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1 Introduction

The interplay of disorder and strong interactions is a challenging problem in Condensed

Matter, with a wide range of potential applications from High-Tc superconductors [1, 2] to

graphene [3, 4]. At the theoretical level it poses important questions as the existence and

nature of disordered quantum critical points [5, 6], and the possibility of disorder-induced

metal to insulator phase transitions for strongly interacting systems.

– 1 –



J
H
E
P
0
7
(
2
0
1
6
)
0
9
1

Gauge/Gravity duality is a promising venue to address strongly coupled problems in

Condensed Matter, and the last years have seen interesting progress towards a descrip-

tion of disordered strongly coupled systems. These advances include holographic models

of disordered fixed points [7, 8], disordered superconductors [9, 10], and hyperscaling vio-

lating geometries, which are promising candidates to duals of strange metals, deformed by

disordered sources [11].

A natural procedure to characterize the effects of disorder is to study the transport

properties of the system, and in particular the electrical conductivity. Compelling results

for the transport properties of solutions dual to theories with disorder have been obtained,

mainly through numerical solutions of Einstein plus matter theories [12, 13], but also via

analytic computations at weak disorder [8, 14]. Finally, hydrodynamic models of strongly

coupled disordered systems have led to promising results like the fitting of experimen-

tal data for graphene [15], or the description of phase disordered superconducting phase

transitions [16].

All the holographic models dual to disordered theories we have described above, and

the majority of those constructed thus far, are of the so-called bottom-up type. They

are effective models whose Lagrangian is not derived from a solution of String Theory, or

Supergravity, and thus lack a microscopic description. In this note we will instead imple-

ment disorder in a top-down model that has been one of the workhorses of Gauge/Gravity

duality applications to QCD-like theories; that of probe branes [17]. We will consider a

D5-brane probe embedded in the geometry generated by Nc D3-branes: the D5 shares two

spatial directions with the D3s, and introduces fundamental degrees of freedom, quarks,

along a (2+1)-dimensional defect in the theory dual to Nc D3-branes. More precisely, for

Nf D5-brane probes, the system is dual to N = 4 SU(Nc) SYM with Nf N = 2 matter

hypermultiplets living on a (2+1)-dimensional defect [18, 19]. Since we are interested in

systems at finite temperature and charge density, we will work with the black hole back-

ground generated by black D3-branes, and add charge density by switching on the temporal

component of the gauge field living on the worldvolume of the D5-brane [20, 21].

The implementation of disorder via a probe brane model was considered for the first

time in [22], and subsequently in [23], where it was shown that the DC conductivity is

bounded, and, as a consequence, an insulating phase is excluded from this scenario. How-

ever, it is in this work that for the first time disorder is implemented explicitly in a top-

down holographic model of probe branes. We construct disordered embeddings of a probe

D5-brane in a black D3-background by switching on a disordered chemical potential on

the worldvolume of the probe. The analysis of those embeddings, and the study of their

fluctuations has produced the following results

• We construct both massive and massless inhomogeneous embeddings characterized

by a disordered chemical potential, and compute their charge density and, for the

massive case, also the value of the quark condensate.

• We study the effects of disorder on the charge density and the quark condensate using

analytic and numerical methods. Two regimes are found: at small charge density the

quark condensate scales quadratically with the strength of disorder, while the charge
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density is almost independent of that disorder strength. For large charge density the

converse happens: the quark condensate is largely unaffected by disorder while the

charge density scales quadratically with the disorder strength.

• We express the DC conductivity, σDC, in terms of horizon data and obtain analytic

expressions for σDC in a small disorder regime. For small charge density σDC is

enhanced by disorder. For large charge density, σDC decreases with the disorder

strength. Numerical simulations, which agree with the analytic predictions, confirm

this scenario.

• We compute the dependence of σDC on the charge density via numerical simulations,

and analytic approximations. At weak disorder σDC scales linearly with the charge

density (except at very low charge density), with a slope that is reduced as the

noise strength is increased. At strong disorder the dependence of σDC on the charge

density becomes sublinear. This last behavior shows similarities to that observed in

graphene near the charge neutrality point. Finally, we observe that the analytic, or

semi-analytical, approximations agree very well with the numerical simulations.

• We study the spectral properties of the system by considering a noise characterized

by a Fourier power spectrum of the form 1/k2α. The resulting power spectra for the

charge density and the quark condensate are found to be of the form 1/k2α−2 and

1/k2α+6 respectively. With respect to the input power spectrum, our holographic

model smooths out the quark condensate, while it makes the charge density more

irregular.

The rest of this paper is organized as follows. Section 2 is devoted to the construction

of disordered embeddings of a probe D5-brane: in section 2.1 we introduce the background

geometry, and in section 2.2 we write down the action and asymptotics for the embedding

of the probe D5-brane. The disordered chemical potential is described in section 2.3, and

the numerical methods used to construct the embeddings are discussed in section 2.4. In

section 2.5 we present the numerical results for the embeddings and discuss the effects of

disorder on the charge density and the quark condensate. Section 3 is dedicated to the

study of the electrical conductivity. In section 3.1 we compute the DC conductivity in

terms of horizon data, and in section 3.2 we derive analytic expressions for σDC in a small

noise expansion. In section 3.3 we introduce a semi-analytical approach to σDC valid at all

orders in the strength of noise, and obtain predictions for the behavior of σDC at strong

noise. In section 3.4 we present our numerical results for σDC and compare them with the

analytic predictions, paying special attention in section 3.4.1 to the behavior of σDC as

a function of 〈ρ〉. Finally, in section 4 we analyze the spectral properties of the system.

We conclude in section 5 with a summary of our results and a review of the ways forward

this work opens. We have included three appendices in this manuscript: appendix A is

dedicated to the homogeneous version of our model (i.e. without disorder). In appendix B

we discuss the reliability of our numerics against the lattice size, and present supplementary

results for strong disorder. In appendix C we show numerical embeddings for the case of a

disorder characterized by a Fourier power spectrum ∼ 1/k2α.
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2 Disordered D3/D5 intersection

Our setup is built upon the supersymmetric intersection of Nc D3- and Nf D5-branes

along 2+1 spacetime dimensions, which is dual to (3+1)-dimensional N = 4 SYM with Nf

fundamental hypermultiplets living on a (2+1)-dimensional defect [18, 19]. We work in the

probe limit Nf � Nc, and hence consider a probe D5-brane in the background generated

by Nc D3-branes. Moreover, we are interested in systems at finite temperature and with

a nonzero density of the fundamental degrees of freedom realized by the strings stretched

between the D3- and D5-branes.

2.1 Background

The metric of the geometry generated by Nc black D3-branes can be written as

ds2 =
L2

z2

(
−f(z)2

h(z)
dt2 + h(z) d~x2 + dz2

)
+ L2 dΩ2

5 , (2.1)

with f(z) = 1− z4 , h(z) = 1 + z4 , (2.2)

where we are following the conventions of [24], and we have performed a rescaling that

sends the horizon radius z0 to the unity.1 Remember that the temperature of the black

hole is determined in terms of z0 as T =
√

2/(π z0). It is straightforward to check that this

metric is asymptotic, as z → 0, to AdS5 × S5, and one should recall that the AdS radius

L, the number of D3-branes, Nc, the string tension (2πα′)−1, and the coupling constant

of the dual theory, gYM, are related via L4/α′2 = 2g2
YMNc ≡ 2λ, where λ is the ’t Hooft

coupling. This background possesses a nonzero RR five form given by dVol(S5) + h.d.,

which will not play any role in this setup.

2.2 Embedding

The probe D5-brane is extended along two Minkowski directions, say (x, y), the radial

coordinate z, and wraps an S2 inside the internal S5 whose metric can be written as

dΩ2
5 = dθ2 + sin2 θ dΩ2

2 + cos2 θ dΩ̃2
2 , (2.3)

where Ω2 is the volume element of the S2 wrapped by the probe brane, and the D5 sits at

a fixed point of the remaining S2. The embedding can then be described in terms of the

coordinate θ determining the radius of the S2 wrapped by the probe. For simplicity we

will work in terms of χ = cos θ.

We will study configurations with finite charge density of the fundamental fields in-

troduced by the D5-brane, and hence we must turn on the temporal component of the

U(1) worldvolume gauge field. Moreover, we want to describe a system where the charge

density depends on one of the spatial directions, which we choose to be x. Therefore, the

embedding is described in terms of the fields

χ(z, x) , At =
L2

2π α′ z0
φ(z, x) , (2.4)

1We have actually defined dimensionless coordinates (z̃, x̃µ) = 1/z0 (z, xµ), and dropped the tilde for

notational simplicity.
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where as in [24] we have written At in terms of a conveniently dimensionless field φ. The

action is given by the DBI for the probe D5-brane, and takes the form

S
Nf TD5 L6

= −
∫
dt d2x dz dΩ2 f z

−4
√
h (1− χ2) (Sχ + Sφ + Sint) , (2.5)

with

Sχ = 1− χ2 + z2χ′2 +
z2 χ̇2

h
,

Sφ = −z
4(1− χ2)

f2

(
hφ′2 + φ̇2

)
,

Sint = −z
6(χ̇φ′ − χ′φ̇)2

f2
, (2.6)

where the tilde and the dot denote a partial derivative with respect to z and x respectively.

The equations of motion for χ(z, x) and φ(z, x) follow readily from this action, and they

have been written explicitly in the appendix of [24]. In the last part of this work we will

consider massless embeddings corresponding to χ(z, x) = 0. In that case the equation of

motion for χ(z, x) is trivially satisfied, while that for φ(z, x) takes the form

z3
[
φ̇2
(
φ′
(
3z h′ − 4h

)
+ 2h z φ′′

)
− 4h z φ̇ φ′

.

φ′ + 2h
(
φ′
)2 (

z φ̈+ φ′
(
z h′ − 2h

))]
− f2

(
2φ̈+ 3h′ φ′ + 2hφ′′

)
+ 2f h f ′ φ′ = 0 . (2.7)

One can read the observables of the dual theory from the UV asymptotics of the

embedding fields. These result from solving the equations of motion in the z → 0 limit,

and read

φ(z, x) = µ(x)− ρ(x)z +O(z2) , (2.8a)

χ(z, x) = m(x) z + c(x)z2 +O(z3) , (2.8b)

where µ, ρ, m, and c determine the chemical potential, charge density, quark mass, and

quark condensate respectively. Proceeding as in [24] we plug in the dimensionful constants,

and define the quark mass Mq =
√
λ M̄ , where M̄ = m/z0. We then arrive to

m =
2
√

2

π
√
λ

Mq

T
, µ =

2√
λ

µ̄

T
, ρ =

2
√

2

π
√
λ

ρ̄

T 2
, (2.9)

where µ̄ and ρ̄ are the dimensionful chemical potential and charge density respectively.

