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1 Introduction

The determination of the exact string theory low energy effective action is a very difficult

problem in general. In the case of type II string theory on R11974 x T9=1 the lowest order

non-perturbative corrections could nonetheless have been computed [1-3]. Although there

is no non-perturbative formulation of the theory, the constraints following from supersym-

metry and U-duality have permitted to determine the non-perturbative low energy effective

action from perturbative computations in string theory [4-8] and in eleven-dimensional su-

pergravity [2, 9-12]. The four-graviton amplitude allows in particular to determine the

V2kR* type correction in the effective action,
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where the dots stand for other terms including the supersymmetric completion, (p, ¢) labels
the different invariant combinations of derivatives compatible with supersymmetry accord-
ing to the notations used in [13], and E(, ) are automorphic functions of the scalar fields
defined on Eg4)(Z)\Eqq)/Ka. For (p,q) = (0,0), (1,0) and (0, 1), the complete effective
action at this order is determined by these functions &, ., which have been extensively
studied [14-33].

E(,0) is an Eisenstein series associated to the minimal unitary representation [25,
27], E(1) is an (or a sum of two) Eisenstein series associated to the next to minimal
unitary representation(s) [27], and both are therefore relatively well understood. They
are nonetheless very complicated functions, and the explicit expansion of E o) in Fourier
modes is not yet determined [28, 29, 32]. E(p,1) is not even an Eisenstein series, and was
shown in [10] to satisfy to an inhomogeneous Poisson equation in type IIB. A proposal for
this function in eight dimensions [26], suggested a split of the function into the sum of an
Eisenstein series and an inhomogeneous solution, which was subsequently generalised in
seven and six dimensions [13, 27|, and recently clarified in [33].

In this paper we extend the analysis carried out in [30, 31] to the study of Eg ). We
show that this function indeed splits into the sum of two functions that are associated
to two distinct supersymmetry invariants, and therefore satisfy to inequivalent tensorial
differential equations. In particular, the second satisfies to a homogeneous equation, which
is solved by the Eisenstein function appearing in [13, 26, 33]. One can distinguish the
two functions by looking at specific higher point couplings that we identify. The new
class of invariants generalises to an infinite class admitting a coupling in F?*V4R*, and
we identify a unique Eisenstein function solving the corresponding tensorial differential
equations in all dimensions greater than four. This function turns out to be compatible
with perturbative string theory, and only admits three perturbative contributions in four
dimensions, at 1-loop, (k + 2)-loop, and 2k-loop. However, the only amplitude that seems
to unambiguously distinguish it from others is the (k + 2)-loop four-graviton amplitude
in a non-trivial Ramond-Ramond background, which makes an explicit check extremely
challenging.

We start with the analysis of the supersymmetry invariants in four dimensions. The
two VOR?* type invariants in the linear approximation are associated to two distinct classes
of chiral primary operators of SU(2,2|8) discussed in [34]. We identify the corresponding
representations of Fr(7) associated to nilpotent coadjoint orbits [35] that are summarised
in figure 1. In the linearised approximation, the F2V*R* type invariant does not carry a
VOR* coupling, but we explain that the structure of the linearised invariant allows for this
mixing at the non-linear level, and that the latter must occur because the two classes of
invariants merge in one single Eg(g) representation in three dimensions. We conclude that
the exact threshold function in four dimensions takes the form

R 32 .
E(0,1) = 6(8,1,1) +-—F

1.2
18971 [008005] ’ ( )

where 5(8’1,1) is the solution to the inhomogeneous differential equation (2.143) that is consis-
tent with perturbative string theory. The explicit relation between the tensorial differential
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Figure 1. Closure diagram of nilpotent orbits of E7(7) of dimension smaller than 76.

equations and the associated nilpotent orbits permits us to determine the wavefront set of
the associated functions, extending the results of [28, 29] to the V®R?* threshold function.
It appears, as can be seen in figure 1, that the two functions admit distinct wavefront sets.
In particular we show that although c‘f@,l,l) is not an Eisenstein series, it admits the same
wavefront set as E‘[Gogooo].

We then consider the uplift of our results in higher dimensions, and exhibit that this
general structure extends to all dimensions lower than eight, and is in perfect agreement
with the exact threshold functions proposed in [13, 26, 33]. In each dimension, the su-
persymmetry invariants transform in irreducible representations of Eyg), defined by the
representation of Egg) on the associated function on Eyqy/ Ky satistying to the relevant dif-
ferential equations implied by supersymmetry. The inequivalent invariants are summarised
in figure 2. The tensorial differential equations satisfied by Eisenstein functions relevant to
our analysis are reviewed in the appendices.

2 N = 8 supergravity in four dimensions

Maximal supergravity includes 70 scalar fields parametrising the symmetric space
E7(7)/SU.(8) [36], and can be defined in superspace by promoting these fields to super-
fields ¢* [37, 38]. One defines the Maurer-Cartan form

25U€wl]- P
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Pmkl — 7€Z]klpqrsppqrs . (22)
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Figure 2. Each node corresponds to an inequivalent supersymmetry invariant, white if it cannot
be written in harmonic superspace in the linearised approximation, and red if the corresponding
harmonic superspace is chiral. For VO R*, the links to 10 dimensions are valid for the homogeneous
solution, while all the eight-dimensional invariants uplift to type IIA for the inhomogeneous solution.

The metric on Ey(7)/SU.(8) is defined as

Gi(0)464d6" = Py PH, (23)
and the derivative in tangent frame is defined such that for any function
d€ = 3PUMD; 1€ (2.4)
The superfields satisfy to

D& = igijklpqm)(ajkl Dpgrs€ Dei€ = 674" Dyja€ (2.5)
where Xq4jk is the Dirac superfield in Weyl components, and )‘(gk its complex conjugate.
The expansion of the scalar fields include the 28 Maxwell field strengths Fi,g;;, the 8
Rarita-Schwinger field strengths pag,; and the Weyl tensor Cugqs, satisfying to N' = 8
supergravity classical (two derivatives) field equations. The supervielbeins are the solutions
to the Bianchi identities defined such that the Riemann tensor is valued in sl(2, C) @ su(8)
and the su(8) component is identified with the scalar field curvature [37, 38|,

T .
le = gpjklp A PP (26)

The covariant derivative on Er(7)/SU.(8) in tangent frame satisfies to

(DM, Dpgrs] i = =248, Duvu]p + 30y Do » (2.7)



and the Laplace operator is

1
"3
In the linearised approximation, the scalar superfield Wy, satisfies to the reality con-
straint (2.2) and to

A = -DHD . (2.8)

_ 1
DYWijn = 25ﬁxajkl] ; DspWijr = ﬁfijklpqrsX(gS . (2.9)

In this approximation the superfield W#* transforms in the minimal unitary represen-
tation of the superconformal group SU(2,2|8) [39]. This property permits a complete
classification of supersymmetry invariants in the linearised approximation in terms of irre-
ducible representations of SU(2,2|8) of Lorentz invariant top component [34, 40]. In our
analysis, we rely on the assumption of absence of supersymmetry anomaly, such that there
is no algebraic obstruction to the extension of a linearised invariant to a full non-linear
invariant. This implies a bijective correspondence between the set of linearised invariants
and the non-linear invariants, such that one can deduce the explicit gradient expansion of
the functions (or tensor functions) of the scalar fields on E7(7)/SU.(8) that determine the
invariants.

2.1 The standard V°R? type invariant

One can define a VO R* type invariant in harmonic superspace, using the harmonic variables
uly, u';, u®; parametrising SU(8)/S(U(1) x U(6) x U(1)), such that r = 2 to 7 of SU(6) [34,
40, 43]. In this case the harmonic superspace integral can be defined at the non-linear
level [44], but we will only consider its linearised approximation. The superfield in the 20
of SU(6)

Wiat = u'su? pu sul i Wigna , (2.10)

satisfies to the G-analyticity constraints
u D Wt =0, u'sDgiWyst =0 . (2.11)

One can therefore integrate any function of W4 on the associated analytic superspace.
To understand the most general integrand, we must decompose monomials of W, in irre-
ducible representations of SU(6). At quadratic order we have the representation [0, 0, 2, 0, 0]
and the combination

1
Wrtqutu — égrtuvaWstquwx (212)

in the [1,0,0,0, 1]. Because one obtains the [0, 0, 2,0, 0] by simply adding the Dynkin labels
of Wy, we will say that this representation is freely generated, whereas we shall consider
the [1,0,0,0,1] as a new generator at order two. At cubic order, we have the two elements
freely generated by the ones already discussed, i.e. [0,0,3,0,0] and [1,0,1,0,1], and the
additional combination

Wu[rsWt]vquvw ) (213)



in the [0,0,1,0,0]. At quartic order we have the four elements freely generated by the ones
already discussed, and the two additional elements

W WO W g WY Wy Wiy W TS (2.14)

that decompose into the [0, 1,0, 1,0] and the singlet representation. One checks that these
elements freely generate the general polynomials in W, such that the latter are labeled
by five integers.

To integrate such a function in analytic superspace, one needs to consider these gen-
erating monomials with additional harmonic variables in order to compensate for the
S(U(1) x U(6) x U(1)) representation, i.e.

/duusiurjuskutlwrst = Wijki (2.15)

1
8 k. Lyt Kl Kl
/duu U jur " W Wy = Wijpg WP — 7285” Wpars WP,

r ., s uvw omn_ W ¥
/duuquSPUSiu U kuthu[rsWt]vwW = Wpo[ijWkl]man — ‘l.ﬁ’ (5gm/mkzl _5ﬁ'ijl]p>v

/dUUlkUllusiUSqursWtuquvwWMt — Wnpq(im)mp’q’ Wnp/q/(le)pqm . 6(k61) ( . ) ,

which are respectively in the [0, 0,0, 1,0,0,0], the [0,1,0,0,0, 1,0], the [1,0,0,1,0,0, 1] and
the [2,0,0,0,0,0,2] irreducible representations of SU(8), whereas

/duulmulnugkugluriusjutpuquUWW”"thyW“w = Wi’j’[ij Wk]lk/l/Wi’j’[qum]nk’l’_i_. ..
(2.16)
gives rise to the fourth order monomial in the [1,0,1,0, 1,0, 1] irreducible representation.
One obtains in this way that the harmonic superspace integral of a general monomial
of order ny + 2ny + 3ng + 4ng + 4nly + 4 in the [ng,n4,n1 + ng,ng, n2] of SU(6) gives
rise to a term in VOR* with a monomial of order nj + 2ny + 3ns + 4ny + 4nﬁl in the
[ng + na + 21/, N2, na, 1 + ng, na, na, ng + ng + 2] of SU(Y), i.e.

/duD14D14F(u) [n2,n4,m1+n3,m4,n2] Wn1+2n2+3n3+4n4+4n21+4|[n2,

[ng+ny +2nﬁl ,ng,nyg,ny+ng,ng,ng,ng+ny +2ni] n4,m1+N3,n4 7”2]

6 4 n1+2n2+3nz+4ng+4n/,
~ V R*W™ 4‘[n3+n4+2n2,n2,n4,n1+n3,n4,n2,n3+n4+2na] + .. (217)

where the function F'(u) is the function of the harmonic variable defined as a product of
the generating functions defined in (2.15), (2.16). One needs at least one quartic singlet in
the G-analytic superfield to get a non-vanishing integral [34].

Referring to the one to one correspondence between linearised and non-linear invari-
ants [34], one deduces that the non-linear invariant must admit the same gradient expan-

sion, i.e.
‘c(&l,l) [8(8»1,1)]
o Z n1+2n2+3nz+4ng+4n)) IS E[n3+n4+2nﬁl771277147”1+n3,n4a"2,n3+n4+2nﬁﬂ
- [n3+ng+2n),ng,ng,n1+ng.ngnongtng+2ny] <11 (8,11

/
n1,n2,13,M4,My

(2.18)



[ng+ng+2n),ng,ny,n1+ng,ny,n9,n3+ns+2n4] . . . .
where each L) 42T g an By (7) invariant superform in the cor-

responding representation of SU(8). Note that although the irreducible representation
remains unchanged under the substitution

(n1,n3,nfy) = (n1+2,n3 — 2,0y + 1) (2.19)

the corresponding superforms and the tensor structure of the derivative are different, and
are really labelled by the five integers ni,no, n3, n4, n)y without any further identification.
Of course the mass dimension implies that these integers are bounded from above, and
the maximal weight terms in x'#y'* can only be in representations like [2,6,0,8,0,6, 2],
2,6,1,6,1,6,2], ...[2,10,0,0,0,10,2], ...[11,1,0,0,0,1, 11].

This gradient expansion implies in particular that the third order derivative of &g 1)
in the [0,2,0,0,0,0,0] and its complex conjugate must vanish, i.e.

(4Dijpg PP " Dyt — Dijra (A + 24)) Esu1y =0,
(4DijPQquman"“ — DIR(A + 24)) Esany =0 . (2.20)

These equations imply all the higher order constraints on the function such that its gradient
expansion is in agreement with (2.18). Defining the covariant derivative in tangent frame
as a Lie algebra generator in the fundamental representation of E7(7), this equation reads
equivalently

1
D5368(8‘1’1) == D56 <6 + 4A) g(&l’l) . (2.21)

This implies in particular that all the Casimir operators are determined by the quadratic
one such that

1 n
tr (D526+2TL) 5(3,1,1) = 6A <6 + 4A> 5(8,1,1) s (222)

but the quadratic Casimir is not a priori determined by equation (2.20) alone. We will
need to consider the other invariants to finally conclude that supersymmetry moreover
implies [27]

A5<871’1> - _605(8,1,1) - (5(8,4,4))2 . (223)

Equation (2.21) defines a gantization of the algebraic condition Q% = 0 associated to
the complex nilpotent orbit of E7 of Dynkin label [,48.0,], While the condition that the
fourth order derivative does not vanish generically in the [2,0,0,0,0,0,2] distinguishes its real
form of SU(8) Dynkin label [2000002] [35], which defines the graded decomposition of SU(8)
associated to the (8,1,1) harmonic superspace we consider in this section. The property
that the linearised structure does not permit to determine the eigenvalue of the Laplace
operator in this case, implies that the quantization of the associated nilpotent orbit is not
unique, and depends on one free parameter. This property follows from the fact that a
nilpotent element of this kind can be obtained as the appropriate limit of a semi-simple
element satisfying to the characteristic equation Qg = itr(Qgﬁ)Qg,@.



