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1 Introduction

In recent years there has been an active study of supergravity solutions that feature Dp-

branes locally surrounded by fluxes that induce a delocalised Dp charge density of the

opposite sign to the brane charge. These different signs can be seen in the Bianchi identity:

dF8−p = H ∧ F6−p +Qδ8−p . (1.1)

The solutions of interest are such that the orientation of the first form on the r.h.s. of (1.1)

is opposite to second one. For this reason we name those branes “antibranes” where the

“anti” refers to the charge being opposite to the charge density in the fluxes.

Solutions with this distinctive property can be categorised into two classes: 1) non-

supersymmetric solutions with flat Dp worldvolume and 2) solutions with a Dp worldvolume

that is AdS and a transversal space that is potentially compact. The AdS solutions can be

supersymmetric [1], but do not need to be [2].
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Examples of the first kind are the non-compact geometries in which supersymmetry

(SUSY) is broken by the brane, with the prime example being anti-D3 branes in the

Klebanov-Strassler throat [3–5] first studied in [6]. When combined with orientifolds and

quantum corrections there is a belief that it can be made into a compactification geometry

for which the SUSY-breaking branes are used to uplift AdS vacua to dS vacua [7] or as a

base for brane inflation [8].

Examples of the second kind are warped AdS7 vacua in massive IIA SUGRA built

from spacetime-filling D6 branes and a transversal space that is conformal to an S3. These

solutions were first uncovered in [9, 10], but their supersymmetry together with more details

was properly understood in [1]. Furthermore, these solutions provide a concrete gravity

dual to six-dimensional (1, 0) SCFT’s [11].

Both classes of solutions feature a peculiar property that has been the origin of an

ongoing debate: due to the differences in charges, the fluxes are electromagnetically (and

gravitationally) attracted to the branes in such a way that a singular flux cloud is formed

around the branes [9, 12–14]. This was first uncovered in [3, 4] and by now a vast literature

on this exists, with a formal proof for this unavoidable singularity presented in [15, 16].1

Since fluxes can materialise into actual branes [6], one is tempted to conclude that a sin-

gular, or large, flux pile-up leads to a quick annihilation of the flux with the antibrane,

possibly making the solution perturbatively unstable [13, 19] (see also [14] for recent com-

ments on this). This picture is strengthened by the absence of regular solutions at finite

temperature with flat worldvolume [16, 20, 21].

Recently this interpretation of a perturbative decay has been challenged by some good

arguments [14, 22]. First of all it has been claimed that the singularity will get resolved

by stringy corrections in such a way that the resulting flux clumping is small enough for

at least a single antibrane to be meta-stable [14]. This can very well be correct and is

currently under investigation, but it would clearly be more gratifying if the singularity can

be resolved at supergravity length scales, such that the original arguments for antibrane

meta-stability [6] are applicable. Interestingly a resolution at sufficiently large length scales

has been argued by Hartnett in [22]. The basic claim of [22] is that the nogo-theorem for

finite temperature resolutions of [16] can be circumvented. Secondly a simplified trick was

found to understand the local geometry of localised antibranes and it seems to indicate that

a Polchinski-Strassler (PS) type of singularity resolution [23] will take place that dilutes the

flux clumping strongly enough to prevent direct brane-flux decay. This is in contrast with

earlier investigations of a possible PS resolution that turned out not to work [24, 25], and

according to [22] the reasons for this is the use of smeared antibranes2 instead of localised

ones. It would be interesting to verify this explicitly. In this paper we do consider smeared

antibranes but we demonstrate that, when they live in AdS space, their singularities do get

resolved as opposed to flat space. In that sense there is no disagreement in the literature

1Around orientifolds this phenomenon does not occur since they repel the flux gravitationally as much

as they attract it electromagnetically [17]. This nicely fits together with orientifold compactifications where

orientifolds in fluxes of opposite charge are the basic ingredients [18].
2For the anti-D6 solutions [10] no smearing was used and the absence of a PS resolution is not questioned

in this particular case.
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when it comes to flat space smeared anti-Dp branes or localised anti-D6 branes: the absence

of regular finite T solutions seems without doubt and perfectly in line with the ‘no PS-

resolution’ results. Hence perturbative brane-flux decay might very well be what is going

on in the flat space solutions, but is inconsistent with the AdS solutions. Indeed, upon

brane-flux decay these would have a less negative CC and hence more energy, so one expects

those solutions to be stable.

In the case of the anti-D6 brane this has been understood by now. For the supersym-

metric AdS7 solutions it was found that the (anti-)D6-branes polarise into spherical D8

branes [1, 2], which resolves the flux singularity since a charged sphere attracts the flux in

a more delocalised fashion. This polarisation does not occur for the flat SUSY-breaking

solutions [24] and we expect the latter solutions to decay perturbatively before the flux

reaches the singular values. In this paper we extend this picture to the other branes and

uncover that a similar story holds (up to certain subtleties): the compact AdSp+1 solutions

are such that the Dp branes polarise into spherical D(p + 2) branes and brane-flux decay

does not occur. For D3 branes brane-flux decay can be studied very explicitly since in that

case it proceeds through brane polarisation into an NS5 brane [6] in a direction orthogonal

to the D5 polarisation. For the other branes it is unclear what the explicit brane-flux decay

mechanism is, most likely it is related to a T-dual version of spherical NS5-branes.

The rest of this paper is organised as follows. In section 2 we discuss smeared anti-D3

solutions and the corresponding AdS4 vacua and in section 3 we verify whether polarising

into spherical D5 branes resolves the singularities and whether brane-flux decay can be

prevented. In section 4 we generalise the discussion to Dp branes smeared over (6 −
p) directions and we conclude in section 5. We have added various appendices which

include for example a discussion of the constraints that SUSY puts on the AdS solutions

in this paper.