Moreover, as discussed with detail in [25], c is proportional to the condensate of the su-

persymmetric version of the quark bilinear Om = ψ̄ ψ + . . . , (the dots stand for terms

including the superpartners of ψ)

c = − 1

Nf Nc

〈Om〉
T 2

. (2.10)

We will work at fixed µ and m. The phase diagram of the homogeneous D3/D5 setup was

studied in [21], and reviewed in [24] in terms of µ and m. As first explained in [20], at
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finite charge density only black hole embeddings exist. These are embeddings for which

the probe brane intersects the horizon.

Finally, we shall study the IR asymptotics of our system. Imposing regularity at the

black hole horizon, it is straightforward to check that in its vicinity the solutions for the

embedding fields take the form

φ(z, x) = a(2)(x) (1− z)2 +O((1− z)3) , (2.11a)

χ(z, x) = C(0)(x) + C(2)(x) (1− z)2 +O((1− z)3) , (2.11b)

where C(2)(x) is a function of C(0)(x) and a(2)(x) as shown in [24].

2.3 Disordered µ

To mimic a random on-site potential as that used originally by Anderson [26], we introduce

a noisy chemical potential of the form

µ(x) = µ0 +
µ0

25
w

k∗∑
k=k0

cos(k x+ δk) , (2.12)

with δk being a random phase for each wave number k, and w a parameter that determines

the strength of the noise. This chemical potential does not depend on y, hence our setup is

homogeneous along this remaining spatial direction. We discretize the space along x and

impose periodic boundary conditions in that direction, which results in k taking the values

kn =
2π

Lx
(n+ 1) with 0 ≤ n < N =

k∗
k0
, (2.13)

where Lx is the length of the (cylindrical) system along x. Notice that this noise is a

truncated version of Gaussian white noise.2 The highest wave number, k∗, plays the role

of the inverse of the correlation length for the chemical potential, while the lower wave

number, k0, is proportional to the inverse of the system size. Moreover, for a lattice with

Nx sites along the x direction,

k∗ ≤ kns ≡
π

Lx
(Nx − 1), (2.14)

where kns is the Nyquist frequency for that lattice.3 The properties of this choice of disorder

have been discussed in more detail in [9]. We will specify our choice of parameters when

discussing the numerical integration.

2As explained in [7, 8], in terms of the Harris criterion [27] that generalizes the standard power-counting

criterion to random couplings, our chemical potential disordered along one dimension introduces relevant

disorder. One would have to go beyond the probe limit to investigate the expected important effects of a

relevant disorder in the IR of the theory.
3We refer to the frequency saturating the Nyquist sampling rate, which is half the frequency of the

sampling resulting from our lattice. In particular, to recover all the Fourier components of a periodic wave,

one needs a sampling rate that is at least twice that of the highest mode. Our system of length Lx is

sampled by a periodic lattice with Nx − 1 points, hence the sampling wave number is 2π
Lx

(Nx − 1).
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2.4 Numerics

To construct the embeddings we will solve numerically the equations of motion resulting

from (2.5). These are two coupled PDEs depending on z and x. To solve them numerically

we discretize the space along both directions, and impose periodic boundary conditions

along x. As for the radial direction, in the UV we have the asymptotic solution (2.8),

while in the IR (z → 1) the requirement of regularity at the black hole horizon imposes

that φ and χ′ vanish there (see eq. (2.11)). Therefore, we impose the following boundary

conditions

φ(0, x) = µ(x) , χ′(0, x) = m, (2.15a)

φ(1, x) = 0 , χ′(1, 0) = 0 . (2.15b)

We use pseudospectral methods implemented in Mathematica, discretizing the plane (z, x)

on a rectangular lattice of size Nz ×Nx, with Nz and Nx being, respectively, the number

of points in the z and x directions. We use a Chebyshev grid along z, and a planar

one in the x direction; and employ a Newton-Raphson iterative algorithm to solve the

resulting nonlinear algebraic equations. For all the numerical simulations apart from those

in section 4 we set Lx = 20π, so that k0/T � 1, and take k∗ = 1 which corresponds to

truncating the sum in (2.12) at 10 modes. Finally, we average over different realizations of

the noisy chemical potential. When it is visible we show the error of the average σN/
√
N ,

where σN is the standard deviation, and N the number of realizations. Only in figure 8 we

plot the standard deviation instead of the error of the average.

2.5 Results

Let us first consider massless embeddings; for these the embedding field χ vanishes, and

we need only solve the equation of motion for φ. In figure 1 we plot the result of a single

simulation of our noisy system. We present the random chemical potential we plug in as

our boundary condition together with the resulting charge density which we read from the

asymptotic behavior of the worldvolume field φ.

Charge density. It is interesting to study how the charge density depends on the

strength of disorder. An important observable of our setup is given by the spatial av-

erage of the charge density, 〈ρ〉 (we will denote by 〈·〉 the average over the spatial direction

x). Therefore, for a noisy chemical potential as (2.12), we will analyze how 〈ρ〉 depends on

the strength of the noise, parametrized by w. The expected behavior can be anticipated

by considering how the charge density depends on the chemical potential in the homoge-

neous case. In appendix A we have reviewed the homogeneous D3/D5 intersection, and

in particular we have shown that the function µ(ρ) can be computed analytically, and is

given by eq. (A.32). That function interpolates between two distinct behaviors as shown

in (A.34); while ρ ∼ µ2 for large ρ, ρ ∼ µ in the small ρ limit. Assuming this behavior

holds for an x dependent noisy µ as (2.12), it is easy to predict how 〈ρ〉 should behave as a

function of w. First, in the low ρ regime, where ρ ∼ µ, taking into account that the noisy

x dependent part of (2.12) averages to zero, one concludes that 〈ρ〉 must be independent

– 7 –
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Figure 1. Massless embedding. On the left panel we plot an example of one realization of µ(x)

with µ0 = 20 and w = 0.5. On the right we present the corresponding charge density for a massless

embedding with that chemical potential. We have employed a lattice of size 100 × 100 and set

Lx = 20π, k∗ = 1.

of w. Instead, at large ρ, where we assume ρ ∼ µ2, one expects 〈ρ〉 ∼ w2 (we will show

this explicitly in eq. (3.26) below).

In figure 2 we present the results of our numerical simulations for the evolution of the

averaged charge density as a function of the disorder strength. First, on the left panel we

plot 〈ρ〉 versus w for a system with µ0 = 20, which corresponds to ρ0 ≈ 133.398, and places

the setup in the large charge density regime. As expected 〈ρ〉 scales quadratically with w as

the fit in the graph demonstrates. Next, on the right plot we show two cases corresponding

to lower charge density, namely µ0 = 10 (red line), and µ0 = 0.1 (black line), for which ρ0

takes the values 38.897, and 0.141 respectively. While for µ0 = 10, the quadratic scaling

of 〈ρ〉 is still observed, for µ0 = 0.1 we see that the averaged charge density is independent

of the noise strength.

In the remaining of this section we consider the case of nonzero mass. We then have to

solve the two coupled PDEs for φ and χ. When choosing the value of the mass m one has

to take into account the phase diagram for black hole embeddings at finite charge density

and nonzero mass, which was reviewed in [24]. In particular, notice that for m & 1.5, black

hole embeddings exist only for µ & m− 1.41. We will restrict our analysis to cases where

the space dependent chemical potential never reaches that forbidden region. In figure 3

we plot the result of a simulation for a massive embedding, showing the noisy chemical

potential that we impose as boundary condition, and the resulting charge density and quark

condensate we read from the solution of the PDEs.

Quark condensate. The construction of disordered massive embeddings offers us the

possibility of looking into the behavior of the quark condensate c in presence of disorder.

As above, much can be inferred from the behavior of the homogeneous brane intersection.

For massive embeddings there is no analytical solution that allows us to express c in

terms of µ, and instead, as we show in appendix A, one needs to solve numerically a

single ordinary differential equation for χ(z). However, one can obtain analytic (or semi-

– 8 –
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Figure 2. 〈ρ〉 versus w. On the left we plot 〈ρ〉 − ρ0 for a system with µ0 = 20, ρ0 = 133.398 is

the value of ρ for the clean case. The black line shows the result of the numerical integration, and

the red dashed line the fit log(〈ρ〉 − ρ0) = −0.0726 + 2.000 log(w). On the right panel we plot the

subtracted charge density for µ0 = 10 (red line, ρ0 = 38.897), and µ0 = 0.1 (black line, ρ0 = 0.141).

The blue dashed line results from the fit log(〈ρ〉 − ρ0) = −1.462 + 2.000 log(w) to the µ0 = 10

data. For both graphs we have averaged over 10 realizations on a lattice of size 100 × 100 and set

Lx = 20π, k∗ = 1.
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Figure 3. Massive embedding. The three panels display, from left to right, the chemical potential

µ(x), the charge density ρ(x), and the quark condensate c(x) for a simulation with µ0 = 20, m = 0.5,

w = 0.5, Lx = 20π, and k∗ = 1 (corresponding to 10 modes) on a lattice of size 100 × 100.

analytical) expressions for the dependence of c on µ in the limits of large and small chemical

potential. These are eqs. (A.16) for µ� 1, and (A.27) for µ→∞. Those equations reflect

two different scaling regimes: c scales as µ2 for small µ, while it becomes linear in µ as µ→
∞. The numerical integration confirms these two regimes as is illustrated on the left panel

of figure 4. Notice that for an homogeneous embedding with mass m = 0.5, eqs. (A.16)

and (A.27) result in the following behavior of the quark condensate as a function of µ

log10(c(0)− c(µ)) = 2 log10 µ− 1.170 ; (µ→ 0) , (2.16a)

log10(c(0)− c(µ)) = log10 µ− 0.837 ; (µ→∞) , (2.16b)

which agrees with the fit to the numerical data in figure 4 (see caption). Therefore, an

opposite scenario to that of the charge density above is anticipated for the dependence of

〈c〉 on the noise strength w. While for low µ0 we expect 〈c〉 to scale quadratically with w,

for large µ0, the averaged quark condensate should become largely independent of the noise

strength. These expectations are confirmed by our numerical simulations presented on the
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Figure 4. Massive embedding. On the left we plot the behavior of the homogeneous condensate c

as a function of the chemical potential µ for a fixed mass m = 0.5. The fits are log10(c(0)− c(µ)) =

2.004 log10 µ − 1.170, and log10(c(0) − c(µ)) = 1.003 log10 µ − 0.847. The right panel shows the

subtracted condensate c − c0 versus the noise strength w for µ0 = 1.5 (black) and µ0 = 20 (red),

withm = 0.5 in both cases. For the clean system (w = 0) the condensate takes the value c0 = −0.431

(c0 = −3.114) for the case µ0 = 1.5 (µ0 = 20). We have averaged over 10 realizations on a grid of

size 100× 100, and set Lx = 20π, k∗ = 1.

right hand side of figure 4. There we plot the subtracted quark condensate (denoting c0 the

value of c at zero disorder) for systems with µ0 = 1.5 (black line) and µ0 = 20 (red line).