2.2 F?V4R?* type invariant and its relation to VOR*

Although the VOR* type invariant provides the unique supesymmetric invariant preserving
SU(8) one can write at this order, there is another class of invariants that can be defined
form the chiral harmonic superspace defined in terms of the harmonic variables u’;, u”;
parametrising SU(8)/S(U(2) x U(6)) [34, 43], with 7, § equal to 1,2 of SU(2), and r,s
running from 3 to 8 of SU(6). One defines the superfield

W = uliUZjUTkUSlWijkl (2.24)
that satisfies to the G-analiticity constraint
" DEW™ =0 . (2.25)

Similarly as in the preceding section, the most general function of W"¢ is freely generated
by the three monomials

1 1
Wrs ’ §5rstuvwwtuwvw ’ §5rstuvwWTsWtquw . (226)

One must supplement them with harmonic variables to preserve S(U(2) x U(6)) invari-

ance, using
/du ul gl WS = WK (2.27)

1
J pqrs
WP S Wpars

. . 1 .
/du u’lujgurkusl §€TstuUthquw = WquWklpq — %

o 1 . 1 ..
/ du ' ! puF 'y st W W W = WP YT — W IR W JYPTS

One only gets a non-trivial integral if the cubic SU(6) singlet in W' appears at least
quadratically, which can be understood from the property that the associated chiral primary
operator of SU(2,2|8) is otherwise in a short representation [34]. Because the U(1) weight
of the measure is compensated by a single factor of this cubic SU(6) singlet, it appears
that there is no SU(8) invariant that exists in this class.

For a general monomial, one gets an invariant of the form

A16 112 [0,n1,0,n2,0] n1+2no+3n3+6
/ QDD pu)mopd, W o omo  (2:28)

ni1+2ns2+3ng 2 4 4
~ W[O,n2+2n3,0,n1,O,HQ,O]F[O,Q,O,O,O,O,O]v R +...

ni1+2ng94+n3z—22 -16 12
+W[O,n2+2n3—8,0,n1—S,O,ng —1,01X[0,8,0,4,0,0,01X[0,2,0,4,0,4,0] 3

where all terms are projected to the [0,n2+2n342,0,n1,0,n2,0] irreducible representation, and
the term in F? is

Fgﬁ.ﬁdﬁ'kl - Fggﬁklldﬁ . (2.29)
For a generic function F[W] of W, one obtains
3 8n1 +2n2+3n3+6f W n n "
DDRF(W] = v Llgmonaolio st (o g0

QWi t2n243n346 0,15 0, 0]
ni,n2,n3



where the densities 423%32;32,0](n1+2n2+3n3+3> are of order nj + 2n2 + 3ng + 6 in the fields

and only depend on the scalar fields through their space-time derivative. The number nq +
2ny + 3n3 + 3 is the U(1) weight of the density. These densities determine by construction
covariant superforms in the linearised approximation [45-47], such that

dOLLE =0
8,2,0)lin — Y
(0) pig,kl,pgrs paTS 1g,kl _
<d £(8,2,0) lin +3P N £(8,2,0) lin ) [0,2,0,1,0,0,0] — 0 ’
0) pij,kl,pgrs,mntu ij,kl,mntu o
(d( )‘C(S,2,O) lin + 3PP A »C(g,z,o) lin ) [0,2,0,2,0,0,0] — 0,

1j,kl,pq t4,kl,pgmn _
(d(O)ﬁ(é,z,o) linT8 + 18P7’8mn A E(g,zo) lin ) [0,3,0,0,0,1,0] — 0 ) (2'31)

where d® is the superspace exterior derivative in the linear approximation. At the next
order, because

d=>Y d"» (2.32)
n=0

satisfies to d? = 0, one has
{d?,dV} =0, (2.33)

and therefore
a® (d0Lihl, ) =0 (2.34)

We assume in this paper that the structure of superconformal multiplets implies the absence
of supersymmetry anomaly, or equivalently that the fifth cohomology of d® is empty. Nev-
ertheless, even if d(l)ﬁgj’;i}) 1in only depends on the covariant superfields, nothing prevents
its d® antecedent to depend explicitly on the scalar fields. This implies in this case that

ol ikl . .
AV L0 = — AL a0y 0y + Prgrs A MIPRLRATS 4 PRI A M (2.35)
kl i ipqlk 0l :
+ PPN M, — o pilpalk A Mo, 1

where Eéngfo) (1y is the covariant correction to the superform, whereas MUKLPATs and MUy,
are superforms of order six in the fields in the [0,2,0,1,0,0,0] and the [0,1,0,0,0,1,0],
respectively, that must satisfy to

4O pidklpars ( prars A Nz‘a;kl) 02010001 s
1

d(0>Mijkl — PUPd A Nklpq - 53

1j rs
8PP A Npgrs - (2.36)
In order to have such corrections that could not be reabsorbed in a covariant correction as
Egjf,lo) (1y, one must have a corresponding short multiplet associated to a linearised invariant
of the same dimension. The only candidate for a superform MW*Lpars jg £gz’;ﬁ;§j s but it
is of order seven in the fields, and therefore M#¥*:Pars — () at this order. However, there is

a candidate for M%}; which is L) hrfj x1, the superform that appears in the VOR* type



invariant discussed in the last section. Following (2.17), we have

d(o)ﬁ(s,1,1) 1in =0,
ijkl ijkl
d(O)E(gB,l,l)hn = =3P A Lis 11
0) pijklpgrs _ gkl pPars
d )£(8,1,1>1in - _S(PU A £<8’1’1)Hn> 10:0:0.1.0:000>
d(o)ﬁ(s,m) i k= —18 (Pklpq A E(é?olq,l)un) 0,1,0,0,0,1,0] » (2.37)

and therefore
d(o) nriqu”r ”rrskl _ 1 ”rijklﬂr WwPrars | o
pqrs 19 pqrs (8,1,1) lin

+W1JququS£?;1,1) lin T WHray TSL(&LUHHPW‘S + W quPqTS‘C(B,lj,l)lin
ij kl kl ij ilpqlk Uiy
+6qu ]E(S,l,l) lin Pq + 6qu E(S,l,l) lin Pq — 12W ]pQ[ £(8,1,1) lin Pgq

- - ) N
=18 (qum A £(8,1,1)11flpq + PPAft A E(s,1,1) 11:?1011 — 2plealk ‘C(S,l,l)lin][jp(I) , (2.38)

such that E(&Ll)hnij x is indeed a consistent candidate. Moreover, the structure of the
linearised (8,1, 1) invariant does not permit to have the tensor function WiquqursW”kl,
such that (2.38) is not the exterior derivative of a superform that does not depend on the
naked scalar fields (uncovered by a space-time derivative). It follows that such a correction,
if it appeared in (2.35), could not be reabsorbed in a redefinition of Egjgfo) (-

If this mixing between the (8,2,0) and the (8,1, 1) superforms was not appearing at
the non-linear level, then the action of the exterior derivative in the function of the scalar

fields should not introduce lower derivative terms such that it should satisfy then to
DP9 (4Dpgrs D" Dyt — Dpgrt (A + 24)) Egn0) = 0 (2.39)

If the mixing did appear, then the unicity of the linearised invariants (2.37) would imply
that the corresponding non-linear superform should be the same as in (2.18), such that
derivative terms and one would conclude again that (2.39) must be satisfied. Therefore
this equation must be satisfied in either cases.

Using moreover the property that the gradient expansion of the linearised invariant is
inconsistent with the presence of the third order derivative in the [1,0,0, 1,0, 0, 1] of SU(8),

one requires
(36DjT[k,DiTm”qu]mn — 8 Dpipg (A + 42) + 8, Dy (A — 120)) Eonoy=0.  (2.40)

Using this equation one computes independently of (2.39) that

DI UDr D" Dt = Dpapt( B+ 24) €20y = 75 (28D Dy =355A (A+60) Eqsn
(2.41)

and we conclude that (2.39) and (2.40) imply together
Ag(&zo) = _605(8,2,0) . (2.42)

~10 -



This eigenvalue is such that the structure of the invariant is consistent with the mixing
between the (8,2,0) and the (8,1, 1) superforms. Only in this case can they reduce to the
same invariant for a function Ex ., satisfying to both (2.20) and (2.40), as for the V4R*
type invariant.

We are going to argue now that this chiral invariant must indeed include a V®R*
coupling, because the two classes of invariants reduce to one single class in three dimensions.
But before to do this, let us mention that (2.40) can be rewritten as

1
D1%35<8,2,0) = §D133AS(8,2,0) ) (2.43)

which defines a qantization of the algebraic eqation Qf’g3 = 0 associated to the complex
nilpotent orbit of E7 of Dynkin label [,.8...] With the real form defined with the SU(8)
Dynkin label [oz00000] [35], which defines the graded decomposition of SU(8) associated to
the (8,2,0) harmonic superspace we consider in this section. In this case the choice of
real form moreover implies that the complex charge in the 70 defining the nilpotent orbit
through the Kostant-Sekiguchi correspondence satisfies to

Qiququanmnkl =0 ; (2-44)

such that it admits a unique quantization, with the eigenvalue of the Laplace operator —60.
However, we will see in the following that the constraint (2.39) can be relaxed while keeping
the property that the associated representation of E7(7) is a highest weight representation.

2.3 Dimensional reduction to three dimensions

In three dimensions, the duality group is Fg(g), of maximal compact subgroup Spin(16)/Z.s.
We denote 7, j the SO(16) vector indices and A, B the positive chirality Weyl spinor in-
dices. The covariant derivative in tangent frame is a chiral Weyl spinor, i.e. in the [ooooooj]
representation. In the linearised approximation, the covariant fields all descend from the
Weyl spinor scalar field, satisfying to [48]

DiwA =144y L. (2.45)

Both four-dimensional (8,1,1) and (8,2,0) harmonic superspaces descend to the same
(16, 2) harmonic superspace in three dimensions, defined through the introduction of har-
monic variables parametrising SO(16)/(U(2) x SO(12)) [49]. The Weyl spinor representa-
tion decomposes with respect to U(2) x Spin(12) as

128 2320V p(2®32_) @32, (2.46)

such that the grad 1 Weyl spinor W of Spin(12) satisfies to a G-analyticity constraint with
respect to the positive grad covariant derivative in the 2 of U(2). The general polynomial
in the Spin(12) Weyl spinor is parametrised by four integers, just as for the rank three
antisymmetric tensor of SU(8) in section (2.1).! One computes in a similar way the general

I This property follows from the fact that the classification of duality orbits of the black hole charges are
the same in the N = 2 supergravity theories of duality group SO*(12) and SU(3, 3) [50].
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integral

o
!
onztnytan, onyony 0"20“4,‘1_‘_“5]

/duF(u) Fn; on4n1ins] . ]D28wn1+2n2+3n3+4n4+4ng+4|
n1+'ﬂ3

~ v10P4 Wn1+2n2+3n3+4n4+4nﬁl‘ + o (247)

’ o
onstny42n’ on,on
[ STRAT2N0N2 004y Lng

where V!P? is a Spin(16) invariant quartic term in the scalar field momentum, that
replaces the VOR?* type term that vanishes modulo the equations of motion in three di-
mensions. In three dimensions it is not established if there is a one to one correspondence
between non-linear and linear invariants defined as harmonic superspace integrals. Nev-
ertheless, the class of invariants we discuss descends from four dimensions, and we can
therefore assume they admit the same structure, i.e.

/ n Py ’ N o
£(16,2) [5(1672)] _ Z ,Dn1+2n2+3n3+4n4+4n4 5(1672)5[0 stngtan)on on4“l+n3} ' (2.48)

o
, [on3+n4+zn;onzon4n +n }
n1,12,13,14,1 s

This expansion implies that the fourth order derivative of the function &£, restricted to
the {1000102} must VaHiSh, l.e.

(DTi(j%" D) (PLipgir D) o2y = —0ij (PLhipg D) (A +48)E 6.2 » (2.49)
where the Laplace operator A is defined as
A =DyuD4 . (2.50)
By dimensional reduction of the four-dimensional equation (2.42), one computes that
Ae2) = —198E 16,2y - (2.51)

One can understand that the two kinds of 1/8 BPS invariants discussed in the preceding
section dimensionally reduce to this single class. If one consider the decomposition of (2.46)
with respect to U(6) C Spin(12), one obtains for one embedding

32, 26?320 $67, (2.52)

such that the G-analytic superfield in the 324 includes the four-dimensional (8,1,1) G-
analytic scalar W7 as well as some components of the vector fields. A generic spinor of
non-zero quartic invariant can be represented by W”!. For the other embedding U(6) C
Spin(12), one gets

32, 2TV @15V 15" 10, (2.53)

such that the G-analytic superfield in the 32 includes the four-dimensional (8,2,0) G-
analytic scalar W as well as some components of the vector fields, and a Ehlers complex
scalar parametrising the four-dimensional metric. The scalar field alone only parametrises
a null spinor of Spin(12) of vanishing quartic invariant, and only together with the Ehlers
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scalar field it can provide a representative of a generic spinor. One could have naively con-
cluded that the function & , ) should give rise to a function on Fgg)/Spin.(16) satisfying
moreover to

5(DT'y;pe D) (DFklmD> £=-20 (Drij%) (A+48)€ + 285 A(A+120) €, (2.54)
but this equation only admits solutions for functions satisfying to the Laplace equation
A€ =-210&, (2.55)

excepted for the functions satisfying to the quadratic and cubic constraints that define the
R* and V*R* type invariants. We see therefore that this equation is incompatible with
supersymmetry.

