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1 Introduction

The determination of the exact string theory low energy effective action is a very difficult

problem in general. In the case of type II string theory on R1,10−d×T d−1, the lowest order

non-perturbative corrections could nonetheless have been computed [1–3]. Although there

is no non-perturbative formulation of the theory, the constraints following from supersym-

metry and U -duality have permitted to determine the non-perturbative low energy effective

action from perturbative computations in string theory [4–8] and in eleven-dimensional su-

pergravity [2, 9–12]. The four-graviton amplitude allows in particular to determine the

∇2kR4 type correction in the effective action,

L ∼ 1

κ2
R+

∑
p,q

κ2 d−3+4p+6q
9−d E(p,q)∇4p+6qR4 + . . . (1.1)
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where the dots stand for other terms including the supersymmetric completion, (p, q) labels

the different invariant combinations of derivatives compatible with supersymmetry accord-

ing to the notations used in [13], and E(p,q) are automorphic functions of the scalar fields

defined on Ed(d)(Z)\Ed(d)/Kd. For (p, q) = (0, 0), (1, 0) and (0, 1), the complete effective

action at this order is determined by these functions E(p,q), which have been extensively

studied [14–33].

E(0,0) is an Eisenstein series associated to the minimal unitary representation [25,

27], E(1,0) is an (or a sum of two) Eisenstein series associated to the next to minimal

unitary representation(s) [27], and both are therefore relatively well understood. They

are nonetheless very complicated functions, and the explicit expansion of E(1,0) in Fourier

modes is not yet determined [28, 29, 32]. E(0,1) is not even an Eisenstein series, and was

shown in [10] to satisfy to an inhomogeneous Poisson equation in type IIB. A proposal for

this function in eight dimensions [26], suggested a split of the function into the sum of an

Eisenstein series and an inhomogeneous solution, which was subsequently generalised in

seven and six dimensions [13, 27], and recently clarified in [33].

In this paper we extend the analysis carried out in [30, 31] to the study of E(0,1). We

show that this function indeed splits into the sum of two functions that are associated

to two distinct supersymmetry invariants, and therefore satisfy to inequivalent tensorial

differential equations. In particular, the second satisfies to a homogeneous equation, which

is solved by the Eisenstein function appearing in [13, 26, 33]. One can distinguish the

two functions by looking at specific higher point couplings that we identify. The new

class of invariants generalises to an infinite class admitting a coupling in F 2k∇4R4, and

we identify a unique Eisenstein function solving the corresponding tensorial differential

equations in all dimensions greater than four. This function turns out to be compatible

with perturbative string theory, and only admits three perturbative contributions in four

dimensions, at 1-loop, (k + 2)-loop, and 2k-loop. However, the only amplitude that seems

to unambiguously distinguish it from others is the (k + 2)-loop four-graviton amplitude

in a non-trivial Ramond-Ramond background, which makes an explicit check extremely

challenging.

We start with the analysis of the supersymmetry invariants in four dimensions. The

two ∇6R4 type invariants in the linear approximation are associated to two distinct classes

of chiral primary operators of SU(2, 2|8) discussed in [34]. We identify the corresponding

representations of E7(7) associated to nilpotent coadjoint orbits [35] that are summarised

in figure 1. In the linearised approximation, the F 2∇4R4 type invariant does not carry a

∇6R4 coupling, but we explain that the structure of the linearised invariant allows for this

mixing at the non-linear level, and that the latter must occur because the two classes of

invariants merge in one single E8(8) representation in three dimensions. We conclude that

the exact threshold function in four dimensions takes the form

E(0,1) = Ê(8,1,1) +
32

189π
Ê[ 0

000005

] , (1.2)

where Ê(8,1,1) is the solution to the inhomogeneous differential equation (2.143) that is consis-

tent with perturbative string theory. The explicit relation between the tensorial differential
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Figure 1. Closure diagram of nilpotent orbits of E7(7) of dimension smaller than 76.

equations and the associated nilpotent orbits permits us to determine the wavefront set of

the associated functions, extending the results of [28, 29] to the ∇6R4 threshold function.

It appears, as can be seen in figure 1, that the two functions admit distinct wavefront sets.

In particular we show that although Ê(8,1,1) is not an Eisenstein series, it admits the same

wavefront set as Ê
[

0
00000

]
.

We then consider the uplift of our results in higher dimensions, and exhibit that this

general structure extends to all dimensions lower than eight, and is in perfect agreement

with the exact threshold functions proposed in [13, 26, 33]. In each dimension, the su-

persymmetry invariants transform in irreducible representations of Ed(d), defined by the

representation of Ed(d) on the associated function on Ed(d)/Kd satisfying to the relevant dif-

ferential equations implied by supersymmetry. The inequivalent invariants are summarised

in figure 2. The tensorial differential equations satisfied by Eisenstein functions relevant to

our analysis are reviewed in the appendices.

2 N = 8 supergravity in four dimensions

Maximal supergravity includes 70 scalar fields parametrising the symmetric space

E7(7)/SUc(8) [36], and can be defined in superspace by promoting these fields to super-

fields φµ [37, 38]. One defines the Maurer-Cartan form

dV V−1 =

(
2δ

[k
[i ω

l]
j] Pijkl

P ijkl −2δ
[i
[kω

j]
l]

)
, (2.1)

with

P ijkl =
1

24
εijklpqrsPpqrs . (2.2)
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Figure 2. Each node corresponds to an inequivalent supersymmetry invariant, white if it cannot

be written in harmonic superspace in the linearised approximation, and red if the corresponding

harmonic superspace is chiral. For ∇6R4, the links to 10 dimensions are valid for the homogeneous

solution, while all the eight-dimensional invariants uplift to type IIA for the inhomogeneous solution.

The metric on E7(7)/SUc(8) is defined as

Gµν(φ)dφµdφν =
1

3
PijklP

ijkl , (2.3)

and the derivative in tangent frame is defined such that for any function

dE = 3P ijklDijklE . (2.4)

The superfields satisfy to

Di
αE =

1

4
εijklpqrsχαjklDpqrsE , D̄α̇iE = 6χ̄jklα̇ DijklE , (2.5)

where χαijk is the Dirac superfield in Weyl components, and χ̄ijkα̇ its complex conjugate.

The expansion of the scalar fields include the 28 Maxwell field strengths Fαβij , the 8

Rarita-Schwinger field strengths ραβγi and the Weyl tensor Cαβγδ, satisfying to N = 8

supergravity classical (two derivatives) field equations. The supervielbeins are the solutions

to the Bianchi identities defined such that the Riemann tensor is valued in sl(2,C)⊕ su(8)

and the su(8) component is identified with the scalar field curvature [37, 38],

Rij =
1

3
Pjklp ∧ P iklp . (2.6)

The covariant derivative on E7(7)/SUc(8) in tangent frame satisfies to[
Dijkl,Dpqrs

]
Dtuvw = −24δijklqrs][tDuvw][p + 3δijklpqrsDtuvw , (2.7)
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and the Laplace operator is

∆ =
1

3
DijklDijkl . (2.8)

In the linearised approximation, the scalar superfield Wijkl satisfies to the reality con-

straint (2.2) and to

Dp
αWijkl = 2δp[iχαjkl] , D̄α̇pWijkl =

1

12
εijklpqrsχ̄

qrs
α̇ . (2.9)

In this approximation the superfield W ijkl transforms in the minimal unitary represen-

tation of the superconformal group SU(2, 2|8) [39]. This property permits a complete

classification of supersymmetry invariants in the linearised approximation in terms of irre-

ducible representations of SU(2, 2|8) of Lorentz invariant top component [34, 40]. In our

analysis, we rely on the assumption of absence of supersymmetry anomaly, such that there

is no algebraic obstruction to the extension of a linearised invariant to a full non-linear

invariant. This implies a bijective correspondence between the set of linearised invariants

and the non-linear invariants, such that one can deduce the explicit gradient expansion of

the functions (or tensor functions) of the scalar fields on E7(7)/SUc(8) that determine the

invariants.

2.1 The standard ∇6R4 type invariant

One can define a ∇6R4 type invariant in harmonic superspace, using the harmonic variables

u1
i, u

r
i, u

8
i parametrising SU(8)/S(U(1)×U(6)×U(1)), such that r = 2 to 7 of SU(6) [34,

40, 43]. In this case the harmonic superspace integral can be defined at the non-linear

level [44], but we will only consider its linearised approximation. The superfield in the 20

of SU(6)

Wrst = ui8u
j
ru
k
su
l
tWijkl , (2.10)

satisfies to the G-analyticity constraints

u1
iD

i
αWrst = 0 , ui8D̄α̇iWrst = 0 . (2.11)

One can therefore integrate any function of Wrst on the associated analytic superspace.

To understand the most general integrand, we must decompose monomials of Wrst in irre-

ducible representations of SU(6). At quadratic order we have the representation [0, 0, 2, 0, 0]

and the combination

W rtuWstu =
1

6
εrtuvwxWstuWvwx (2.12)

in the [1, 0, 0, 0, 1]. Because one obtains the [0, 0, 2, 0, 0] by simply adding the Dynkin labels

of Wrst, we will say that this representation is freely generated, whereas we shall consider

the [1, 0, 0, 0, 1] as a new generator at order two. At cubic order, we have the two elements

freely generated by the ones already discussed, i.e. [0, 0, 3, 0, 0] and [1, 0, 1, 0, 1], and the

additional combination

Wu[rsWt]vwW
uvw , (2.13)
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in the [0, 0, 1, 0, 0]. At quartic order we have the four elements freely generated by the ones

already discussed, and the two additional elements

Wvw[rW
vw[tWs]xyW

u]xy , WursWtvwW
uvwW rst , (2.14)

that decompose into the [0, 1, 0, 1, 0] and the singlet representation. One checks that these

elements freely generate the general polynomials in Wrst, such that the latter are labeled

by five integers.

To integrate such a function in analytic superspace, one needs to consider these gen-

erating monomials with additional harmonic variables in order to compensate for the

S(U(1)×U(6)×U(1)) representation, i.e.∫
duu8

iu
r
ju
s
ku

t
lWrst =Wijkl , (2.15)∫

duu8
iu
s
ju1

kur
lW rtuWstu =WijpqW

klpq − 1

28
δklijWpqrsW

pqrs ,∫
duu1

qu8
pu

8
iu
r
ju
s
ku

t
lWu[rsWt]vwW

uvw=Wpo[ijWkl]mnW
qomn− |W |

2

108

(
δqpWijkl−δp[iWjkl]p

)
,∫

duu1
ku1

lu8
iu

8
jWursWtvwW

uvwW rst =Wnpq(iWj)mp′q′W
np′q′(kW l)pqm − δ(k

(i δ
l)
j)(. . . ) ,

which are respectively in the [0, 0, 0, 1, 0, 0, 0], the [0, 1, 0, 0, 0, 1, 0], the [1, 0, 0, 1, 0, 0, 1] and

the [2, 0, 0, 0, 0, 0, 2] irreducible representations of SU(8), whereas∫
duu1

mu1
nu8

ku
8
lu
r
iu
s
jut

puu
qWvwrW

vwtWsxyW
uxy = Wi′j′[ijWk]lk′l′W

i′j′[pqWm]nk′l′+. . .

(2.16)

gives rise to the fourth order monomial in the [1, 0, 1, 0, 1, 0, 1] irreducible representation.

One obtains in this way that the harmonic superspace integral of a general monomial

of order n1 + 2n2 + 3n3 + 4n4 + 4n′4 + 4 in the [n2, n4, n1 + n3, n4, n2] of SU(6) gives

rise to a term in ∇6R4 with a monomial of order n1 + 2n2 + 3n3 + 4n4 + 4n′4 in the

[n3 + n4 + 2n′4, n2, n4, n1 + n3, n4, n2, n3 + n4 + 2n′4] of SU(8), i.e.∫
duD14D̄14F (u)

[n2,n4,n1+n3,n4,n2]
[n3+n4+2n′4,n2,n4,n1+n3,n4,n2,n3+n4+2n′4]

Wn1+2n2+3n3+4n4+4n′4+4|[n2,n4,n1+n3,n4,n2]

∼ ∇6R4Wn1+2n2+3n3+4n4+4n′4 |[n3+n4+2n′4,n2,n4,n1+n3,n4,n2,n3+n4+2n′4] + . . . (2.17)

where the function F (u) is the function of the harmonic variable defined as a product of

the generating functions defined in (2.15), (2.16). One needs at least one quartic singlet in

the G-analytic superfield to get a non-vanishing integral [34].

Referring to the one to one correspondence between linearised and non-linear invari-

ants [34], one deduces that the non-linear invariant must admit the same gradient expan-

sion, i.e.

L(8,1,1)[E(8,1,1)]

=
∑

n1,n2,n3,n4,n′4

Dn1+2n2+3n3+4n4+4n′4
[n3+n4+2n′4,n2,n4,n1+n3,n4,n2,n3+n4+2n′4]

E(8,1,1) L
[n3+n4+2n′4,n2,n4,n1+n3,n4,n2,n3+n4+2n′4]

(8,1,1)

(2.18)

– 6 –
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where each L[n3+n4+2n′4,n2,n4,n1+n3,n4,n2,n3+n4+2n′4]

(8,1,1) is an E7(7) invariant superform in the cor-

responding representation of SU(8). Note that although the irreducible representation

remains unchanged under the substitution(
n1, n3, n

′
4

)
→
(
n1 + 2, n3 − 2, n′4 + 1

)
(2.19)

the corresponding superforms and the tensor structure of the derivative are different, and

are really labelled by the five integers n1, n2, n3, n4, n
′
4 without any further identification.

Of course the mass dimension implies that these integers are bounded from above, and

the maximal weight terms in χ14χ̄14 can only be in representations like [2, 6, 0, 8, 0, 6, 2],

[2, 6, 1, 6, 1, 6, 2], . . . [2, 10, 0, 0, 0, 10, 2], . . . [11, 1, 0, 0, 0, 1, 11].

This gradient expansion implies in particular that the third order derivative of E(8,1,1)

in the [0, 2, 0, 0, 0, 0, 0] and its complex conjugate must vanish, i.e.