One could repeat the analysis for the dependence of the charge density on the strength

of disorder for the case of massive embeddings. However, eqs. (A.15) and (A.26) show that

the scaling of ρ with µ in the homogeneous case is the same as for massless embeddings.

Therefore, the behavior of ρ as a function of w is qualitatively the same as for the massless

case examined above.

3 Noisy conductivity

In this section we will study the electrical transport properties of our setup. We will focus

on the study of the electrical conductivity in the direction parallel to the noise, namely

σxx ≡ σ, and in particular its DC (zero frequency) value. To compute that conductivity

we need to consider fluctuations of the worldvolume gauge field Ax realizing an electric

current along x. In general those fluctuations will source other fields in the model, and one

has to solve a system of coupled linear PDEs.

The ansatz for the fluctuating field is

Aµ = aµ(z, x) eiω t , (3.1)

and we will require that ftx(0, x) = iω eiω t, so that on the boundary the fluctuation is

sourcing an oscillating electric field with constant modulus. The AdS/CFT dictionary tells

us to compute the conductivity4 as

σ =
Jx
Ex

= lim
z→0

fxz
ftx

. (3.2)

4As in [24] we are rescaling the conductivity by the dimensionless constant appearing in front of the

action (2.5), i.e. σ → σ/(NfTD5 L
6).

– 10 –



J
H
E
P
0
7
(
2
0
1
6
)
0
9
1

Hence, we need to solve the equations of motion resulting from the expansion of the DBI

action up to quadratic order in the fluctuations. These equations couple ax(z, x) to the

fluctuation of the temporal component of the gauge field, at(z, x), and in the massive case

also to the fluctuation of the embedding field χ, which we will denote c(z, x). Moreover, we

choose to work in the gauge az(z, x) = 0. The quadratic action for these fluctuating fields

has been written in the appendix of [24]. To compute the AC conductivity one then needs

to solve the resulting system of linear PDEs. Since the background is periodic along x, one

has to impose periodic boundary conditions in that direction. As for the radial direction,

in the UV one requires

ftx(0, x) = iω eiω t , c′(0, x) = 0 ,

iω ∂zat(0, x)− ∂x∂zax(0, x) = 0 . (3.3)

The first condition corresponds to switching on a constant electric on the boundary, while

the second ensures that no fluctuation of the mass of the quarks is sourced. The third

equation is a constraint resulting from the equation of motion for az, and upon substituting

the form of the UV asymptotics amounts to the equation for charge conservation on the

boundary [24]. In particular, that equation implies that at zero frequency the electric

current in the x direction, Jx = −∂zax(0, x), is independent of x. Consequently, the DC

conductivity in that direction is a constant.

In the IR one must impose infalling boundary conditions at the horizon. The IR

behavior of the fluctuations was also studied in [24], and it is straightforward to check that

the resulting conditions to impose read

ãt(1, x) = 0 , ã′x(1, x) = − iω

4
√

2
ãx(1, x) ,

c̃′(1, x) = − iω

4
√

2
c̃(1, x) , (3.4)

where we have redefined the fields as Φ̃ = (1− z)
−iω
2
√
2 Φ.

In this work we will not present results for the AC conductivity, and will instead focus

our attention on the ω = 0 DC conductivity. Crucially, as was shown in [24], the DC

conductivity for this system can be computed without having to solve for the fluctuations

we have just described.

3.1 DC conductivity

The DBI action governing the fluctuations allows us to follow the procedure of [22, 28], and

express the DC conductivity, σDC, in terms of the background functions, φ and χ, evaluated

at the horizon. In [24] that computation was particularized to a D3/D5 intersection like

the one in our setup,5 obtaining for σDC

σDC =
Lx∫ Lx

0
dx
F(1,x)

, (3.5)

5The intersection analyzed in [24] had a homogeneous chemical potential, and an x dependent mass.

However, the analysis in section 3.2 of that paper applies to a generic inhomogeneous D3/D5 intersection.
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where F is the following function of the embedding fields φ and χ, and the metric functions

f and h

F(z, x) = f
(
1− χ2

)3/2√h

Γ
, (3.6)

with

Γ =− z4h

{
φ′2
[
h(1− χ2) + z2 χ̇2

]
− 2z2φ′ φ̇ χ′ χ̇ + φ̇2(1− χ2 + z2 χ′2)

}
− f2

[
h
(
χ2 − 1− z2 χ′2

)
− z2 χ̇2

]
. (3.7)

Notice that for the case of massless embeddings where χ = 0, F(z, x) simplifies to

F̃(z, x) =
1√

1− z4

f2
(hφ′2 + φ̇2)

. (3.8)

Moreover, by substituting the IR asymptotics of φ given by (2.11a) one arrives at the

following expression for the DC conductivity in the massless case

σDC =
Lx∫ Lx

0 dx
√

1− (a(2)(x))2/2
. (3.9)

Therefore, by making use of (3.5) we can compute the DC conductivity of our disor-

dered brane intersection without having to solve for the fluctuations of the gauge fields.

The conductivity is indeed determined in terms of the behavior of the embedding fields χ

and φ at the horizon. Furthermore, as we detail below, in some interesting limits we will

be able to obtain analytic expressions for the DC conductivity as a function of the charge

density and the noise strength. Finally, notice that already the form of eq. (3.9) makes

clear that σDC > 1, and therefore even in the presence of noise the massless setup is always

metallic.

3.2 σDC at weak disorder

We shall now compute the effect a perturbatively small noise has on the DC conductivity in

the large and small charge limits. We will restrict the analysis to massless embeddings, and

consider a scenario where the disorder is introduced as a small x dependent perturbation of

the otherwise homogeneous chemical potential for a massless D3/D5 intersection. This will

allow us to build our analysis upon key results of the homogeneous case which we review

in appendix A.

Small charge. We will assume that, as shown in eq. (A.34a) for the homogeneous case,

the charge density grows linearly with the chemical potential

ρ(x) = dµ0(1 + w̃ n(x)) , (3.10)

where d is a positive proportionality constant, w̃ is a small parameter, and n(x) is a noisy

function with vanishing spatial average. In terms of our previous definition of µ(x) in (2.12)

one can identify

w̃ =
w

25
, n(x) =

k∗∑
k=k0

cos(k x+ δk) , (3.11)
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while from eq. (A.33a) d =
√

2. However we shall keep w̃ as an unknown small parame-

ter, and n(x) an unknown function whose average over x vanishes. We will also assume

that the relation (A.36) between the charge density and the second radial derivative of

φ at the horizon that we derived for the homogeneous system, holds in the presence of a

perturbatively small noise, namely

a(2)(x) =

√
2ρ(x)√

4 + ρ(x)2
, (3.12)

and therefore, by means of eq. (3.9) one can write the resistivity % ≡ 1/σDC as

% =
1

Lx

∫ Lx

0
dx

2√
4 + ρ(x)2

. (3.13)

Notice that this expression is valid in a regime where we are considering the setup as a

succession of homogeneous systems, one at each value of x. We are therefore neglecting

the effect of the gradients of the embedding field φ in the x direction. Next, substituting

eq. (3.10) into eq. (3.13), and expanding the integrand up to order w̃2 we arrive to

% =
2√

4 + d2µ2
0

[
1 + w̃2 B(µ0)

L

∫ L

0
dxn(x)2 +O(w̃3)

]
, (3.14)

where we have taken into account that the integral along x of n(x) vanishes,6 and have

defined

B(µ0) =
d2µ2

0

(
−2 + d2 µ2

0

)
(4 + d2 µ2

0)2
. (3.15)

In the limit of small charge density, µ0 � 1, (3.14) becomes

% = 1− d2µ2
0

8

(
1 + w̃2 1

L

∫ L

0
dxn(x)2

)
+O(µ4

0, w̃
3) . (3.16)

Finally, substituting w̃ from (3.11) one obtains for σDC

σDC = 1 +
d2µ2

0

8

(
1 +

w2

252

1

L

〈∫ L

0
dxn(x)2

〉
noise

)
+O(µ4

0, w̃
3)

≈ 1 +
µ2

0

4

(
1 +

w2

252

#(modes)

2

)
, (3.17)

where we have introduced the notation 〈·〉noise to denote the average over realizations of

disorder; and in the second line we have taken into account that for n(x) of the form (3.11),

the integral 1
L

∫ L
0 dxn(x)2 is nothing else than half the number of modes in the sum

(#(modes)/2), and that as shown in (A.34a) d =
√

2. Hence, in the small charge den-

sity limit one expects an enhancement of the DC conductivity that grows quadratically

with the strength of noise. We will show in section 3.4 that our numerics confirm this

prediction.

6For n(x) as in (3.11), upon averaging over realizations the integral along x of any odd power of n(x)

vanishes too.
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Large charge. We will assume that, as in the homogeneous case (A.34b), the charge

density grows quadratically with the chemical potential

ρ(x) = c µ2
0 (1 + w̃ n(x))2 , (3.18)

where c is a positive proportionality constant. Proceeding as before, it is straightforward

to arrive to an expression for the resistivity analogous to eq. (3.14)

% =
2√

4 + c2µ4
0

[
1 + w̃2 C(µ0)

L

∫ L

0
dxn(x)2 +O(w̃3)

]
, (3.19)

where

C(µ0) = 3c2µ4
0

c2µ4
0 − 4

(4 + c2µ4
0)2

. (3.20)

In the limit µ0 � 1 we can write

% =
2

c µ2
0

+
6

L cµ2
0

w̃2

∫ L

0
dxn(x)2 +O(µ−6

0 , w̃3) , (3.21)

and thus the conductivity reads

σDC =
c µ2

0

2

(
1− w2 3

252

1

L

〈∫ L

0
dxn(x)2

〉
noise

)
+O(µ−2

0 , w3) (3.22)

≈ 0.291µ2
0

2

(
1− w2 3

252

#(modes)

2

)
, (3.23)

where we have read w̃ from (3.11), and as indicated in (A.34b) c ≈ 0.291. We observe

that in the regime of large charge density the introduction of a noisy perturbation of the

chemical potential results in a decrease of the DC conductivity.

In section 3.4 we will check this weak disorder analysis against our numerical compu-

tations, showing a very good agreement in both the large and small charge density regimes.

3.3 σDC at strong disorder

In this section we will generalize the analytic approach of section 3.2 to the case of strong

noise. We will start with a generic analysis which is valid for any value of the noise strength

w at the price of introducing numerical integrals. This procedure will nevertheless allow

us to determine the behavior of σDC in two interesting limits of strong noise. First, we

will be able to determine the dependence of σDC on 〈ρ〉 in the large µ0 limit, which in

view of eq. (2.12) corresponds to large disorder too. Second, we will consider the case of a

disordered chemical potential with vanishing µ0, thus describing noisy oscillations around

the charge neutrality point, and predict the behavior of σDC as a function of noise strength

in the limit of strong noise.