It follows that both (8,1,1) and (8, 2,0) type invariants dimensionally reduce to three-
dimensional invariants depending of functions on Fgg)/Spin.(16) that belong to the same
representation of Eg(g). Being in the same representation, they both carry a quartic com-
ponent in the linearised approximation and they must both include a VOR* type term in
their uplift to four dimensions. This proves that the mixing between the two different
linearised structures must occur such that the non-linear F2V4R?* type invariant cannot
exist without including a V6R* type term as well.

Before to end this section on the three-dimensional theory, let us discuss the modifi-
cation of the supersymmetry constraint due to the completion of the R* type invariant at
the next order. As it is argued in [10], the appearance of a R* correction with threshold
function &), will modify the Laplace equation with a non-zero right-hand-side, i.e.

Az = —198E16.2) — Elss) - (2.56)
Because the function &£ ) satisfies to [30]

the second derivative of its square must necessarily vanish in the {1000102}, and we get
accordingly a modification of (2.49) to

(DFi[jkrD) (DFlpq]TD) Ee,2) = 1500;(; (DFklpq}D) Ere2) + 0] (DFklpq}D) 5(126’8) . (2.58)

2.4 FEy Eisenstein series

In this section we shall discuss some properties of Einstein series that solve the differential
equations we have derived for the VOR? type invariants.

2.4.1 Fundamental representation

As discussed in [25, 31], one can define the Eisenstein series

= Y 2y ar) (2:59)

rezb
14 (1)]133=0

Q
00000s
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as a sum over the rank one integral charge vectors I' in the 56 of Ey ;) satisfying to the
constraint that the quadratic tensor I' ® I' vanishes in the adjoint representation. This
formula is rather useful to identify the differential equations satisfied by the Eisenstein
function, because one can simply consider the case of one charge I', with Z(I");; = Vijl Iy,
such that the quadratic constraint becomes

1 ) 1 .
ZiiZn) = 5€igkipars 272" Zip 2% = §5kalel, (2.60)
and the differential operator acts on Z;; as an element of ey

1
Diji 2" = 3005 Z) Djjp1Zpg = geijklpqrszrs - (2.61)

Using the definition |Z|> = Z;;Z%, one computes that the function |Z|~2¢ satisfies to

Dy D922 = 25(s — 2) 24529 2172 4 X0 W st 71
Dijpg PP Dypa| 272 = =3s(s — 2)(s — 4) Zij Zu| 2|77 + 32_25.3%%“'2 =,
Dy D Dy 2172 = B iy 720 9 Wy 7,
(2.62)
and to the Laplace equation
A|Z|7% =3s(s — 9)|Z] 7> . (2.63)

For s # 2, 4, the function admits a generic gradient expansion in the irreducible represen-
tations [0, ng 4 2n3,0,n1,0,n2,0] and their complex conjugate. To exhibit this property, it
is convenient to consider a restricted set of indices as follows

.. n3
<D12ijDZJlekl12> (D12pg D7) (Di234)™ | 2|2 (2.64)

(S-i-nl +ng +n3 — 1)!(S+n2+n3 —3)!(5+n3 _5)! y
(s = Dl(s = 3)!(s — 5)!
X (-3Z13)" (2212 Z7)" (-6 2119 Zag)) " | 2| 2ot natna),

One computes moreover that for m <n

(Dmijpz‘jklpkm) (D12pg DY Dys1o)"™ | Z] 2 (2.65)
(s+n—1)l(s+n=3)!(s+n=5)(s+n+m—-1l(s+n+m-—3)(s—n+m-—>5)!
X
(s—=Dls=3)(s=5)(s+n—1Dl(s+n—-3)(s—n—25)!
% (_3278 Q)m(_3zl22)n ’2’72(s+n+m)
B < 3>n+m (s+n—>5)!s+n+m—D(s+n+m—23)(s—n+m—>5)!

2 (s+n—m—=>5)(s+2n—1)!(s+2n—3)I(s—n—2>5)!

> (D12ijDZ]lekl12) (D12qu78pq)n m |Z| 2s
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such that acting with a derivative operator in the conjugate representation
[0,0,0,0,0,2m,0] does not produce an independent tensor. One has in particular for s
an integer greater than 5

<D78ierijklszl78> (D12ququSD7‘512)S_4 |Z’723 =0. (2.66)
This equation is the equivalent on E;(7)/SU.(8) of the equation on SL(2)/S0(2)
DD* 'E =0, (2.67)

for integral s, and we would like to see that the function E08005| also decomposes somehow
into a “holomorphic” part F, and a “anti-holomorphic” part Fy, satisfying respectively to

.. s—4
(D12ququSDr512)Si4 ]:s = 07 (D78Z]Dijklpkl78) ]:s =0 ) (268)

such that

(D12pqppqrsprsl2)874 E[ } = (D12pq,qur8Dr812)874 Fs ; (269)

Q
0000058

and respectively for the complex conjugate. By consistency, this requires for instance that
acting with further derivatives on this tensor does not permit to get back lower order
tensors with ng < s —4 in (2.64).

Through representation theory, one obtains that

ni+2ns+3ns —2s
D10,0,0,1,0,0.0 P{ongt215,0.n1,0,1,0]1 Z | (2.70)
~ [ prat1+2n2+3ns + n1—142(n2+1)+3n3 + Dn1+2(n2—1)+3(n3+1)
[0,n2+2n3,0,n1+1,0,n2,0] [O,n2+2n3+1,0,n171,0,n2+1,0} [O,n2+2n3+1,0,n1,0,11271,0}

n1—1+2ns+3n3 n1+142(n2—1)+3n3 ni1+2(n2+1)+3(n3—1) _9s
+D[0,n2+2n3,0,n1—1,0,712,0] + D[O,n2+2n3—1,0,n1+1,0,n2—1,0] + D[O,n2+2n3—I,O,nl,O,ng—f—l,O}) |Z|

for some coefficients that are not specified. So the only way to reduce ns, is to increase

ng by 1 unit. We will check this equation in the case n; = ng = 0. The restriction of the

derivative D3*|Z| =2 to the [0,2n,0,0,0,0,0] with two free indices reads

3n.[0,2n,0,0,0,0,0] | | —2s
Di]’12n—122n—1 ‘Z‘

(s+n—1)!(s+n—=3)!(s+n—5)! (=3)" - e —9(s4n
- (Zi 23— (2n—1) 2y, 2,0 2,5 2) | 2|20t

(s —Dl(s —3)!(s—5)! 2n
(2.71)
and one computes that
1
7778”%(22‘%122"_1 — (20 = 1) 2y Zp 25 7%) | 2|26
2 5)(n — 4
— ( n + )(n S + )Z78Z122’n71|Z|—25 , (272)

8n
such that

78451431 [0,21,0,0,0,0,0] | | —25
D ],Dij12n—122n71 ‘Z‘

3(s+n—5)2n+5)(s—n—4) -1

.. n
- = (Dlgijpw’“lpm) (Dropg D7) | 272 . (2.73)
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In particular we have that

1§ 3(s—4) [0,2(5—4),0,0,0,0,0] | | —
DI, 02000000 7m0 g (2.74)
consistently with the assumption that no lower order tensor is produced out of the tensor
function (2.69). We conclude therefore that the tensor

FE(0,2(5—4),0,0,0,0,0] = Do

[0’2(374):0707070»0]E{oogoos} ) (275)

is an E7(7)(Z) modular form that is in some sense holomorphic, such that its gradient
expansion is restricted to derivative of this tensor in the symmetric representations [0, ns +
2(ng + s —4),0,n1,0,n2,0], ie.

Dnl+2n2+3n3 0]fE[0’2(S,4),070’07070] S [0, no + 2(77/3 + s — 4), 0, ni, 0, no, 0] . (276)

[0,n2+2n3,0,n1,0,n2,

Using Langlands functional identity [27], one computes that the only integer values of
s > 5 for which the function diverges are

[oo800s4e] — 127?;6 [oo800d] T E[oogoo5] + O(e)
[oofoare] = 195514685;556(5) Lestees] F Elactier] 7O
Blutund = g rae ) 4 B g+ 0. @)
However, according to (2.62), the function E{oogoos] satisfies to
D?O,zo,o,o,o,o]E[oogoos] =0, fors=0,2,4, (2.78)

and it follows that the tensor FEjg(s—4),0,0,0,0,0 (2.75) is finite for all s. However, we have
argued in the preceding section that the F2V4R?* type invariant must include a VOR? type
term, which will be multiplied by the function itself. In this case the relevant Eisenstein
function diverges, and one must regularise it such that the differential equation (2.42) will

b dified t
e modified to 189

AE — :
008005] + 167 [008004}

:—mE[ (2.79)

[008005}

Such a correction is reminiscent of a 1-loop logarithm divergence of the V*R* type invariant
form factor.

2.4.2 Adjoint representation

One can also consider the Eisenstein series?

= Y (X@uux @) T, (2.80)

QEZ133|Q2=0

Q
500000

2We assume here that all the elements of Z'33 are in the E7(7)(Z) orbit of a relative integer times a
normalised representative of the continuous orbit. This property does not affect our conclusions in any
case, which only requires the generating character to satisfy to the differential equations we discuss.
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as the sum over integral charges Q € e7(7) satisfying to the constraint Q? = 0, and such that
the adjoint action of the coset representative V on Q decomposes into the anti-Hermitian
traceless matrix Aij and the complex-selfdual antisymmetric tensor X;;i; satisfying to the
constraints

) 1 .
AlpAR; = _4785;.)(“17%@ :

o 1. 1 .
A[l[kA]]l] — _ixlquXklpq + 4785LJlqursqurs :
AL, xRt ATk xlpis (2.81)

The action of the derivative on these tensors is defined as the e7(7) action

1
Diju XPUS = 125[1[1.’]?,: A 0 Dijhfy = Qéﬁxjkl]q + Zégxijkl : (2.82)

One computes for | X|? = Xijleijkl that
k .
Dijial X |* = =24 X pp36A7y) Dijpg X 111 = 105[[@- Ay, (2.83)
Dijpg DP9\ X[ = 30X, X ¥ + 361/ | X|*,  Dijpg| X" DM X|* = 12X X P X2,
which permits to derive that
DijpgDMPY X |73 = 65(25 — 3) Xijpg X P9 X | 72572 — 35071 X|72° . (2.84)
One gets therefore a solution to the equation
9
DiquDklpqg(gA,z;) = _555[5(8,4,4) ) (2.85)

for s = % One computes in general that

17
Dyjpg PP Dyt | X |72 = (32 -5 6) Dyt | X| 72, (2.86)
and the function satisfies to (2.20) and its complex conjugate for all s. The restriction of
the third order derivative to the [1,0,0,1,0,0, 1] gives

I 3 Cos
Dikp12 Dy D¥F|X |72 = *15(25 —3)(2s — 5)A% X134 | X772, (2.87)

showing that the function solves the cubic equation (2.40) for s = g These functions

satisfy the same equations as their analog Eisenstein functions defined in the fundamental
representation, consistently with the property that?

2 8
E[ =—-F

io&:n:m] s [008002] ’ [508000} = ﬁ [008004} :

2

(2.88)

2

One can also consider the restriction of the fourth order derivative to the [2,0,0,0,0,0,0, 2]
to vanish, which defines a further restriction on solutions to (2.20). In this case one obtains

| 9
D¥Dy1ij Dajpg DY X[ 72 = =5 5(25 — 3)(25 — 5)(s — AT A% X772, (2.89)

3We are grateful to Axel Kleinschmidt who provided the explicit coefficients.
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and this further restriction distinguishes the value s = 4. We have in general
A|X| 7% = 25(2s — 17)| X |72, (2.90)

and the function E7,.8..,] does not solve the 1/8 BPS equation. Using the same normalisa-
tion as [27] with a factor of 2¢(2s) in the definition of the Eisenstein function, one computes
using Langlands formula

a3 D (s—8)I'(s— g)r(s LD(2s—10)((25—16)¢(25—13)¢ (25— 11)( (45 —17)
r 2 A

[so8ooa] =" D (5 = 3)D(s — 3)D(s)T(2s — 8)C(17 — 25)C(2s — 5)C(25 — 3)¢ (45 — 16)
XE[H-sogooo} (291)
The function is singular for various values of s, i.e. 2, 2 , 6, 123, 7, and , and in particular

for s = 6, which is the relevant value to solve equation (2.20) with (2.23). One should
therefore consider the regularised series

7T5

E o = E o E Q
{6+eooooo] 8C(9) € [%ooooo} + {600000]

+O(e) . (2.92)

However, we will see in the following that this function does not appear in string theory,
similarly as the VOR* threshold function is not described by an Eisenstein series in type
IIB supergravity. Nonetheless, some components of this function should appear, as we will
argue in the following.

2.5 [F?V1R! type invariants

The F2V*R* type invariants we have discussed in section 2.2 have a natural generalisation
to higher order invariants. Considering the same chiral harmonic superspace defined in
terms of the harmonic variables u";, u”; parametrising SU(8)/S(U(2) x U(6)) [34], one can
define the G-analytic superfields

Fal; = uliu2jF§é , XA = uliu2juTk)Zidjk . (2.93)

They do not permit to define directly chiral primary operators of SU(2,2|8), because

DW= 6" 2 Darxy™ = 673 (2.94)

Chiral primary operators are annihilated by the special supersymmetry generators at the
origin, i.e.