(4DijpqDpqmnDmnkl −Dijkl(∆ + 24)) E(8,1,1) = 0 ,(
4DijpqDpqmnDmnkl −Dijkl(∆ + 24)

)
E(8,1,1) = 0 . (2.20)

These equations imply all the higher order constraints on the function such that its gradient

expansion is in agreement with (2.18). Defining the covariant derivative in tangent frame

as a Lie algebra generator in the fundamental representation of E7(7), this equation reads

equivalently

D 3
56E(8,1,1) = D56

(
6 +

1

4
∆

)
E(8,1,1) . (2.21)

This implies in particular that all the Casimir operators are determined by the quadratic

one such that

tr
(
D 2+2n

56

)
E(8,1,1) = 6∆

(
6 +

1

4
∆

)n
E(8,1,1) , (2.22)

but the quadratic Casimir is not a priori determined by equation (2.20) alone. We will

need to consider the other invariants to finally conclude that supersymmetry moreover

implies [27]

∆E(8,1,1) = −60E(8,1,1) − (E(8,4,4))
2 . (2.23)

Equation (2.21) defines a qantization of the algebraic condition Q 3
56 = 0 associated to

the complex nilpotent orbit of E7 of Dynkin label
[

0
200000

]
, while the condition that the

fourth order derivative does not vanish generically in the [2,0,0,0,0,0,2] distinguishes its real

form of SU(8) Dynkin label [2000002] [35], which defines the graded decomposition of SU(8)

associated to the (8, 1, 1) harmonic superspace we consider in this section. The property

that the linearised structure does not permit to determine the eigenvalue of the Laplace

operator in this case, implies that the quantization of the associated nilpotent orbit is not

unique, and depends on one free parameter. This property follows from the fact that a

nilpotent element of this kind can be obtained as the appropriate limit of a semi-simple

element satisfying to the characteristic equation Q 3
56 = 1

24tr(Q 2
56)Q56.

– 7 –
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2.2 F 2∇4R4 type invariant and its relation to ∇6R4

Although the ∇6R4 type invariant provides the unique supesymmetric invariant preserving

SU(8) one can write at this order, there is another class of invariants that can be defined

form the chiral harmonic superspace defined in terms of the harmonic variables ur̂ i, u
r
i

parametrising SU(8)/S(U(2) × U(6)) [34, 43], with r̂, ŝ equal to 1, 2 of SU(2), and r, s

running from 3 to 8 of SU(6). One defines the superfield

W rs = u1
iu

2
ju
r
ku

s
lW

ijkl (2.24)

that satisfies to the G-analiticity constraint

ur̂ iD̄
i
αW

rs = 0 . (2.25)

Similarly as in the preceding section, the most general function of W rs is freely generated

by the three monomials

W rs ,
1

2
εrstuvwW

tuW vw ,
1

2
εrstuvwW

rsW tuW vw . (2.26)

One must supplement them with harmonic variables to preserve S(U(2) × U(6)) invari-

ance, using ∫
duui1u

j
2u
k
ru
l
sW

rs =W ijkl , (2.27)∫
duui1u

j
2u
r
ku

s
l

1

2
εrstuvwW

tuW vw =W ijpqWklpq −
1

28
δijklW

pqrsWpqrs ,∫
duui1u

j
2u
k

1u
l
2

1

2
εrstuvwW

rsW tuW vw =W ijpqWpqrsW
rskl − 1

12
W ijklWpqrsW

pqrs .

One only gets a non-trivial integral if the cubic SU(6) singlet in W rs appears at least

quadratically, which can be understood from the property that the associated chiral primary

operator of SU(2, 2|8) is otherwise in a short representation [34]. Because the U(1) weight

of the measure is compensated by a single factor of this cubic SU(6) singlet, it appears

that there is no SU(8) invariant that exists in this class.

For a general monomial, one gets an invariant of the form∫
duD̄16D12 F (u)

[0,n1,0,n2,0]
[0,n2+2n3+2,0,n1,0,n2,0]W

n1+2n2+3n3+6|[0,n1,0,n2,0] (2.28)

∼Wn1+2n2+3n3
[0,n2+2n3,0,n1,0,n2,0]F̄

2
[0,2,0,0,0,0,0]∇4R4 + . . .

+Wn1+2n2+n3−22
[0,n2+2n3−8,0,n1−8,0,n2−4,0]χ̄

16
[0,8,0,4,0,0,0]χ

12
[0,2,0,4,0,4,0] ,

where all terms are projected to the [0,n2+2n3+2,0,n1,0,n2,0] irreducible representation, and

the term in F̄ 2 is

F̄ ij
α̇β̇
F̄ α̇β̇kl − F̄ [ij

α̇β̇
F̄ kl]α̇β̇ . (2.29)

For a generic function F [W ] of Wrs, one obtains

D16D̄12F [W ] =
∑

n1,n2,n3

∂n1+2n2+3n3+6F [W ]

∂Wn1+2n2+3n3+6

∣∣∣
[0,n2,0,n1,0]

L[0,n1,0,n2,0](n1+2n2+3n3+3)

(8,2,0) lin , (2.30)

– 8 –
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where the densities L[0,n1,0,n2,0](n1+2n2+3n3+3)

(8,2,0) lin are of order n1 + 2n2 + 3n3 + 6 in the fields

and only depend on the scalar fields through their space-time derivative. The number n1 +

2n2 + 3n3 + 3 is the U(1) weight of the density. These densities determine by construction

covariant superforms in the linearised approximation [45–47], such that

d(0)Lij,kl(8,2,0) lin = 0 ,(
d(0)Lij,kl,pqrs(8,2,0) lin + 3P pqrs ∧ Lij,kl(8,2,0) lin

)
[0,2,0,1,0,0,0] = 0 ,(

d(0)Lij,kl,pqrs,mntu(8,2,0) lin + 3P pqrs ∧ Lij,kl,mntu(8,2,0) lin

)
[0,2,0,2,0,0,0] = 0 ,(

d(0)Lij,kl,pq(8,2,0) linrs + 18Prsmn ∧ Lij,kl,pqmn(8,2,0) lin

)
[0,3,0,0,0,1,0] = 0 , (2.31)

where d(0) is the superspace exterior derivative in the linear approximation. At the next

order, because

d =

∞∑
n=0

d(n) (2.32)

satisfies to d2 = 0, one has

{d(0), d(1)} = 0 , (2.33)

and therefore

d(0)

(
d(1)Lij,kl(8,2,0) lin

)
= 0 . (2.34)

We assume in this paper that the structure of superconformal multiplets implies the absence

of supersymmetry anomaly, or equivalently that the fifth cohomology of d(0) is empty. Nev-

ertheless, even if d(1)Lij,kl(8,2,0) lin only depends on the covariant superfields, nothing prevents

its d(0) antecedent to depend explicitly on the scalar fields. This implies in this case that

d(1)Lij,kl(8,2,0) lin = − d(0)Lij,kl(8,2,0) (1) + Ppqrs ∧Mij,kl,pqrs + P pqij ∧Mpq
kl

+ P pqkl ∧Mpq
ij − 2P i]pq[k ∧Mpq

l][j ,
(2.35)

where Lij,kl(8,2,0) (1) is the covariant correction to the superform, whereas Mij,kl,pqrs andMij
kl

are superforms of order six in the fields in the [0, 2, 0, 1, 0, 0, 0] and the [0, 1, 0, 0, 0, 1, 0],

respectively, that must satisfy to

d(0)Mij,kl,pqrs =
(
P pqrs ∧N ij,kl

)
[0,2,0,1,0,0,0] ,

d(0)Mij
kl =P ijpq ∧Nklpq −

1

28
δijklP

pqrs ∧Npqrs . (2.36)

In order to have such corrections that could not be reabsorbed in a covariant correction as

Lij,kl(8,2,0) (1), one must have a corresponding short multiplet associated to a linearised invariant

of the same dimension. The only candidate for a superform Mij,kl,pqrs is Lij,kl,pqrs(8,2,0) lin , but it

is of order seven in the fields, and therefore Mij,kl,pqrs = 0 at this order. However, there is

a candidate for Mij
kl which is L ij

(8,1,1) lin kl, the superform that appears in the ∇6R4 type
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invariant discussed in the last section. Following (2.17), we have

d(0)L(8,1,1) lin = 0 ,

d(0)Lijkl(8,1,1) lin =−3P ijkl ∧ L(8,1,1) lin ,

d(0)Lijkl,pqrs(8,1,1) lin =−3
(
P ijkl ∧ Lpqrs(8,1,1) lin

)
[0,0,0,1,0,0,0] ,

d(0)L ij
(8,1,1) lin kl =−18

(
Pklpq ∧ Lijpq(8,1,1) lin

)
[0,1,0,0,0,1,0] , (2.37)

and therefore

d(0)

((
W ijpqWpqrsW

rskl − 1

12
W ijklWpqrsW

pqrs

)
L(8,1,1) lin

+W ijpqWpqrsLrskl(8,1,1) lin +W ijpqW klrsL(8,1,1) linpqrs +W klpqWpqrsLrsij(8,1,1) lin

+6W pqijL kl
(8,1,1) lin pq + 6W pqklL ij

(8,1,1) lin pq − 12W i]pq[kL l][j
(8,1,1) lin pq

)
= 18

(
P pqij ∧ L kl

(8,1,1) lin pq + P pqkl ∧ L ij
(8,1,1) lin pq − 2P i]pq[k ∧ L l][j

(8,1,1) lin pq

)
, (2.38)

such that L ij
(8,1,1) lin kl is indeed a consistent candidate. Moreover, the structure of the

linearised (8, 1, 1) invariant does not permit to have the tensor function W ijpqWpqrsW
rskl,

such that (2.38) is not the exterior derivative of a superform that does not depend on the

naked scalar fields (uncovered by a space-time derivative). It follows that such a correction,

if it appeared in (2.35), could not be reabsorbed in a redefinition of Lij,kl(8,2,0) (1).

If this mixing between the (8, 2, 0) and the (8, 1, 1) superforms was not appearing at

the non-linear level, then the action of the exterior derivative in the function of the scalar

fields should not introduce lower derivative terms such that it should satisfy then to

Dijpq(4DpqrsDrsmnDmnkl −Dpqkl(∆ + 24)) E(8,2,0) = 0 . (2.39)

If the mixing did appear, then the unicity of the linearised invariants (2.37) would imply

that the corresponding non-linear superform should be the same as in (2.18), such that

once again the exterior derivative acting on D3
[0,2,0,0,0,0,0]E(8,2,0) should not generate lower

derivative terms and one would conclude again that (2.39) must be satisfied. Therefore

this equation must be satisfied in either cases.

Using moreover the property that the gradient expansion of the linearised invariant is

inconsistent with the presence of the third order derivative in the [1, 0, 0, 1, 0, 0, 1] of SU(8),

one requires(
36Djr[klDirmnDpq]mn − δijDklpq(∆ + 42) + δi[kDlpq]j(∆− 120)

)
E(8,2,0) = 0 . (2.40)

Using this equation one computes independently of (2.39) that

Dijpq(4DpqrsDrsmnDmnkl−Dpqkl(∆ + 24)) E(8,2,0) =
1

12

(
28DijpqDklpq−3δijkl∆

)
(∆+60) E(8,2,0)

(2.41)

and we conclude that (2.39) and (2.40) imply together

∆E(8,2,0) = −60E(8,2,0) . (2.42)
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This eigenvalue is such that the structure of the invariant is consistent with the mixing

between the (8, 2, 0) and the (8, 1, 1) superforms. Only in this case can they reduce to the

same invariant for a function E(8,2,2) satisfying to both (2.20) and (2.40), as for the ∇4R4

type invariant.

We are going to argue now that this chiral invariant must indeed include a ∇6R4

coupling, because the two classes of invariants reduce to one single class in three dimensions.

But before to do this, let us mention that (2.40) can be rewritten as

D 3
133E(8,2,0) =

1

3
D133∆E(8,2,0) , (2.43)

which defines a qantization of the algebraic eqation Q 3
133 = 0 associated to the complex

nilpotent orbit of E7 of Dynkin label
[

0
000002

]
with the real form defined with the SU(8)

Dynkin label [0200000] [35], which defines the graded decomposition of SU(8) associated to

the (8, 2, 0) harmonic superspace we consider in this section. In this case the choice of

real form moreover implies that the complex charge in the 70 defining the nilpotent orbit

through the Kostant-Sekiguchi correspondence satisfies to

QijpqQpqmnQ
mnkl = 0 , (2.44)

such that it admits a unique quantization, with the eigenvalue of the Laplace operator −60.

However, we will see in the following that the constraint (2.39) can be relaxed while keeping

the property that the associated representation of E7(7) is a highest weight representation.

2.3 Dimensional reduction to three dimensions

In three dimensions, the duality group is E8(8), of maximal compact subgroup Spin(16)/Z2.

We denote i, j the SO(16) vector indices and A,B the positive chirality Weyl spinor in-

dices. The covariant derivative in tangent frame is a chiral Weyl spinor, i.e. in the
[

0
000000

1

]
representation. In the linearised approximation, the covariant fields all descend from the

Weyl spinor scalar field, satisfying to [48]

Di
αW

A = ΓiAȦχαȦ . (2.45)

Both four-dimensional (8, 1, 1) and (8, 2, 0) harmonic superspaces descend to the same

(16, 2) harmonic superspace in three dimensions, defined through the introduction of har-

monic variables parametrising SO(16)/(U(2)× SO(12)) [49]. The Weyl spinor representa-

tion decomposes with respect to U(2) × Spin(12) as

128 ∼= 32(−1)

+ ⊕(2⊗ 32−)(0) ⊕ 32(1)

+ , (2.46)

such that the grad 1 Weyl spinor W of Spin(12) satisfies to a G-analyticity constraint with

respect to the positive grad covariant derivative in the 2 of U(2). The general polynomial

in the Spin(12) Weyl spinor is parametrised by four integers, just as for the rank three

antisymmetric tensor of SU(8) in section (2.1).1 One computes in a similar way the general

1This property follows from the fact that the classification of duality orbits of the black hole charges are

the same in the N = 2 supergravity theories of duality group SO∗(12) and SU(3, 3) [50].
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integral ∫
duF (u)

[
0

0n20n4n1+n3

]
[

0
0n3+n4+2n′40n20n4

n1+n3

]D28Wn1+2n2+3n3+4n4+4n′4+4|[ 0
0n20n4n1+n3

]

∼∇10P 4Wn1+2n2+3n3+4n4+4n′4 |[ 0
0n3+n4+2n′40n20n4

n1+n3

] + . . . (2.47)

where ∇10P 4 is a Spin(16) invariant quartic term in the scalar field momentum, that

replaces the ∇6R4 type term that vanishes modulo the equations of motion in three di-

mensions. In three dimensions it is not established if there is a one to one correspondence

between non-linear and linear invariants defined as harmonic superspace integrals. Nev-

ertheless, the class of invariants we discuss descends from four dimensions, and we can

therefore assume they admit the same structure, i.e.