Approximating the setup by a succession of homogenous systems with a different charge

density at each point x, we have written in eq. (3.13) the resistivity % as a function of the

inhomogeneous charge density ρ(x). Moreover, in the homogeneous case µ(ρ) is given by
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the analytic function written in eq. (A.32). We can therefore write the following expression

determining the conductivity in terms of the inhomogeneous chemical potential µ(x)

σDC =

〈
1

1
L

∫ Lx
0 dx 2√

4+ρ(x)2

〉
noise

, with ρ(x) = G−1(µ(x)) , (3.24)

where G is the function relating the chemical potential and the charge density in the

homogeneous case, namely µ = G(ρ), which was computed in eq. (A.32) and takes the form

G(u) =
u√
2

1F2

(
1

4
,

1

2
,
5

4
;−u

2

4

)
, (3.25)

in terms of the hypergeometric function.

In principle, by inserting µ(x) as given in eq. (2.12) into eq. (3.24) one can compute

σDC at all orders in w. However, as (3.24) makes clear, one would first need to invert

the relation between µ, and ρ, and already this first step can be done only numerically.

Therefore, we can compute σDC via numerical evaluation of the integral in that equation.

It is worth stressing that within this approach we can compute the conductivity without

having to solve the PDE for the embedding field φ(z, x).

Weak noise limit. Before examining the scenarios of strong noise we shall now proceed

as in section 3.2 and particularize the analysis above to the case of weak noise, but this time

keeping corrections up to order w4. First, we assume the large charge limit, and from the

expression (3.18) for the charge density in presence of noise, averaging over x, we obtain

〈ρ〉 = c µ2
0

(
1 +

w2

252

1

L

∫
dxn(x)2

)
, (3.26)

where w = 25w̃ as in (3.11). Next, we substitute ρ(x) from eq. (3.18) into eq. (3.13) for

the resistivity, expand the integrand up to O(w4), and take the large µ0 limit, arriving to

the following expression for the conductivity

σDC =
〈
%−1
〉

noise
(3.27)

= c µ2
0

[
1− 3

(
w2/252

)
∆ +

(
9∆2/254 − 5∆4/254

)
w4
]

+O(w6, µ−6
0 ) , (3.28)

where ∆ and ∆4 are

∆ =

〈
1

L

∫
dxn(x)2

〉
noise

=
#modes

2
, (3.29)

∆4 =

〈
1

L

∫
dxn(x)4

〉
noise

=
3

4
(#modes)2 − 3

8
#modes . (3.30)

Finally, using (3.26) to express µ0 in terms of 〈ρ〉 we have

σDC ≈
1− 3

(
w2/252

)
∆ +

(
9∆2/254 − 5∆4/254

)
w4

1 + (w2/252) ∆

〈ρ〉
2
, (3.31)

which predicts a conductivity linear in the charge density. The slope is always lower than

the value of the clean system (σDC ≈ 〈ρ〉/2) and decreases with increasing w. Moreover,

we will see in figure 9 below, that this expression agrees very well with the numerical data

also for a moderate noise with w = 3 (where µ has oscillations ≈ 70%µ0).
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Strong noise. When considering the case of generic noise strength w, for which the

perturbative treatment above is not valid, it is important to distinguish two scenarios:

that where w is small enough for ρ(x) to stay positive along the whole system, which we

call ‘moderate noise’; and that where w is large enough for ρ(x) to become negative in

some regions, which we denote ‘strong noise’.

We begin this analysis by rewriting the noisy chemical potential (2.12) in the

generic form

µ(x) = µ0[1 + w̃ n(x)] , (3.32)

and considering the moderate noise case where ρ(x) stays positive along the system. In

this situation, substituting the large ρ approximation (3.18) in eq. (3.24), σDC becomes

σDC ∼ c µ2
0

〈
1

1
Lx

∫ Lx
0 dx 2

η(x)

〉
noise

=
〈ρ〉

1 + w̃2∆

〈
1

1
Lx

∫ Lx
0 dx 2

η(x)

〉
noise

, (〈ρ〉 � 1) , (3.33)

where in the last equality we have used eq. (3.26), ∆ is given by eq. (3.29) above, and η(x)

is defined as

η(x) = (1 + w̃ n(x)) . (3.34)

Therefore, we see that for a moderate noise, the DC conductivity grows linearly with

〈ρ〉. Notice that the slope given by the expression (3.33) constitutes an all order (in w)

correction to the result in eq. (3.31) where we have kept contributions up to O(w4).

We shall now study the strong noise case where w is large enough for regions of negative

charge to appear in the system. In this scenario the regions around the zeros of ρ(x), where

the charge density is low even in the large µ0 limit, will dominate the integral in eq. (3.24),

and determine the behavior of σDC in the large µ0 limit. Let us denote {x1, . . . xi . . . , xN0}
the set of points where µ(x) has a simple zero,7 and let f(µ0) be a monotonically increasing

function with the following properties

(a) lim
µ0→∞

f(µ0) =∞ , (b) lim
µ0→∞

f(µ0)/µ0 = 0 . (3.35)

A function that does the job is f(µ0) = log(µ0). Next, we split the integration domain of

eq. (3.24) into the regions I>µ0 and I<µ0 , defined as those zones with |µ(x)| ≥ f(µ0), and

|µ(x)| < f(µ0) respectively. We split the resulting contributions to the resistivity % = σ−1

accordingly as % = %> + %<, so that σDC = 〈(%> + %<)−1〉noise. Let us focus first on the

regions where |µ(x)| > f(µ0); in view of (3.35) (a), in the large µ0 limit one can implement

the large charge limit (A.34b) in the integral in eq. (3.24) arriving to

%> ∼
2

0.291µ2
0 Lx

∫
I>µ0

dx (η(x))−1 , (3.36)

which shows that the contribution of the domain I>µ0 to the resistivity goes as 1/µ2
0. As

for the domain I<µ0 (where |µ(x)| < f(µ0)), it can be decomposed as the union of intervals

7The set of random phases resulting in noise profiles with double or higher order zeros has zero measure,

and thus we can neglect the contribution of these realizations.
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I<µ0,i localized around the zeros of µ(x), xi. Expanding η(x) around those points as η(x) =

η′(xi)(x − xi) + O((x − xi)2), and taking into account that η(x) = µ(x)/µ0, one can see

that the diameter of each I<µ0,i is order O(f(µ0)/µ0), namely

|x− xi| <
f(µ0)

|η′(xi)|µ0
+O

((
f(µ0)

µ0

)2
)

if x ∈ I<µ0,i . (3.37)

Due to (3.35)(b) the length of these intervals goes to zero in the large µ0 limit. Hence for

high enough µ0 all the I<µ0,i are disjoint, and thus the contribution to the resistivity %< can

be written as the sum

%< =
2

Lx

∑
i

∫
I<µ0,i

dx√
G−1[µ(x)]2 + 4

. (3.38)

In order to evaluate these integrals we change variables to s = G−1[µ(x)], with G(u) as

defined in (3.25). This change of variables is well defined and invertible in the large µ0

limit.8 Denoting by x̌i(s) the inverse of s(x) inside I<µ,i, we obtain

%< =
2

Lx

∑
i

∫ G−1[f(µ0)]

−G−1[f(µ0)]

ds√
s2 + 4

G′(s)
µ0|η′[x̌i(s)]|

, (3.39)

where we have taken into account that G(u) is odd. Keeping the leading contribution in

the large µ0 limit this integral becomes

%< ∼
1

µ0 Lx

∫ ∞
−∞

2G′(s) ds√
s2 + 4

[∑
i

1

|η′(xi)|

]
≈ 7.083

µ0 Lx

∑
i

1

|η′(xi)|
. (3.40)

In view of (3.36) and (3.40) we observe that the leading contribution to % = %>+%< comes

from %<, and is of order 1/µ0. Taking the inverse and averaging over noises we arrive to

the following expression for σDC at large µ0,

σDC ∼
µ0 Lx
7.083

〈
1∑

i
1

|η′(xi)|

〉
noise

, (3.41)

and to write it as a function of 〈ρ〉 we make use of

〈ρ〉 =
1

Lx

∫ Lx

0
dxG−1[µ(x)] ∼ 0.291µ2

0

Lx

∫ Lx

0
dx sign[η(x)] η(x)2, (3.42)

where as in eq. (3.26), we have substituted the large µ approximation of ρ(x) = G[µ(x)]

given by eq. (A.34b). Notice that the factor sign[η(x)] accounts for the regions where µ(x)

(and ρ(x)) becomes negative, and that the contribution from the regions where |µ(x)| ∼ 0

is subleading (and remember that as explained above the length of these regions vanishes

in the large µ0 limit).

8This can be seen using that G is bijective, and the diameter of I<µ,i will only cover an arbitrary small

region around the simple zero xi of η(x).
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Finally, combining eqs. (3.41) and (3.42) we arrive to the following expression for

σDC(〈ρ〉) in the large µ0 limit,

σDC ∼
L

3/2
x

3.820

√
〈ρ〉

〈
1∑

i
1

|η′(xi)|

〉
noise

〈∫ Lx

0
dx sign[η(x)]η(x)2

〉−1/2

noise

. (3.43)

Notice that this result implies that in contrast to what happens in the weak and moderate

noise cases of eqs. (3.31) and (3.33) where the conductivity is linear in 〈ρ〉, in the strong

noise scenario σDC becomes a sublinear function of 〈ρ〉 in the large charge limit. We will

successfully check this prediction against our numerical, and semi-analytical, simulations

in the next section.

We end this section by analyzing the limit of small charge density. This limit is

simpler than its large charge counterpart since when µ0 � 1 the low charge approximation

of G−1(µ(x)) given by eq. (A.34a) can be used independently of the value of w. Inserting

such approximation into eq. (3.24), and taking the small µ0 limit, we find

σDC ≈ 1 +
µ2

0

4

(
1 + w̃2∆

)
. (3.44)

Moreover, as discussed in section 2.5, in the small µ0 limit the averaged charge density

does not depend on the noise strength w̃, and eq. (A.34a) implies that 〈ρ〉 ≈
√

2µ0, which

allows us to write

σDC ≈ 1 +
〈ρ〉2

8

(
1 + w̃2∆

)
. (3.45)

Therefore, in the small charge limit we expect a quadratic growth of the DC conductivity

which will be checked against our numerical analysis in the next section.

3.4 Results

In this subsection we present the results of our numerical simulations for the conductivity.