SYEZ = 67(axﬁ) , ST 128 =W, SLWT™ =0 . (2.95)

One can enforce thls property by defining a chiral primary as
0P = (5)12 ((F;Q-Fd612> 2k ]—'[W]) o (Erstunn W) (F;Z-,me) k=1 FIW]+...
(2.96)

for an arbitrary function F of the G-analytic superfield W"4. By construction such a chiral
primary operator is never short, and defines a non-trivial integrand for the (8, 2, 0) measure.
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Because one can consider an arbitrary representative up to a total fermionic derivative, one
can as well consider the first term in (2.96) as the integrand.

So similarly as in section 2.2, we get the general class of linearised invariants for an
arbitrary positive integer k,

"16 12 [0,n1,0,n2,0] D2k—2 11711 +2n2+3n3+6
/duD D F(’LL)[07n2+2n3+2k707n1’07n2’0] F w |[0,n1,0,n2,0] (297)

ni1+2nz2+3ns 2k 4 p4
~ W[O,n2+2n3,0,n1,O,nQ,O]ﬂO,Qk,O,O,O,O,O]v R +...
n1+2ng+n3—22 2k—2 —16 12
+W[O,n2+2n3—8,0,n1—S,O,ng—4,0]17[0,21@—2,0,0,0,0,0]X[0,8,0,4,0,0,0]X[O,2,0,4,O,4,0] .
We conclude that the corresponding supersymmetry invariants admit the same gradient
expansion in

(k) * 7 _ n1+2n2-+3ns ) k [0,n242n3,0,n1,0,n2,0]
Lisz0Es20l = > Di0,m3,0m1.0.m242n3,0/E(5.2.0) £(s.2.0) ;o (2.98)
n12>0,n2>0,n3>k

for a function 5((:7)2’0) satisfying to (2.40), and k& > 2. The coupling at the lowest number of
points is then of the kind

3k (k) k[0,2%,0,0,0,0,0] __ 3k k) 72k 4 pd
D[0,0,0,0,0,%,0]‘9(8,2,0) E(s,z,o) - D[o,o,o,o,o,zk,o]5(8,2,0) F[o,zk,o,o,o,o,o] VIR +... (2-99)

In principle one could expect to have a non-trivial mixing with another class of linearised
invariant at the non-linear level, just as the one of the F?V*R* type invariant with the V6 R*
type invariant described in section 2.2. However, there is no higher order chiral primary
operator that can define a non-trivial (8,1,1) harmonic superspace integral, and we did
not find any linearised invariant with the right structure to define a possible cohomology
class as does (2.38). Therefore we expect these invariants to have the same structure as
the associated linearised invariants, i.e. to only contribute to (4 + 2k)-point amplitudes
and higher.

Independently of this assumption, the structure of these invariants requires that the
action of the derivative D;;z; on D3k5((;)2,0) does not generate lower order derivatives of the
function. This condition is precisely (2.74), and we conclude therefore that the eigenvalue
of the Laplace operator is determined in the same way as

AEL, o) = 3(k +4)(k —5)ELh o, (2.100)
such that the function satisfies to

12Djr[leirmnqu}mng((;)Z’o) = (k‘ + 2)(]{7 - 3)5§Dklpq5((:,)2,o) - (k(k - 1) - 60)5fkplpﬂjg((§,)2,0) .
(2.101)
It is therefore tempting to conjecture that

Ene x E : (2.102)

[oogoo4+k]

in the string theory effective action, and we will indeed show in section 2.7 that this function
admits a consistent perturbative string theory limit. Moreover, we will see in section 3 that
it also admits an appropriate decompactification limit.
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2.6 Wavefront set and Poisson equation source term

We have seen that there are two classes of VOR?* type invariants in four dimensions, that
preserve tree-level supersymmetry modulo the classical field equations. However, consid-
ering that the effective action already includes an R* type correction, we must take into
account the action of the accordingly modified supersymmetry transformation on the R*
type invariant itself. This is a very difficult task to carry out in practice, but one can
nonetheless show general properties on these corrections. We recall that the R* type in-
variant admits the following gradient expansion in derivatives of the function &g 4 4

12
_ n (0,0,0,1,0,0,0]
L 8,4, [5(8,4,4)] = ZD[0,0707n7070,0]8(8,4,4)‘6(8,4,4) , (2.103)
n=0

with £ 4.4 satisfying to (2.85). The first order modification of the supersymmetry trans-
formations will therefore necessarily admit the same gradient expansion in the function
Es,4,1), such that

12
§=0"+) Diigomaoneand” PO0m00d 4+ (2.104)

n=0

where the dots stand for higher order corrections. It follows that the correction at second
order will admit the expansion

5/£<8,4,4>[5(8,4,4)]
12 12
_ n (1) [0,0,0,1,0,0,0] m [0,0,0,m,0,0,0]
_/ ZD[O,O,O,n,O,O,O}5<81474>5 Z D[O,O,O,m,O,O,O]g(8a4,4)£(8,4,4)
n=0

m=0

- / Z Z (D[T(L),O,O,n,O,O,O} 5(8,474)D[T6L,0,0,m,0,0,0] 5(8,4,4)) . \I’ﬁ’n (2.105)

mn R

where the sum over R runs over all irreducible representations of SU(8) in the tensor
product [0,0,0,n,0,0,0]®[0,0,0,m,0,0,0], and \Ilﬁyn are understood to be Er(7) invariant
densities function of the fields and their covariant derivatives in the irreducible repre-
sentation R. One checks that all the appearing irreducible representations R are self-
conjugate, i.e. of the type [n4,ns,ng, ni,ne,ng, ngl, by property of the tensor product
[0,0,0,7,0,0,0] ® [0,0,0,m,0,0,0]. The F?V*R* type invariant admits a gradient ex-
pansion with non-self conjugate irreducible representations, and all its components in self-
conjugate representations do in fact coincide with ones appearing in the (8,1,1) VSR?* type
invariant. It follows that the analysis of the supersymmetry constraints on the F2V*R* type
invariant is not modified by the presence of the R* correction, and equations (2.40), (2.42)
are the exact equations to be solved by the corresponding function g,y in the Wilso-
nian action.

However, all the irreducible representations that appear in the gradient expan-
sion (2.18) are included in the tensor product [0,0,0,7,0,0,0] ® [0,0,0,m,0,0,0] for m
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and n running from 1 to twelve, and the differential equations (2.20), (2.23) must be modi-
fied in the presence of the R* type correction. Following the analysis carried out in [10, 27,
we conclude that

Alsiny = 60511 — (Esan)? - (2.106)

As explained in [30], this requires then to modify (2.20) to

1
Dz’quppqmnpmnklg(s,Lm = —9Dijkl5(s,1,1) - 58(8,4,4)Dijkl8(8,4,4) ;
iipg mnkl _ ikl 1 ikl
D" DypgmnD Esay=—9D""Eg 11y — 56(8,4,4)1) Es,a0) - (2.107)
Using in particular the tensor product
0,0,0,2,0,0,0] ® [0,0,0,1,0,0,0] = [0,0,0,3,0,0,0] B [0,1,0,1,0,1,0] B [1,0,0,1,0,0,1] & [0,0,1,1,1,0,0] D [0,0,0,1,0,0,0]
one shows that
(4Dijpg DP"™" Dkt — Dijhi (A + 24)) (5(8,4,4>)2 =0, (2.108)
whereas
(3GDjT[k,DiTmnz>pq}mn — 6\ Dtpg(A + 42) + 6, Dy (A — 120)) (Ewan)? #0.  (2.109)

We therefore conclude that no higher derivative correction in (€s.4))? can consistently
modify (2.107) without contradicting (2.106).

These properties of the source term in the Poisson equation (2.106) can also be under-
stood through the structure of the Fourier modes of these functions. In the decompactifi-
cation limit, the Fourier modes of a function are the coefficients, functions on Eg)/Sp,(4),
of 2™(9:%) with the axion field a in the 27 of the FEg(s) subgroup. We have shown in [30]
that (2.85) implies then that the associated momenta are rank one vectors, i.e. using the
cubic Jordan norm 3det (q) = trq(q x q),

gxq=0, (2.110)

consistently with the properties of the R* threshold function. If we consider the square of
Es.4,1), it admits by construction Fourier modes of momenta g1 + g2 where g1 and g2 satisfy
to (2.110), such that

det (g1 + q2) = det (q1) + trq1(g2 X q2) +trga(q1 % q1) +det (¢2) =0, (2.111)

As one can see in [30], equation (2.106) implies that the Fourier modes of the function
Es,1,1) must indeed carry momenta satisfying to the rank 2 constraint det (¢) = 0, whereas
the Fourier modes of the function £ ) are generic by construction in the parabolic de-
composition. The nilpotent orbit associated to £g .0y is indeed defined from the graded
decomposition

ereny =277 @ (gl @ eg(5)) " @27, (2.112)
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such that a representative of the nilpotent orbit is a generic element of the grad two
component in the 27.

Considering instead the string theory limit, the non-abelian Fourier modes are defined
over a Heisenberg algebra with 32 momenta in the positive chirality Weyl spinor represen-
tation of Spin(6,6) associated to Ramond-Ramond D-brane charge @, and an additional
momentum associated to the Neveu-Schwarz 5-brane charge N5. The nilpotent orbit asso-
ciated to &1 1y is defined from the associated graded decomposition

erry) 2100 @ 3207 @ (gl ©50(6,6))” @327 £ 10 (2.113)

A representative of the nilpotent orbit is defined as a generic Weyl spinor in the grad 2
component [51],

Q@ € Spin(6,6)/SU(2,4), or Q € Spin(6,6)/SL(6), (2.114)

to which one can add an arbitrary element of the grad 4 component Ns. This implies
in particular that equation (2.107) does not imply any constraint on the Fourier modes.
Equation (2.85) implies instead that @ must be a rank 1 spinor, [51]

(@Y)]es = (QTMNQ) =0, @ € Spin(6,6)/(SL(6) x R™) , (2.115)
as for example the grad 3 singlet in the decomposition

50(6,6) =152 @ (gl; @ sls)® @ 15@
32109 315V 150 ¢ 1@ | (2.116)

A generic rank 1 charge vector can always be rotated to the grad 3 component. Considering
the sum of two rank one charges, respectively in the grad -3 and the grad 3 components,
one obtains a generic rank 4 spinor of stabilizer SL(6) C Spin(6,6). All the rank four
charges defined as the sum of two rank 1 charges with a non-trivial symplectic product can
be written in this form. Therefore the right-hand-side in (2.107) indeed sources generic
Fourier modes of £y, 1. More precisely, all the Fourier modes with a negative quartic
invariant [4(Q) < 0 (belonging to the second orbit in (2.114)) are sourced by the function
5(82,171), whereas the Fourier modes with a strictly positive quartic invariant I4(Q) (belonging
to the first orbit in (2.114)) satisfy to a homogeneous equation.

On the contrary, a representative of the nilpotent orbit associated to &g . satisfies
that its third power in the adjoint representation vanishes, which according to (2.113)
implies that [51]

(@32 =(QTMYQ)TyynQ =0, Q € Spin(6,6)/(SL(2) x Spin(3,4) x R¥**1) |
(2.117)
The relation with the Fourier modes is not completely straightforward in the presence of a
non-trivial NS5-brane charge, because in that case the nilpotent subgroup is a non-abelian
Heisemberg group, such that the corresponding Killing vector
0 1 30 0

Fa = —— — =C, ks = —

= — 2.11
dac 27 Gy (2.118)
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satisfy to
(s g] = Capks (2.119)

where C,3 is the antisymmetric charge conjugation matrix of Spin(6,6). For a Fourier
mode of vanishing NS5-brane charge, k5€g o = 0, and one can define the spinor charge
Q@ such that k,Ego = 1Qa€g0, and @ must satisfy to the same algebraic equations as
the representatives of the nilpotent orbits associated to the differential equations. For a
non-zero NS5-brane charge the relevant equations are more complicated, but still involve
the Killing vector k,, to the third order in the same combination.