2 Anti-D3 solutions

In this section we describe the compact AdS4 solutions build from anti-D3 branes whose RR

tadpole is canceled by 3-form fluxes and non-compact anti-D3 solutions with flat worldvol-

umes that do not require an RR tadpole cancellation. The existence of the AdS4 solutions

found here were established in the limit of smeared antibranes in [26] (and generalised to

other dimensions in [17]). We have not yet made an attempt to construct the solutions

with fully localised branes but we expect them to be contained in the analysis of [27]. The

reader interested in checking the calculations will find use of appendix A that fixes notation

and conventions.

2.1 Ansatz

We consider the following Ansatz for the metric:

ds2 = e2Ads2AdS4 + e2Bds2S3 + e2C
(

dρ2 + e2DdΩ2
)
, (2.1)

where ds2AdS4
, ds2S3 and dΩ2 are the metrics for AdS4, the three-sphere S3 and two-sphere

S2 respectively. These metrics are chosen such that the corresponding unwarped Ricci
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tensors take the canonical form

R̂µν = Λĝµν , R̂mn = 2ĝmn , R̂ij = ĝij . (2.2)

Here the hatted variables denote the unwarped quantities:

ds2AdS4 = ĝµνdxµdxν , ds2S3 = ĝmndxmdxn , dΩ2 = ĝijdx
idxj , (2.3)

these equations also serve to fix the index conventions that we use throughout the paper.

The warp factors A, B, C and D are only functions of the coordinate ρ and so the Einstein

equations reduce to ordinary differential equations for the warp factors. We parametrize

our non-zero fluxes as follows:

F3 = Mvol3 ,

H = −λeφ ?6 F3 , (2.4)

F5 = (1 + ?10) ?6 e−4Adα .

Like the warp factors, λ, α and φ are functions of the ρ coordinate, whereas M is a con-

stant topological flux quantum. The volume form vol3 is the volume form on the unit

three-sphere. The equations of motion turn into a system of coupled ordinary differential

equations (ODE’s) and are written out explicitly in appendix B. From the equation of

motion for H it immediately follows that

α = λe4A . (2.5)

In the case where λ is ±1 the 3-form fluxes combine into ISD or anti-ISD flux as in [18]

but this is not true in general due to the non-trivial 5-form field strength. The Bianchi

identity for F5 takes the form

dF5 −H ∧ F3 = ND3µ3δ6 , (2.6)

where δ6 is a 6-form with delta function support on the worldvolume of the branes. Notice

that we have added an integer ND3 to allow for a stack of D3-branes. Integrating the

Bianchi identity over the internal space, we obtain the tadpole cancellation condition,∫
F3 ∧H = Q , (2.7)

where Q denotes the total brane charge. It is clear that even though we have included

the effect of D3-branes in the Bianchi identity (2.6), the form of the metric (2.1) does not

allow for fully localised branes. Indeed the branes are smeared over the three-sphere, but

are localised at ρ = 0.

2.2 Fully smeared 3-branes

A fully smeared limit of the solution can be obtained by replacing the delta function in

equation (2.6) with its integrated average

δ6 → vol6 , (2.8)
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where the internal volume form vol6 is unwarped and normalized to 1. This solution has

previously been described in [26] (see also [17]). The smearing has the effect of restor-

ing symmetry in the internal manifold so it reduces to an exact product space of two

spheres. This means that e2D = sin2 ρ and all other warp factors and functions are con-

stant. Therefore we find that F5 vanishes and the function λ introduced in equation (2.4)

takes a constant value λ = 1. This corresponds precisely to the combined 3-form flux

G3 = F3 − ie−φH , (2.9)

being imaginary self-dual, i.e. ?6G3 = −iG3. The size of the 3-form flux is fixed by (2.6)

to be

Q = gs|F3|2 . (2.10)

The charge conjugated solution would have Q = −gs|F3|2 and λ = −1 which corresponds

to anti-ISD fluxes. The expression for the warped cosmological constant is

e−2AΛ = −1

4
Q , (2.11)

which shows that if the brane charge Q would decrease, the total vacuum energy would

increase. So already here we notice that a decay process which eliminates Q against M

such that the tadpole cancelation condition (2.7) is still satisfied cannot occur.

2.3 Compact AdS solutions

The fully smeared solutions make it clear that compactness is only possible when the

worldvolume of the brane is AdS. Flat solutions are necessarily non-compact. It is well-

known that for non-compact solutions there is no relation between the CC of the base space

and the fluxes. In compact solutions the size of the CC is determined by the energy, that

in turn is determined by the fluxes and the branes. In this subsection we look at compact

AdS solutions.

We derive the relation between the CC and the fluxes using the results of [15]. This

computation requires the gauge potential C4. We can choose a gauge for C4 for which the

external part, Cext
4 , vanishes at the position of the branes, ρ = 0,

C4 = B ∧ C2 − (α− α0)vol4 . (2.12)

Recall that volume forms such as vol4 are always defined without warp factors. The

equation for the cosmological constant of the external spacetime can be expressed as follows

Λ =
1

4V6

[
ND3Sloc +

1

V4

∫
H ∧

(
e−φ ?10 H + F3 ∧ Cext

4

)]
, (2.13)

where V4 and V6 are “volumes” of the external and internal spaces, defined as follows

V4 =

∫
vol4, V6 =

∫
?6 e2A . (2.14)
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The gauge choice for C4 is such that, on-shell, the first term in the bracket drops out and

we are left only with the flux integral in the second term. This reduces to

Λ =
α0

4V6

∫
H ∧ F3 = −Qα0

4V6
, (2.15)

where we made use of (2.7). Crucially this shows that the function α takes a nonvanishing

value at the position of a D3-brane, this means that λ which relates F3 and H in (2.4) has

the asymptotic behaviour close to the brane:

λ −−−→
ρ→0

−4V6Λ

Q
e−4A . (2.16)

This obviously blows up since the warp factor e2A vanishes in the vicinity of the brane.