L(16,2)[E(16,2)] =
∑

n1,n2,n3,n4,n′4

Dn1+2n2+3n3+4n4+4n′4[
0

0n3+n4+2n′40n20n4
n1+n3

]E(16,2) L
[

0
0n3+n4+2n′40n20n4

n1+n3

]
. (2.48)

This expansion implies that the fourth order derivative of the function E(16,2) restricted to

the
[

0
100010

0

]
must vanish, i.e.(
DΓi[jk

rD
)(
DΓlpq]rD

)
E(16,2) = −δi[j

(
DΓklpq]D

)
(∆ + 48)E(16,2) , (2.49)

where the Laplace operator ∆ is defined as

∆ = DADA . (2.50)

By dimensional reduction of the four-dimensional equation (2.42), one computes that

∆E(16,2) = −198E(16,2) . (2.51)

One can understand that the two kinds of 1/8 BPS invariants discussed in the preceding

section dimensionally reduce to this single class. If one consider the decomposition of (2.46)

with respect to U(6) ⊂ Spin(12), one obtains for one embedding

32+
∼= 6(−2) ⊕ 20(0) ⊕ 6

(2)
, (2.52)

such that the G-analytic superfield in the 32+ includes the four-dimensional (8, 1, 1) G-

analytic scalar W rst as well as some components of the vector fields. A generic spinor of

non-zero quartic invariant can be represented by W rst. For the other embedding U(6) ⊂
Spin(12), one gets

32+
∼= 1

(−3) ⊕ 15(−1) ⊕ 15
(1) ⊕ 1(3) , (2.53)

such that the G-analytic superfield in the 32+ includes the four-dimensional (8, 2, 0) G-

analytic scalar W rs as well as some components of the vector fields, and a Ehlers complex

scalar parametrising the four-dimensional metric. The scalar field alone only parametrises

a null spinor of Spin(12) of vanishing quartic invariant, and only together with the Ehlers
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scalar field it can provide a representative of a generic spinor. One could have naively con-

cluded that the function E(8,2,0) should give rise to a function on E8(8)/Spinc(16) satisfying

moreover to

5(DΓijpqD)
(
DΓklpqD

)
E = −20

(
DΓij

klD
)

(∆ + 48) E + 28δklij∆(∆ + 120) E , (2.54)

but this equation only admits solutions for functions satisfying to the Laplace equation

∆E = −210 E , (2.55)

excepted for the functions satisfying to the quadratic and cubic constraints that define the

R4 and ∇4R4 type invariants. We see therefore that this equation is incompatible with

supersymmetry.

It follows that both (8, 1, 1) and (8, 2, 0) type invariants dimensionally reduce to three-

dimensional invariants depending of functions on E8(8)/Spinc(16) that belong to the same

representation of E8(8). Being in the same representation, they both carry a quartic com-

ponent in the linearised approximation and they must both include a ∇6R4 type term in

their uplift to four dimensions. This proves that the mixing between the two different

linearised structures must occur such that the non-linear F̄ 2∇4R4 type invariant cannot

exist without including a ∇6R4 type term as well.

Before to end this section on the three-dimensional theory, let us discuss the modifi-

cation of the supersymmetry constraint due to the completion of the R4 type invariant at

the next order. As it is argued in [10], the appearance of a R4 correction with threshold

function E(16,8), will modify the Laplace equation with a non-zero right-hand-side, i.e.

∆E(16,2) = −198E(16,2) − E 2
(16,8) . (2.56)

Because the function E(16,8) satisfies to [30]

(DΓijklD) E(16,8) = 0 , (2.57)

the second derivative of its square must necessarily vanish in the
[

0
100010

0

]
, and we get

accordingly a modification of (2.49) to(
DΓi[jk

rD
)(
DΓlpq]rD

)
E(16,2) = 150δi[j

(
DΓklpq]D

)
E(16,2) + δi[j

(
DΓklpq]D

)
E 2

(16,8) . (2.58)

2.4 E7(7) Eisenstein series

In this section we shall discuss some properties of Einstein series that solve the differential

equations we have derived for the ∇6R4 type invariants.

2.4.1 Fundamental representation

As discussed in [25, 31], one can define the Eisenstein series

E[ 0
00000s

] =
∑

Γ∈Z56

I′′4 (Γ)|133=0

|Z(Γ)ijZ(Γ)ij |−s , (2.59)
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as a sum over the rank one integral charge vectors Γ in the 56 of E7(7) satisfying to the

constraint that the quadratic tensor Γ ⊗ Γ vanishes in the adjoint representation. This

formula is rather useful to identify the differential equations satisfied by the Eisenstein

function, because one can simply consider the case of one charge Γ, with Z(Γ)ij = VijIΓI ,
such that the quadratic constraint becomes

Z[ijZkl] =
1

24
εijklpqrsZ

pqZrs , ZikZ
jk =

1

8
δjiZklZ

kl , (2.60)

and the differential operator acts on Zij as an element of e7(7)

DijklZpq = 3δpq[ijZkl] , DijklZpq =
1

8
εijklpqrsZ

rs . (2.61)

Using the definition |Z|2 = ZijZ
ij , one computes that the function |Z|−2s satisfies to

DijpqDklpq|Z|−2s = 2s(s− 2)ZijZ
kl|Z|−2s−2 +

s(s− 11)

4
δklij |Z|−2s ,

DijpqDpqrsDrskl|Z|−2s =−3s(s− 2)(s− 4)ZijZkl|Z|−2s−2 +
s2 − 15s+ 8

4
Dijkl|Z|−2s ,

Djr[klDirmnDpq]mn|Z|−2s =
(s− 2)(s− 7)

12
δijDklpq|Z|−2s − s2 − 9s− 40

12
δi[kDpql]j |Z|

−2s ,

(2.62)

and to the Laplace equation

∆|Z|−2s = 3s(s− 9)|Z|−2s . (2.63)

For s 6= 2, 4, the function admits a generic gradient expansion in the irreducible represen-

tations [0, n2 + 2n3, 0, n1, 0, n2, 0] and their complex conjugate. To exhibit this property, it

is convenient to consider a restricted set of indices as follows(
D12ijDijklDkl12

)n3(
D12pqD78pq

)n2(D1234)n1 |Z|−2s (2.64)

=
(s+ n1 + n2 + n3 − 1)!(s+ n2 + n3 − 3)!(s+ n3 − 5)!

(s− 1)!(s− 3)!(s− 5)!
×

×
(
-3Z 2

12

)n3
(
2Z12Z

78
)n2
(
-6Z[12Z34]

)n1 |Z|−2(s+n1+n2+n3) .

One computes moreover that for m ≤ n(
D78ijDijklDkl78

)m
(D12pqDpqrsDrs12)n |Z|−2s (2.65)

=
(s+ n−1)!(s+ n−3)!(s+ n−5)!(s+ n+m−1)!(s+ n+m− 3)!(s− n+m− 5)!

(s− 1)!(s− 3)!(s− 5)!(s+ n− 1)!(s+ n− 3)!(s− n− 5)!
×

×
(
-3Z78 2

)m(
-3Z 2

12

)n |Z|−2(s+n+m)

=

(
-
3

2

)n+m (s+ n− 5)!(s+ n+m− 1)!(s+ n+m− 3)!(s− n+m− 5)!

(s+ n−m− 5)!(s+ 2n− 1)!(s+ 2n− 3)!(s− n− 5)!
×

×
(
D12ijDijklDkl12

)n−m(
D12pqD78pq

)n+m |Z|−2s
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such that acting with a derivative operator in the conjugate representation

[0, 0, 0, 0, 0, 2m, 0] does not produce an independent tensor. One has in particular for s

an integer greater than 5(
D78ijDijklDkl78

)
(D12pqDpqrsDrs12)s−4 |Z|−2s = 0 . (2.66)

This equation is the equivalent on E7(7)/SUc(8) of the equation on SL(2)/SO(2)

D̄Ds−1E[s] = 0 , (2.67)

for integral s, and we would like to see that the function E
[

0
00000s

]
also decomposes somehow

into a “holomorphic” part Fs and a “anti-holomorphic” part F̄s, satisfying respectively to

(D12pqDpqrsDrs12)s−4 F̄s = 0 ,
(
D78ijDijklDkl78

)s−4
Fs = 0 , (2.68)

such that

(D12pqDpqrsDrs12)s−4E[ 0
00000s

] =(D12pqDpqrsDrs12)s−4Fs , (2.69)

and respectively for the complex conjugate. By consistency, this requires for instance that

acting with further derivatives on this tensor does not permit to get back lower order

tensors with n3 < s− 4 in (2.64).

Through representation theory, one obtains that

D[0,0,0,1,0,0,0]Dn1+2n2+3n3

[0,n2+2n3,0,n1,0,n2,0]|Z|
−2s (2.70)

∼
(
Dn1+1+2n2+3n3

[0,n2+2n3,0,n1+1,0,n2,0] +Dn1−1+2(n2+1)+3n3

[0,n2+2n3+1,0,n1−1,0,n2+1,0] +Dn1+2(n2−1)+3(n3+1)
[0,n2+2n3+1,0,n1,0,n2−1,0]

+Dn1−1+2n2+3n3

[0,n2+2n3,0,n1−1,0,n2,0] +Dn1+1+2(n2−1)+3n3

[0,n2+2n3−1,0,n1+1,0,n2−1,0] +Dn1+2(n2+1)+3(n3−1)
[0,n2+2n3−1,0,n1,0,n2+1,0]

)
|Z|−2s

for some coefficients that are not specified. So the only way to reduce n3, is to increase

n2 by 1 unit. We will check this equation in the case n1 = n2 = 0. The restriction of the

derivative D3n|Z|−2s to the [0, 2n, 0, 0, 0, 0, 0] with two free indices reads

D3n [0,2n,0,0,0,0,0]
ij12n−122n−1 |Z|−2s

=
(s+n−1)!(s+n−3)!(s+n−5)!

(s− 1)!(s− 3)!(s− 5)!

(−3)n

2n

(
ZijZ

2n−1
12 −(2n−1)Z1[iZj]2Z

2n−2
12

)
|Z|−2(s+n) ,

(2.71)

and one computes that

D78ij 1

2n

(
ZijZ

2n−1
12 − (2n− 1)Z1[iZj]2Z

2n−2
12

)
|Z|−2(s+n)

=
(2n+ 5)(n− s+ 4)

8n
Z78Z 2n−1

12 |Z|−2s , (2.72)

such that

D78ijD3n [0,2n,0,0,0,0,0]
ij12n−122n−1 |Z|−2s

=
3(s+ n− 5)(2n+ 5)(s− n− 4)

16n

(
D12ijDijklDkl12

)n−1(
D12pqD78pq

)
|Z|−2s . (2.73)
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In particular we have that

D78ijD3(s−4) [0,2(s−4),0,0,0,0,0]
ij12s−522s−5 |Z|−2s = 0 , (2.74)

consistently with the assumption that no lower order tensor is produced out of the tensor

function (2.69). We conclude therefore that the tensor

FE[0,2(s−4),0,0,0,0,0] = D3(s−4)
[0,2(s−4),0,0,0,0,0]E

[
0

00000s

] , (2.75)

is an E7(7)(Z) modular form that is in some sense holomorphic, such that its gradient

expansion is restricted to derivative of this tensor in the symmetric representations [0, n2 +

2(n3 + s− 4), 0, n1, 0, n2, 0], i.e.

Dn1+2n2+3n3

[0,n2+2n3,0,n1,0,n2,0]FE[0,2(s−4),0,0,0,0,0] ∈ [0, n2 + 2(n3 + s− 4), 0, n1, 0, n2, 0] . (2.76)

Using Langlands functional identity [27], one computes that the only integer values of

s ≥ 5 for which the function diverges are

E[ 0
000005+ε

] =
63

16π ε
E[ 0

000004

] + Ê[ 0
000005

] +O(ε) ,

E[ 0
000007+ε

] =
1 964 655ζ(5)

2048π5 ε
E[ 0

000002

] + Ê[ 0
000007

] +O(ε) ,

E[ 0
000009+ε

] =
12 642 554 925ζ(5)ζ(9)

2 097 152π9 ε
+ Ê[ 0

000009

] +O(ε) . (2.77)

However, according to (2.62), the function E[ 0
00000s

] satisfies to

D3
[0,2,0,0,0,0,0]E

[
0

00000s

] = 0 , for s = 0, 2, 4 , (2.78)

and it follows that the tensor FE[0,2(s−4),0,0,0,0,0] (2.75) is finite for all s. However, we have

argued in the preceding section that the F̄ 2∇4R4 type invariant must include a ∇6R4 type

term, which will be multiplied by the function itself. In this case the relevant Eisenstein

function diverges, and one must regularise it such that the differential equation (2.42) will

be modified to

∆ Ê[ 0
000005

] = −60 Ê[ 0
000005

] +
189

16π
E[ 0

000004

] . (2.79)

Such a correction is reminiscent of a 1-loop logarithm divergence of the ∇4R4 type invariant

form factor.