Let us now consider the M-theory limit, for which one considers the decomposition

erny 27V ©357 Y @l @sl)” @350 9T, (2.120)

In this case the nilpotent subgroup also generate a non-abelian Heisenberg type algebra

0 1 0 0
Kmnp = dame Efmnpqrstaqrsafbt ) E™ = % ) (2.121)
such that
[Klmnpyﬁqrs] = éemnpqrstkt . (2.122)

For a Fourier mode of vanishing M5-brane charge, k&, o = 0, and one can define the M2-
brane charge Kpmnp€q0 = 1@mnpEq,0. For a non-zero M5-brane charge k™&, , = ip™&,, the
relevant equations are more complicated, but still involve the Killing vector in a way similar
as does the corresponding nilpotent orbit characteristic equation involves the algebraic
charges. For a 1/2 BPS charge satisfying to the quadratic constraint, one obtains [52]

mnqrstu

€ Qpqrqstu = 0, anppp =0, (2.123)

giving 17 = 13 + 4 linearly independent solutions, with typical representative

1
GOmnpdy™ N dy" N dyP = qudy’ A dy® Ady® . (2.124)

The cubic constraint in the adjoint representation implies

nrstuvw

€ qrstQuu[pdgm)w = 0, €

mnqrstu

quTQStupp =0, (2.125)

that gives 27 = 21 + 6 linearly independent solutions, with typical representative

1
gqmnpdym Ady™ Ady? = dy' A(qdy? A dy® + gedy® A dy® + gsdy® AdyT) . (2.126)

The cubic constraint in the fundamental implies instead

mnrstuv

€ Amnrdst(pdq)uv = 0, (2127)

that gives 33 = 26+ 7 linearly independent solutions, such that the SL(7) M2-brane charge
orbits are either

q € SL(7,R)/(SL(3,C) x €*), or q&SL(7,R)/(SL(3,R) x R3)*2, (2.128)
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with typical representative

1

G @mnpdy™ Ny AdY” = quy' Ay Ndy®+qady’ Ay Ady +qsdy® Ady® Ay +qdy*Ady® Ady”,
(2.129)
and
1 pmnrstu_gm/n'r's't'u’ D 54
9 % 193 3 dmnrdstm/dn/r'uds't'v = Q1Q2Q3Q45757, (2130)

such that the orbit (2.128) is determined by the sign of the eigenvalue of this rank one
symmetric tensor, Iy = q1¢2q3q4. The generic sum of two rank one charges takes the form

1
gqmnpdym Ady™ A dyP = qidy* A dy? A dy? + qady® A dy® A dy® (2.131)

and is a generic solution to (2.127) associated to the second orbit (i.e. Iy < 0), and violates
equation (2.126). Therefore we confirm that a quadratic source in x4 4 is in contradiction
with the cubic equation satisfied by £ .y, Whereas it is consistent with the one satisfied
by Es11)-

Let us now argue that all the invariants of the infinite series of FZ*V*R* do not get
modified at the same order by lower order modifications to the supersymmetry transfor-
mations. By power counting, the next order correction to the R* type invariant and a
F?kV4R* type invariant can in principle contribute to a right-hand-side for the classical
supersymmetry variation of a F2¥t6V4R* type invariant. So in principle one could expect
that the function 5((:7)2’()) satisfies to a Poisson equation of the kind

(k) _ (k) (k) (k—3)
A8(8,2,0) - 3(k + 4)(k - 5)5(8,2,0) —as 5(8,4,4) (8,2,0)

k—8
(k) (k—5) (k) 2 o(k—6) (k) o(k—8—p) c(p)
— Qs 8(82,2) 5(8,2,0) — Qg (8(8,4,4)) 5(8,2,0) - Z bp 5(8,2,0) 8(8,2,0) + .. (2-132)
p=0

However, the solutions to the differential equation (2.101) admit restricted Fourier modes in
the string theory limit, satisfying to (2.117) for a vanishing NS5-brane charge. As we have
already explained, the product of two functions including non-perturbative corrections
admits generic Fourier modes in the string theory limit, because the sum of two pure
spinors can be a generic spinor. We see therefore that a source term modifying (2.101)
would necessarily involve the third order differential operator such as to source these Fourier
modes. Such a modification would destroy completely the structure of the equations, which
would reduce then to some kind of Poisson equation.

2.7 String theory perturbation theory

In order to deduce constraints on the contributions that can possibly appear in perturbative
string theory, it is important to solve the differential equations satisfied by the threshold
functions in the parabolic gauge with manifest T-duality symmetry (2.113). In this section
we will solve these equations on an ansatz function depending only on the string theory
dilaton €2? and the scalar fields parametrising SO(6,6)/(SO(6) x SO(6)). We have not
computed explicitly the decomposition of the differential equations, but using the manifest
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covariance, and the known solutions for the R* and the V4R* threshold functions [27], we
can determine unambiguously all the unknown coefficients.

We define the covariant derivative D ; on SO(6,6)/(SO(6) x SO(6)) in tangent frame,
such that a = 1 to 6 of one SO(6) and b = 1 to 6 of the other. It is convenient to define
the covariant derivative as an SU(4) x SU(4) tensor

Lo b
Dijii = 7757 1P (2.133)

with i = 1, 4 of one SU(4) and 7 = 1, 4 of the other.
Calibrating the equations on the known solutions, one obtains that

1
D€ = <s2 ~ ;s + 6) Ds6€ (2.134)
decomposes on R* x SO(6,6)/(SO(6) x SO(6)) as
1,5 17,5 3 ab\ b, (3 b
<<648¢ + 3726¢ + §0¢—DGBD )5(1‘1‘ *8¢+6 DaéD g:
<DachCDdb+< 05 + 8¢+9)D >5

(81)1»,3’5‘?2)%2)#“‘3 + <4a¢ + 2) 2Dij’%f> £

2

17
(.92 _ ?S + 6> Da857
2

1 an
<82 — 18 + 6> 'Dijkl(‘:,

2
(2.135)

1 1
32—7s+6> 88 1065

whereas

D3;E = s(s — 9)Diss€ (2.136)

gives the components in the 32 of Spin(6, 6)

1 5 5 5 i .
(( 8¢ —|—83¢, 168 — qufgppq’”s) 5f5§+3(8¢+6)plmqpk i )g s(s— 9)55% 48¢5

3., 31
<8szjq'Dqu5Dkrls + <168¢ + 86¢> QDijl>g 28(8 Q)D k]lg
(2.137)

The V4R* threshold function solves (2.134) for s = 3 and (2.137) for s = 4. One reads di-
rectly from these equations, that a solution of type e**Ep, on R* xSO(6,6)/(SO(6) xSO(6))
must be such that £p, satisfies to the quadratic equations in all fundamental representa-

tions (i.e. the vector and Weyl spinor of positive and negative chirality), unless a = —6
or a = —8. The only other solutions are therefore such that £p, is either a constant, or
solves (B.24). One finds the unique solution e~%?. For the values a = —8, the function £p,

satisfies to a quadratic equation in the spinor representation, and solve (B.30) for s = 4
(or 1 which is equivalent). For a = —6, Ep, satisfies to a quadratic equation in the vector
representation, and cubic equations in the two spinor representations, and must therefore
satisfy to (B.25). We find therefore that supersymmetry and T-duality alone already deter-
mine the V2R?* type corrections in perturbative string theory, up to three free coefficients,
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that are given in [27]

2

1 4 2 —¢
5B e =CO)ET 4 B gk 2e B g +0(e 7). (2138
2 [iooooo] C( )6 + 157‘(6 {40000] + 36 [ooooo} + € ( )
This confirms that supersymmetry alone already prevents any perturbative correction to
the V4R* threshold function beyond 2-loop in perturbative string theory.

The functions defining the F2*V4R* solve equation (2.137) for s = k + 4. Similarly
one obtains the general SO(6,6,Z) invariant solution

Ebny = e IOE 1+ AT OB ) + eI 0(7).
(2.139)
It is quite remarkable that the only solutions we get all correspond to a strictly positive
number of loops in perturbative string theory. After implementing the Weyl rescaling,
one obtains indeed that cgc) is a coefficient for a f-loop correction in string theory for
the F2*V4R* threshold function. For k& = 1 and k = 2, equation (2.137) is exact for
the Wilsonian effective action (not taking into account linear corrections associated to
logarithms in the complete effective action). U-duality therefore implies that g, ) must
be an Eisenstein function as in (2.102). Assuming that our argumentation in the preceding
section is correct, and that equation (2.137) is satisfied for all k, we arrive at the conjecture
that the F2*V*R* threshold function is defined by the Eisenstein series E[ 8001+ for all k.
It is rather remarkable that this coupling would only get three corrections in perturbation
theory, at 1-loop, k + 2-loop and 2k-loop.
This Eisenstein function diverges precisely for k = 1, corresponding to the F2V4R*
threshold related to the VOR?* threshold function by supersymmetry. One must therefore
consider the regularised Eisenstein series

16 » _ 16 1062 C15¢05) . 10p, L se _
63E[008005] - 636 E[Sooog] 4 ¢6 +7-‘-6 2¢E[4ooog] 85E[sooog] ‘324
+ ge_quE{OOoog] + 0(6_674)) ) <2140)

Here we have fixed all the coefficients by consistency with (2.77) and (2.138). The logarithm
of the dilaton indicates a divergence of the V*R* form factor into VOR* in supergravity.
Note nonetheless that the 3-loop contribution in the last line violate T-duality parity in
0(6,6,7), and the string theory effective action must include the same function with oppo-
site chirality. Because it is a three-loop contribution, it cannot come from the completion
of the R* type invariant and it must appear as a solution to equation (2.134) for s = 6.
Considering the general SO(6, 6, Z) invariant solution of (2.134), one finds indeed
Esan = e 1+ C_%e_(QSH)d’E o ] + cp22s71D?

0000
s-L
2

- ch_8¢E[ + 6362(8_9)¢E[ (2.141)

0 o
08-200 0000
0] 3'3]

where the coefficients ¢, are constants that would correspond to ¢-loop contributions for
the VOR* threshold function in string theory. Note that the first two terms do not make
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sense in perturbative string theory. The corresponding Eisenstein function £ [ 508000 | InCludes
generically all these terms, and therefore cannot define the string theory threshold function,
consistently with the property that (2.134) is corrected by a source term (2.107). However,
the three-loop contribution is not affected by the source term, and one can take seriously
the last contribution, which is precisely the one required to restore O(6,6,7) invariance
for s = 6.

This is indeed confirmed by the expression obtained in [33] for the VOR?* threshold
function, and using these results we conclude therefore that the exact threshold function
for the VOR?* coupling is defined as

32 -

B = Esan + 759 osees] (2.142)
where the function &g ;1) solve the differential equation
4 4 2 35/1
Ag(s,l,l) = _605(8,1,1) - (E[ﬁogooo]) + ? §E{§ogooo] (2.143)
A A 1
Dijpa D™ Dinnaisa) = = IDijuilsany = 5B 5 1 Pighi B4 .,]
35 1
poE
g ik <2 [2ogooo]> ’
g . o 1 y
DUPQquman”klg(&Ll) = _gpzjklg(&l’l) - §E[§ogooo DUklE 508000]

35 (1
=pik( -E :
o (2 [2oSooo]>

Here the anomalous right-hand-side is determined such as to coincide with the one obtained
in [33] for the complete function E( ;). These coefficients can also be directly computed
from the properties of the Eisenstein functions and the structure of the differential equa-
tions [53].

3 Supergravity in higher dimensions

In this section we will consider the extension of the results of the preceding section in five,
six, seven and eight dimensions. We will see that the two V6R* type invariants both lift
to higher dimensions, even if they cannot be defined as harmonic superspace integrals in
the linearised approximation in general.

3.1 N =4 supergravity in five dimensions

Let us recall in a first place some properties of maximal supergravity in five dimensions.
The scalar fields parametrise the symmetric space Egg) /Sp(4).. We use i,j = 1,...,8 as
indices in the fundamental representation of Sp(4), and Q% defines the symplectic form
with the normalisation Qiijk = 5; The covariant derivative in tangent frame Djjy; is a
symplectic traceless rank four antisymmetric tensor in the representation [0, 0, 0, 1] of Sp(4).
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3.1.1 Linearised V°R* type invariants

In five dimensions there is only one kind of 1/8 BPS harmonic superspace integral that one
can define [41]. For this purpose, one considers Sp(4)/(U(1) x Sp(3)) harmonic variables
(uls, u";,ub;) with r = 2, ..., 7 in the fundamental of Sp(3), and the decomposition

sp(4) =26 o(u(l) @sp(3))” @ 6W

42145V @ 145 @ 14 . (3.1)
One defines the G-analytic superfield W™t in the [0,0, 1] of Sp(3)
Wrst — uliurjusjutkLijkl , (3'2)
which satisfies the constraint
ut DLWt =0 . (3.3)

Following the same reasoning as in section 2.1, we consider a general monomial of W’
in an irreducible representation of Sp(3). In this case we obtain equivalently that the
monomials are freely generated by W in the [0, 0, 1], the elements

WrPWSr Q Qe (3.4)
in the [2,0,0],
WrPAW s W (3.5)
in the [0,0, 1], and
writiw s, wrlvwwle, o “symp trace” ,  WISEWPLIWE LW (3.6)

respectively in the [0, 2, 0] and the singlet representation. The general linearised invariant
takes therefore the form

28 [2n2,2n4,n1+n3] 4+n1+2n2+3n3+4ng+4n)
/du'D F<u)[2n3+2n4+4n2,2n2,2n4,n1+n3] [2n2,2n4,n1+n3)
_ pn1+2n2+3n3+4ng+4n) 6 pd
- L[2n3+2n4+4n2,2n2,2n4,n1+n3] (v R+ ) +.. (37)

The structure of these linearised invariants suggests that the complete non-linear invariant
admits the following gradient expansion

r [5 ] i Z n1+2n2+3nz+4ng+4n) < £[2n3+2n4+4nﬁl,2n2,2n4,n1 +n3)
[CRINACHDN I [2n3+2n4+4n/,2n2,2n4,n1+n3] (4,1)~(4,1) :
n1,M2,13,14,1)

(3.8)
The consistency of this ansatz requires that the function £, ;) must be an eigenfunction
of the Laplace operator, and that its third order derivative restricted to the [0,2,0,0] is
proportional to its second derivative in the same representation. This linearised analysis is
consistent with the one of the (8,1,1) type invariant in four dimensions, and we are going
to see that the relevant equation is

1
Dijpg D" DygjEiany = ZDijkl<34 +A)Euy - (3.9)

However, the (8,2,0) type invariants cannot be defined in the linearised approximation
through a harmonic superspace integral, and we shall instead consider the uplift of the
general invariant to five dimensions.
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3.1.2 Decompactification limit from four to five dimensions

We are therefore going to solve the differential equations (2.40) and (2.143) for a function
depending only of the Levi subgroup R} x Eg () of the parabolic subgroup associated to
the decompactification limit, such that

erin =27 @ (gl Beg) @277, 5621V 021V e2TVe10 . (3.10)

For this purpose we use the same conventions as in [30], such that the coset representative
in E7(7)/SU(8). is defined as

63(;5 0 0 0 J L KaLaP

1 a %tJKLaKa %tKLpa
Y — 0 6¢VL']'I 0 0 0 (5}] t[JKaK %t[KLaKCLL (3 11)
| o 0 eV 0 0 0 &4 al T
0 0 0 e3¢ 0 0 0 1

where V;jl is the coset representative in Eg) with the Sp(4) pair ij being antisymmetric
symplectic traceless and the index [ in the fundamental of Eg). 1k is the Eg) invariant
symmetric tensor normalised as in [30]. We have already computed the decomposition of
the cubic equation (2.21) in [30], which is