Combined with the fact that F3 is constant 3-form flux, this leads to the, by now well-known

fact that the energy density of H has a singular behaviour close to the brane.

In deriving (2.15) we have assumed that the solution is compact, although no proof

for this exists, apart from the observation that the fully smeared solution is compact. To

show that compact solutions can exist one should numerically evaluate the coupled ODE’s

from appendix B, which we have not done and leave for future investigation. We verify in

appendix C, that unlike the AdS7 solution from anti-D6 branes, the compact AdS4 solution

from partially smeared anti-D3 branes cannot be supersymmetric.

2.4 Non-compact flat solutions

Compactness enforces the solutions to be AdS but once we give up compactness, we can

consider flat solutions. Flat solutions are interesting from the point of view of antibrane

SUSY-breaking [6, 7, 28]. Antibrane SUSY-breaking, at least for anti-D3 branes, can be

studied explicitly in the Klebanov-Strassler (KS) throat [29]. The KS throat is super-

symmetric and regular at the tip and therefore it makes a perfect background to add the

singular SUSY-breaking source at the tip. The full solution is out of reach and most likely

will remain out of reach, but when the anti-D3 branes are smeared over the tip, the equa-

tions of motion, that describe the backreaction become ODE’s and approximate solutions

have been found [4, 30]. Close to the tip the details of the singular flux clumping are

nicely captured by a much simpler background [21], which is the T-dual to the flat anti-

D6 solution [10]. The only difference from our previous Ansatz are the curvature of the

metric factors

ds2 = e2Ads2Mink4 + e2Bds2T3/S3 + e2C
(

dρ2 + e2DdΩ2
)
, (2.17)

where ds2Mink4
, ds2T3/S3 and dΩ2 are the metrics for Mink4, the three-torus T3 or the 3-

sphere S3 and two-sphere S2 respectively. The solutions with the torus factor can be

obtained from T-duality of the anti-D6 solution. When it comes to the physics of flux

clumping there is no real difference between the solutions with the torus factor and the

solutions with the S3 factor. The solutions with the S3 factor are however more insightful

since there is a more explicit picture for brane-flux annihilation in that case [6].
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Also here it can easily be demonstrated that λ blows up and hence there is singular

flux clumping [21]. When it comes to the local physics associated to the flux clumping,

this model captures exactly the same physics as the model with anti-D3’s smeared over

the tip of the S3 in KS; for instance it can be shown that the polarisation potential for

spherical D5 branes in both cases is almost identical [25]. In the next section we compute

the polarisation potential both for the polarisation into D5 and NS5 branes.

Due to the non-compactness, we can decouple the size of the CC from the brane charges

and the flux quanta, we are free to chose a value for the CC. It is not necessary to take it

to be exactly zero. The main result of this paper is that when the CC is set by the brane

charges and fluxes, polarisation will occur. When the CC is parametrically different, which

can be done for non-compactifications, or in KKLT-type scenarios3 [7], then it does not

occur and the flux singularity remains unresolved.

3 Spherical 5-branes

Whenever one considers p-branes in background with F6−p-flux there is the possibility that

the p-branes polarise into a spherical (p+2)-brane carrying (p+2)-brane dipole charge and

the original p-brane monopole charges induced by gauge fluxes on the worldvolume [31].

This possibility is enhanced by the flux singularity discussed in the previous section. In the

case at hand one expects two polarisation channels: a spherical D5 wrapping a contractible

S2 inside the M3 that is threaded by H and a spherical NS5 wrapping a contractible S2

inside the S3 filled with F3 (denoted S3
F ). If polarisation occurs, then the flux singularity is

regularized in one of two ways: either the spherical branes sit at a finite distance from the

original D-brane charge and the flux clumping parameter λ takes a finite value throughout

the solution, this is similar to what happened in [23], or the anti-D3 branes polarise to an

NS5 brane wrapping an S2 inside the S3 with a runaway potential towards the other pole

of the S3. This latter possibility results in annihilation of flux against the anti-D3 brane

charge as we will explain in more detail below.

In this paper we follow a procedure for computing the polarisation potentials that has

become standard, but is not without danger of not being fully waterproof. The procedure

aims to take into account the backreaction of the branes in computing the polarisation

potential because some polarisation phenomena are invisible in the probe limit. Since the

polarisation potential necessarily relies on probe brane actions the actual computation is

in between probe and full backreaction. The idea is the following: if one wants to know

whether N anti-D3 branes polarise into D5 branes, one can work in the limit where N − p
antibranes backreact and p are treated as probe. For large N and with p� N this should

be a valid assumption. Hence one can use the probe action for p D3 branes and study

their polarisation process. A caveat could be that the probe calculation differs if instead of

backreacting N − p antibranes one uses the backreaction of spherical D5 branes carrying

N−p anti-D3 charges. If for instance the latter computation reveals a meta-stable position

for polarisation of the p probes one might take it as a sign that the full stack of D3 branes

3In KKLT type scenarios the CC can be decoupled from the KK scale due to orientifolds and quantum

corrections.
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polarises into a meta-stable state. To our knowledge it has so far been consistent to work in

the situation in which one regards the backreaction of the N−p D3 branes. A rationale for

this could be that if the p D3 probes do not polarise into a meta-stable position when the

antibranes backreact, then neither will they if one considers the backreaction of spherical

D5 probes. The reason is that one could think of the polarisation to proceed stepwise. We

nonetheless emphasise that this should be better understood.

Finally we mention that for a compact solution, M3 takes the form of a three-sphere

which we denote by S3
H . S-duality interchanges the roles of D5 and NS5 as well as the

fluxes F3 and H. So performing an S-duality effectively smears the D3 branes over S3
H and

localises them inside S3
F . We therefore expect the fully localised solution (that is localised

on S3
H × S3

F ) to polarise into a web of (p, q) 5-branes as in [27]. In what follows we discuss

both channels.