2.4.2 Adjoint representation

One can also consider the Eisenstein series2

E[ 0
s00000

] =
∑

Q∈Z133|Q2=0

(
X(Q)ijklX(Q)ijkl

)−s
, (2.80)

2We assume here that all the elements of Z133 are in the E7(7)(Z) orbit of a relative integer times a

normalised representative of the continuous orbit. This property does not affect our conclusions in any

case, which only requires the generating character to satisfy to the differential equations we discuss.
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as the sum over integral charges Q ∈ e7(7) satisfying to the constraint Q2 = 0, and such that

the adjoint action of the coset representative V on Q decomposes into the anti-Hermitian

traceless matrix Λij and the complex-selfdual antisymmetric tensor Xijkl satisfying to the

constraints

ΛikΛ
k
j =− 1

48
δijX

klpqXklpq ,

Λ[i
[kΛ

j]
l] =−1

2
XijpqXklpq +

1

48
δijklX

pqrsXpqrs ,

Λ[i
pX

j]pkl = Λ[k
pX

l]pij . (2.81)

The action of the derivative on these tensors is defined as the e7(7) action

DijklXpqrs = 12δ
[pqr
[ijkΛs]l] , DijklΛpq = 2δp[iXjkl]q +

1

4
δpqXijkl . (2.82)

One computes for |X|2 = XijklX
ijkl that

Dijkl|X|2 =−24Xp[ijkΛ
p
l] , DijpqXklpq = 10δ

[k
[i Λj]l] , (2.83)

DijpqDklpq|X|2 = 30XijpqX
klpq + 3δklij |X|2 , Dijpq|X|2Dklpq|X|2 = 12XijpqX

klpq|X|2 ,

which permits to derive that

DijpqDklpq|X|−2s = 6s(2s− 3)XijpqX
klpq|X|−2s−2 − 3sδklij |X|−2s . (2.84)

One gets therefore a solution to the equation

DijpqDklpqE(8,4,4) = −9

2
δklij E(8,4,4) , (2.85)

for s = 3
2 . One computes in general that

DijpqDpqrsDrskl|X|−2s =

(
s2 − 17

2
s+ 6

)
Dijkl|X|−2s , (2.86)

and the function satisfies to (2.20) and its complex conjugate for all s. The restriction of

the third order derivative to the [1, 0, 0, 1, 0, 0, 1] gives

D1k[12D34]ijD8ijk|X|−2s = −3

4
s(2s− 3)(2s− 5)Λ8

1X1234|X|−2s−2 , (2.87)

showing that the function solves the cubic equation (2.40) for s = 5
2 . These functions

satisfy the same equations as their analog Eisenstein functions defined in the fundamental

representation, consistently with the property that3

E[ 03
2
00000

] =
2

π
E[ 0

000002

] , E[ 05
2
00000

] =
8

15π
E[ 0

000004

] . (2.88)

One can also consider the restriction of the fourth order derivative to the [2, 0, 0, 0, 0, 0, 0, 2]

to vanish, which defines a further restriction on solutions to (2.20). In this case one obtains

D8kijD1lijD1kpqD8lpq|X|−2s = −9

2
s(2s− 3)(2s− 5)(s− 4)Λ8

1Λ8
1|X|−2s−2 , (2.89)

3We are grateful to Axel Kleinschmidt who provided the explicit coefficients.
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and this further restriction distinguishes the value s = 4. We have in general

∆|X|−2s = 2s(2s− 17)|X|−2s , (2.90)

and the function E
[

0
400000

]
does not solve the 1/8 BPS equation. Using the same normalisa-

tion as [27] with a factor of 2ζ(2s) in the definition of the Eisenstein function, one computes

using Langlands formula

E[ 0
s00000

] = π
33
2

Γ(s−8)Γ(s− 13
2 )Γ(s− 11

2 )Γ(2s− 17
2 )ζ(2s−16)ζ(2s−13)ζ(2s−11)ζ(4s−17)

Γ(s− 5
2)Γ(s− 3

2)Γ(s)Γ(2s− 8)ζ(17− 2s)ζ(2s− 5)ζ(2s− 3)ζ(4s− 16)

×E[ 017
2

-s00000

] . (2.91)

The function is singular for various values of s, i.e. 9
2 , 11

2 , 6, 13
2 , 7, and 17

2 , and in particular

for s = 6, which is the relevant value to solve equation (2.20) with (2.23). One should

therefore consider the regularised series

E[ 0
6+ε00000

] =
π5

8ζ(9) ε
E[ 05

2
00000

] + Ê[ 0
600000

] +O(ε) . (2.92)

However, we will see in the following that this function does not appear in string theory,

similarly as the ∇6R4 threshold function is not described by an Eisenstein series in type

IIB supergravity. Nonetheless, some components of this function should appear, as we will

argue in the following.

2.5 F 2k∇4R4 type invariants

The F 2∇4R4 type invariants we have discussed in section 2.2 have a natural generalisation

to higher order invariants. Considering the same chiral harmonic superspace defined in

terms of the harmonic variables ur̂ i, u
r
i parametrising SU(8)/S(U(2)×U(6)) [34], one can

define the G-analytic superfields

F̄ 12
α̇β̇

= u1
iu

2
jF

ij

α̇β̇
, χ̄12r

α̇ = u1
iu

2
ju
r
kχ̄

ijk
α̇ . (2.93)

They do not permit to define directly chiral primary operators of SU(2, 2|8), because

D̄α̇tW
rs = δ

[r
t χ̄

12s]
α̇ , D̄α̇rχ

12s
β̇

= δsrF̄
12
α̇β̇

. (2.94)

Chiral primary operators are annihilated by the special supersymmetry generators at the

origin, i.e.

Srγ̇F̄
12
α̇β̇

= εγ̇(α̇χ̄
12r
β̇)

, Srα̇χ̄
12s
β̇

= εα̇β̇W
rs , Stα̇W

rs = 0 . (2.95)

One can enforce this property by defining a chiral primary as

O(k)

F = (S)12

((
F̄ 12
α̇β̇
F̄ α̇β̇12

)2+k
F [W ]

)
∝
(
εrstuvwW

rsW tuW vw
)2(

F̄ 12
α̇β̇
F̄ α̇β̇12

)k−1
F [W ] + . . .

(2.96)

for an arbitrary function F of the G-analytic superfield W rs. By construction such a chiral

primary operator is never short, and defines a non-trivial integrand for the (8, 2, 0) measure.
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Because one can consider an arbitrary representative up to a total fermionic derivative, one

can as well consider the first term in (2.96) as the integrand.

So similarly as in section 2.2, we get the general class of linearised invariants for an

arbitrary positive integer k,∫
duD̄16D12 F (u)

[0,n1,0,n2,0]
[0,n2+2n3+2k,0,n1,0,n2,0] F̄

2k−2Wn1+2n2+3n3+6|[0,n1,0,n2,0] (2.97)

∼Wn1+2n2+3n3
[0,n2+2n3,0,n1,0,n2,0]F̄

2k
[0,2k,0,0,0,0,0]∇4R4 + . . .

+Wn1+2n2+n3−22
[0,n2+2n3−8,0,n1−8,0,n2−4,0]F̄

2k−2
[0,2k−2,0,0,0,0,0]χ̄

16
[0,8,0,4,0,0,0]χ

12
[0,2,0,4,0,4,0] .

We conclude that the corresponding supersymmetry invariants admit the same gradient

expansion in

L(k)

(8,2,0)[E
(k)

(8,2,0)] =
∑

n1≥0,n2≥0,n3≥k
Dn1+2n2+3n3

[0,n2,0,n1,0,n2+2n3,0]E
(k)

(8,2,0) L
k [0,n2+2n3,0,n1,0,n2,0]
(8,2,0) , (2.98)

for a function E (k)

(8,2,0) satisfying to (2.40), and k ≥ 2. The coupling at the lowest number of

points is then of the kind

D3k
[0,0,0,0,0,2k,0]E

(k)

(8,2,0) L
k [0,2k,0,0,0,0,0]
(8,2,0) = D3k

[0,0,0,0,0,2k,0]E
(k)

(8,2,0) F̄
2k
[0,2k,0,0,0,0,0]∇

4R4 + . . . (2.99)

In principle one could expect to have a non-trivial mixing with another class of linearised

invariant at the non-linear level, just as the one of the F̄ 2∇4R4 type invariant with the∇6R4

type invariant described in section 2.2. However, there is no higher order chiral primary

operator that can define a non-trivial (8, 1, 1) harmonic superspace integral, and we did

not find any linearised invariant with the right structure to define a possible cohomology

class as does (2.38). Therefore we expect these invariants to have the same structure as

the associated linearised invariants, i.e. to only contribute to (4 + 2k)-point amplitudes

and higher.

Independently of this assumption, the structure of these invariants requires that the

action of the derivative Dijkl on D3kE (k)

(8,2,0) does not generate lower order derivatives of the

function. This condition is precisely (2.74), and we conclude therefore that the eigenvalue

of the Laplace operator is determined in the same way as

∆E (k)

(8,2,0) = 3(k + 4)(k − 5)E (k)

(8,2,0) , (2.100)

such that the function satisfies to

12Djr[klDirmnDpq]mnE
(k)

(8,2,0) = (k + 2)(k − 3)δijDklpqE
(k)

(8,2,0) − (k(k − 1)− 60)δi[kDlpq]jE
(k)

(8,2,0) .

(2.101)

It is therefore tempting to conjecture that

E (k)

(8,2,0) ∝ E[ 0
000004+k

] , (2.102)

in the string theory effective action, and we will indeed show in section 2.7 that this function

admits a consistent perturbative string theory limit. Moreover, we will see in section 3 that

it also admits an appropriate decompactification limit.
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2.6 Wavefront set and Poisson equation source term

We have seen that there are two classes of ∇6R4 type invariants in four dimensions, that

preserve tree-level supersymmetry modulo the classical field equations. However, consid-

ering that the effective action already includes an R4 type correction, we must take into

account the action of the accordingly modified supersymmetry transformation on the R4

type invariant itself. This is a very difficult task to carry out in practice, but one can

nonetheless show general properties on these corrections. We recall that the R4 type in-

variant admits the following gradient expansion in derivatives of the function E(8,4,4)

L(8,4,4)[E(8,4,4)] =
12∑
n=0

Dn[0,0,0,n,0,0,0]E(8,4,4)L[0,0,0,n,0,0,0]
(8,4,4) , (2.103)

with E(8,4,4) satisfying to (2.85). The first order modification of the supersymmetry trans-

formations will therefore necessarily admit the same gradient expansion in the function

E(8,4,4), such that

δ = δ(0) +

12∑
n=0

Dn[0,0,0,n,0,0,0]E(8,4,4)δ
(1) [0,0,0,n,0,0,0] + . . . , (2.104)

where the dots stand for higher order corrections. It follows that the correction at second

order will admit the expansion

δ

∫
L(8,4,4)[E(8,4,4)]

=

∫ ( 12∑
n=0

Dn[0,0,0,n,0,0,0]E(8,4,4)δ
(1) [0,0,0,n,0,0,0]

)(
12∑
m=0

Dm[0,0,0,m,0,0,0]E(8,4,4)L[0,0,0,m,0,0,0]
(8,4,4)

)

=

∫ ∑
mn

∑
R

(
Dn[0,0,0,n,0,0,0]E(8,4,4)Dm[0,0,0,m,0,0,0]E(8,4,4)

)
R

ΨR
m,n (2.105)

where the sum over R runs over all irreducible representations of SU(8) in the tensor

product [0, 0, 0, n, 0, 0, 0]⊗ [0, 0, 0,m, 0, 0, 0], and ΨR
m,n are understood to be E7(7) invariant

densities function of the fields and their covariant derivatives in the irreducible repre-

sentation R. One checks that all the appearing irreducible representations R are self-

conjugate, i.e. of the type [n4, n3, n2, n1, n2, n3, n4], by property of the tensor product

[0, 0, 0, n, 0, 0, 0] ⊗ [0, 0, 0,m, 0, 0, 0]. The F̄ 2∇4R4 type invariant admits a gradient ex-

pansion with non-self conjugate irreducible representations, and all its components in self-

conjugate representations do in fact coincide with ones appearing in the (8, 1, 1) ∇6R4 type

invariant. It follows that the analysis of the supersymmetry constraints on the F̄ 2∇4R4 type

invariant is not modified by the presence of the R4 correction, and equations (2.40), (2.42)

are the exact equations to be solved by the corresponding function E(8,2,0) in the Wilso-

nian action.

However, all the irreducible representations that appear in the gradient expan-

sion (2.18) are included in the tensor product [0, 0, 0, n, 0, 0, 0] ⊗ [0, 0, 0,m, 0, 0, 0] for m
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and n running from 1 to twelve, and the differential equations (2.20), (2.23) must be modi-

fied in the presence of the R4 type correction. Following the analysis carried out in [10, 27],

we conclude that

∆E(8,1,1) = −60E(8,1,1) − (E(8,4,4))
2 . (2.106)

As explained in [30], this requires then to modify (2.20) to

DijpqDpqmnDmnklE(8,1,1) =−9DijklE(8,1,1) −
1

2
E(8,4,4)DijklE(8,4,4) ,

DijpqDpqmnDmnklE(8,1,1) =−9DijklE(8,1,1) −
1

2
E(8,4,4)DijklE(8,4,4) . (2.107)

Using in particular the tensor product

[0,0,0,2,0,0,0]⊗ [0,0,0,1,0,0,0] ∼= [0,0,0,3,0,0,0]⊕ [0,1,0,1,0,1,0]⊕ [1,0,0,1,0,0,1]⊕ [0,0,1,1,1,0,0]⊕ [0,0,0,1,0,0,0]

one shows that

(4DijpqDpqmnDmnkl −Dijkl(∆ + 24)) (E(8,4,4))
2 = 0 , (2.108)

whereas(
36Djr[klDirmnDpq]mn − δijDklpq(∆ + 42) + δi[kDlpq]j(∆− 120)

)
(E(8,4,4))

2 6= 0 . (2.109)

We therefore conclude that no higher derivative correction in (E(8,4,4))
2 can consistently

modify (2.107) without contradicting (2.106).

These properties of the source term in the Poisson equation (2.106) can also be under-

stood through the structure of the Fourier modes of these functions. In the decompactifi-

cation limit, the Fourier modes of a function are the coefficients, functions on E6(6)/Spc(4),

of e2πi(q,a), with the axion field a in the 27 of the E6(6) subgroup. We have shown in [30]

that (2.85) implies then that the associated momenta are rank one vectors, i.e. using the

cubic Jordan norm 3 det (q) = tr q(q × q),

q × q = 0 , (2.110)

consistently with the properties of the R4 threshold function. If we consider the square of

E(8,4,4), it admits by construction Fourier modes of momenta q1 + q2 where q1 and q2 satisfy

to (2.110), such that

det (q1 + q2) = det (q1) + tr q1(q2 × q2) + tr q2(q1 × q1) + det (q2) = 0 , (2.111)

As one can see in [30], equation (2.106) implies that the Fourier modes of the function

E(8,1,1) must indeed carry momenta satisfying to the rank 2 constraint det (q) = 0, whereas

the Fourier modes of the function E(8,2,0) are generic by construction in the parabolic de-

composition. The nilpotent orbit associated to E(8,2,0) is indeed defined from the graded

decomposition

e7(7)
∼= 27

(−2) ⊕
(
gl1 ⊕ e6(6)

)(0) ⊕ 27(2) , (2.112)
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such that a representative of the nilpotent orbit is a generic element of the grad two

component in the 27.

Considering instead the string theory limit, the non-abelian Fourier modes are defined

over a Heisenberg algebra with 32 momenta in the positive chirality Weyl spinor represen-

tation of Spin(6, 6) associated to Ramond-Ramond D-brane charge Q, and an additional

momentum associated to the Neveu-Schwarz 5-brane charge N5. The nilpotent orbit asso-

ciated to E(8,1,1) is defined from the associated graded decomposition

e7(7)
∼= 1(−4) ⊕ 32(−2) ⊕(gl1 ⊕ so(6, 6))(0) ⊕ 32(2) ⊕ 1(4) . (2.113)

A representative of the nilpotent orbit is defined as a generic Weyl spinor in the grad 2

component [51],

Q ∈ Spin(6, 6)/SU(2, 4) , or Q ∈ Spin(6, 6)/SL(6) , (2.114)

to which one can add an arbitrary element of the grad 4 component N5. This implies

in particular that equation (2.107) does not imply any constraint on the Fourier modes.