1 9 3
<648¢ + 26¢2+26¢—4A> Eeany =—= 0¢<98(811)+ 8(844)> (3.12)

1 7 1
(DiquqursD”kl + Dz’jkl <488¢2 + 8¢ + )—i—DZ]quklpq (48¢ + 3)

1 1
5kz<1233¢+ 8§+68¢—4A)>5<8,1,1)— (1252’313 +D;j ><98(811)+ 5(844)>

where

k 1 Iy
o = olko) — ga O, A= DD, (3.13)

and indices are raised and lowered with the symplectic matrix €2;;. Because of the Weyl
rescaling required to stay in Einstein frame, the relevant radius power in the decompactifi-
cation limit for a V?*R* threshold function is such that £g, = e~ (6+2M)9€L  and because

we are interested in the constraint on the V6 R* threshold function, we use the ansatz
Esiny =€ 2851,  Esam =€ s, (3.14)
where € 1) and ) are functions on Fgg)/Sp(4).. Using this ansatz, one derives
Ay = —18E41) —E2. (3.15)

and
1
(Diquppqmprskl + 2Dz‘jkl)g(8,1) = _Z,Dijklg(g,zl) . (316)
These equations are satisfied by the 1/8 BPS threshold functions in the Wilsonian effective
action, but the U-duality invariant function appearing in the 1PI effective action satisfied

to anomalous equations with additional terms linear in £y 4 in the right-hand-side [33].
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We shall now consider the uplift of the F2¥*V*R* type invariants, but for this purpose it
will be more convenient to consider directly the decompactification limit of the Eisenstein
function E[y800r44]- We shall only consider the term with the correct power of the com-
pactification radius 7 to lift to a diffeomorphism invariant in five dimensions, as computed
in appendix B.1,

1
aT(k+ I
/d%ﬁE{ ]V4+2kR4—> 2Dk + 5)

I S B) — 442k p4
00800k-+4 F(k+4) /d xﬁE[ ]v R . (317)

0
ooook-&-%

We conclude in this way that the threshold function E(l'” defining the F?*V4R* type in-
8

variants satisfies to

8 8

2 .
Ag(g) =32k —5)2k+ 7)5? , D?Q,O,O,l}gg) =0. (3.18)

It follows from representation theory that such equations are indeed implied by (2.136),
and this explicit example permits to determine them uniquely.
We therefore obtain that the threshold function is the regularised Eisenstein series

. 5 .
(1)
=10 1
£ = 108 anteg ) (3.19)
such that the exact VOR* threshold function E@,1) is
. 5 .
E1) = €60+ 10 P ety | - (3.20)

108

The series E[,8., | admits a pole at s = % proportional to the series E[%ogoo | defining the
R* threshold, exhibiting that the R* invariant form factor diverges at two loop into the
VOR* form factor associated to the same function. This is in agreement with [33], where
the explicit coefficient is computed.

3.2 N =(2,2) supergravity in six dimensions

We shall now discuss these invariants in N' = (2,2) supergravity in six dimensions. We
recall that the scalar fields parametrise in this case the symmetric space SO(5,5)/(SO(5) x
SO(5)).

3.2.1 Linearised invariant

In the linearised approximation, the theory is defined from the scalar superfield L¥% in
the [0,1] x [0, 1] of Sp(2) x Sp(2), where 4, j and 7, j run from 1 to 4 in the fundamental of
the two respective Sp(2). One can define a VOR* type invariant by considering harmonic
variables ul;, u";, u?; parametrising Sp(2)/(U(1) x Sp(1)) associated to one Sp(2) factor,
with r = 2,3 of Sp(1), such that

sp(2) 220V @(u(l) dsp(1)? @2, 421V e20 410 . (3.21)
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One can in this way introduce the G-analytic superfield [41]

W =yt LY (3.22)
that transforms in the fundamental of Sp(1) and as a vector of SO(5) = Sp(2)/Za, and
satisfies to the 1/8 BPS G-analyticity constraint

ut DW= 0 (3.23)

A general polynomial in W% decomposes into irreducible representations of Sp(1) x Sp(2).
Similarly as in lower dimensions, one shows that the latter are freely generated by W74
itself in the [1] x [0, 1] of SU(2) x Sp(2), the two quadratic monomials

WrIWs;, W WL (3.24)
in the [2] and the [2, 0], respectively, the cubic monomial
W (3.25)
in the [1] x [0,1], and the two quartic monomials
W2 TW, = <00 W W I W Wi W W I WPW, (3.26)

in the [0,2] and the singlet representation, respectively. One concludes that the most
general monomial is labeled by 6 integers, such that
dquDlGF(u)[m +2nz+ns][2ny,n1+n3+2n4] 4+n1+2n9+2n,+3n3+4ng+4n/)
[2nf4+2n3+4ng+4n),n1+2n2+n3][2n),n1+n3+2n4]  [n14+2n2+n3][2n),n1+n3+2n4]

_ Ln1 +2n2+2n,+3n3+4ng+4n))

6 P4
[2n’2+2n3+4n4+4n2,n1+2n2+n3][2n’2,n1+n3+2n4]v R +... (327)

The linear analysis therefore suggests the form of the nonlinear invariant

‘C(4,110)[5(4~1=0)] (328)
_ nl—Q—2ng—&—2n'2-|-3n;»,+4n4-|—4nﬁ1 & £[2n/2+2n3+4n4+4n'4,n1+2n2+n3][2n/2.n1+n3+2n4]
- [2nb+2ng+4ng+4nl ny+2ng+ng)(2nh,ny+ng+2ny] 7 (4,1,0)7(4,1,0)

n17n2»n'2

7137”47711;

+ ,Dn1+2n2+2n’2+3n3+4n4+4n:1 c £[2n’2,n1+n3+2n4][2n’2+2n3+4n4+4n§1,n1+2n2+n3]

[2nh n1+n3z+2n4][2nh+2n3+4ng+4nl) ,ng+2ng+ngz] 7 (4,1,0)7(4,1,0)
nl,n27n/2
’
MN3,M4,Ny

where we consider the possibility of a mixing between the invariant £, o, with its conju-
gate obtained by exchanging the two Sp(2) factors, according to the observation in [31] for
the VAR* type invariant in eight dimensions.

From this structure one deduces that supersymmetry requires the function &, to
be an eigenfunction of the Laplace operator, and to satisfy equations of the form

Dh o paro X Dhopaferns  Phaon€are X Do o1€u (3.29)
as well has a highest weight constraint
D[golfo],[o,zk]g(zx,l,o) =0, (3.30)

for some integer k. We will see in the next section that the standard VéR* type invariant
threshold function indeed satisfies to these equations for k£ = 2.
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3.2.2 Decompactification limit from five to six dimensions

We are now going to solve the differential equations (3.16) and (3.18) for a function de-
pending only of the Levi subgroup R x SO(5,5) of the parabolic subgroup associated to
the decompactification limit, such that

eo6) = 160 @ (gl @s0(5,5))” @167, 2721072 @ 16" & 19 . (3.31)

The covariant derivative on Eg)/Sp.(4) acting on such a function takes the block diago-
nal form ) ) .

Dy7 = di -0y, D —1 Dijyg— —1 . .32

27 d1ag<68¢,, 16+ 5, 1694, D19 13 10%) (3.32)

To check the differential equations (3.16) and (3.18) we need to compute the block diagonal
decomposition of the higher order differential operators. In order to do this computation
we consider a general ansatz and determine all the free coefficients by consistency with the
various differential equations displayed in appendix A. We obtain in this way

1 1 1 1 1 1

2 : 2 2 2

Dy, = dl&g( @6¢ + §8¢ , Dig + §D16 <68¢ + 1) + E]llﬁ (628¢ + 3(%,) ,
9 1 1 1.,

and

1 3 ) 1
3 _ 3 3 2, %9, _ =
D5, —dlag<638¢ + 166¢ + 48¢ 2A,

3 1 3(1 1 1 1
3 2 2 3 2
3 1 3/1 5\ 1, (1 1
Dy — 5Dif (60¢+2> +Dyg <4 (628¢2 + a¢> +2> —zTo <638¢3+4a¢2+a¢—m>>,
(3.34)

where A = TrD{. In order to determine the constraints on the threshold function is six
dimensions, we consider an ansatz with the appropriate power of the radius modulus e3¢
such as to compensate for the Weyl rescaling to Einstein frame, i.e.

5(&4) =€ ¢g(4’272) 5 6(&1) - 6_12(;55(471’0) . (335)

The singlet component of (3.16) gives directly the Poisson equation
Ag<4,1,0) = _5(3,2,2) ) (3'36)

which is indeed consistent with (3.14). Working out spinor and the vector equations, using
the Poisson equation (3.36), one obtains similarly

3 1 3 1
<D1% - 4D16)€(4,1,0) = _ZD16E(E,2,2>’ <D1?6 - D10> 5(4,1,0) = _7D108(i272>'

2 4
(3.37)
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The only Eisenstein function that solves this homogenous equation (for €45, = 0) is the
Eisenstein series E{o%og}, but its expansion in the string theory limit is inconsistent with
perturbation theory. As is computed in appendix B.3, one has moreover

D (D" Dy Pe Do) \[0,4}12[0%00] =0, (3.38)

which defines an integrability condition for the function to decompose into the sum of
two functions satisfying to (3.30) and its conjugate obtained by exchange of the two Sp(2)
for k = 2.

Let us now consider the differential equation (3.18) for the function & (k)

1
L Eg
8
the F2*V*R* threshold function in five dimensions. Diffeomorphism invariance in six

defining

dimensions requires an ansatz of the form

(k) _  —2(k+5)p (k)
5% Bs € ( 5% Ds’ (3.39)

and using this ansatz, one obtains from the singlet component of (3.18) the Laplace equa-

tion
k)

Aéék) = g(k +3)(k—1)E (3.40)

00l

where we removed the D5 label for simplicity. The spinor and the vector equations give then

1 —1)+24 1 —1
D3 3(k+3)(k—1)+ Dy 5§k>:_3(k+ ) D2 — 5(k +3)(k )116 £
16 8 4 16 8
k k—1
e = EXIEZ Ly o0, (341)
8 8

where we used that the even and odd powers of Dy lie in different irreducible represen-
tations of Sp(2) x Sp(2), and must therefore vanish separately. The unique Eisenstein
function satisfying to this equation is

S5}
00—
=
=

X E[ ] 5 (3.42)

000, °
k+3

consistently with the decompactification limit of the five-dimensional function

=

- T(k+3) _
= 20 (2% + T)e 2@+ L T2 T ) k1000 3.43
] g( ) F(k+ %) [oook+3] ( )

[oogok+%

We conclude therefore that the exact VOR?* function is defined as

E(O,l) = 8(4,1,0) + 5(4,0,1) + @E[oooﬂ , (3‘44)

where 5(4,170) satisfies to (3.37), and to an anomalous Poisson equation with an additional
constant source term. This function is consistent with [33], where the second Eisenstein
function appears with this normalisation, and the 2-loop five dimensional threshold function
must indeed solve (3.37), because the equation is parity invariant with respect to O(5,5).
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3.3 N =2 supergravity in seven dimensions

None of the VOR?* type invariants can be defined in the linearised approximation as har-
monic superspace integrals in seven dimensions. We will therefore consider the uplift of
the four-dimensional invariants in the decompactification limit. In seven dimensions the
scalar fields parametrize the symmetric space SL(5) /SO(5), and the covariant derivative D;;
transforms as a symmetric traceless tensor of SO(5), with i,7 =1,...,5 of SO(5). We con-
sider therefore the parabolic subgroup of E;(7y of semi-simple Levi subgroup SL(5) x SL(3)
associated to the decomposition

eren ~ 5(—6)@ (3 2 5)<,4)@ (:—)’ ® ﬁ)(—z) @(g[l@ sl3® 5[5)(0)@ (3 ® 10)(2) sy (3 ® S)(‘l) &) 5
56=3"" 010V o (305) o (Be5)" 010" ©3° . (3.45)

We will use the same conventions as in [31], where the decompactification limit of equa-
tions (2.40) and (2.143) is already discussed in details. We consider the ansatz

5(8,1,1) = 6_36¢5% ) 5(8,4,4) = 6_18¢5(4,2) ) (3-46)

with 5% and & 5 defined on SL(5)/SO(5), and the appropriate power of the volume mod-

ulus e3¢ required by diffeomorphism invariance in seven dimensions. The 3® component
of the equation reduces to the Poisson equation

42

A& =2DDE = 5 - ELy - (3.47)

1
8

ool

Using this equation in the (3 ® 5)® component of (2.143), one obtains

.1 . 1053 . 177 s 1/1 .
kp lpJ ko J J J — J J 2
<DZ D' Dy + 52)Z Ds 100 D7 + 500(51)5; (1062 D; >€(4’2) . (3.48)

Using moreover these equations to simplify the 10 components, one obtains

3
5

ey 1. ,
st (Dﬂ,,pp” - 7—2)]1” + iaﬂ)gé . (3.49)

[ 20 ]

1
8

i j 3 j
(623[ w D7, DPy + 17323[ Uﬂ)%)f;

The solution to the homogenous equation (with £,y = 0) can be written as the Eisenstein
function E[3’0,O7%], using the formulae of appendix A.5.
We consider now the F2*V*R* threshold function, with the ansatz
Elthy = € OFTIIED (3.50)
8
Appropriate linear combinations of the grad 6 and 4 components of (2.40) in (3.45) give
the two equations

1 . X 1 2 . 2 1
<D@-’“Dk’1>ﬂ+2DﬁDk3>8§“=( GR(Th—+20) +75 5 3k(k+5)( k+5)5q_5m>g(l,€)
8

400 125 Y40
4k +5

3k(k +5)(2k + 5)

2 25

; 1
kDD EY = (k; 5 — 25§A> g,
8 8

(3.51)
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For k > 1 we conclude that the function must satisfy to the quadratic equation

, 4k o 3k(2K o
DIDEY = 80 Spig 4 3Kk 15) — Ssigw (3.52)
8 8 8
such that 6E(% 4 5
M? = (5+)5§“> . (3.53)

One can then check that all the other equations implied by (2.40) are indeed satisfied
provided that (3.52) is. This equation is satisfied by the Eisenstein function Ey,, 5.0
which appears in the decompactification limit of the corresponding Eisenstein function on
E7(7)/SUC(8), ie.