3.1 D5 polarisation

There are generically two ways of showing that a Dp-brane polarizes to a D(p+ 2)-brane;

either by considering the non-abelian Dp-brane action as in [31], or by considering the

probe action of a D(p + 2)-brane in the Dp-brane background [23]. In this paper we take

the latter approach. The required terms of the D5-brane action in Einstein frame are

SD5 = µ5

∫ {
−e−φ

√
− det

(
eφ/2G−F

)
− C6 + F ∧ C4

}
, (3.1)

where F = B − F . We will take F = nπvol2 and expand the D5-brane action for large n

for which polarisation is preferred and then look at the behaviour close to ρ = 0. Instead

of working through the computation here, we state the result and in section 4.3 we present

a more general computation for Dp-branes polarising into D(p+ 2)-branes, which includes

this case by putting p = 3. For AdS4 external space we find

V ∝
(

4Λ +
1

2
k20

)
ρ̄2 − 2k0ρ̄

3 + 3ρ̄4 , (3.2)

where ρ̄ is a dimensionless distance from the D3 branes and is defined in section 4.3. The

cosmological constant Λ is normalized to −3 for AdS external space and vanishes of course

if the external space is flat. The numerical value k0 is directly related to Λ but with a

proportionality factor that depends on the details of the solution. We can however estimate

the value of k0 by smearing for which we find k0 =
√

6 (cf. section 4.3) and the potential

takes the form in figure 1.

What we find is that the D5 polarisation occurs for the AdS solutions, but that it

cannot happen for the non-compact Minkowski solutions. This is in perfect agreement

with what has been found for the D6 solutions of [1, 9] as shown in [2, 24] (see also [1, 11]).

The polarisation into (meta-)stable spherical D5 branes smoothens out the singular

pile-up of the three-form fluxes. In other words, λ remains finite throughout the solution.

The only singularities are the expected ones in the metric and form fields that comes from

the localised charge and tension of (spherical) branes. This smoothening can be deduced

quite easily by repeating the computation of the size of λ at the boundary of the spherical

– 8 –



J
H
E
P
0
7
(
2
0
1
5
)
1
6
5

V

ρ

Figure 1. The potential V (3.2) for probe D5 branes in the background of D3 branes. The dashed

line shows the polarisation potential when the external space is flat while the solid line displays the

potential for AdS space, for which the probes are tachyonic near ρ̄ = 0. A stable state exists at a

finite distance away from the tip.

D5 brane. One simply needs to use the near-brane expansion of a 5-brane that is smeared

over 3-directions. This computation is completely analogues to what has been done in [24]

(equations (2.16) and (2.17)).

3.2 NS5 polarisation and flux decay

Our AdS4 solution is constructed by smearing the D3 branes over S3
F which makes it

unclear how brane polarisation can proceed inside S3
F . For the polarisation into D5 branes

to occur it was necessary to have a solution localised in M3 because the localised solution

backreacts in such a way that the profiles of the background supergravity fields induce a

minimum in the D5 polarisation potential at a finite size for the spherical 5-brane. But

the “dual” channel does not need localised branes, one just has to keep in mind that the

brane polarisation computation is a probe computation and probes are localised. It turns

out that the probe computation parallels those done in [6, 13, 19]).

Whereas the physics of the D5 polarisation channel is to resolve the flux clumping, the

physics of the NS5 channel is brane-flux decay [6]. If the D3 branes polarise into NS5 branes

that either tunnel or move perturbatively to the North Pole of the S3
F one can verify that its

monopole charge has shifted to M −p instead of −p D3 charges. The interpretation of this

is that M units of 3-form flux materialised into M physical D3 branes that consequently

annihilate with the p anti-D3 branes to leave M − p D3 branes in the process.

The NS5 potential is calculated by considering the worldvolume action of an NS5 brane

(treated as a probe) in the background of D3 branes and fluxes. The main difference to the

computation done in [6] has to do with the Wess-Zumino (WZ) action for the NS5 brane.

The complete NS5 brane action for C0 = 0 takes the form4

− µNS5

∫
e−2φ

√
− det

(
eφ/2G− eφF

)
+ µNS5

∫
(B6 + F ∧ C4) , (3.3)

4The sign if the WZ action is fixed by demanding that a spherical NS5 brane induces a D3 brance charge,

i.e. that the sign of the
∫
F ∧ C4 matches the sign of the WZ action for the D3 branes above.
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The world volume field strength F enters through the combination F = F−C2. To evaluate

the WZ action we need to find B6. We have parametrized H as −λeφ?6F3 and the dual flux

is defined as H7 = e−φ ?H. The gauge potential for H7 can be defined through the Bianchi

identity dH7 = −F5 ∧ F3. Evaluating the right hand side for our Ansatz we determine

H7 = dB6 − C4 ∧ F3 . (3.4)

From this we find B6 by writing

dB6 = e−φ ?10 H + C4 ∧ F3 =
(
λe4A − α+ α0

)
vol4 ∧ F3 = α0vol4 ∧ F3 , (3.5)

such that

B6 = α0vol4 ∧ C2 , (3.6)

which implies that the WZ Lagrangian takes the form

B6 + F ∧ C4 = (αC2 − (α− α0)F ) ∧ vol4 . (3.7)

We also need an expression for C2 that correctly reproduces the constant F3-flux via

F3 = dC2

C2 =
M

2

(
ψ − 1

2
sin(2ψ)

)
vol2 , (3.8)

where ψ is used as the third Euler angle on the smeared three-sphere. Remember that the

D3 branes are localised on M3 at ρ = 0 (cf. equation (2.1)). The polarisation potential

depends on ψ but takes a different form depending on the position on M3. We will denote

the potential by Vρ(ψ). Finally we let F2 = πp vol2 where p sets the D3 brane charge of the

probe. The full polarisation potential is obtained by dividing the NS5 action by (−µNS5M)

and relevant volume factors, and the result is

Vρ(ψ) = e4A

√
1

M2
e4B−φ sin4 ψ +

1

4

(
2π

p

M
− ψ +

1

2
sin(2ψ)

)2

−α
2

(
ψ − 1

2
sin(2ψ)

)
− π(α− α0)

p

M
. (3.9)

This potential is valid for either the AdS or flat D3 brane solutions discussed above. The

main difference when analysing the potential lies in the fact that the D3 branes in AdS

polarize immediately to D5 branes.