Equation (2.85) implies instead that Q must be a rank 1 spinor, [51]

(Q2)|66 =̂ (QΓMNQ) = 0 , Q ∈ Spin(6, 6)/
(
SL(6) nR15

)
, (2.115)

as for example the grad 3 singlet in the decomposition

so(6, 6)∼= 15
(−2) ⊕(gl1 ⊕ sl6)(0) ⊕ 15(2) ,

32∼= 1(−3) ⊕ 15(−1) ⊕ 15
(1) ⊕ 1(3) . (2.116)

A generic rank 1 charge vector can always be rotated to the grad 3 component. Considering

the sum of two rank one charges, respectively in the grad -3 and the grad 3 components,

one obtains a generic rank 4 spinor of stabilizer SL(6) ⊂ Spin(6, 6). All the rank four

charges defined as the sum of two rank 1 charges with a non-trivial symplectic product can

be written in this form. Therefore the right-hand-side in (2.107) indeed sources generic

Fourier modes of E(8,1,1). More precisely, all the Fourier modes with a negative quartic

invariant I4(Q) ≤ 0 (belonging to the second orbit in (2.114)) are sourced by the function

E 2
(8,1,1), whereas the Fourier modes with a strictly positive quartic invariant I4(Q) (belonging

to the first orbit in (2.114)) satisfy to a homogeneous equation.

On the contrary, a representative of the nilpotent orbit associated to E(8,2,0) satisfies

that its third power in the adjoint representation vanishes, which according to (2.113)

implies that [51]

(Q3)|32 =̂
(
QΓMNQ

)
ΓMNQ = 0 , Q ∈ Spin(6, 6)/

(
SL(2)× Spin(3, 4) nR2×8+1

)
.

(2.117)

The relation with the Fourier modes is not completely straightforward in the presence of a

non-trivial NS5-brane charge, because in that case the nilpotent subgroup is a non-abelian

Heisemberg group, such that the corresponding Killing vector

κα =
∂

∂aα
− 1

2
Cαβa

β ∂

∂b
, k5 =

∂

∂b
, (2.118)
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satisfy to

[κα, κβ ] = Cαβk5 , (2.119)

where Cαβ is the antisymmetric charge conjugation matrix of Spin(6, 6). For a Fourier

mode of vanishing NS5-brane charge, k5EQ,0 = 0, and one can define the spinor charge

Q such that καEQ,0 = iQαEQ,0, and Q must satisfy to the same algebraic equations as

the representatives of the nilpotent orbits associated to the differential equations. For a

non-zero NS5-brane charge the relevant equations are more complicated, but still involve

the Killing vector κα to the third order in the same combination.

Let us now consider the M-theory limit, for which one considers the decomposition

e7(7)
∼= 7(−4) ⊕ 35

(−2) ⊕(gl1 ⊕ sl7)(0) ⊕ 35(2) ⊕ 7
(4)
, (2.120)

In this case the nilpotent subgroup also generate a non-abelian Heisenberg type algebra

κmnp =
∂

∂amnp
− 1

12
εmnpqrsta

qrs ∂

∂bt
, km =

∂

∂bm
, (2.121)

such that

[κmnp, κqrs] =
1

6
εmnpqrstk

t . (2.122)

For a Fourier mode of vanishing M5-brane charge, kmEq,0 = 0, and one can define the M2-

brane charge κmnpEq,0 = iqmnpEq,0. For a non-zero M5-brane charge kmEq,p = ipmEq,p the

relevant equations are more complicated, but still involve the Killing vector in a way similar

as does the corresponding nilpotent orbit characteristic equation involves the algebraic

charges. For a 1/2 BPS charge satisfying to the quadratic constraint, one obtains [52]

εmnqrstuqpqrqstu = 0 , qmnpp
p = 0 , (2.123)

giving 17 = 13 + 4 linearly independent solutions, with typical representative

1

6
qmnpdy

m ∧ dyn ∧ dyp = q1dy
1 ∧ dy2 ∧ dy3 . (2.124)

The cubic constraint in the adjoint representation implies

εnrstuvwqrstquv[pqqm]w = 0 , εmnqrstuqpqrqstup
p = 0 , (2.125)

that gives 27 = 21 + 6 linearly independent solutions, with typical representative

1

6
qmnpdy

m ∧ dyn ∧ dyp = dy1 ∧
(
q1dy

2 ∧ dy3 + q2dy
4 ∧ dy5 + q3dy

6 ∧ dy7
)
. (2.126)

The cubic constraint in the fundamental implies instead

εmnrstuvqmnrqst(pqq)uv = 0 , (2.127)

that gives 33 = 26+7 linearly independent solutions, such that the SL(7) M2-brane charge

orbits are either

q ∈ SL(7,R)/(SL(3,C) n C3) , or q ∈ SL(7,R)/(SL(3,R) nR3)×2 , (2.128)

– 23 –



J
H
E
P
0
7
(
2
0
1
5
)
1
5
4

with typical representative

1

6
qmnpdy

m∧dyn∧dyp = q1dy
1∧dy2∧dy3+q2dy

1∧dy4∧dy5+q3dy
2∧dy6∧dy4+q4dy

3∧dy5∧dy6,

(2.129)

and
1

2× 123
εpmnrstuεqm

′n′r′s′t′u′qmnrqstm′qn′r′uqs′t′u′ = q1q2q3q4δ
p
7δ
q
7 , (2.130)

such that the orbit (2.128) is determined by the sign of the eigenvalue of this rank one

symmetric tensor, I4 = q1q2q3q4. The generic sum of two rank one charges takes the form

1

6
qmnpdy

m ∧ dyn ∧ dyp = q1dy
1 ∧ dy2 ∧ dy3 + q2dy

4 ∧ dy5 ∧ dy6 , (2.131)

and is a generic solution to (2.127) associated to the second orbit (i.e. I4 < 0), and violates

equation (2.126). Therefore we confirm that a quadratic source in E(8,4,4) is in contradiction

with the cubic equation satisfied by E(8,2,0), whereas it is consistent with the one satisfied

by E(8,1,1).

Let us now argue that all the invariants of the infinite series of F̄ 2k∇4R4 do not get

modified at the same order by lower order modifications to the supersymmetry transfor-

mations. By power counting, the next order correction to the R4 type invariant and a

F̄ 2k∇4R4 type invariant can in principle contribute to a right-hand-side for the classical

supersymmetry variation of a F̄ 2k+6∇4R4 type invariant. So in principle one could expect

that the function E (k)

(8,2,0) satisfies to a Poisson equation of the kind

∆E (k)

(8,2,0) = 3(k + 4)(k − 5)E (k)

(8,2,0) − a
(k)

3 E(8,4,4) E (k−3)

(8,2,0)

− a(k)

5 E(8,2,2) E (k−5)

(8,2,0) − a
(k)

6 (E(8,4,4))
2 E (k−6)

(8,2,0) −
k−8∑
p=0

b(k)
p E

(k−8−p)
(8,2,0) E

(p)

(8,2,0) + . . . (2.132)

However, the solutions to the differential equation (2.101) admit restricted Fourier modes in

the string theory limit, satisfying to (2.117) for a vanishing NS5-brane charge. As we have

already explained, the product of two functions including non-perturbative corrections

admits generic Fourier modes in the string theory limit, because the sum of two pure

spinors can be a generic spinor. We see therefore that a source term modifying (2.101)

would necessarily involve the third order differential operator such as to source these Fourier

modes. Such a modification would destroy completely the structure of the equations, which

would reduce then to some kind of Poisson equation.

2.7 String theory perturbation theory

In order to deduce constraints on the contributions that can possibly appear in perturbative

string theory, it is important to solve the differential equations satisfied by the threshold

functions in the parabolic gauge with manifest T-duality symmetry (2.113). In this section

we will solve these equations on an ansatz function depending only on the string theory

dilaton e2φ and the scalar fields parametrising SO(6, 6)/(SO(6) × SO(6)). We have not

computed explicitly the decomposition of the differential equations, but using the manifest
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covariance, and the known solutions for the R4 and the ∇4R4 threshold functions [27], we

can determine unambiguously all the unknown coefficients.

We define the covariant derivative Dab̂ on SO(6, 6)/(SO(6)× SO(6)) in tangent frame,

such that a = 1 to 6 of one SO(6) and b̂ = 1 to 6 of the other. It is convenient to define

the covariant derivative as an SU(4) × SU(4) tensor

Dijk̂l̂ =
1

4
γaijγ

b̂
k̂l̂Dab̂ , (2.133)

with i = 1, 4 of one SU(4) and ı̂ = 1, 4 of the other.

Calibrating the equations on the known solutions, one obtains that

D 3
56E =

(
s2 − 17

2
s+ 6

)
D56E (2.134)

decomposes on R∗+ × SO(6, 6)/(SO(6)× SO(6)) as((
1

64
∂ 3
φ +

17

32
∂ 2
φ +

3

2
∂φ−Dab̂D

ab̂

)
δba+

(
3

4
∂φ+6

)
DaĉDbĉ

)
E =

(
s2− 17

2
s+6

)
δba

1

4
∂φE ,(

DaĉDdĉDdb̂ +

(
3

16
∂ 2
φ +

31

8
∂φ + 9

)
Dab̂

)
E =

(
s2 − 17

2
s+ 6

)
Dab̂E ,(

8Dipk̂q̂Dprq̂ŝDjr l̂ŝ +

(
5

4
∂φ + 2

)
2Dij k̂l̂

)
E = 2

(
s2 − 17

2
s+ 6

)
Dij k̂l̂E ,

(2.135)

whereas

D 3
133E = s(s− 9)D133E (2.136)

gives the components in the 32 of Spin(6, 6)((
1

64
∂ 3
φ +

5

8
∂ 2
φ −

5

16
∂φ −Dpqr̂ŝDpqr̂ŝ

)
δki δ

l̂
̂+3(∂φ+6)Dip̂q̂Dkpl̂q̂

)
E = s(s−9)δki δ

l̂
̂

1

4
∂φE ,(

8Dip̂q̂Dprq̂ŝDkrl̂ŝ +

(
3

16
∂ 3
φ +

31

8
∂φ

)
2Dik̂l̂

)
E = 2s(s−9)Dik̂l̂E .

(2.137)

The ∇4R4 threshold function solves (2.134) for s = 3
2 and (2.137) for s = 4. One reads di-

rectly from these equations, that a solution of type eaφED6 on R∗+×SO(6, 6)/(SO(6)×SO(6))

must be such that ED6 satisfies to the quadratic equations in all fundamental representa-

tions (i.e. the vector and Weyl spinor of positive and negative chirality), unless a = −6

or a = −8. The only other solutions are therefore such that ED6 is either a constant, or

solves (B.24). One finds the unique solution e−10φ. For the values a = −8, the function ED6

satisfies to a quadratic equation in the spinor representation, and solve (B.30) for s = 4

(or 1 which is equivalent). For a = −6, ED6 satisfies to a quadratic equation in the vector

representation, and cubic equations in the two spinor representations, and must therefore

satisfy to (B.25). We find therefore that supersymmetry and T-duality alone already deter-

mine the ∇4R4 type corrections in perturbative string theory, up to three free coefficients,
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that are given in [27]

1

2
E[ 05

2
00000

] = ζ(5)e−10φ +
4

15π
e−8φE[ 0

4000
0

] +
2

3
e−6φE[ 2

0000
0

] +O
(
e−e

−φ
)
. (2.138)

This confirms that supersymmetry alone already prevents any perturbative correction to

the ∇4R4 threshold function beyond 2-loop in perturbative string theory.

The functions defining the F̄ 2k∇4R4 solve equation (2.137) for s = k + 4. Similarly

one obtains the general SO(6, 6,Z) invariant solution

E (k)

(8,2,0) = c(k)

1 e−2(k+4)φE[ 0
k+4000

0

] + c(k)

k+2e
−6φE[ k+2

0000
0

] + c(k)

2k e
2(k−5)φE[ 0

k000
0

] +O
(
e−e

−φ
)
.

(2.139)

It is quite remarkable that the only solutions we get all correspond to a strictly positive

number of loops in perturbative string theory. After implementing the Weyl rescaling,

one obtains indeed that c(k)

` is a coefficient for a `-loop correction in string theory for

the F̄ 2k∇4R4 threshold function. For k = 1 and k = 2, equation (2.137) is exact for

the Wilsonian effective action (not taking into account linear corrections associated to

logarithms in the complete effective action). U -duality therefore implies that E(8,2,0) must

be an Eisenstein function as in (2.102). Assuming that our argumentation in the preceding

section is correct, and that equation (2.137) is satisfied for all k, we arrive at the conjecture

that the F̄ 2k∇4R4 threshold function is defined by the Eisenstein series E
[

0
000004+k

]
for all k.

It is rather remarkable that this coupling would only get three corrections in perturbation

theory, at 1-loop, k + 2-loop and 2k-loop.

This Eisenstein function diverges precisely for k = 1, corresponding to the F̄ 2∇4R4

threshold related to the ∇6R4 threshold function by supersymmetry. One must therefore

consider the regularised Eisenstein series

16

63
Ê[ 0

000005

] =
16

63
e−10φÊ[ 0

5000
0

]− 15ζ(5)

4
φ e−10φ+

1

π
e−8φ

(
2φE[ 0

4000
0

]−∂sE[ 0
s000

0

]∣∣
s=4

)
+
π

9
e−6φÊ[ 3

0000
0

] +O
(
e−e

−φ
)
. (2.140)

Here we have fixed all the coefficients by consistency with (2.77) and (2.138). The logarithm

of the dilaton indicates a divergence of the ∇4R4 form factor into ∇6R4 in supergravity.

Note nonetheless that the 3-loop contribution in the last line violate T-duality parity in

O(6, 6,Z), and the string theory effective action must include the same function with oppo-

site chirality. Because it is a three-loop contribution, it cannot come from the completion

of the R4 type invariant and it must appear as a solution to equation (2.134) for s = 6.

Considering the general SO(6, 6,Z) invariant solution of (2.134), one finds indeed

E(8,1,1) = c-6e
−4sφ + c- 1

2
e−(2s+1)φE[ 0

0000
s-1

2

] + c1e
2(2s−17)φ

+ c2e
−8φE[ 0

0s-200
0

] + c3e
2(s−9)φE[ 0

0000
s-3

] (2.141)

where the coefficients c` are constants that would correspond to `-loop contributions for

the ∇6R4 threshold function in string theory. Note that the first two terms do not make
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sense in perturbative string theory. The corresponding Eisenstein function E
[

0
s00000

]
includes

generically all these terms, and therefore cannot define the string theory threshold function,

consistently with the property that (2.134) is corrected by a source term (2.107). However,

the three-loop contribution is not affected by the source term, and one can take seriously

the last contribution, which is precisely the one required to restore O(6, 6,Z) invariance

for s = 6.