We will restrict ourselves to massless embeddings, and focus on the study of the DC

conductivity. We will start by studying the regimes of small and large charge density ρ for

weak to moderate noise, and compare our numerics with the analytic expressions derived

in section 3.2. Subsequently, we will present more general results for the DC conductivity,

considering a wide range of values for the chemical potential µ0, and the noise strength

w. One should recall that, as shown in eq. (2.9), both ρ and µ are proportional to the

dimensionless ratios ρ̄/T 2 and µ̄/T respectively. Therefore, when we plot quantities like

the conductivity as a function of µ (or ρ) one can think of µ as the inverse temperature of

the system when working in the grand canonical ensemble for which the physical chemical

potential µ̄ is kept fixed (equivalently, ρ would be proportional to the temperature squared

in the canonical ensemble). In the last two subsections we will consider two scenarios

of particular interest: the evolution of σDC as a function of the spatial average of the

charge density 〈ρ〉, and the case of a noisy chemical potential with vanishing spatial average

(µ0 = 0). In these two last cases we will pay special attention to the situations where regions

of positive and negative charge density appear in the system, and compare the numerical

results with the analytic predictions obtained in section 3.3 for the strong noise case.
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Figure 5. Enhancement of σDC at low ρ. We plot the subtracted σDC as a function of the

noise strength w. The black line corresponds to the numerical simulation, while the red line to the

analytic expression for small noise (3.17). The left panel shows the results for µ0 = 0.005, and the

right one for µ0 = 0.1. The numerical results follow from averaging over 10 simulations on a grid

of size 100× 100, with Lx = 20π and k∗ = 1.

Two competing effects of the disorder on the conductivity are expected [22]. On one

hand, we have seen in section 2.5 that disorder increases the charge density, or strictly

speaking, its spatial average (except at very low charge density). In a homogeneous system

the DC conductivity grows as the charge density increases (see eq. (A.37)), and therefore,

if one were to ignore any effect of the spatial inhomogeneities, an enhancement of σDC

would be expected. On the other hand, disorder gives rise to random spatial gradients

of the charge density, and on general grounds these impede conductivity. However, we

have already seen in the previous section that even if one ignores the effects of those

spatial gradients, and just computes the corrections due to a disordered perturbation to

the chemical potential, two opposite effects are found. While the noise indeed enhances σDC

at low ρ, it has the opposite effect at large ρ, and σDC decreases.9 One would expect that

at strong disorder the effect of the gradients of the charge density enhances this decrease

of σDC for large charge density. We look into this scenario in section 3.4.1.

We begin by considering the effect of noise on the conductivity in the limits of large and

small charge density. In figure 5 we compare our analytic prediction (3.17) with numerical

results at very low charge density. We plot the subtracted DC conductivity σ − σ0, where

σ0 is the value of σDC in the homogeneous case, versus the strength of noise parametrized

by w (see eq. (2.12)). We present results for systems with µ0 = 0.005, and µ0 = 0.01, for

which the charge density (at zero noise) is respectively ρ0 = 0.00707, and ρ0 = 0.141. We

are then well within the region where the low ρ analysis of section 3.2 applies, and indeed

one can see a good agreement of our numerics (black lines) with the analytic prediction of

eq. (3.17) (red lines), specially at low w.

In figure 6 we turn our attention to the case of large ρ, and again plot the subtracted

conductivity as a function of the noise strength w. We present both the numerical results

(black lines) and the analytic prediction of eq. (3.23) (red lines). We consider systems

9This is visible in how the O(w̃2) correction in eqs. (3.14) and (3.19) changes sign as ρ0 becomes large or

small. Notice that for this to be true it is crucial that the O(w) correction vanishes due to the perturbation

being a noisy function with vanishing spatial average.
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Figure 6. Decrease of σDC at large ρ as a function of noise. We plot the subtracted σDC as a

function of the noise strength w. The black line shows the numerical results, and the red line the

prediction (3.23) for small noise. On the left panel we have set µ0 = 10, and on the right µ0 = 20.

The numerical results follow from averaging over 10 realizations on a grid of size 100 × 100, with

Lx = 20π and k∗ = 1.

with µ0 = 10, and µ0 = 20, which at w = 0 correspond respectively to ρ0 = 37.897, and

ρ0 = 133.398. The plots show a good agreement between analytic and numeric results,

and confirm the prediction that disorder decreases the conductivity in the limit of large

charge density.

We now proceed to study the disordered conductivity for the whole range of the chem-

ical potential, and in figures 7 and 8 we plot σDC versus µ0 for noisy chemical potentials

of the form (2.12). First, in figure 7 we present the results of our simulations along a wide

range of µ0 for four different values of the strength of noise: from w = 0 (orange line)

corresponding to the clean system, up to w = 3 (blue line) which, when setting k∗ = 1

in the sum (2.12), corresponds to a noisy chemical potential whose maximum oscillations

have amplitudes ≈ 70%µ0. Except for the low µ0 region, which we will resolve in figure 8,

the plot shows that the noise has the effect of reducing the conductivity, and this effect

increases with µ0. Notice however, that even for the strongest noise studied, the conduc-

tivity is still increasing towards higher µ0, and is always larger than the conformal value

σDC = 1. Actually, one can see from eq. (3.9) that σDC > 1 for any noise, and thus the

system behaves always as a metal.

We have shown above, when studying the weak disorder case, that an enhancement of

σDC is observed in the small charge density limit. To examine more closely the effect of

disorder at low values of µ0, and therefore resolve the leftmost region of the plot in figure 7,

in figure 8 left we plot σDC for w = 3, and compare it with the homogeneous result. We

observe that for values of µ0 . 1 the conductivity is slightly enhanced in presence of noise.

To better illustrate this fact, and pinpoint the value of µ0 above which the noise stops

enhancing the conductivity and starts decreasing it, on the right panel of figure 8 we plot

the subtracted conductivity (i.e. the difference between the noisy and the homogeneous

results). We observe that the maximum enhancement occurs at µ0 ≈ 0.8, and that the

critical value at which the enhancement ceases is in the interval (1.1, 1.2) (see caption

of figure 8). It is not difficult to estimate that the change of sign in the right panel of
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Figure 7. σDC versus µ0. The different lines correspond, from top to bottom, to noisy chemical

potentials with w = 0, 1, 2, 3. The numerical results follow after averaging over 36 simulations on

a grid of size 100 × 100, with Lx = 20π and k∗ = 1. We plot with color bands the error of the

average, which is only visible in the w = 3 case.
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Figure 8. Evolution of σDC versus µ0; comparison of the clean and noisy systems. On the left

the orange line shows the clean case, and the blue line the noisy system with w = 3. On the right

we plot the difference between the clean and the noisy cases, σ − σ0, versus µ0. The three lines

correspond to w = 1, 2, 3 (red, black, and blue respectively). The value of the chemical potential at

which σ − σ0 changes sign lies in the interval (1.15, 1.20) for w = 3 and (1.10, 1.15) for w = 1, 2.

We have averaged over 36 simulations on a grid of size 100 × 100, with Lx = 20π and k∗ = 1. The

color bands correspond to the standard deviation.

figure 8 should occur at µ0 ≈ 1. Indeed from the expression (3.14) for the resistivity in the

small charge limit one can see that the noisy correction proportional to w̃2 changes sign at

µ0 ≈ 2/d2 = 1.10

10If one plays the same game in the large charge limit, from (3.20) it follows that the O(w2) noisy

correction to the resistivity changes sign at µ0 ≈ 2.62. Notice however, that in view of (A.34b), the

approximation ρ0 ≈ c µ2
0 is rather inaccurate at low values of µ0.
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3.4.1 DC conductivity as a function of the charge density

In this section we will study how the DC conductivity behaves as a function of the charge

density in presence of disorder. This analysis will allow us to compare the qualitative

behavior of our system to that of semimetal graphene close to its charge neutrality point.

Experimental results [3] show that the DC conductivity of clean enough graphene samples

displays the following features: a nonzero minimal conductivity at vanishing charge density,

a linear behavior σDC ∝ ρ up to some critical charge ρ∗ that is sample dependent (namely,

determined by the amount of impurities), and a sublinear behavior for larger values of the

charge density.

In section 3.3 we have computed a semi-analytical prediction for the evolution of σDC

as a function of 〈ρ〉. We shall now present results following both from the purely numerical

solution of the system, and the semi-analytical approach given by eq. (3.24), compare them,

and show their agreement. First, we will show numerical results for σDC at moderate noise,

that is for a value of the strength of noise w such that the chemical potential becomes very

small at its minima, but neither µ(x) nor the charge density ρ(x) ever become negative.

Next, we will present the numerical results for σDC vs 〈ρ〉 for strong noise. This is a scenario

in which the oscillations of the chemical potential are so large that regions of negative charge

appear in the system, bringing the setup to a configuration resembling that of graphene

near the Dirac point, when puddles of charge of different sign are expected to be present

in the system [15, 29].

In figure 9 we consider the case of moderate noise and plot the numerical results for

σDC as a function of 〈ρ〉 for a fixed strength of noise w = 3 (green line). For this value of

w the maximum oscillations of the chemical potential are of order 70% µ0, and both µ(x)

and ρ(x) stay positive for all x. One can observe that, as for a clean system, σDC is linear

in 〈ρ〉 (except for very low values of 〈ρ〉). However, the slope is much lower than that of

the clean system (blue dashed line), and agrees very well with that predicted in eq. (3.31)

above (black dashed line).

Strong noise. We focus now on the scenario where the strength of noise is large enough

for µ(x), and ρ(x), to change sign repeatedly along the system. In figure 10 we present

numerical results for w = 6, and 8 (green and black solid lines respectively). The nu-

merical computation of σDC for these large values of w becomes quite delicate,11 and as

a consequence, the range of 〈ρ〉 where we can trust our results is significantly restricted

with respect to the case of w = 3 in figure 9. In particular, notice that for w = 8 we have

numerical results only up to 〈ρ〉 ≈ 16. We have studied the stability of our results against

the lattice size in figure 14 in the appendix.

For large values of w the analytic weak noise prediction (3.31) is not reliable, and we in-

stead compare our numerics to the prediction (3.24) where all orders in w are kept. First, it

is remarkable how well our semi-analytical prediction works at w = 6 (red dashed line) and

w = 8 (orange dashed line). Notice that the approximation that led us to that expression,

11At the largest oscillations of φ(z, x), the radicand of the square root in eq. (3.9) becomes very close to

zero. One needs to resolve a(2)(x) with high accuracy in these situations, which demands thinner lattices

as the oscillations of the field φ get larger.
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Figure 9. DC conductivity as function of the charge density. The blue dashed upper line corre-

sponds to the clean case. The solid green line is the numerical simulation for the noisy case with

ω = 3, and the green band shows the error of the average. The black dashed line corresponds to

the analytic prediction (3.31). We have used a grid of size 100 × 100, set Lx = 20π, k∗ = 1, and

averaged over 36 realizations.
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Figure 10. DC conductivity as function of the charge density. The blue dashed upper line corre-

sponds to the clean case. The solid green, and solid black lines are the numerical data for w = 6

and w = 8 respectively. The dashed red line for w = 6, and the dashed orange line for w = 8 show

the semi-analytical prediction of eq. (3.24) after averaging over 1000 realizations. As before, shaded

bands depict the error of the average. We have used a grid of size 120× 120, set k∗ = 1, Lx = 20π,

and averaged over 43 and 57 realizations for w = 6 and w = 8 respectively.
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Figure 11. log-log plot of σDC versus 〈ρ〉. On the left we present our numerical data for σDC

at w = 6 featured in figure 10 (green solid line). The red dashed line depicts a linear fit to the

〈ρ〉 > 15 region, resulting in log10(σDC − 1) = 0.78 log10〈ρ〉 − 0.42. On the right we plot σDC

computed from eq. (3.24) with w = 8 (green solid line), having set k∗ = 1 and Lx = 20π. The

black dashed line shows the linear fit log10(σDC − 1) = 2.00 log10〈ρ〉 − 0.72 in the region 〈ρ〉 < 0.1,

while the red dashed line corresponds to the fit log10(σDC − 1) = 0.53 log10〈ρ〉 − 0.01 in the region

105 . 〈ρ〉 . 108. We have averaged over 33 realization of the noise.

which effectively neglects the effect of gradients along x, should become less reliable as one

increases w, µ0, or both, and those gradients become larger.12 One indeed expects that for

large enough w and µ0, the effect of the gradients become important and our semi-analytical

approach fail. A closer inspection of figure 10 reveals that for the case of w = 8, at the

largest values of 〈ρ〉 we have reached the numerical results fall slightly below the prediction

of eq. (3.24). This effect seems to be enhanced for the case w = 10 we present in figure 15 of

the appendix, although a more ambitious numerical study that would allow larger values of

w and 〈ρ〉 would be needed to settle the question. A decrease of σDC due to the x dependent

gradients is to be expected on general grounds, since gradients of the charge density result

in a reduction of the diffusion constant [22]. Additionally, increasing k∗, thus reducing the

correlation length of our noise (2.12), one also expects the effects of the gradients to become

more important. However, we postpone a more thorough numerical study, including an

analysis of the effect of k∗, to a future work where a more realistic two-dimensional noise,

which would get us closer to the situation in graphene, will be implemented.