Let us discuss the potential in the flat case for which we have shown that the D3 branes

do not polarise into D5 branes. Even though e4A vanishes as ρ→ 0, α stays constant. This

means that the first term in (3.9) vanishes as ρ → 0 but the second term does not. The

potential therefore reduces to

Vρ=0(ψ) = −α0

2

(
ψ − 1

2
sin(2ψ)

)
. (3.10)

The number α0 is finite and positive, just as for the compact AdS solution. This can

be understood from studying the F5 Bianchi identity which leads to a strong constraint

– 10 –



J
H
E
P
0
7
(
2
0
1
5
)
1
6
5

V

ψ

Figure 2. The polarisation potential for spherical NS5 branes. The dashed line is a plot of the

potential (3.9) for flat external space and at ρ = 0. The solid line is evaluated for AdS external

space with λmax = 1/2.

on the form of α when combined with D3 brane boundary conditions and the asymptotic

behaviour of the fields far away from the D3s. The analysis is completely analogous to the

one done in [10] in the case of D6 branes. Hence the NS5 potential for flat branes indicate

a perturbative brane-flux decay as shown in figure 2. Note that the potential (3.10) is

completely independent of the ratio p/M , this shows that no matter how small the D3

charge is carried by the probe, the NS5-brane will always be pushed away by the divergent

H-flux at the tip ρ→ 0.

For an AdS4 external space the situation is different, the polarisation of the D3 branes

to D5’s regularizes the singularity in λ such that the both terms in equation (3.9) play

a role. Brane-flux decay depends on the relative size of the two terms in the potential.

The first term effectively pulls the NS5 probe towards the D5 branes while the second

term pushes the probe away. We have seen that for the fully smeared solution brane-flux

decay cannot occur for a very simple reason; the energy of the vacuum would increase.

We expect the same result to hold in the partially localised case (and in the fully localised

case). In order to confirm this we would have to scan the potential Vρ for all values of ρ

and show that the gravitational pull of the first term outweighs the electromagnetic push

of the second one. It would then be enough to find an upper bound on the function λ and

show that it is less than the smeared value λ = 1. For the AdS vacua, we have plotted the

expected qualitative behavior for the NS5 potential in figure 2.

4 Anti-Dp solutions

The D3 brane solutions discussed so far belongs to a class of Dp-brane solutions studied

first in [17], where the smeared limit and flat limit were explored. Here we study the setup

in more generality.

The metric takes the form

ds2 = e2Ads2AdSp+1
+ e2Bds2S6−p + e2Cds2M3

, and ds2M3
= dρ2 + e2DdΩ2 , (4.1)
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where ds2AdSp+1
, ds2S6−p and dΩ2 are the metrics for AdSp+1, the (6−p)-sphere S6−p and the

two-sphere S2 respectively. Once again we choose the metrics such that the corresponding

unwarped Ricci tensors take the canonical form

R̂µν = Λ ĝµν , R̂mn = (5− p) ĝmn , R̂ij = ĝij . (4.2)

The hatted variables denote the unwarped quantities, and

ds2AdSp+1
= ĝµνdxµdxν , ds2S6−p = ĝmndxmdxn , dΩ2 = ĝijdx

idxj . (4.3)

The warp factors A, B, C and D are only functions of the coordinate ρ and so the Einstein

equations reduce to ordinary differential equations for the warp factors. We parametrize

our fluxes as follows:

H = −λe
p+1
4
φ ?9−p F6−p ,

F6−p = MvolS6−p , (4.4)

F⊥8−p = e−(p+1)A− p−3
2
φ ?9−p dα .

The functions λ and α as well as the dilaton are assumed, like the warp factors, to depend

only on the ρ coordinate. The volume form vol6−p is the unwarped volume form on the

(6 − p)-sphere. The superscript ⊥ on F8−p indicates the fact that we are specifying the

components transverse to the brane worldvolume. For p = 3 the components of F5 along

the worldvolume are also non-zero by the selfduality condition. From the equation of

motion for H we determine

α = −(−1)pλe(p+1)A+ p−3
4
φ = −(−1)pλβ , (4.5)

where the function β is defined by the second equality. The only unsatisfied form field

equation is the F8−p Bianchi identity, which takes the form

dF8−p −H ∧ F6−p = NDpµpδ9−p . (4.6)

4.1 The AdS curvature

Once again we can relate the zero point value of the function α to the AdS curvature via

the relation given in [15]. For the Ansatz specified above we find

p− 1

2
Λ =

1

4Vp+1

[
NDpSloc +

1

V9−p

∫
H ∧

(
e−φ ?10 H − σ(F6−p) ∧ Cp+1

)]
, (4.7)

from which we can get rid of the first term by a gauge choice for Cp+1 along the world-

volume:

C
‖
p+1 = −(α− α0)σ(volp+1) , (4.8)

where α0 is the value of α at ρ = 0. Putting this together we get

p− 1

2
Λ =

α0

4V9−p

∫
H ∧ F6−p = − α0Q

4V9−p
, (4.9)
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where we used equation (4.6) to evaluate the integral and

V9−p =

∫
?9−p e(p−1)A . (4.10)

Since the warped volume V9−p is not known a priori, the equation (4.9) does not fix the

value of α0. However, we now know that for non-vanishing cosmological constant, the value

of α0 must be a strictly positive number. This fact enables us to conclude that a singularity

is developed in the energy density of H just as for the special case p = 3 discussed above.

