can be present on the brane at Λd. The

warped extra dimension extends up to the brane at ΛIR. The Higgs arises from a 5D scalar

field whose zero-mode is mostly localized at ΛIR, as shown with a dashed line in figure 5

(the more localized towards ΛIR, corresponds to larger values of dH). Possible examples

of wave-functions for the zero-modes of the quarks are also shown in figure 5 with solid

lines. Yukawa couplings come from the overlapping of zero-mode wave-functions. The

small overlapping of the Higgs wave-function with those of the quarks localized far away

from ΛIR would explain the smallness of these Yukawa couplings. The generalization to

the up and lepton sector is straightforward. If the up sector is included, one has to assure

that the left-handed doublets reach also the corresponding branes where the up-type quark

masses are generated, e.g., QL3 = (tL, bL)T must reach Λt.

B Mixing angles in the αds,db,sbL ≈ 0 limit

Although the elements of V down
L are fixed by the requirement of reproducing the CKM

structure, the elements of V down
R are free parameters and could be substantially reduced.
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In this appendix we want to show how small the off-diagonal entries of V down
R could be in

the situation where αL ∼ 0.

Having αL ∼ 0 could arise from certain accidental symmetries at Λd,s. For example, if

at Λd there is a Z2 symmetry under which sL and bL are odd, this would imply ε
(1)
sL,bL

= 0.

Similarly, if at Λs this Z2 parity is still preserved but only for bL, we would have ε
(2)
bL

= 0.

This would give αdsL = αdbL = αsbL = 0. This accidental Z2 parity could arise from the

dynamics of the model. For example, if bL is mostly composite at ΛIR, its couplings at Λd,s
will be suppressed (in warped five-dimensional models this implies that the wave-function

of bL is peaked toward the ΛIR brane, having a small overlapping with the Λd,s branes).

Having αL ∼ 0 leads to a V down
R different from eq. (2.13), where αL ∼ 1 was assumed.

For example, in the case αdsL = αdbL = 0 and αsbL ∼ 1 we get

(V down
R )31 ∼ αdsR α

sb
L

Y 2
d

YsYb
' (VCKM)21α

sb
L

Yd
Yb
' λcαsbL

Yd
Yb
,

(V down
R )13 ∼ αdbR

(
Yd
Yb

)2

' (VCKM)31
Yd
Yb
' λ3c

Yd
Yb
, (B.1)

(V down
R )12 ∼ (V down

R )21 ∼ αdsR
(
Yd
Ys

)2

' (VCKM)21
Yd
Ys
' λc

Yd
Ys
.

Notice that in this case the entries involving the first and third families are not symmetric,

that is (V down
R )13 � (V down

R )31. If αsbL = 0 as well, the estimate for (V down
R )31 coincides

with the one for (V down
R )13, namely

(V down
R )31 ∼ (V down

R )13 ∼ λ3c
Yd
Yb
. (B.2)

Analogous results can be found for the V up
L,R matrices.

Open Access. This article is distributed under the terms of the Creative Commons
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