Finally, one readily notices that in figure 10, after a short region at very low 〈ρ〉 where

they largely agree with the clean case (dashed blue line), the noisy conductivities become

sublinear. To characterize this sublinear behavior, in figure 11 we examine closely the

asymptotic behavior of σDC in the limits of small and large 〈ρ〉. By employing the semi-

analytical expression (3.24), we compute σDC for w = 8 for a wide range of values of 〈ρ〉
(up to ∼ 108). The resulting data is shown as the green solid line on the right panel of

figure 11. Also in that plot we present logarithmic fits in the low (black dashed line) and

high (red dashed line) charge regions. These fits reveal a quadratic growth σDC ∝ 〈ρ〉2

12It follows from the form of µ(x) in (2.12) that the gradients along x of the chemical potential are

proportional to w and µ0.
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in the small 〈ρ〉 region, and a sublinear trend σDC ∝ 〈ρ〉0.53 as 〈ρ〉 becomes large. Notice

that the result at small 〈ρ〉 agrees perfectly with the prediction (3.45) resulting from the

strong noise analysis. Moreover, the behavior at large charge density is very close to that

predicted in eq. (3.43), pointing towards an asymptotic behavior σDC ∝
√
〈ρ〉. Finally,

in figure 11 left we present a logarithmic fit of the numerical results for w = 6. The fit

is realized in the region of largest charge density available (15 . 〈ρ〉 . 25), where 〈ρ〉 is

not large enough for the system to be properly in the large charge regime. Nevertheless,

the data displays a clearly nonlinear behavior, with the fit resulting in a growth trend

σDC ∝ 〈ρ〉0.78. In view of these results it is worth mentioning that theoretical models of

electric transport in graphene predict this sublinear behavior as a result of the presence of

charged impurities in the system [4, 29], with emphasis on this disorder creating puddles

of charge of opposite sign.13

3.4.2 Noisy DC at vanishing 〈ρ〉

We will finish this section by considering the case of a noisy chemical potential with van-

ishing spatial average of the form

µ(x) = ŵ

k∗∑
k=k0

cos(k x+ δk) , (3.46)

which corresponds to eq. (2.12) in the limit µ0 → 0, w → ∞ with ŵ ∝ µ0w fixed. We

will then be studying a system where the regions of positive and negative charge average

to zero.

To find asymptotic expressions at low and high ŵ, we can again use eq. (3.24). For

low values of ŵ, expanding in ŵ and using eq. (A.33a), which gives ρ(µ) in the low charge

limit, it is straightforward to check that the conductivity grows quadratically with ŵ:

σDC ≈ 1 +
ŵ2

4
∆. (3.47)

On the other hand, for high values of ŵ, the situation is analogous to the strong noise case

at large 〈ρ〉. Zones of positive and negative charge are present in the system for any ŵ,

and thus we can apply the analysis of section 3.3 based on the existence of zeros of µ(x).

Modifying suitably the definition of η(x) as

η(x) =

k∗∑
k=k0

cos(k x+ δk) , (3.48)

and assigning to ŵ the roll played by µ0 in that analysis, the asymptotic expression for the

conductivity at large ŵ is analogous to eq. (3.41):

σDC ∼
ŵLx
7.083

〈
1∑

i
1

|η′(xi)|

〉
noise

, (3.49)

and thus, linear in ŵ.

13In particular, in the model [29] it is important the fact that the disorder is correlated. Note that our

disorder is, on one hand perfectly correlated along one spatial direction, and on the other it also possesses

a nonzero correlation length in the x direction, proportional to 1/k∗, since we have truncated the sum

in (2.12) to a finite number of modes.
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Figure 12. Evolution of σDC versus ŵ. On the left we plot our numerical results (solid green line)

after averaging over 22 realizations on a lattice 100 × 100 and a noise with k∗ = 1 and Lx = 20π.

We also plot the error with shaded bands. The dashed red line shows the semi-analytical prediction

of eq. (3.24) after averaging over the same noise realizations. On the right we present a logarithmic

plot of the same semi-analytical prediction in a broader range (solid green line). The black dashed

line shows the linear fit log10(σDC−1) = 2.00 log10 ŵ+0.10 in the region ŵ < 3 ·10−3, while the red

dashed line corresponds to the fit log10(σDC − 1) = 1.01 log10 ŵ− 0.08 in the region 50 < ŵ < 104.

In figure 12 we present both numerical and semi-analytical results for σDC(ŵ). First,

on the left panel we plot our numerical data (solid green line), and compare them with the

result of the semi-analytical expression (3.24) (dashed red line). As it happens in figure 10

for the strongest noise there (w = 8), our numerical results at the highest ŵ available are

slightly below the semi-analytical prediction, again showing a likely onset of the effects of

the gradients along x (which are neglected in the semi-analytical approximation). Next,

in figure 12 right we study the asymptotic behavior of the semi-analytical result (solid

green line) both in the small, and large ŵ limits. We perform logarithmic fits in the small

(black dashed line), and large (red dashed line) ŵ region. The fits (see caption) confirm

the expected quadratic behavior at small ŵ, and linear trend in the large ŵ limit. In

particular, for a system as that of figure 12, eq. (3.47) gives log10(σDC−1) = 2 log10 ŵ+0.10,

while eq. (3.49) using the same noise realizations of figure 12 results in log10(σDC − 1) =

log10 ŵ−0.03. Notice the perfect agreement at small ŵ, while at large ŵ, as it happened in

the last section for the large charge limit, we expect the semi-analytical data to eventually

agree with the prediction in the asymptotic ŵ →∞ limit (we have observed how the fit of

the data gets closer to the prediction (3.49) as larger ŵ data points are included in the fit).

4 Spectral properties

In this section we consider a realization of disorder characterized by a power spectrum.

Namely, a chemical potential of the form

µ(x) = µ0 +
µ0

25
w

k∗∑
k=k0

√
S(k) cos(k x+ δk) , (4.1)
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where

S(k) =
1

k2α
(4.2)

is the power spectrum of our noise. Notice that the disordered chemical potential considered

in previous sections corresponds to a flat spectrum with α = 0. As discussed in [9], for a

spectrum with α > 0 the typical length scale of the noise is of the order of the system size,

and hence we will denote this case as correlated noise.

We will construct massive embeddings with a noisy chemical potential of the form (4.1)

and analyze the power spectra of the observables of the system, namely the charge density

ρ(x), and the quark condensate c(x). For a given input chemical potential with power

spectrum k−2α as above, we will compute the power spectra of the charge density Sρ(k),

and the quark condensate Sc(k), and study how they behave as functions of α. Let us

then define

Sρ(k) =
1

k2Γ(α)
, Sc(k) =

1

k2∆(α)
(4.3)

as the spectra of the charge density and quark condensate respectively.

In [9, 10], in the context of models of holographic superconductors, it was found a

certain universal behavior for the spectra of the VEVs of the model as functions of the

input power spectrum defining the chemical potential. In particular, for an input power

spectrum k2α as above, the output power spectra (those of the VEVs) were of the form

∼ k2α+d, with d an integer coefficient different for each operator. This was interpreted as

a kind of renormalization of small wave lengths in which higher harmonics of the VEVs

of the corresponding operators are suppressed or enhanced, depending on the sign of the

coefficient d in the output power spectra.

In order to determine the power spectra of the charge density and quark condensate

(Sρ and Sc), we construct massive embeddings characterized by a chemical potential of the

form (4.1) for different values of α. We keep fixed m = 0.5, µ0 = 1, and w = 1.14 From the

asymptotic behavior of the embedding fields χ and φ we can read ρ and c, and determine

their power spectra, namely Γ and ∆. Finally, to determine the functional dependence of

the output power spectra on α, in figure 13 we plot Γ and ∆ versus α. We observe that

they are very well approximated by

Γ ≈ α− 1 , ∆ ≈ α+ 3 . (4.4)

Notice that the power spectrum renormalization of the charge density agrees with that

found in [9, 10], and implies that higher harmonics are enhanced with respect to the in-

put power spectrum. The opposite effect is observed for the quark condensate; the power

spectrum renormalization we observe implies that the higher harmonics are suppressed,

and c(x) is then smoothed out with respect to the input µ(x). To illustrate these facts, in

figure 16 of appendix C we plot the result of a simulation for an embedding with corre-

lated noise.

14We have checked that the results for the spectra are independent of the values of µ0, m, and w.

– 27 –



J
H
E
P
0
7
(
2
0
1
6
)
0
9
1

2.0 2.2 2.4 2.6 2.8 3.0

1.0

1.2

1.4

1.6

1.8

2.0

Α

G

2.0 2.2 2.4 2.6 2.8 3.0

5.0

5.2

5.4

5.6

5.8

6.0

Α

D

Figure 13. Power spectrum of the VEVs. Black dots correspond to the numerical result averaging

over 35 realizations on a lattice of size Nz = 40, Nx = 100, for a system with Lx = 3π/2, and

k∗ = 62.7 (corresponding to 47 modes in the sum (4.1)). On the left, for the charge density we

plot Γ versus α, and the red line stands for the fit Γ = 1.00α − 1.00. On the right, for the quark

condensate, we plot ∆ versus α, the red line shows the fit ∆ = 1.01α+ 2.99

5 Conclusions and outlook

In this note we have presented a holographic model of (2+1)-dimensional charged matter

with a disordered chemical potential. The model is built upon a D3/D5 intersection at

finite temperature and charge density, and the chemical potential consists of random fluc-

tuations about a nonzero baseline value. We have worked in the probe limit where the

setup reduces to inhomogeneous embeddings of a D5-brane in a neutral black hole back-

ground. The construction of these embeddings has allowed us to study, both numerically

and analytically, how the disorder affects the quark condensate and the charge density.