Since the argument is completely analogous we do not repeat it here.

Concerning supersymmetry we explain in appendix C that compact AdSp solutions

cannot be supersymmetric for p = 3, 4, 5, when an anti-Dp singularity is assumed at ρ = 0.

4.2 Flat solutions

As with the anti-D3 branes, we can also investigate flat solutions, or solutions with a non-

zero CC, but whose value is not fixed by compactness and hence decoupled from the scale

set by the brane charges and the fluxes. The metric Ansatz is simply the generalisation of

the Ansatz used for anti-D3 branes:

ds2 = e2Ads2Minkp+1
+ e2Bds2T6−p/S6−p + e2Cds2M3

, . (4.11)

These solutions describe anti-Dp branes smeared over the T6−p/S6−p. The solutions with

the torus factor can be obtained from T-duality of the anti-D6 solution [10].

4.3 Brane polarisation

We now compute the potential for a probe D(p + 2)-brane in the background of NDp

Dp-branes. This is a standard computation that we repeat for completeness and we find

agreement with the results of [2, 24] for p = 6 and [25] for p = 3.

The probe action in this case is

SD(p+2) = −µp+2

∫ {
e−φ
√
− det

(
eφ/2G−F

)
− (−1)pσ(Cp+3 −F ∧ Cp+1)

}
, (4.12)

where as before F = B−F and F is the world volume field strength. We take F = πn vol2
and expand the action for large n to obtain

V ∝ (πn− b)LDp + (−1)pγ +
βeφ+4C+4D

2(πn− b)
, (4.13)

where

B = b(ρ) vol2, Cp+3 = γ(ρ) σ(volp+1) ∧ vol2 , (4.14)

and

LDp(ρ) = β − (−1)p(α− α0) = β(1 + λ) + (−1)pα0 . (4.15)

The functions b(ρ) and γ(ρ) are determined by employing the definition of H and Fp+4 in

terms of their potentials and comparing to the anzats. The result is

b′(ρ) = Mαeφ−(p+1)A−(6−p)B+3C+2D ,

γ′(ρ) =
(
β2 − α(α− α0)

)
Meφ−(p+1)A−(6−p)B+3C+2D . (4.16)
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We will use these equations to determine the behaviour of b and γ close to the Dp-branes.

Before we expand the fields we present a differential equation for LDp which is obtained

by combining the external Einstein equation with the dilaton equation and the Bianchi

identity (4.6). The equation is remarkably simple, and in particular no source terms appear:

∇2LDp − β−1(∇LDp)
2 = β

[
(p+ 1)Λe−2A +

(1 + λ)2

2
e
p−1
2
φ|F6−p|2

]
. (4.17)

We are now in position to expand the fields close to the Dp-branes so as to obtain

an expression for the potential V close to the branes. We use the standard boundary

conditions of the fields close to a Dp brane. This is the expected behaviour based for

example on the analysis in [10]

e2A ≈ ρ
7−p
8 (a0 + a1ρ) ,

e2B ≈ ρ
−1−p

8 (b0 + b1ρ) ,

e2C ≈ ρ
−1−p

8 (c0 + c1ρ) , (4.18)

e2D ≈ ρ2 (1 + d1ρ) ,

e2φ ≈ ρ
p−3
2 (f0 + f1ρ) ,

LDp ≈ ρ (l0 + ρl1) ,

the last expansion in this list is determined by noting that we chose the gauge for Cp+1 such

that the constant part of LDp vanishes. The constants a0, b0, c0 and f0 can be rewritten in

terms of the number of Dp branes NDp and string coupling gs by studying the flat p-brane

solutions. The near brane behaviour of α is given by

α ≈ α0 + ρα1 . (4.19)

Below we need the first term in the expansion of β

β ≈ ρβ0 = ρf
p−3
8

0 a
p+1
2

0 . (4.20)

Expanding the equation (4.17) to leading order we immediately find l0 = 0 which implies

β0 = (−1)pα1 . (4.21)

The next order coefficient is

6l1 =
c0β0
a0

(
(p+ 1)Λ +

1

2
(λ0β0M)2f

1
2
0 a
−p
0 bp−60

)
. (4.22)

Expanding the gauge potentials gives

b(ρ) ≈ 1

2
ρ2α0Mf

1
2
0 a
− p+1

2
0 b

− 6−p
2

0 c
3
2
0 ,

γ(ρ) ≈ −1

3
ρ3α0α1Mf

1
2
0 a
− p+1

2
0 b

− 6−p
2

0 c
3
2
0 . (4.23)

– 14 –



J
H
E
P
0
7
(
2
0
1
5
)
1
6
5

Using these results it is straightforward to write down the first few terms of the expansion

of the brane potential,

V ≈ β0(πn)3

6a20f
1
2
0

{(
(p+ 1)Λ +

1

2
k20

)
ρ̄2 − 2k0ρ̄

3 + 3ρ̄4
}
, (4.24)

where

ρ̄ =

√
c0a0f

1
4
0

πn
ρ and k0 = (α0M)a

− p
2

0 b
− 6−p

2
0 f

1
4
0 . (4.25)

We now see that the polarisation potential (4.24) is fully determined as soon as the constant

k0 is given.

Besides the extremum at the origin, this potential has at most two more extrema at

ρ̄ =
k0
2
±
√
−k

2
0

12
− (p+ 1)Λ

3
, (4.26)

which shows that polarisation occurs in AdS space when

− Λ ≥ k20
4(p+ 1)

. (4.27)

One of our key results is that polarisation for solutions where the CC is parametrically

small is impossible. This in particular includes the flat solutions which obviously do not

polarise by equation (4.26).