This is indeed confirmed by the expression obtained in [33] for the ∇6R4 threshold

function, and using these results we conclude therefore that the exact threshold function

for the ∇6R4 coupling is defined as

E(0,1) = Ê(8,1,1) +
32

189π
Ê[ 0

000005

] , (2.142)

where the function E(8,1,1) solve the differential equation

∆Ê(8,1,1) =−60Ê(8,1,1) −
(
E[ 0


00000

])2
+

35

π

(
1

2
E[ 0


00000

]
)

(2.143)

DijpqDpqmnDmnklÊ(8,1,1) =−9DijklÊ(8,1,1) −
1

2
E[ 0


00000

]DijklE[ 0

00000

]

+
35

4π
Dijkl

(
1

2
E[ 0


00000

]
)
,

DijpqDpqmnDmnklÊ(8,1,1) =−9DijklÊ(8,1,1) −
1

2
E[ 0


00000

]DijklE[ 0

00000

]

+
35

4π
Dijkl

(
1

2
E[ 0


00000

]
)
.

Here the anomalous right-hand-side is determined such as to coincide with the one obtained

in [33] for the complete function E(0,1). These coefficients can also be directly computed

from the properties of the Eisenstein functions and the structure of the differential equa-

tions [53].

3 Supergravity in higher dimensions

In this section we will consider the extension of the results of the preceding section in five,

six, seven and eight dimensions. We will see that the two ∇6R4 type invariants both lift

to higher dimensions, even if they cannot be defined as harmonic superspace integrals in

the linearised approximation in general.

3.1 N = 4 supergravity in five dimensions

Let us recall in a first place some properties of maximal supergravity in five dimensions.

The scalar fields parametrise the symmetric space E6(6)/Sp(4)c. We use i, j = 1, ..., 8 as

indices in the fundamental representation of Sp(4), and Ωij defines the symplectic form

with the normalisation ΩikΩjk = δij . The covariant derivative in tangent frame Dijkl is a

symplectic traceless rank four antisymmetric tensor in the representation [0, 0, 0, 1] of Sp(4).
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3.1.1 Linearised ∇6R4 type invariants

In five dimensions there is only one kind of 1/8 BPS harmonic superspace integral that one

can define [41]. For this purpose, one considers Sp(4)/(U(1) × Sp(3)) harmonic variables

(u1
i, u

r
i, u

8
i) with r = 2, ..., 7 in the fundamental of Sp(3), and the decomposition

sp(4)∼= 6(−1) ⊕(u(1)⊕ sp(3))(0) ⊕ 6(1)

42∼= 14(−1)

3 ⊕ 14(0)

2 ⊕ 14(1)

3 . (3.1)

One defines the G-analytic superfield W rst in the [0, 0, 1] of Sp(3)

W rst = u1
iu
r
ju
s
ju
t
kL

ijkl , (3.2)

which satisfies the constraint

u1
iD

i
αW

rst = 0 . (3.3)

Following the same reasoning as in section 2.1, we consider a general monomial of W rst

in an irreducible representation of Sp(3). In this case we obtain equivalently that the

monomials are freely generated by W rst in the [0, 0, 1], the elements

W rtpW sqrΩtqΩpr , (3.4)

in the [2, 0, 0],

W rpqW su
pW

t
qu , (3.5)

in the [0, 0, 1], and

W r]tuW [s
tuW

p]vwW [q
vw − “symp trace” , W rstW pq

rW
u
spW tqu , (3.6)

respectively in the [0, 2, 0] and the singlet representation. The general linearised invariant

takes therefore the form∫
duD28F (u)

[2n2,2n4,n1+n3]
[2n3+2n4+4n′4,2n2,2n4,n1+n3]

W
4+n1+2n2+3n3+4n4+4n′4
[2n2,2n4,n1+n3]

=L
n1+2n2+3n3+4n4+4n′4
[2n3+2n4+4n′4,2n2,2n4,n1+n3]

(
∇6R4 + . . .

)
+ . . . (3.7)

The structure of these linearised invariants suggests that the complete non-linear invariant

admits the following gradient expansion

L(4,1)[E(4,1)] =
∑

n1,n2,n3,n4,n′4

Dn1+2n2+3n3+4n4+4n′4
[2n3+2n4+4n′4,2n2,2n4,n1+n3]

E(4,1)L
[2n3+2n4+4n′4,2n2,2n4,n1+n3]
(4,1) .

(3.8)

The consistency of this ansatz requires that the function E(4,1) must be an eigenfunction

of the Laplace operator, and that its third order derivative restricted to the [0, 2, 0, 0] is

proportional to its second derivative in the same representation. This linearised analysis is

consistent with the one of the (8, 1, 1) type invariant in four dimensions, and we are going

to see that the relevant equation is

DijpqDpqrsDrsklE(4,1) =
1

4
Dijkl(34 + ∆) E(4,1) . (3.9)

However, the (8, 2, 0) type invariants cannot be defined in the linearised approximation

through a harmonic superspace integral, and we shall instead consider the uplift of the

general invariant to five dimensions.
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3.1.2 Decompactification limit from four to five dimensions

We are therefore going to solve the differential equations (2.40) and (2.143) for a function

depending only of the Levi subgroup R+
∗ × E6(6) of the parabolic subgroup associated to

the decompactification limit, such that

e7(7)
∼= 27

(−2) ⊕
(
gl1 ⊕ e6(6)

)(0) ⊕ 27(2) , 56 ∼= 1(−3) ⊕ 27(−1) ⊕ 27
(1) ⊕ 1(3) . (3.10)

For this purpose we use the same conventions as in [30], such that the coset representative

in E7(7)/SU(8)c is defined as

V =


e3φ 0 0 0

0 eφVij
I 0 0

0 0 e−φV -1
I
ij 0

0 0 0 e−3φ




1 aJ 1
2 tJKLa

KaL 1
3 tKLPa

KaLaP

0 δJI tIJKa
K 1

2 tIKLa
KaL

0 0 δIJ aI

0 0 0 1

 , (3.11)

where Vij
I is the coset representative in E6(6) with the Sp(4) pair ij being antisymmetric

symplectic traceless and the index I in the fundamental of E6(6). tIJK is the E6(6) invariant

symmetric tensor normalised as in [30]. We have already computed the decomposition of

the cubic equation (2.21) in [30], which is(
1

64
∂ 3
φ +

21

32
∂ 2
φ +

9

2
∂φ −

3

4
∆

)
E(8,1,1) =−1

4
∂φ

(
9E(8,1,1) +

1

4
E 2

(8,4,4)

)
(3.12)(

DijpqDpqrsDrskl +Dijkl
(

1

48
∂ 2
φ +

27

24
∂φ +

7

2

)
+DijpqDklpq

(
1

4
∂φ + 3

)

+δklij

(
1

123
∂ 3
φ +

5

96
∂ 2
φ +

1

6
∂φ−

1

4
∆

))
E(8,1,1) =−

(
1

12
δklij ∂φ+Dijkl

)(
9E(8,1,1)+

1

4
E 2

(8,4,4)

)
,

where

δklij = δ
[k
[i δ

l]
j] −

1

8
ΩijΩ

kl , ∆ =
1

3
DijklDijkl , (3.13)

and indices are raised and lowered with the symplectic matrix Ωij . Because of the Weyl

rescaling required to stay in Einstein frame, the relevant radius power in the decompactifi-

cation limit for a ∇2nR4 threshold function is such that EE7 = e−(6+2n)φEE6 , and because

we are interested in the constraint on the ∇6R4 threshold function, we use the ansatz

E(8,1,1) = e−12φE(8,1) , E(8,4,4) = e−6φE(8,4) , (3.14)

where E(8,1) and E(8,4) are functions on E6(6)/Sp(4)c. Using this ansatz, one derives

∆E(8,1) = −18E(8,1) − E 2
(8,4) , (3.15)

and (
DijpqDpqrsDrskl + 2Dijkl

)
E(8,1) = −1

4
DijklE 2

(8,4) . (3.16)

These equations are satisfied by the 1/8 BPS threshold functions in the Wilsonian effective

action, but the U-duality invariant function appearing in the 1PI effective action satisfied

to anomalous equations with additional terms linear in E(8,4) in the right-hand-side [33].
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We shall now consider the uplift of the F 2k∇4R4 type invariants, but for this purpose it

will be more convenient to consider directly the decompactification limit of the Eisenstein

function E
[

0
00000k+4

]
. We shall only consider the term with the correct power of the com-

pactification radius r to lift to a diffeomorphism invariant in five dimensions, as computed

in appendix B.1,∫
d4x
√
−g E[ 0

00000k+4

]∇4+2kR4 →
π

1
2 Γ(k + 7

2)

Γ(k + 4)

∫
d5x
√
−g E[ 0

0000k+ 7
2

]∇4+2kR4 . (3.17)

We conclude in this way that the threshold function E (k)
1
8

defining the F 2k∇4R4 type in-

variants satisfies to(
DijpqDpqrsDrskl−

2k(k+1)−10

3
Dijkl

)
E (k)

1
8

=
k+2

2

(
DijpqDklpq−

2(2k−5)(2k+7)

27
δklij

)
E (k)

1
8

∆E (k)
1
8

=
2

3
(2k − 5)(2k + 7)E (k)

1
8

, D3
[2,0,0,1]E

(k)
1
8

= 0 . (3.18)

It follows from representation theory that such equations are indeed implied by (2.136),

and this explicit example permits to determine them uniquely.

We therefore obtain that the threshold function is the regularised Eisenstein series

Ê (1)
1
8

=
5

108
Ê[ 0

0000 9
2

] , (3.19)

such that the exact ∇6R4 threshold function E(0,1) is

E(0,1) = Ê(8,1) +
5

108
Ê[ 0

0000 9
2

] . (3.20)

The series E
[

0
0000s

]
admits a pole at s = 9

2 proportional to the series E
[

03
2
0000

]
defining the

R4 threshold, exhibiting that the R4 invariant form factor diverges at two loop into the

∇6R4 form factor associated to the same function. This is in agreement with [33], where

the explicit coefficient is computed.

3.2 N = (2, 2) supergravity in six dimensions

We shall now discuss these invariants in N = (2, 2) supergravity in six dimensions. We

recall that the scalar fields parametrise in this case the symmetric space SO(5, 5)/(SO(5)×
SO(5)).

3.2.1 Linearised invariant

In the linearised approximation, the theory is defined from the scalar superfield Lijı̂̂ in

the [0, 1]× [0, 1] of Sp(2)× Sp(2), where i, j and ı̂, ̂ run from 1 to 4 in the fundamental of

the two respective Sp(2). One can define a ∇6R4 type invariant by considering harmonic

variables u1
i, u

r
i, u

4
i parametrising Sp(2)/(U(1) × Sp(1)) associated to one Sp(2) factor,

with r = 2, 3 of Sp(1), such that

sp(2) ∼= 2(−1) ⊕(u(1)⊕ sp(1))(0) ⊕ 2(1) , 4 ∼= 1(−1) ⊕ 2(0) ⊕ 1(1) . (3.21)
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One can in this way introduce the G-analytic superfield [41]

W rı̂̂ = u1
iu
r
jL

ijı̂̂ , (3.22)

that transforms in the fundamental of Sp(1) and as a vector of SO(5) ∼= Sp(2)/Z2, and

satisfies to the 1/8 BPS G-analyticity constraint

u1
iD

i
αW

r,̂ı̂ = 0 . (3.23)

A general polynomial in W r,̂ı̂ decomposes into irreducible representations of Sp(1)×Sp(2).

Similarly as in lower dimensions, one shows that the latter are freely generated by W r,̂ı̂

itself in the [1]× [0, 1] of SU(2)× Sp(2), the two quadratic monomials

W rı̂̂W s
ı̂̂ , W rı̂k̂Wr

̂
k̂ , (3.24)

in the [2] and the [2, 0], respectively, the cubic monomial

W sı̂̂W rk̂l̂Wsk̂l̂ , (3.25)

in the [1]× [0, 1], and the two quartic monomials

W sı̂p̂Ws
̂
p̂W

p
k̂
q̂Wpl̂q̂ −

1

6
δ ı̂̂
k̂l̂
W sı̂p̂Ws

̂
p̂W

p
ı̂
q̂Wp̂q̂ , W sı̂p̂Ws

̂
p̂W

p
ı̂
q̂Wp̂q̂ , (3.26)

in the [0, 2] and the singlet representation, respectively. One concludes that the most

general monomial is labeled by 6 integers, such that∫
duD12D̄16F (u)

[n1+2n2+n3][2n′2,n1+n3+2n4]

[2n′2+2n3+4n4+4n′4,n1+2n2+n3][2n′2,n1+n3+2n4]
W

4+n1+2n2+2n′2+3n3+4n4+4n′4
[n1+2n2+n3][2n′2,n1+n3+2n4]

=L
n1+2n2+2n′2+3n3+4n4+4n′4
[2n′2+2n3+4n4+4n′4,n1+2n2+n3][2n′2,n1+n3+2n4]

∇6R4 + . . . (3.27)

The linear analysis therefore suggests the form of the nonlinear invariant

L(4,1,0)[E(4,1,0)] (3.28)

=
∑

n1,n2,n
′
2

n3,n4,n
′
4

Dn1+2n2+2n′
2+3n3+4n4+4n′

4

[2n′
2+2n3+4n4+4n′

4,n1+2n2+n3][2n′
2,n1+n3+2n4]

E(4,1,0)L
[2n′

2+2n3+4n4+4n′
4,n1+2n2+n3][2n′

2,n1+n3+2n4]

(4,1,0)

+
∑

n1,n2,n
′
2

n3,n4,n
′
4

Dn1+2n2+2n′
2+3n3+4n4+4n′

4

[2n′
2,n1+n3+2n4][2n′

2+2n3+4n4+4n′
4,n1+2n2+n3]

E(4,1,0)L
[2n′

2,n1+n3+2n4][2n′
2+2n3+4n4+4n′

4,n1+2n2+n3]

(4,1,0)

where we consider the possibility of a mixing between the invariant L(4,1,0) with its conju-

gate obtained by exchanging the two Sp(2) factors, according to the observation in [31] for

the ∇4R4 type invariant in eight dimensions.