In particular, we have found that in the regime of moderate to large charge density, this

quantity is enhanced by disorder, while the quark condensate is largely unaffected.

Arguably the main outcome of this work is the study of the DC conductivity for a top-

down holographic model of charged matter in the presence of disorder. In the spirit of the

membrane paradigm, the DC conductivity of our model can be expressed purely in terms

of horizon data of the background functions (those characterizing the embedding), and

hence we could compute the conductivity of our disordered setup without having to solve

for the fluctuations. In the limit of weak disorder we obtained analytic expressions showing

that disorder enhances the conductivity at very small charge density, while decreasing it

in the opposite regime, i.e. large charge density. Numerical simulations in agreement with

the analytic predictions confirmed this behavior. We have also studied the behavior of the

DC conductivity as a function of the charge density, both through numerical simulations

and analytic approximations. At weak noise the DC conductivity scales linearly with

the charge density, with a slope that decreases as the strength of noise is increased, and

which is always lower than that of the clean system. At strong noise, a sublinear trend is

observed in our numerical simulations. Moreover, a careful analysis of our semi-analytical

approximations confirmed that σDC becomes a sublinear function of the spatial average

of the charge density as this becomes large. This onset of sublinearities resembles that
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found in some regimes of graphene, a context in which it was attributed to the effects of

disorder [4, 29].

In a slightly tangential direction, we have also studied the effects of a noisy chemi-

cal potential characterized by a Fourier power spectrum. This noise is correlated along

distances of the order of the system size, and thus we refer to it as ‘correlated noise’. In

this scenario we have analyzed the spectral properties of the VEVs of the system: charge

density and quark condensate, observing what amounts to a spectral renormalization of

sorts. For an input Fourier power spectrum of the chemical potential of the form 1/k2α,

the output power spectra of the VEVs are given by 1/k2α+d, with d ≈ −2 for the charge

density, and d ≈ 6 for the quark condensate. Therefore, the higher wave numbers are

enhanced in the spectrum of the charge density, which is then more irregular than the

chemical potential; while the opposite occurs for the quark condensate: the higher wave

numbers are suppressed in the spectrum and the quark condensate is a smoother function

of the space direction x. This phenomenon was already observed in [9, 10] for holographic

models of superconductivity, and it deserves further study, specially in relation with the

universal response of the AdS geometry to time dependent sources found in [30].

The analysis we have presented has revealed the D3/D5 intersection as a reasonably

tractable top-down model of disordered matter with the potential to reproduce behaviors

observed in strongly coupled Condensed Matter systems. Our results motivate a further

exploration of disordered brane models, and there are several directions in which we plan

to make progress in the future. First, the most obvious step would be to extend our

D3/D5 model to the case where the chemical potential is disordered along both spatial

directions. Impurities in two-dimensional systems like graphene or thin superconducting

films are randomly distributed along the two spatial dimensions (although some correla-

tion might still be present, see [29]), and hence considering two-dimensional disorder is the

natural procedure. Moreover, according to the Harris criterion [27], that generalizes the

standard power-counting criterion to random couplings, a chemical potential with random

spatial inhomogeneities in 2 dimensions amounts to the introduction of marginally rele-

vant quenched disorder. Instead, as explained in [8], the present case where the chemical

potential is disordered only along one direction corresponds to a relevant noise. This fact

would make an eventual extension of the present model beyond the probe limit both very

interesting, and potentially very challenging. In addition to changing the dimensionality of

disorder, for applications to graphene near the charge neutrality point, it would be inter-

esting to investigate further the case of strong noise where the charge density changes sign

along the system. While this would be problematic in a scenario of massive embeddings, for

which the topology could change when the charge density vanish, we have showed that it

works for massless embeddings. In this context it would be interesting to extend our results

for the DC conductivity to larger values of the charge density and the noise strength.

Another interesting possibility would be to consider more sophisticated models where

one could tune the total charge density, and that of the impurities separately.15 A suitable

15In the present model one could still think that by increasing the noise strength, the density of impurities

grows. By defining an impurity as the region where the chemical potential exceeds its average by some

percentage, it is clear that the number of impurities grows as the strength of noise is increased.
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framework could be that of Sen’s tachyonic action for an overlapping brane-antibrane

pair [31], which was used in [32] to model superfluid phase transitions. One could deform

the finite density configuration of [32] by switching on a disordered source for the scalar

operator dual to the tachyon which would be akin to a doping parameter. Finally, the

definitive step forward would be to account for the backreaction of the flavor branes on the

geometry, working in the Veneziano limit in which both the number of color branes, Nc,

and flavor branes, Nf , are large, but x = Nf/Nc is kept fixed. This limit, which is more

tractable when the flavor branes are smeared along their orthogonal directions [33, 34],

would allow us to study the RG flow of the dual disordered theory, and hopefully to

characterize its ground state. Additionally, the whole set of transport coefficients would be

accessible (recall that heat transport is dual to metric fluctuations, and hence inaccessible

in the probe limit), and the computed results reliable down to very low temperature.

Solutions dual to brane intersections in the Veneziano limit and with a nonzero density of

(2+1)-dimensional flavor degrees of freedom have been constructed in [35]. Interestingly,

their IR geometry is a hyperscaling violating Lifshitz-like geometry. A compelling and

challenging, problem is then to introduce disorder in these solutions, again through the

chemical potential, and study the fate of the IR fixed point.
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A The homogeneous case

In this appendix we shall briefly review some interesting results of the homogeneous D3/D5

system that are useful for the analysis in this paper.

For an embedding where χ and φ depend only on z the DBI action (2.5) takes the form

S
Nf TD5 L6

≡ S̄ = −
∫
dt d2x dz dΩ2

f

z4

√
h (1− χ2)

[
1− χ2 + z2χ′2 − z4(1− χ2)

f2
hφ′2

]
.

(A.1)
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In this action, φ is a cyclic coordinate. Thus, its conjugate generalized momentum is a

conserved quantity,

d =
δS̄
δφ′

=
h

3
2

f

(1− χ2)
3
2φ′√

1− χ2 + z2χ′2 − z4(1−χ2)
f2

hφ′2
. (A.2)

Taking into account the asymptotic behavior of φ and χ given in eqs. (2.8), one finds that

d is exactly the charge density ρ.

In order to obtain the equation of motion of χ it is useful to compute the Legendre

transformed action with respect to φ′

Ŝ = S̄ −
∫
dt d2x dz dΩ2 ρ φ

′, (A.3)

which expressed in terms of the variables χ, χ′ and ρ reads

Ŝ = −
∫
dt d2x dz dΩ2

f
√
h(1− χ2)(1− χ2 + z2χ′2)

z4

√
1 +

ρ2z4

h2(1− χ2)2
, (A.4)

and leads to the equation of motion

− d

dz

[
fχ′
√
h(1− χ2)

z2
√

1− χ2 + z2χ′2

√
1 +

ρ2z4

h2(1− χ2)2

]
(A.5)

=
f
√
hχ

z4
√

(1−χ2)(1−χ2+z2χ′2)

√
1+

ρ2z4

h2(1−χ2)2

[
2−2χ2+z2χ′2 − 2ρ2z4(1−χ2+z2χ′2)

ρ2z4 + h2(1− χ2)2

]
.

Recall that when integrating this equation one must impose regularity at the horizon, which

in view of the IR expansions (2.11) implies χ′(1) = 0. This condition fixes one of the two

constants of integration and therefore the quark mass m and the quark condensate c are

not independent anymore. Only numerical solutions of eq. (A.5) are known, and thus one

cannot express c as an analytic function of µ. However, as we will see in the next two

sections, semi-analytical expressions can be obtained in the small and large charge limits.

A.1 Small charge limit

For ρ→ 0, eq. (A.5) can be expanded in powers of ρ2 as

− d

dz

{
fχ′
√
h(1− χ2)

z2
√

1− χ2 + z2χ′2

[
1 +

ρ2z4

2h2(1− χ2)2

]}
(A.6)

=
f
√
hχ

z4
√

(1− χ2)(1− χ2 + z2χ′2)

[
2− 2χ2 + z2χ′2 − ρ2z4 2− 2χ2 + 3z2χ′2

2h2(1− χ2)2

]
+O(ρ4) .

This equation allows us to solve for χ as a power series in ρ2. Let us define

χ(z) = χ0(z) + ρ2χ1(z) +O(ρ4) , (A.7)
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and use the asymptotic UV expansion (2.8b) to express the quark condensate c as

c =
1

2
χ′′0(0) +

ρ2

2
χ′′1(0) +O(ρ4) . (A.8)

Next, to solve for the functions χn we substitute eq. (A.7) in the equation of motion (A.6).

The resulting equation can be solved order by order in ρ2. At order zero we obtain the

following differential equation for χ0(z)

− d

dz

[
fχ′0

√
h(1− χ2

0)

z2
√

1− χ2
0 + z2χ′20

]
=

f
√
hχ0

z4
√

(1− χ2
0)(1− χ2

0 + z2χ′20 )

[
2− 2χ2

0 + z2χ′20
]
, (A.9)

which is nothing else than the equation of motion for χ(z) at zero charge density. The

boundary conditions for a black hole embedding with fixed mass are χ′0(0) = m in the

UV, where m is the mass of the quarks, and χ′0(1) = 0 at the horizon. Solutions with

these boundary conditions exist only when m . 1.41, while for m > 1.41 only Minkowski

embeddings, for which the brane never reaches the black hole horizon, exist [20, 21]. We

will restrict the analysis to the case m < 1.41, which is also the range we consider in

section 2.5. Once the solution for χ0 has been found, one can iteratively find the equations

for χn with n ≥ 1, and solve them with the boundary conditions χ′n(0) = χ′n(1) = 0. The

equation for χ1(z), which determines the coefficient of the ρ2 scaling of c in eq. (A.8), takes

the form

g2χ
′′
1 +

dg2

dz
χ′1 +

[
dg1

dz
+ g0

]
χ1 +

[
dg−1

dz
+ g−2

]
= 0 , (A.10)

where the functions gi are defined as

g1 = − f
√
hχ0χ

′3
0√

1− χ2
0

(
1− χ2

0 + z2χ′20
) 3

2

, g2 =
f
√
h(1− χ2

0)
3
2

z2(1− χ2
0 + z2χ2

0)
3
2

,

g0 =
f
√
h
[
z4χ′40 + 3z2χ′20 (1− χ2

0)2 + 2(1− χ2
0)3
]

z4
(
1− χ2

0

) 3
2
(
1− χ2

0 + z2χ′20
) 3

2

,

g−1 =
fz2χ′0

2h
3
2 (1− χ2

0)
3
2

√
1− χ2

0 + z2χ′20
, g−2 = −

fχ0

(
2− 2χ2

0 + 3z2χ′20
)