Let us now estimate k0 for the AdS solutions. The second-order equations of motion can

unfortunately not help without solving the system completely. We can however estimate

k0 by solving the equation (4.17) in the fully smeared limit. This amounts to putting the

derivatives to zero and replacing λ with its smeared value [17]

λ→ p− 1

2
. (4.28)

We then find
1

2
k20 →

p(p− 1)2

p+ 1
, (4.29)

which can be inserted into the polarisation potential (4.24). The potential is easily verified

from equation (4.27) to allow for a polarisation at a finite value of ρ̄.

In this section we used two expansions, one for large n and another for small radius

ρ. Clearly we can choose ρ small to justify the near brane expansion and NDp large to

stay within the probe approximation, n � NDp. Within this regime a minimum of the

D(p+ 2) potential can be deduced in the following way. Since the WZ term becomes less

important when we move away from the anti-Dp, the DBI term dominates forcing the

potential upward. By checking whether the D(p + 2) potential decreases away from the

point ρ = 0 we deduce the existence of a minimum. Obviously, a more careful analysis is

needed to quantitatively trust the calculation from the previous section up to the minimum

of the potential but this is unnecessary to verify brane polarisation.
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5 Conclusion

We have shown that there is a consistent picture for the flux singularities associated with

anti-Dp solutions that are smeared over 6 − p compact directions. These solutions come

in two types: compact AdSp+1 solutions and non-compact flat solutions and both feature

singular fluxes that partially screen the antibrane charges. We have found a story similar to

what happened for localised anti-D6 branes [1, 2, 24]: the flat solutions do not polarise into

spherical branes whereas the AdS solutions do. As a consequence the AdS solutions have

regular flux clouds in the supergravity limit. Compact AdS vacua have a cosmological

constant related to the energy in such a way that brane-flux decay would increase the

energy. This is opposite to the flat solution, where brane-flux decay lowers the energy. So

either flux clouds that are singular at the SUGRA level initiate perturbative brane-flux

decay [13, 19] or brane polarisation has to occur in order to resolve the flux singularity. We

have found exactly that. Concerning the flat solutions we also find consistency with [13, 19]:

the flux clumping is too large and causes perturbative brane-flux decay such that the

smooth solution is expected to be time dependent. This is in agreement with the absence

of regular finite temperature solutions [16, 20–22].

An important restriction of our work is the smearing of the antibranes over the internal

S6−p or T6−p. It is important to investigate brane polarisation and brane-flux decay for

fully localised branes. This becomes especially important in case one looks at backgrounds

with very few, or even a single, SUSY-breaking antibrane. For a single antibrane it is

clearly not physical to smear the charges over a compact submanifold and it is exactly in

the regime of a single brane that it has been argued that the meta-stable states are most

likely to exist [6, 14]. An important argument here in favor of meta-stability is that the

flux clumping effects of [13, 19] are only relevant at the South Pole of the S3 and once the

NS5 brane moves away from the South Pole the forces that push it over the equator are

diluted5 as depicted in figure 3.

At first sight this allows a classical barrier against brane-flux decay and would seem

consistent with a recent claim that regular finite temperature solutions can exist if the

antibranes are fully localised [22]. If this is the case, it is a good indication that there is

no tachyonic mode that describes the onset of brane-flux decay and it would therefore be

most important to find a full proof of the claims in [22].

The sensitivity of antibrane uplifting to instabilities arises through the use of a warped

throat that redshifts string-scale energies down to much smaller energy scales. This locally

creates a lack of scale-separation and various modes can mix with Kaluza-Klein (KK)

modes that become light [32]. The flux-clumping instabilities, if present, are an example

of this effect since flux gradients correspond to KK modes and mix with the modes that

correspond to the NS5 position. Checking full stability remains therefore a subtle issue for

scenarios that are based on antibrane uplifting. One could for instance worry about the

tachyonic modes found in [33] or even Gregory-Laflamme-like instabilities in the screened

anti-D3 brane [34].

5We like to thank U. Danielsson, D. Junghans and the authors of [14] for discussions on that matter.
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ρ ρ

ψ ψ

D3

D3

Figure 3. The difference between the flux clumping between antibranes smeared over the tip of

the KS throat (left) and antibranes localised at the South Pole of the tip (right). At every point

in the ψ-direction we suppressed the two-sphere (with zero size at South and North Pole, ψ = 0, π,

and maximum size in between). The flux clumping on the right is less severe in the middle of the

ψ direction, such that the force that pushes the NS5 towards the North Pole is less and could be

small enough to create a classical barrier.

Finally, there is a black hole analogue to antibrane SUSY breaking in flux backgrounds,

which are near-extremal micro-state geometries build from meta-stable supertubes [35, 36].

One could worry whether these constructions also feature the problem of enhanced decay

due to flux-clumping like effects. We have good reasons to believe this is not the case and

hope to report on this in the near future.
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A Notation and conventions

The bulk type II action takes the form

S =

∫
?10

{
R− 1

2
|dφ|2 − 1

2
e−φ|H|2 − 1

4

∑
n

e
5−n
2
φ|Fn|2

}
, (A.1)

where R is the curvature scalar of the Einstein frame metric G with mostly plus signature.

The kinetic terms for the dilaton φ, the NSNS 3-form H and the RR forms Fn are written

using the short hand notation

|ωp|2 ?10 1 = ?10ωp ∧ ωp =
1

p!
GM1N1 · · ·GMpNpωM1···MpωN1···Np ?10 1 , (A.2)
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where

ωp =
1

p!
ωM1···MpdX

M1 ∧ · · · ∧ dXMp , (A.3)

is any p-form. Notice that we are using the democratic formulation of [37] which means

that all RR field strengths Fn with n = 1, 3, 5, 7 and 9 in type IIB and n = 0, 2, 4, 6, 8

and 10 in type IIA appear in the action. In this way the bulk action does not contain any

Chern-Simons terms but a duality relation between the RR fields,

e
5−n
2
φFn = ?10σ(F10−n) , (A.4)

must be imposed on-shell by hand. The reversal operator σ has been introduced to simplify

many equations in the paper, it does only introduce a sign depending on the degree of the

form it acts on, i.e.