From this structure one deduces that supersymmetry requires the function E(4,1,0) to

be an eigenfunction of the Laplace operator, and to satisfy equations of the form

D3
[2,0],[2,0]E(4,1,0) ∝ D 2

[2,0],[2,0]E(4,1,0) , D3
[0,1],[0,1]E(4,1,0) ∝ D[0,1],[0,1]E(4,1,0) , (3.29)

as well has a highest weight constraint

D2k
[0,0],[0,2k]E(4,1,0) = 0 , (3.30)

for some integer k. We will see in the next section that the standard ∇6R4 type invariant

threshold function indeed satisfies to these equations for k = 2.
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3.2.2 Decompactification limit from five to six dimensions

We are now going to solve the differential equations (3.16) and (3.18) for a function de-

pending only of the Levi subgroup R+
∗ × SO(5, 5) of the parabolic subgroup associated to

the decompactification limit, such that

e6(6)
∼= 16(−3) ⊕(gl1 ⊕ so(5, 5))(0) ⊕ 16

(3)
, 27 ∼= 10(−2) ⊕ 16(1) ⊕ 1(4) . (3.31)

The covariant derivative on E6(6)/Spc(4) acting on such a function takes the block diago-

nal form

D27 = diag

(
1

6
∂φ,D16 +

1

24
116∂φ,D10 −

1

12
110∂φ

)
. (3.32)

To check the differential equations (3.16) and (3.18) we need to compute the block diagonal

decomposition of the higher order differential operators. In order to do this computation

we consider a general ansatz and determine all the free coefficients by consistency with the

various differential equations displayed in appendix A. We obtain in this way

D 2
27 = diag

(
1

62
∂ 2
φ +

1

2
∂φ , D 2

16 +
1

2
D16

(
1

6
∂φ + 1

)
+

1

16
116

(
1

62
∂ 2
φ + 3∂φ

)
,

D 2
10 −D10

(
1

6
∂φ + 1

)
+

1

4
110

(
1

62
∂ 2
φ + ∂φ

))
(3.33)

and

D 3
27 = diag

(
1

63
∂ 3
φ +

3

16
∂ 2
φ +

5

4
∂φ −

1

2
∆ ,

D 3
16 +

3

4
D 2

16

(
1

6
∂φ+2

)
+D16

(
3

16

(
1

62
∂ 2
φ + 2∂φ

)
+1

)
+

1

64
116

(
1

63
∂ 3
φ +

1

2
∂ 2
φ − 8∆

)
,

D 3
10 −

3

2
D 2

10

(
1

6
∂φ+2

)
+D10

(
3

4

(
1

62
∂ 2
φ + ∂φ

)
+

5

2

)
− 1

8
110

(
1

63
∂ 3
φ +

1

4
∂ 2
φ +∂φ−2∆

))
,

(3.34)

where ∆ ≡ Tr D 2
10. In order to determine the constraints on the threshold function is six

dimensions, we consider an ansatz with the appropriate power of the radius modulus e−3φ

such as to compensate for the Weyl rescaling to Einstein frame, i.e.

E(8,4) = e−6φE(4,2,2) , E(8,1) = e−12φE(4,1,0) . (3.35)

The singlet component of (3.16) gives directly the Poisson equation

∆E(4,1,0) = −E 2
(4,2,2) , (3.36)

which is indeed consistent with (3.14). Working out spinor and the vector equations, using

the Poisson equation (3.36), one obtains similarly(
D 3

16 −
3

4
D16

)
E(4,1,0) = −1

4
D16E 2

(4,2,2) ,

(
D 3

10 −
3

2
D10

)
E(4,1,0) = −1

4
D10E 2

(4,2,2).

(3.37)
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The only Eisenstein function that solves this homogenous equation (for E(4,2,2) = 0) is the

Eisenstein series Ê
[

0
0 7

2
0
0

]
, but its expansion in the string theory limit is inconsistent with

perturbation theory. As is computed in appendix B.3, one has moreover

Dd
â

(
D(a

b̂Db|b̂Dc
ĉDd)ĉ

)
|[0,4]Ê[ 0

0 7
2
0
0

] = 0 , (3.38)

which defines an integrability condition for the function to decompose into the sum of

two functions satisfying to (3.30) and its conjugate obtained by exchange of the two Sp(2)

for k = 2.

Let us now consider the differential equation (3.18) for the function E(k)
1
8
E6

defining

the F 2k∇4R4 threshold function in five dimensions. Diffeomorphism invariance in six

dimensions requires an ansatz of the form

E(k)
1
8
E6

= e−2(k+5)φE(k)
1
8
D5
, (3.39)

and using this ansatz, one obtains from the singlet component of (3.18) the Laplace equa-

tion

∆E(k)
1
8

=
5

2
(k + 3)(k − 1)E(k)

1
8

, (3.40)

where we removed the D5 label for simplicity. The spinor and the vector equations give then(
D 3

16 −
13(k + 3)(k − 1) + 24

16
D16

)
E(k)

1
8

=−3(k + 1)

4

(
D 2

16 −
5(k + 3)(k − 1)

16
116

)
E(k)

1
8

,

D 2
10 E

(k)
1
8

=
(k + 3)(k − 1)

4
110 E(k)

1
8

, (3.41)

where we used that the even and odd powers of D10 lie in different irreducible represen-

tations of Sp(2) × Sp(2), and must therefore vanish separately. The unique Eisenstein

function satisfying to this equation is

E(k)
1
8

∝ E[ 0
000

k+3

] , (3.42)

consistently with the decompactification limit of the five-dimensional function

E[ 0
0000k+ 7

2

] = 2ζ(2k + 7)e−4(2k+7)φ +
π

1
2 Γ(k + 3)

Γ(k + 7
2)

e−(2k+10)φE[ 0
000

k+3

] + . . . (3.43)

We conclude therefore that the exact ∇6R4 function is defined as

E(0,1) = Ê(4,1,0) + Ê(4,0,1) +
8

189
Ê[ 0

000
4

] , (3.44)

where Ê(4,1,0) satisfies to (3.37), and to an anomalous Poisson equation with an additional

constant source term. This function is consistent with [33], where the second Eisenstein

function appears with this normalisation, and the 2-loop five dimensional threshold function

must indeed solve (3.37), because the equation is parity invariant with respect to O(5, 5).
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3.3 N = 2 supergravity in seven dimensions

None of the ∇6R4 type invariants can be defined in the linearised approximation as har-

monic superspace integrals in seven dimensions. We will therefore consider the uplift of

the four-dimensional invariants in the decompactification limit. In seven dimensions the

scalar fields parametrize the symmetric space SL(5)/SO(5), and the covariant derivative Dij
transforms as a symmetric traceless tensor of SO(5), with i, j = 1, . . . , 5 of SO(5). We con-

sider therefore the parabolic subgroup of E7(7) of semi-simple Levi subgroup SL(5)×SL(3)

associated to the decomposition

e7(7)
∼= 5̄(−6)⊕ (3⊗ 5)(−4)⊕ (3̄⊗ 10)(−2)⊕(gl1⊕ sl3⊕ sl5)(0)⊕ (3⊗ 10)(2) ⊕ (3̄⊗ 5̄)(4) ⊕ 5(6)

56∼= 3
(−5) ⊕ 10(−3) ⊕ (3⊗ 5)(−1) ⊕ (3⊗ 5)(1) ⊕ 10

(3) ⊕ 3(5) . (3.45)

We will use the same conventions as in [31], where the decompactification limit of equa-

tions (2.40) and (2.143) is already discussed in details. We consider the ansatz

E(8,1,1) = e−36φE 1
8
, E(8,4,4) = e−18φE(4,2) , (3.46)

with E 1
8

and E(4,2) defined on SL(5)/SO(5), and the appropriate power of the volume mod-

ulus e−3φ required by diffeomorphism invariance in seven dimensions. The 3(3) component

of the equation reduces to the Poisson equation

∆E 1
8
≡ 2DijDijE 1

8
=

42

5
E 1

8
− E 2

(4,2) . (3.47)

Using this equation in the (3⊗ 5)(1) component of (2.143), one obtains(
DikDklDlj +

1

5
DikDkj −

1053

400
Dij +

177

500
δji

)
E 1

8
=

1

4

(
1

10
δji −Di

j

)
E 2

(4,2) . (3.48)

Using moreover these equations to simplify the 10
(3)

components, one obtains(
6D[i

[kDj]pDpl] +
3

10
D[i

[kDj]l]
)
E 1

8
=

3

5
δ

[i
[k

(
Dj]pDpl] −

71

20
Dj]l] +

9

25
δ
j]
l]

)
E 1

8
. (3.49)

The solution to the homogenous equation (with E(4,2) = 0) can be written as the Eisenstein

function E[3,0,0, 52 ], using the formulae of appendix A.5.

We consider now the F 2k∇4R4 threshold function, with the ansatz

E (k)

(8,2,0) = e−6(k+5)φE (k)
1
8

. (3.50)

Appropriate linear combinations of the grad 6 and 4 components of (2.40) in (3.45) give

the two equations(
DikDklDlj+

1

2
DikDkj

)
E (k)

1
8

=

(
16k(7k+20)+75

400
Dij+

3k(k+5)(2k+5)

125
δji−

1

40
δji∆

)
E (k)

1
8

kDikDkjE (k)
1
8

=

(
k

4k + 5

20
Dij +

3k(k + 5)(2k + 5)

25
δji −

1

2
δji∆

)
E (k)

1
8

.

(3.51)
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For k ≥ 1 we conclude that the function must satisfy to the quadratic equation

DipDpjE (k)
1
8

=
4k + 5

20
DijE (k)

1
8

+
3k(2k + 5)

25
δji E

(k)
1
8

, (3.52)

such that

∆E (k)
1
8

=
6k(2k + 5)

5
E (k)

1
8

. (3.53)

One can then check that all the other equations implied by (2.40) are indeed satisfied

provided that (3.52) is. This equation is satisfied by the Eisenstein function E[0,0,k+ 5
2 ,0],

which appears in the decompactification limit of the corresponding Eisenstein function on

E7(7)/SUc(8), i.e.

E[ 0
00000k+4

] = e−10(k+4)φE[k+4,0] +
π

3
2 Γ
(
k + 5

2

)
Γ(k + 4)

e−6(k+5)φE[0,0,k+ 5
2 ,0] + . . . (3.54)

where the Eisenstein series is normalised with an extra 2ζ(2s) factor with respect to the

Langlands normalisation. We conclude therefore that the exact ∇6R4 threshold function is

E(0,1) = E 1
8

+
5π

378
E[0,0, 72 ,0] , (3.55)

where E 1
8

is a solution to (3.47), (3.48), (3.49) in agreement with [13].4

3.4 N = 2 supergravity in eight dimensions

We shall now consider the oxidation of the seven-dimensional ∇6R4 and F 2n∇4R4 type

invariants to eight dimensions. Because there is a 1-loop divergence in eight dimensions,

the exact R4 threshold function differs from the Wilsonian effective action function. In

the dimensional reduction, the divergence appears to be absorbed into the infinite sum of

Kaluza-Klein states over the circle such that the function is finite in seven dimensions, but

involves a logarithm of the radius modulus in the decompactification limit [42]. In order

to consider the non-analytic terms in eight dimensions, we will take these logarithms into

account in the decompactification limit.

We shall use the same conventions as in [31], i.e. the complex scalar field τ parametrises

the coset representative vα
j ∈ SL(2)/SO(2), with α, β = 1, 2 of SO(2) and i, j = 1, 2 of

SL(2), whereas the five real scalar fields t parametrise the coset representative V a
J ∈

SL(3)/SO(3), with a, b = 1, 2, 3 of SO(3) and I, J = 1, 2, 3 of SL(3). The corresponding

covariant derivative in tangent frame are then traceless symmetric tensors Dαβ and Dab,
respectively. In the decompactification limit, one writes the SL(5)/SO(5) coset element in

the parabolic gauge

V =

(
e−3φv-1

j
α 0

e2φV a
Ka

K
j e2φV a

J

)
, (3.56)

associated to the graded decomposition

sl5 ∼= (2⊗ 3)(−5) ⊕(gl1 ⊕ sl2 ⊕ sl3)(0) ⊕ (2⊗ 3)(5) . (3.57)

4Note that the normalisation of the Eisenstein function E[0,0,s,0] does not include the additional factor

of ζ(2s− 1) as in [13].
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In this way one computes that the covariant derivative over SL(5)/SO(5) in tangent frame

acts on a function of φ, τ, t as [31]

D5 = diag

(
− 1

20
∂φδ

β
α −Dαβ ,

1

30
∂φδ

b
a +Dab

)
. (3.58)

One computes that the higher order derivative operators obtained as products of D5 in the

5 of SL(5) decompose similarly as

D 2
5 = diag

(
Dαβ

(
1

10
∂φ +

3

4

)
+

(
1

400
∂ 2
φ +

1

16
∂φ +

1

2
DγδDγδ

)
δβα,

DacDcb +Dab
(

1

15
∂φ +

1

2

)
+

(
1

900
∂ 2
φ +

1

24
∂φ

)
δba

)
, (3.59)

and

D 3
5 = diag

(
−1

4
Dαβ

(
3

102
∂ 2
φ +

7

10
∂φ +

9

4
+ 2DγδDγδ

)
− 1

8

(
1

103
∂ 3
φ +

1

30
∂ 2
φ +

1

8
∂φ + 6DγδDγδ

(
1

10
∂φ + 1

)
− 2DabDab

)
δβα ,

DacDcdDdb +DacDcb
(

1

10
∂φ + 1

)
+

1

3
Dab

(
1

102
∂ 2
φ +

11

40
∂φ +

3

4

)
+

1

8

(
1

153
∂ 3
φ +

1

180
∂ 2
φ −

1

12
∂φ − 2DαβDαβ

)
δba

)
. (3.60)

We can now solve equation (3.48) in the docompactification limit, with E 1
8
(φ, τ, t) and [13]

E(4,2) = e−6φ
(

2Ê[1](τ) + Ê[ 3
2
,0](t)− 20π(φ− φ0)

)
, (3.61)

where φ0 is a constant that depends on the renormalisation scheme. Using the property that

DacDbcÊ[ 3
2
,0](t) = −1

4
DabÊ[ 3

2
,0](t) +

2π

3
δba , 2DαβDαβÊ[1](τ) = π , (3.62)

one shows that the general solution to (3.48), as a function of φ, τ and t takes the gen-

eral form

E 1
8
(φ, τ, t) = e−12φ

(
F̂[4](τ) + F̂[4,−2](t) +

1

3
Ê[1](τ)Ê[ 3

2
,0](t) +

π

18

(
Ê[1](τ) +

19π

12

)
−10π

3
(φ− φ0)

(
2Ê[1](τ) + Ê[ 3

2
,0](t) +

π

3

)
+

100π2

3
(φ− φ0)2

)
, (3.63)

where F[4](τ) and F[4,−2](t) are solutions to

∆F̂[4](τ) = 12F̂[4](τ)− (Ê[1](τ))2 , ∆F̂[4,−2](t) = 12F̂[4,−2](t)− (Ê[ 3
2
,0](t))

2 ,

DacDcdDdbF̂[4,−2](t) =
49

16
DabF̂[4,−2](t)−

3

2
δabF̂[4,−2](t)−

1

2
Ê[ 3

2
,0](t)DabÊ[ 3

2
,0](t)

+
1

2
δab

(
1

4
(Ê[ 3

2
,0](t))

2 +
π

9
Ê[ 3

2
,0](t) +

π2

27

)
. (3.64)
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Here the notation is used to emphasize that these solutions are defined modulo the homo-

geneous solutions E[4](τ) and E[4,−2](t), respectively, as one can see using the formulae of

appendix A.6. Note nonetheless that these homogeneous solutions are inconsistent with

the string theory perturbation expansion, and the exact threshold function is uniquely

determined by these equations and consistency with string theory [26].