3
_ 2T (k+32)
L R (( 5) o 6(k+5)6 2

I'(k+4) 0,0k+3,0 T+ (3.54)

[oogook+4
where the Eisenstein series is normalised with an extra 2((2s) factor with respect to the
Langlands normalisation. We conclude therefore that the exact V6 R* threshold function is

5%
378

where 55 is a solution to (3.47), (3.48), (3.49) in agreement with [13].*

Epo 1,05 (3.55)

IR

E(O,l) - gé +

3.4 N =2 supergravity in eight dimensions

We shall now consider the oxidation of the seven-dimensional VOR* and F?"V*R? type
invariants to eight dimensions. Because there is a 1-loop divergence in eight dimensions,
the exact R* threshold function differs from the Wilsonian effective action function. In
the dimensional reduction, the divergence appears to be absorbed into the infinite sum of
Kaluza-Klein states over the circle such that the function is finite in seven dimensions, but
involves a logarithm of the radius modulus in the decompactification limit [42]. In order
to consider the non-analytic terms in eight dimensions, we will take these logarithms into
account in the decompactification limit.

We shall use the same conventions as in [31], i.e. the complex scalar field 7 parametrises
the coset representative v’ € SL(2)/SO(2), with o, 8 = 1,2 of SO(2) and 4,5 = 1,2 of
SL(2), whereas the five real scalar fields ¢ parametrise the coset representative V¢; €
SL(3)/S0O(3), with a,b = 1,2,3 of SO(3) and I,J = 1,2,3 of SL(3). The corresponding
covariant derivative in tangent frame are then traceless symmetric tensors D,z and Dgy,
respectively. In the decompactification limit, one writes the SL(5)/SO(5) coset element in
the parabolic gauge

—3¢,, 1l 0
e >%u

V= J , 3.56
< e2¢>‘faKa]K e2¢>‘faJ ) ( )
associated to the graded decomposition

sl =2 (203) Y a(gh @slhdsk)” e (223) . (3.57)

4Note that the normalisation of the Eisenstein function Eo,0,5,00 does not include the additional factor
of ¢((2s — 1) as in [13].
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In this way one computes that the covariant derivative over SL(5)/SO(5) in tangent frame
acts on a function of ¢, 7,t as [31]

1 1
D5 = diag (—%a¢5§ - D", %a(f,(sg + Dab> : (3.58)

One computes that the higher order derivative operators obtained as products of D5 in the
5 of SL(5) decompose similarly as

1 3 1
D52 = dlag (DQB (108¢ + 4> <4008¢ + 8¢ + DW§D75> (55,
1
DDl + Dab< Dy + > + <9008¢ + 46¢,> 53) , (3.59)

and

. 1 9
D53 — d1ag<4Da <102 8¢ + 08¢ + Z + QD’Y(;D'WS)

1 1 s( 1 b
8(1038¢ - Oa¢2+§a¢+6m§m <a¢+1>—zpa,,p )55,
D,D.ADL + DD i8 +1 +1D — 92+ 18 +§
a c d a c o) 3 a 102 1) 0 0] 4
p (L gy Lo Lo _op, pes)s (3.60)
s\ 1539 T 1g0% T 2% af al: '

We can now solve equation (3.48) in the docompactification limit, with £ 1 (¢, 7,t) and [13]

Eu = ¢ (2B (7) + Epg 1(8) — 20m(6 — o) ) (3.61)
where ¢g is a constant that depends on the renormalisation scheme. Using the property that

~ 1 27 .
Da,cDbcE[;o} (t) = —4Pa E[ o () + ?5(2, 2Dag DY Epy)(r) =, (3.62)
one shows that the general solution to (3.48), as a function of ¢, 7 and ¢ takes the gen-

eral form

(@00 = <12 (Fig (1) + Foa®) + 3B By g0+ T (Er) + 5 )

12
107 7r> 1007r

16— g0) <2E[1 (1) + B (1) +

&1
8

@-0?), G0
where Fy(7) and F4 _9(t) are solutions to

AFpy(r) = 12F (1) = (Epy(r)*, AFjg(t) = 12F) 9(t) — (Eps 1(t)*,

. 49 . 3 . 1.
Do DDy Fia,—)(t) = — D Fia, 9 (t) — 0abFia,—2)(t) = 5Bz g ()Dav By (1)

16
1 1 - T A 2
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Here the notation is used to emphasize that these solutions are defined modulo the homo-
geneous solutions Ejy (1) and Eyy _g(t), respectively, as one can see using the formulae of
appendix A.6. Note nonetheless that these homogeneous solutions are inconsistent with
the string theory perturbation expansion, and the exact threshold function is uniquely
determined by these equations and consistency with string theory [26].

The structure of the threshold function exhibits that there is a 1-loop divergence of the
R* type invariant form factor proportional to the VOR?* type invariant. This implies the
presence of an addition renormalisation scheme ambiguity in the definition of the analytic
part of the effective action. It appears that the renormalisation scheme used in [13, 26],
cannot be obtained by simply neglecting the terms in ¢ — ¢, but one finds nonetheless that
the threshold function only differs by terms proportional to the linear and the quadratic
term in ¢ — ¢y, i.e.

N . . 1. . T » 197
5% (1,t) = .7:[4] (1) + .7:[47_2} (t) + gE[l] (T)E[%’O}(t) + 13 <E[1] (1) + 12)
s ~ ~ o

Let us now consider the oxidation of the F?*V*R* type invariants, i.e. solve the dif-
ferential equation (3.52) for a function of the form e_(10+2k)¢5(f)(7, t), as required by dif-

8
feomorphism invariance in eight dimensions. One obtains straightforwardly

2D, DVEN (1,1) = (1 + k) (2 + k)EV (7,1),
8 8

4k 24+ k)(14 2k
DaCchbg(lk) (7_’ t) — (5 —i1_2 )Dabg(lk) (7_’ t) + ( + )é + )
8 8

SEW(r,t).  (3.66)
8

Using the results of appendix A.6 one obtain that the solution can be written in terms of
Eisenstein functions as

EX(1,t) o Ejjyo)(T) Efg ot (1) (3.67)

8

consistently with the decompactification limit of the SL(5)/SO(5) Eisenstein function [31],

2m2¢(2k + 2)
(2k +3)(k + 1)

k2 (1) Bk +0(e ™) (3.68)

Ejo,043,0) = 20(2k + 5)((2k + 4)e™ 690 4

Vl(k+2) o—2k45)
2T (k + 3)

oSk E[k+ 5.0 (t)

2

The sum of the two functions reproduces correctly the threshold function obtained
in [13, 26].
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A E44) Eisenstein series, and tensorial differential equations

In this appendix we collect the differential equations satisfied by the Eisenstein functions
that are relevant in the analysis of BPS threshold functions in string theory, and their
related coadjoint nilpotent orbits. We write them in terms of the covariant derivative
in tangent frame valued in the Lie algebra in some particular representations, which are
specified by their dimension.

The Eisenstein function in the adjoint representation is associated to the nilpotent orbit
of Dynkin label [4o8000.], With Dg Dynkin label [.,8o00.0 ], and satisfies in general to the
differential equation

(DFiUk’"D) (DFlpq]TD) E{ ] = —0[ (DFklpq}D) (2s(2s — 29) + 48)E[ So00s] - (A.1)

o
00000058 00000058

For the following two special values of s, the function is associated to lower dimensional
nilpotent orbits, and satisfies moreover to

T¥D(DTy1D) Ef

000000

(DI D) E[ o

000000

| =—168T;DE[ ;.

)
000000 3 }

o

0. (A.2)

ot

A.2 E7(7)

The Eisenstein function in the adjoint representation is associated to the nilpotent orbit of
Dynkin label [,.8000], With A7 Dynkin label [2000002], and satisfies in general to the differential
equation

D%E[ So0s] = <S(25_17)+6>D56E[ . AR =252s—1N)B[ - (A3)

Q Q
500000 2 500000] SOOOOO] 800000

For the following two special values of s, the function is associated to lower dimensional
nilpotent orbits, and satisfies moreover to

Dii33B s 50, = ~20D1ssE] 1
9
D36 B 0] = 3 156 E 4 5,00] - (A4)

The Eisenstein series F[,.8.0.] 18 generated by a character satisfying to a stronger quartic
constraint (2.89) also associated to a lower dimensional nilpotent orbit, but does not itself
satisfy this equation [53].

The Eisenstein function in the fundamental representation is associated to the nilpotent
orbit of Dynkin label [,48002], With A7 Dynkin label [0200000] and its conjugate, and satisfies
in general to the differential equation

D1333E[ = s(s — 9)D133E[ e AE

[3] o
000008 000008 {00000&'

} = 38(8 — 9)E{ (A5)

00800s]
The function moreover satisfies to highest weight representations constraints for integral
s, and is associated to lower dimensional nilpotent orbits for s = 2 and 4. The relation
of these Eisenstein functions with nilpotent orbits can be summarised in the following
truncated closure diagram 3 [35].
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166
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154
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134

Figure 3. Nilpotent orbits associated to Eisenstein series in the E7(7) closure diagram.

The Eisenstein function in the adjoint representation is associated to the nilpotent orbit
of Dynkin label [,z |, with Cy Dynkin label [2,0,0,0] [54], and satisfies in general to the
differential equations

1
D237E[ . 1 ==(s—5)(25s —1)DyrE

oogoo] o 2 ] ’ AE

} :25(28—11)E[ s } . (A6)

S S
{OOOOO [OOOOD 00000

The function is associated to the next to minimal nilpotent orbit for s = % and to the
minimal nilpotent orbit for s = 1. However, there is a 1-parameter family of Eisenstein
functions associated to the next to minimal nilpotent orbit. It is the Eisenstein function
in the fundamental representation, that satisfies to

<D237 _ (28(836) + g) D27> E[Sogoo = (3—1s) <D227 _ %s(s — 6)]127> E[Sogoo K
(A.7)
and its third order derivative restricted to the [2,0,0, 1] of Sp(4) vanishes. It is functionally
related to the Eisenstein function in the anti-fundamental representation at 6 — s, and
3

reduces to the unique Eisenstein function associated to the minimal nilpotent orbit at s = 3.

A.4 S0O(5,5)
The Eisenstein function in the adjoint representation is associated to the nilpotent orbit of

Dynkin label [omg], with Cy x Cy Dynkin label [2,0] x [0,0] and [0,0] x [2,0], and satisfies
in general to the differential equations

DL gy = Dy DR = D,
ABT o =255 =D (A.8)
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The function is associated to lower dimensional nilpotent orbits for s = 1, % The Eisenstein
function in the Weyl spinor representation is associated to the largest next to minimal
nilpotent orbit, and satisfies in general to the differential equations

13s(s —4) 4 24 3(s —2) 5s(s —4)
<D136 - 16 Dlﬁ)E[OOOO] =1 Dy — —1g L E[Oooo] ,

s(s—4)

D}HE; g=—110F .. A9
10 [ooos] 4 10 [ooos] ( )
It is functionally related to the Eisenstein function in the conjugate representation at 4 —s.
The Eisenstein function in the vector representation is associated to the smallest next to

minimal nilpotent orbit, and satisfies in general to the differential equations

2 s(s —4) 3

D16E[ = ]].16E[ o] , D10E[ o} =(s—1)(s— S)DloE[ o]. (A.10)

0
500 4 500 500 500
o o o o

A5 SL(5)

The Eisenstein function in the adjoint representation is associated to the nilpotent or-
bit of weighted Dynkin diagram [2,0,0,2], and depends on two parameters. Weyl group
symmetry implies functional relations between the functions

E[S,t70,0] X E[l—s,s—l—t—%,O,O] x E[t,O,O,g—s—t] X E[s+t—%,070,2_t] ’ (All)

and the former satisfies to the differential equations

2D[ [k,Dﬂp,Dpl}E[s,t,o,O] + TD[ [ij]l]E[s,t,o,o]
i (2s+4t—5 2s+4t —5\% 3\ .
:5[[k (5D]]prl] + <<5> _ 4)1)]]”

25+ 4t — 5 ((2s +4t —5\° ]
g () ) e

, 2s+4t—5 . 3(2s + 4t —5)2 252 —25—3\ _
(Dzk'Dkl’Dl]’ + fpzkpkj — < ( ) + )Dzj) Eist00

400 8

2s +4t — 5 (9(2s + 4t — 5)? :
= 160 < ( 5 ) — 452 + 4s — 9> (5; E[S,t,O,O] ; (A12)
as well as to the Laplace equation
3 5 15
AE[s,t,O,O] = S(S — 1) + %(28 + 4t — 5) — Z E[s,t,(),()] . (Alg)

The antisymmetric tensor Eisenstein function is associated to the next to minimal nilpotent
orbit, and satisfies to the differential equation

4s — 5
20

3s(2s — 5)

Dikpkj E[o,o,s,o] = 25

D,L] E[O,O,S,O] + 5‘3 E[O,O,S,O] ) (A14)
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whereas the vector Eisenstein function is associated to the minimal nilpotent orbit, and
satisfies to both

3(4s —5) 25(25 —5)
20 25

4s — 5 5(2s — 5
T(s[[ DJ] ] E[S 0,0,0] — (50)65} E[S,O,O,O] . (A.15)

k . .
Dz‘ ij E[s,o,o,o] = - D E[s 0,0,0] 5? E[s,o,o,o] 5

D[z[kD]] d Es ,0,0,0] =

A.6 SL(3)

There are only two nilpotent orbits of SL(3), the general Eisenstein function satisfies to

2% + (s 4+ 1) (2t — 3) + 2 5 —t)(4s + 2t — 3)(2s + 4t — 3
DBy = (0@ -3+ D3 Ejs 4 + (s =1 i )]13E[s,t]
6 108
2(2s% + (s +t)(2t — 3)
AE[Svt] - ( 3 )E[s,t] ) (A16>
and the Eisenstein function associated to the minimal nilpotent orbit satisfies
4s — 3 s(2s — 3
D32E[S70} = — D3E[870} + (7)]13E[570} . (Al?)