σ(ωp) = (−1)
p(p−1)

2 ωp . (A.5)

Including the localized action for an anti-Dp brane

Sloc = −µp
∫
Np+1

{
e
p−3
4
φ ?p+1 1 + (−1)pσ(Cp+1)

}
, (A.6)

we see that the Bianchi identity for F8−p, the Einstein equation and the dilaton equation

acquire correction due to the presence of the branes. In the localized action we have

already made use of the fact that the worldvolume field strength F vanishes in the setup

we consider. The fields appearing in the D-brane action are understood as the pull-backs

of their bulk counterparts. For reference we present the modified Bianchi identity for F8−p

dF8−p −H ∧ F6−p = µpδ9−p(Np+1) , (A.7)

where δ9−p(Np+1) denotes the (p + 1)-form with delta distribution support on the brane

worldvolume, i.e.

δ9−p(Np+1) = ?9−p1 δ(Np+1) . (A.8)

B Second-order equations

In this appendix we present the second-order differential equations for the Ansatz in sec-

tion 2. The F5 Bianchi identity implies(
α′e3B+C+2D−4A)′ = λM2eφ−3B+3C+2D −ND3µ3δ6 . (B.1)

We use a prime to denote a derivative with respect to ρ. The dilaton equation gives

φ′′ + (4A+ 3B + C + 2D)′φ′ =
1

2
M2eφ+2C−6B (1− λ2) . (B.2)

We present the Einstein equation in the trace reversed form

RMN = T̂MN . (B.3)
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The Ricci tensor is

Rµν = −e−2C
(
4e2AA′2 + e2A

(
3B′ + C ′ + 2D′

)
A′ + 3e2C + e2AA′′

)
e−2Agµν ,

Rij = e−2C
(
−3e2BB′2 − 4e2BA′B′ − e2B

(
C ′ + 2D′

)
B′ + 2e2C − e2BB′′

)
e−2Bgij ,

Rρρ = −4A′2 + 4C ′A′ − 3B′2 − 2D′2 + 3B′C ′ − 2C ′D′

−4A′′ − 3B′′ − 2C ′′ − 2D′′ ,

Rab =
(

1− e2D
(
C ′ +D′

)2 − 4e2DA′
(
C ′ +D′

)
− 3e2DB′

(
C ′ +D′

)
−e2D

(
D′2 + C ′D′ + C ′′ +D′′

))
e−2C−2Dgab . (B.4)

The components of the trace-reversed energy-momentum tensor are

T̂µν = −1
8 gµν

((
1 + λ2

)
M2eφ−6B + 2e−8A−2C

(
α′2
)

+ 2µ3Nδ
)
,

T̂ij = 1
8gij

(
M2

(
3− λ2

)
eφ−6B + 2

(
α′
)2
e−8A−2C

)
,

T̂ρρ = 1
2φ
′2 + 1

8e
2C+φ−6B (3λ2 − 1

)
M2 − 1

4(α)′2e−8A ,

T̂ab = 1
8gab

(
M2

(
3λ2 − 1

)
eφ−6B + 2

(
α′
)2
e−8A−2C

)
. (B.5)

C Supersymmetric AdS

The BPS-equations for our AdS solutions (4.1)–(4.4) are:

16(∇φ)2 = −γ−2M2
(
4β−2α2 − (p− 1)2

)
+(p− 3)2β−2(∇α)2 ,

(∇(4A+ φ))2 = −16e−2A +
[
γ−2M2 + β−2(∇α)2

](
4e−B ±∇(4B + φ)

)2
=
[
γ−2M2 + β−2(∇α)2

]
(∇(3φ− 4C − 4D))2 =

(
4e−D−C − (p− 2)β−1∇α

)2
+(p− 2)2γ−2M2 , (C.1)

where

β = e(p+1)A+ p−3
4
φ ,

γ = e(6−p)B−
p−1
4
φ . (C.2)

In addition to these equations we must supplement also the Bianchi identity for F8−p in

equation (4.6). We have verified that this system reproduces the one presented in [1] for

p = 6 for which no B warp factor is present. For p = 5 the system is also modified as the

third equation takes the form

(∇(4B + φ))2 =
[
γ−2M2 + β−2(∇α)2

]
. (C.3)

This is due to the fact that for general p the metric has a factor S6−p which for p = 5 is

simply a circle and the associated Ricci tensor must vanish.
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The first two BPS equations can be combined so that ∇α does not appear,

(p− 3)2(∇(4A+ φ))2 − 16(∇φ)2 = −16(p− 3)2e−2A + 4γ−2M2
(
λ2 − p+ 2

)
. (C.4)

From the equations of motion one can deduce:

− 4p(p− 3)e−2A − 4(p− 3)∇2A+ (7− p)∇2φ = −2γ−2
(
β−2α2 − 1

)
. (C.5)

Expanding these two equations around a Dp singularity, we obtain an expression for the

constant k0 which was introduced in section 4.3:

1

2
k20 =

(p− 4)(p− 3)2

(p− 5)
. (C.6)

This equation has important consequences because for p = 3 and p = 4 we see that α0

vanishes (cf. equation (4.25)). The fact that α0 vanishes is however in direct contradiction

with our previous result that α0 is proportional to the non-zero CC. We must conclude

that the assumption made when deriving the relation between α0 and the CC; that the

internal space is compact, is not true for p = 3, 4. This result only holds when we assume a

Dp singularity at ρ = 0, a compact solution with no brane at the pole might of course exist.
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