2h
3
2 (1− χ2

0)
5
2

√
1− χ2

0 + z2χ′20
. (A.11)

In order to express c as a function of the chemical potential we need to determine the

dependence of ρ on µ. The chemical potential can be expressed as

µ = −
∫ 1

0
dz φ′ , (A.12)

where we have taken into account that φ(1) = 0, and φ(0) = µ. Since φ′(z) as function of

ρ and χ(z) is

φ′ = −δŜ
δρ

, (A.13)

one finds

µ = ρ

∫ 1

0
dz

f
√

1− χ2 + z2χ′2√
h(1− χ2)[h2(1− χ2)2 + ρ2z4]

. (A.14)
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The limit ρ→ 0 is easily found using eq. (A.7),

µ = ρ

∫ 1

0
dz

f
√

1− χ2
0 + z2χ′20

h
3
2 (1− χ2

0)
3
2

[
1 +O(ρ2)

]
. (A.15)

Taking into account eq. (A.8), we can express c as function of µ for a fixed mass and µ→ 0,

c =
1

2
χ′′0(0) +

χ′′1(0)

2

[∫ 1
0 dz

f
√

1−χ2
0+z2χ′20

h
3
2 (1−χ2

0)
3
2

]2 µ
2 +O(µ4) . (A.16)

Therefore, we see that at small enough µ, the quark condensate scales quadratically with

the chemical potential. This is confirmed by the numerical analysis shown in figure 4 where

we considered an embedding with m = 0.5. In eq. (2.16a) we show the explicit form of

eq. (A.16), after numerically solving for χ0 and χ1 from eqs. (A.9), (A.10) for an embedding

with m = 0.5. The fit to the numerical data at low ρ presented in figure 4 agrees very well

with the prediction of eq. (2.16a).

A.2 Large charge limit

The limit ρ → ∞ can be analyzed in a similar way. However, there are some differences

as eq. (A.5) depends on ρ2 z4, and thus there is always a neighborhood of z = 0, where

ρ2z4 stays finite in the limit ρ → ∞. This makes z = 0 a special point. If one tries to

expand χ(z) = χ0(z) + χ1(z)ρ−1 +O
(
ρ−2
)
, nontrivial solutions to the resulting equations

cannot satisfy χ′(1) = 0 and χ(0) = 0 simultaneously. To address this problem we perform

the change of variables s =
√
ρ z, and χ̄ =

√
ρχ. The resulting equation can be solved

perturbatively with the desired boundary conditions as we now see. The expansion of the

equation after the change of variables in powers of ρ−1 is

− d

ds

{√
1 + s4χ̄′

s2
−
[
(1 + s4)χ̄′2 − 2s2χ̄2

]
χ̄′

2ρ
√

1 + s4

}
=

2χ̄

s4
√

1 + s4

−
[
2χ̄2 + s2(1 + s4)χ̄′2

]
χ̄

ρ(1 + s4)
3
2

+O(ρ−2), (A.17)

with the boundary conditions

χ̄′(0) = m,

χ̄′ (
√
ρ) = 0. (A.18)

Eq. (A.17) can be solved in powers of ρ−1, hence we expand

χ̄(s) = χ̄0(s) + χ̄1(s)ρ−1 +O(ρ−2) . (A.19)

Inserting this expansion in eq. (A.17), we find an equation for every χ̄n that can be solved

iteratively. In terms of the original fields and variables we can write

χ(z) =
1
√
ρ

[
χ̄0 (
√
ρz) + χ̄1 (

√
ρz) ρ−1 +O

(
ρ−2
)]
, (A.20)
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which leads to the following expression for c at large ρ,

c =

√
ρ

2
χ̄′′0(0) +

1

2
√
ρ
χ̄′′1(0) +O

(
ρ−

3
2

)
. (A.21)

The equation determining χ̄0 reads

s2(1 + s4) χ̄′′0 − 2s χ̄′0 + 2χ̄0 = 0 . (A.22)

We are interested in solutions satisfying χ̄′0(0) = m, and lim
s→∞

χ̄0(s) <∞. They are given by

χ̄′0(s) = ms+m
1 + i

2

s

K(−1)
F

(
i arcsinh

(
1 + i√

2
s

)
,−1

)
, (A.23)

where F (φ, n) is the elliptic integral of the first kind, and K(n) is the complete elliptic

integral of the first kind. Plugging this solution into eq. (A.21) we obtain

c = − m√
2K(−1)

√
ρ+O

(
ρ−

1
2

)
. (A.24)

Finally to write c as a function of µ, we use (A.20) in eq. (A.14) and arrive to

µ = ρ

∫ 1

0
dz

f√
h(h2 + ρ2z4)

[
1 +O(ρ−1)

]
. (A.25)

This integral is solved in eq. (A.32) below (for massless embeddings). Here, we anticipate

the asymptotic behavior (A.33b) when ρ→∞, and write

µ =
Γ(1

4) Γ(5
4)

√
π

√
ρ+O(ρ0) . (A.26)

Combining this with eq. (A.24) we finally arrive to the following expression for c as a

function of µ in the µ→∞ limit

c =

√
π√

2 Γ
(

1
4

)
Γ
(

5
4

)
K(−1)

mµ+O(µ0) , (A.27)

which for the case m = 0.5 results in the expression (2.16b), which agrees reasonably well

with the fit to the numerical data in figure 4.

A.3 Massless embeddings

In the following we will restrict the analysis to the massless homogeneous embedding where

χ is identically zero, and φ is a function of z only. In this case, the DBI action (A.1)

simplifies further to

S̄ = −
∫
dt d2x dz dΩ2 f z

−4

√
h

(
1− z4

f2
hφ′2

)
, (A.28)
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and eq. (A.2) results in the following expression for the charge density

ρ =
h

3
2

f

φ′√
1− z4

f2
hφ′2

. (A.29)

It is then straightforward to solve for φ′ in terms of ρ, which allows us to express the

chemical potential as the following integral

µ = −
∫ 1

0
dz φ′

= ρ

∫ 1

0
dz

f√
h (z4 ρ2 + h2)

, (A.30)

and after applying the following change of variables

z2 =
2

u2 +
√
u4 − 4

, (A.31)

the integral can be evaluated analytically as

µ =

∫ ∞
√

2
du

ρ√
ρ2 + u4

=
ρ√
2

1F2

(
1

4
,

1

2
,

5

4
;−ρ

2

4

)
, (A.32)

where 1F2 is the hypergeometric function. This hypergeometric function can be easily

expanded in powers of ρ both in the large and small ρ limits, resulting in

µ =
ρ√
2

+O(ρ3) ; (ρ� 1) , (A.33a)

µ =
Γ(1

4) Γ(5
4)

√
π

√
ρ−

4
√

2 Γ(5
4)

Γ(1
4)

+O(ρ−2) ; (ρ� 1) , (A.33b)

It will be useful to solve for ρ instead,

ρ ≈
√

2µ ; (ρ� 1) , (A.34a)

ρ ≈ 0.291µ2 + 0.823µ+ 0.58 ; (ρ� 1) . (A.34b)

A.3.1 DC conductivity

We shall now turn our attention to the DC conductivity, which in eq. (3.9) was expressed in

terms of the behavior of φ at the horizon. For an homogeneous embedding, that equation

reduces to

σDC =
1√

1− (a(2))2/2
, (A.35)

where a(2), which is defined through the IR expansion (2.11a), is now independent of x,

and using (A.29) can be easily expressed in terms of ρ as

a(2) = ±
√

2ρ√
4 + ρ2

. (A.36)
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Figure 14. DC conductivity versus charge density. On the left we present data at w = 3 for

lattices of size 60 × 60 (green solid line), 80 × 80 (blue solid line), 100 × 100 (red dashed line) and

120× 120 (black solid line). We have set Lx = 20π, k∗ = 1, and averaged over 25 realizations. On

the right we plot the results for lattices of size 100 × 100 (dashed lines) and 120× 120 (solid lines)

at strong noise: w = 6 (green and red lines) and w = 8 (black and orange lines). We have set

Lx = 20π, k∗ = 1, and averaged over 43 and 57 realizations for w = 6 and w = 8 respectively.

Finally one can write the DC conductivity in terms of the charge density as

σDC =
1

2

√
4 + ρ2 . (A.37)

It is illustrative to recall both the large and small ρ limits of this result

σDC = 1 +
ρ2

8
+O(ρ4) ; (ρ ∼ 0) , (A.38)

σDC =
ρ

2
+O(1/ρ) ; (ρ→∞) . (A.39)

B Numerical coda

In this appendix we present additional numerical results for the study of the dependence

of σDC on the charge density performed in section 3.4.1.

First, in order to assert the reliability of the numerical simulations generating figures 9

and 10 we study the stability of the value of σDC against the lattice size. In figure 14 left,

we plot σDC versus 〈ρ〉 at w = 3 for lattices of size 60×60, 80×80, 100×100 and 120×120.

One can observe that for lattices of size 100 × 100 and larger the results have converged

and become stable against the increase of lattice size. On the right panel of figure 14 we

perform a similar exercise for w = 6 (green and red lines), and w = 8 (black and orange

lines). In this case we just compare lattices of size 100 × 100, and 120 × 120. It becomes

clear that for the ranges of 〈ρ〉 under study the results have converged too.

We close this appendix by extending the analysis in figure 10 to the case of a stronger

noise with w = 10. In figure 15 we plot our numerical result for σDC vs 〈ρ〉 (green solid

line), and compare it to the semi-analytical prediction (3.24) (red dashed line). Although
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Figure 15. DC conductivity versus charge density at w = 10 (green solid line). The red dashed

line shows the prediction of eq. (3.24) after averaging over 1000 realizations, and the blue dashed

line the numerical results for the clean system. We have used a grid of size 120 × 120, set k∗ = 1,

Lx = 20π, and averaged over 30 realizations. The shaded bands depict the error of the average.
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Figure 16. Massive embedding. The three panels display, from left to right, the chemical potential

µ(x), the charge density ρ(x), and the quark condensate c(x) for a simulation with µ0 = 1, m = 0.5,

w = 1, α = 2, Lx = 3π/2, and k∗ = 62.7 (corresponding to 47 modes) on a lattice of size Nz = 40,

Nx = 100.

for this noise strength our numerics do not reach large values of the charge density, this

result seems to confirm the observation made below figure 10 that for w = 8 and higher,

the numerical results fall slightly below the semi-analytical prediction for large enough 〈ρ〉.

C Embeddings with correlated noise

In this appendix we show the result of one simulation for the massive embeddings with

correlated noise (4.1) considered in section 4. In figure 16 we plot the input chemical

potential µ(x), together with the output charge density ρ(x), and quark condensate c(x).

These plots illustrate neatly the fact that while the charge density is roughened as a

consequence of the enhancement of the higher wave numbers in the sum (4.1), the quark

condensate is smoothed out due to the suppression of those same higher modes.
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