B Some additional computations on Eisenstein series

B.1 FEg() Eisenstein series in the fundamental representation

In the decompactification limit, the series definition (2.59) of the Eisenstein series E[qo8o0s]
as a sum over the rank 1 charges in the 56 or Ey(), decomposes into the four compo-
nents (3.10) p°,p’, qr, qo of grad —3, —1, 1, 3 respectively, with the rank one constraint

1
2K

1
St arax = qr’, " Ptpap® —play =6qp®,  Strxp’p™ =pqr.

2
(B.1)
The E7(7) invariant norm then reads

1 1 2
Z(F)z = b (QO +a’ qr + 2tIJKaIaJpK + 6t1JLaIaJaLpO>

2
+ e2¢ + €_2¢‘Z(pl + aIpO)‘Q + e—6¢)<pO)27

1
Z( qr +troxa’p® + 2t]JK@JaKp0>
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where e~2? is the radius moduli, whereas | Z(q)|?> now represents the FE¢(6) invariant norm.

At large e2? we will only consider the sum over the maximal weight charges qo, qr

Y lzm)*

rezs3%
I'xT'=0
=2¢(2s) e 050 4 Z Z / 1+36 %(€6¢(40+a1q1)2+€2¢‘Z(‘D'z) +
qeZ27 qOGZ o 1
gxq=0
=2((2s)e 7+ Y- Z / 30— 52| Z(q))2—mte=SGo+2midogral |
qez27 pan 1) Jo tats
gxq=0
730(s — &)
:24(25)6—“%?)2 e 2Te N Z(q) (B.3)
q€Z27
gxq=0

The other terms are more complicate to obtain explicitly, but they follow the same pattern
such that the perturbative terms reduce to sum over the charges of grad —1 and —3 after
Poisson resumation. The complete perturbative expansion in e~2? is then determined by
compatibility with the Langlands functional identity to be

[asonr] = 2(28)e7%7 + MFF((S)Z)“(”W losfons ]
T (s — %) (s — ’) ¢(2s — 9)62(5710)¢E
r(s —2)[(s)C(25 — 4) [5-50800 |

720 (s— )T (s — B)T(s — 2) ¢(25 — 17)¢(25 — 13)¢(25 — 9) J6(5-9)6

2 T(s — O)T(s — 2)T(s)C(25 — 8)C(25 — 4)
(B.4)
The generating character of the function E[OOSOS ] is defined in terms of the central charge
of qr
Zij(@) =Vij'ar, 2@ = Zi;(0)27(q) (B.5)
and the quadratic constraint t//%¢;qx = 0 is equivalent to

. 1 .
Zin(9) 2" (q) = §55\Z(q)!2 ' (B.6)
The covariant derivative in tangent frame acts on the central charge as

y ” ” 1 ” 1
D Jklqu(q) =3 (51[)11]2“] (q) — al ]5[@211][] (q) — ZQPqQUZk”(q) - EQ[ JQk”qu(q)> )

(B.7)
such that 1 1
DisulZ(q)” = 1252k + %Q[ijgkl]‘Z(Q)P - (B.8)
One computes that
_9s 1 —9(s
Dl 2@ = ({2020 + G620 2@ Z@1 2D, (B9)
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and
DIPIDEL | 7(g)| 72 = <_§s(3 —25)(Z2(0)" Z(g)" — Z(q)" 2 (q)"V)
+ 225(63 — 10)021400| 2(g)
+ %sw - 2s>92‘m“|z<q>\2) |Z(q)| 7Y (B.10)

The right-hand-side decomposes into an Sp(4) singlet and a tensor in the irreducible rep-
resention [0, 2,0, 0]

y 1 y : . R IR .
2@ 2@ 200 =75 <Z(q) 12" = 2(a)" 2(0)" = 7 Z(q) P+ 50 [kQ”JIZ(q)F)
(B.11)
One deduces the Laplace equation
—2s 1 ©j —2s 8 —2s
AJZ(q)| % = 3DIPID| Z(0)] 2 = 2s(s — 6)|Z()] 2, (3.12)
and one gets at third order
DUTSD, PIDM 1 Z(q)|7% B.13
Pq

y 1 . ,
- <_;s (857 — 425 +33) Z(9)V Z(q)" - 08° (1452 — 81s + 54) QU | 7(¢)|?

1 ; B} | |
216 (853 —5452+275)QWQM 1Z(q)*~ 55(232 — 15s+6) Z(q)l[kz(q)llj) 1Z(q) |—2(5+1) ‘

The right hand side can be expressed in terms of lower oder derivatives of |Z(q)|~2*

the relations (B.9) and (B.10), such that

using

rDz‘jrstmpquklpq ]Z(q) |—25
2 .
~(Gete -0+ ) DMz >
L 1 . S
+(3—s) (D”quklpq + ﬁ(Ql“fﬂ”ﬂ + SQ’JQ“)D”‘I”DMTS) 1Z(q)|7% . (B.14)

Moreover, one straightforwardly works out that the third order derivative projected to the
[2,0,0, 1] irreducible representation of Sp(4) vanishes

D?2,0,0,1]‘Z(Q)‘_28 =0. (B.15)

B.2 SO(6,6) Eisenstein series
We define first the series associated to anti-chiral spinors. The associated ‘central charge’
is Z;' and its complex conjugate Z%;, where i = 1, 4 of one SU(4) factor and i = 1, 4 of the
other. The rank one constraint on the spinor is the pure spinor constraint, that reads
zigh = Lsizk gl ghigi = Lsige gl L zp 70 = Yo g
k23T 404 14k R R oEipa e 4T T 5 kipg Pt 4
(B.16)
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One computes then that the covariant derivative over SO(6,6)/(SO(6) x SO(6)) acts on
the central charge as

1

DijicZZp nglqr‘5ﬁZJ] ’ Dijkizpq = §€ijpr5[q,;zrﬂ : (B.17)
Considering a homogeneous function of |Z|? = Z]?Zij , one has
Dyl 217 = —s €4, 28 212772, (B.18)

and more generally in the vector representation (note that D% W= %eiququ,;lA and etc...)

Dy DM 2172 = 2P 712 (B.19)

in the chiral spinor representation

s(s=1) i o biri—9so  S(s—4) i &
szkQD ‘Z| —2s _ _ 5 ZzZZ]k|Z| 2s 2+ < 5;5?’Z‘ 25’

jpld
r4s 2s _ 2s° —10s +5 23
D, D"¥D, i |Z|” Dl 21" (B.20)

and in the anti-chiral representation

8(3 1) k:Z] |Z| —28— 2+ ( 7)6J5k|Z|_28,

3s(s—1)(s—2)
8

Dipképjpiqyz‘—% _
—11s+4
16

Djjkl‘z‘fls )

(B.21)

Dip]%q,Dpr(ﬁDjrlAé ’Z‘—Zs — ZZ‘]ACZJ'Z‘Z‘72572 +

As in the preceding section, one can define the series

E[oooo;}: > <Z(A)ijZ(A)ij) : (B.22)

A€Z32
AT NA=0

The series only converges for s > 5, and satisfies to

_ B L(s—9)I(s— %) I(s—5)¢(2s —9)¢(2s — T)¢(25 — 5)
[00003] T(s — 2)(s — )I(s)C(25 — 4)C(25 — 2)C(10 — 25)  [ooos”s’]

(B.23)
The first critical function is E[ooool}7 which solves a quadratic equation in all three funda-

mental representation,

DlJPQDklpq|Z| 5ij |Z|_2
3
kg k —2
DPMD |27 = gagal 1Z|72,
~ i _ 3 _
Dy 1D, | 7] 7% = Sagaf\zy 2, (B.24)
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and is in fact proportional to E o1 and E L This function is associated to the min-

0000
1 o

imal unitary representation of SO(6,6). The next one is F {OOOOZ], which solves a quadratic

vector equation and two cubic spinor equations

3
Dijpq DP9 21 =—5% 7| 4
7 —4
szquprqSDjrls’Z’ 9 1]123[|Z|
R R _ 7 a _
DikaDqugpjﬂﬂzy 4:—5291-]-’CZ|Z| 4 (B.25)

It is equal to £ [ooooo}. The divergent Eisenstein series are

45 -

[ooso,2.] = B osest] T Euve] T O
_ 1M175¢(3) :

{0000415] - 87T3 € ooooi] + E oooo:] + O(G) s
 1488375¢(3)¢(5)

{0000516] N 2567T5 € [oooo;] + O(E) I (B26)

We will now consider a charge @ in the vector representation, satisfying (Q, @) = 0.
In this case it is convenient to use vector indices, with the definition

1 b
Dl]lAclA = z’ya”’y IAclADaj) . (B27)
The real ‘central charges’ Z, and Z; then satisfy to the constraint
2o 2% = Z,7%, (B.28)
and 1 1
D ;Z.= §5acZ,;7 D ;Z: = 5686Za . (B.29)
One computes then that a homogeneous function of Z,Z¢ satisfies to
(Z Z°) 7% = —sZaZB(ZCZC)_s
[CDb] (Z.2¢)~* =0,
D Dye(ZaZ%) ™ = @—%Z&@Z%Sl—4MZZ)
D DD, 4( )~

Z.7¢) 75 = (s* — 5s +5)D,; (2.2 7% . (B.30)

bd

The second equation implies that this function always satisfies to a quadratic equation in
the two spinor representations, whereas it only satisfies to a quadratic constraint in the
vector representation for the critical value s = 2.

As in the preceding section, one can define the series

Eleoot] = Y. (Z2(QaZ@)) . (B.31)

Q€Z12
(@.Q)=0
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The series only converges for s > 5, and satisfies to

sT(s—9)T(s—3)¢(2s —9)¢(25 - 5)

o] =™ T - D) (25— D10~ ) o] - (B2
The divergent series are
3 .
[3+eooog] - ﬂ [20002} + E[Soooz] + O(E) ’
945 (5 A
reond] = 122(6 ) E[smg] +0O(e) . (B.33)
However the function is finite at s =4 and
_ 15¢(3)
E{zlooog] o 2 E[1ooog} : (B34)

B.3 SO(n,n) Eisenstein series in the adjoint

For SO(n,n) the adjoint representation decomposes with respect to SO(n) x SO(n) with
a running from 1 to n of the first SO(n) and @ running from 1 to n of the second. We
decompose therefore the adjoint into the coset component X ; and the two antisymmetric
tensors Ay, and A ;. The minimal representation is such that a charge Q € so(n,n) is
nilpotent in all three fundamental representations, which reads explicitly

AaAoe = Xo®Xpe, Aa®X = —XaAy, Ay, = XX, ApA%® = —2X[a[éXb}d} ,

AfapAea =0, Ay X3 =0, Xophea =0, Aapheg =0
(B.35)
They satisfy to
1 1
Doy Xeq = 30achyg + 50538ac,  Doghea =dapeXygy,  Dophog = Xy - (B-36)
Using this one computes
D DP|X| 2 = 5(25 —n+ 3) X ; XD X[ 7272 — 552 | X[, (B.37)
such that )
AlX|7* = 2D, D|X| % = 2s(2s — 2n + 3)| X| 7> . (B.38)
Note that the case s = "T_?’ is special, and reduces then to a spinor representation Eisenstein
function. In general one has still
5 _ s(2s—2n+3) (n—2)(n—3) _
D DD | X |7 = ( 5 + 1 D,;| X| 7% (B.39)
One computes moreover that
DDy X |2 = s(25 — 1) X2 x 7| x| 7272, (B.40)
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such that the representation s = % is special, and then reduce to a vector representation

Eisenstein function. Using representation theory, one straightforwardly check that there is
no possible rank 3 antisymmetric tensor that one can write, such that

DDy Dyl X |72 =0 (B.41)
This implies that in particular an equation of the type
DS 1| X% = asDgn1|X| 7, (B.42)

in the spinor representation, for a coefficient that can straightforwardly be fixed.
Moreover

(n—2)(2s —n)
2

D, (nXa X X722 5;\)(\—25) _ ACX X272 (BA3)

suggesting that the function

Epn= Y |1XQ™ (B.44)
Qeso(n,n)
Q=0

at s = 5 decomposes into the sum

Eogys = Eags T Eagys s (B.45)
satisfying moreover to
5 3—n

D, Dy 50627% = 5 5ab50127% . (B.46)

Similarly as for the E;(;) Eisenstein series in the fundamental representation, we expect
this property to generalise to s = 5 +k for any integer k, such that D2+2k€a27%+k restricted
to the symmetric rank 2 + 2k representation of SO(n) vanishes. For k = 1 on computes
indeed that

2
(n+2)(n+4)

X|_25_2> . (B.A47)

. . 4 >
d b ¢ —25—4 b —2s-2
D &(X(a Xy pXe Xapel X | ~ o radaXe Xyl X1 +

6(ab50d) ’X‘25>

n(n+ 2 — 2s) 3 ; _9s_4 3 3
T2 T 2y BX X e X2 - 25 XA
2(n+4) ( (@ Zpjp<te) X n+25( be) Pab
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