The structure of the threshold function exhibits that there is a 1-loop divergence of the

R4 type invariant form factor proportional to the ∇6R4 type invariant. This implies the

presence of an addition renormalisation scheme ambiguity in the definition of the analytic

part of the effective action. It appears that the renormalisation scheme used in [13, 26],

cannot be obtained by simply neglecting the terms in φ−φ0, but one finds nonetheless that

the threshold function only differs by terms proportional to the linear and the quadratic

term in φ− φ0, i.e.

Ê 1
8
(τ, t) = F̂[4](τ) + F̂[4,−2](t) +

1

3
Ê[1](τ)Ê[ 3

2
,0](t) +

π

18

(
Ê[1](τ) +

19π

12

)
+

π

36

(
2Ê[1](τ) + Ê[ 3

2
,0](t)−

5π

2

)
. (3.65)

Let us now consider the oxidation of the F 2k∇4R4 type invariants, i.e. solve the dif-

ferential equation (3.52) for a function of the form e−(10+2k)φE (k)
1
8

(τ, t), as required by dif-

feomorphism invariance in eight dimensions. One obtains straightforwardly

2DαβDαβE (k)
1
8

(τ, t) = (1 + k)(2 + k)E (k)
1
8

(τ, t) ,

DacDcbE (k)
1
8

(τ, t) =
(5 + 4k)

12
DabE (k)

1
8

(τ, t) +
(2 + k)(1 + 2k)

9
δbaE

(k)
1
8

(τ, t) . (3.66)

Using the results of appendix A.6 one obtain that the solution can be written in terms of

Eisenstein functions as

E (k)
1
8

(τ, t) ∝ E[k+2](τ)E[0,k+2](t) , (3.67)

consistently with the decompactification limit of the SL(5)/SO(5) Eisenstein function [31],

E[0,0,k+ 5
2
,0] = 2ζ(2k + 5)ζ(2k + 4)e−6(2k+5)φ +

2π2ζ(2k + 2)

(2k + 3)(k + 1)
e8kφE[k+ 3

2
,0](t)

+

√
πΓ(k + 2)

2Γ(k + 5
2)

e−2(k+5)φE[k+2](τ)E[0,k+2](t) +O
(
e−e

−5φ
)
. (3.68)

The sum of the two functions reproduces correctly the threshold function obtained

in [13, 26].
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A Ed(d) Eisenstein series, and tensorial differential equations

In this appendix we collect the differential equations satisfied by the Eisenstein functions

that are relevant in the analysis of BPS threshold functions in string theory, and their

related coadjoint nilpotent orbits. We write them in terms of the covariant derivative

in tangent frame valued in the Lie algebra in some particular representations, which are

specified by their dimension.

A.1 E8(8)

The Eisenstein function in the adjoint representation is associated to the nilpotent orbit

of Dynkin label
[

0
0000002

]
, with D8 Dynkin label

[
0·0000020

]
, and satisfies in general to the

differential equation(
DΓi[jk

rD
)(
DΓlpq]rD

)
E[ 0

000000s

] = −δi[j
(
DΓklpq]D

)
(2s(2s− 29) + 48)E[ 0

000000s

] . (A.1)

For the following two special values of s, the function is associated to lower dimensional

nilpotent orbits, and satisfies moreover to

ΓklD(DΓijklD)E[ 0
000000 9

2

] =−168 ΓijDE[ 0
000000 9

2

] ,
(DΓijklD)E[ 0

000000 5
2

] = 0 . (A.2)

A.2 E7(7)

The Eisenstein function in the adjoint representation is associated to the nilpotent orbit of

Dynkin label
[

0
200000

]
, with A7 Dynkin label [2000002], and satisfies in general to the differential

equation

D 3
56E

[
0

s00000

] =

(
s(2s−17)

2
+6

)
D56E[ 0

s00000

] , ∆E[ 0
s00000

] = 2s(2s−17)E[ 0
s00000

]. (A.3)

For the following two special values of s, the function is associated to lower dimensional

nilpotent orbits, and satisfies moreover to

D 3
133E

[
05

2
00000

] =−20D133E[ 05
2
00000

] ,
D 2

56E
[

03
2
00000

] =−9

2
156E[ 03

2
00000

] . (A.4)

The Eisenstein series E
[

0
00000

]
is generated by a character satisfying to a stronger quartic

constraint (2.89) also associated to a lower dimensional nilpotent orbit, but does not itself

satisfy this equation [53].

The Eisenstein function in the fundamental representation is associated to the nilpotent

orbit of Dynkin label
[

0
000002

]
, with A7 Dynkin label [0200000] and its conjugate, and satisfies

in general to the differential equation

D 3
133E

[
0

00000s

] = s(s− 9)D133E[ 0
00000s

] , ∆E[ 0
00000s

] = 3s(s− 9)E[ 0
00000s

] . (A.5)

The function moreover satisfies to highest weight representations constraints for integral

s, and is associated to lower dimensional nilpotent orbits for s = 2 and 4. The relation

of these Eisenstein functions with nilpotent orbits can be summarised in the following

truncated closure diagram 3 [35].
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•

•

•

•
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Figure 3. Nilpotent orbits associated to Eisenstein series in the E7(7) closure diagram.

A.3 E6(6)

The Eisenstein function in the adjoint representation is associated to the nilpotent orbit

of Dynkin label
[

2
00000

]
, with C4 Dynkin label [2, 0, 0, 0] [54], and satisfies in general to the

differential equations

D 3
27E

[
s

00000

] =
1

2
(s− 5)(2s− 1)D27E[ s

00000

] , ∆E[ s
00000

] = 2s(2s− 11)E[ s
00000

] . (A.6)

The function is associated to the next to minimal nilpotent orbit for s = 3
2 and to the

minimal nilpotent orbit for s = 1. However, there is a 1-parameter family of Eisenstein

functions associated to the next to minimal nilpotent orbit. It is the Eisenstein function

in the fundamental representation, that satisfies to(
D 3

27 −
(

2s(s− 6)

3
+

5

2

)
D27

)
E[ 0

s0000

] = (3− s)
(

D 2
27 −

8

27
s(s− 6)127

)
E[ 0

s0000

] ,
(A.7)

and its third order derivative restricted to the [2, 0, 0, 1] of Sp(4) vanishes. It is functionally

related to the Eisenstein function in the anti-fundamental representation at 6 − s, and

reduces to the unique Eisenstein function associated to the minimal nilpotent orbit at s = 3
2 .

A.4 SO(5, 5)

The Eisenstein function in the adjoint representation is associated to the nilpotent orbit of

Dynkin label
[

0
020

0

]
, with C2 ×C2 Dynkin label [2, 0]× [0, 0] and [0, 0]× [2, 0], and satisfies

in general to the differential equations

D 3
16E

[
0

0s0
0

] =
2s(2s− 7) + 3

4
D16E[ 0

0s0
0

] , D 3
10E

[
0

0s0
0

] =
s(2s− 7) + 3

2
D10E[ 0

0s0
0

] ,
∆E[ 0

0s0
0

] = 2s(2s− 7)E[ 0
0s0

0

] . (A.8)
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The function is associated to lower dimensional nilpotent orbits for s = 1, 1
2 . The Eisenstein

function in the Weyl spinor representation is associated to the largest next to minimal

nilpotent orbit, and satisfies in general to the differential equations(
D 3

16 −
13s(s− 4) + 24

16
D16

)
E[ 0

000
s

] =−3(s− 2)

4

(
D 2

16 −
5s(s− 4)

16
116

)
E[ 0

000
s

] ,

D 2
10E

[
0

000
s

] =
s(s− 4)

4
110E[ 0

000
s

] . (A.9)

It is functionally related to the Eisenstein function in the conjugate representation at 4−s.
The Eisenstein function in the vector representation is associated to the smallest next to

minimal nilpotent orbit, and satisfies in general to the differential equations

D 2
16E

[
0

s00
0

] =
s(s− 4)

4
116E[ 0

s00
0

] , D 3
10E

[
0

s00
0

] = (s− 1)(s− 3)D10E[ 0
s00

0

]. (A.10)

A.5 SL(5)

The Eisenstein function in the adjoint representation is associated to the nilpotent or-

bit of weighted Dynkin diagram [2, 0, 0, 2], and depends on two parameters. Weyl group

symmetry implies functional relations between the functions

E[s,t,0,0] ∝ E[1−s,s+t− 1
2
,0,0] ∝ E[t,0,0, 5

2
−s−t] ∝ E[s+t− 1

2
,0,0,2−t] , (A.11)

and the former satisfies to the differential equations

2D[i
[kDj]pDpl]E[s,t,0,0] +

2s+ 4t− 5

10
D[i

[kDj]l]E[s,t,0,0]

= δ
[i
[k

(
2s+ 4t− 5

5
Dj]pDpl] +

((
2s+ 4t− 5

5

)2

− 3

4

)
Dj]l]

−3
2s+ 4t− 5

40

((
2s+ 4t− 5

5

)2

− 1

)
δ
j]
l]

)
E[s,t,0,0] ,(

DikDklDlj +
2s+ 4t− 5

5
DikDkj −

(
3(2s+ 4t− 5)2

400
+

2s2 − 2s− 3

8

)
Dij
)
E[s,t,0,0]

=
2s+ 4t− 5

160

(
9(2s+ 4t− 5)2

25
− 4s2 + 4s− 9

)
δij E[s,t,0,0] , (A.12)

as well as to the Laplace equation

∆E[s,t,0,0] =

(
s(s− 1) +

3

20
(2s+ 4t− 5)2 − 15

4

)
E[s,t,0,0] . (A.13)

The antisymmetric tensor Eisenstein function is associated to the next to minimal nilpotent

orbit, and satisfies to the differential equation

DikDkj E[0,0,s,0] =
4s− 5

20
Dij E[0,0,s,0] +

3s(2s− 5)

25
δji E[0,0,s,0] , (A.14)
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whereas the vector Eisenstein function is associated to the minimal nilpotent orbit, and

satisfies to both

DikDkj E[s,0,0,0] =−3(4s− 5)

20
Dij E[s,0,0,0] +

2s(2s− 5)

25
δji E[s,0,0,0] ,

D[i
[kDj]l]E[s,0,0,0] =

4s− 5

10
δ

[k
[i Dj]

l]E[s,0,0,0] −
s(2s− 5)

50
δklij E[s,0,0,0] . (A.15)

A.6 SL(3)

There are only two nilpotent orbits of SL(3), the general Eisenstein function satisfies to

D 3
3 E[s,t] =

2s2 + (s+ t)(2t− 3) + 3
8

6
D3E[s,t] +

(s− t)(4s+ 2t− 3)(2s+ 4t− 3)

108
13E[s,t]

∆E[s,t] =
2
(
2s2 + (s+ t)(2t− 3)

)
3

E[s,t] , (A.16)

and the Eisenstein function associated to the minimal nilpotent orbit satisfies

D 2
3 E[s,0] = −4s− 3

12
D3E[s,0] +

s(2s− 3)

9
13E[s,0] . (A.17)

B Some additional computations on Eisenstein series

B.1 E6(6) Eisenstein series in the fundamental representation

In the decompactification limit, the series definition (2.59) of the Eisenstein series E
[

0
00000s

]
as a sum over the rank 1 charges in the 56 or E7(7), decomposes into the four compo-

nents (3.10) p0, pI , qI , q0 of grad −3,−1, 1, 3 respectively, with the rank one constraint

1

2
tIJKqJqK = q0p

I , tIKP tJLP qKp
L − pIqJ = δIJq0p

0 ,
1

2
tIJKp

JpK = p0qI .

(B.1)

The E7(7) invariant norm then reads

Z(Γ)2 = e6φ

(
q0 + aIqI +

1

2
tIJKa

IaJpK +
1

6
tIJLa

IaJaLp0

)2

+ e2φ

∣∣∣∣Z(qI + tIJKa
JpK +

1

2
tIJKa

JaKp0

)∣∣∣∣2 + e−2φ
∣∣Z(pI + aIp0)

∣∣2 + e−6φ(p0)2 ,

(B.2)
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where e−2φ is the radius moduli, whereas |Z(q)|2 now represents the E6(6) invariant norm.

At large e−2φ we will only consider the sum over the maximal weight charges q0, qI∑
Γ∈Z56

∗
Γ×Γ=0

|Z(Γ)|−2s

= 2ζ(2s)e−6sφ +
∑
q∈Z27

∗
q×q=0

∑
q0∈Z

πs

Γ(s)

∫ ∞
0

dt

t1+s
e−

π
t

(
e6φ(q0+aIqI)2+e2φ|Z(q)|2

)
+ . . .

= 2ζ(2s)e−6sφ +
∑
q∈Z27

∗
q×q=0

∑
q̃0∈Z

πs

Γ(s)

∫ ∞
0

dt

t
1
2

+s
e−3φe−

π
t
e2φ|Z(q)|2−πte−6φq̃0+2πiq̃0qIa

I
+ . . .

= 2ζ(2s)e−6sφ +
π

1
2 Γ(s− 1

2)

Γ(s)
e−2(s+1)φ

∑
q∈Z27

∗
q×q=0

|Z(q)|−2(s− 1
2

) + . . . (B.3)

The other terms are more complicate to obtain explicitly, but they follow the same pattern

such that the perturbative terms reduce to sum over the charges of grad −1 and −3 after

Poisson resumation. The complete perturbative expansion in e−2φ is then determined by

compatibility with the Langlands functional identity to be

E[ 0
00000s

] = 2ζ(2s)e−6sφ +
π

1
2 Γ
(
s− 1

2

)
Γ(s)

e−2(s+1)φE[ 0
0000s- 1

2

]

+
π5Γ

(
s− 9

2

)
Γ
(
s− 5

2

)
ζ(2s− 9)

Γ(s− 2)Γ(s)ζ(2s− 4)
e2(s−10)φE[ 0

s- 5
2
0000

]

+ 2
π

27
2 Γ
(
s− 17

2

)
Γ
(
s− 13

2

)
Γ
(
s− 9

2

)
ζ(2s− 17)ζ(2s− 13)ζ(2s− 9)

Γ(s− 4)Γ(s− 2)Γ(s)ζ(2s− 8)ζ(2s− 4)
e6(s−9)φ

(B.4)

The generating character of the function E[ 0
0000s

] is defined in terms of the central charge

of qI
Zij(q) = Vij

IqI , |Z(q)|2 = Zij(q)Z
ij(q) , (B.5)

and the quadratic constraint tIJKqJqK = 0 is equivalent to

Zik(q)Z
jk(q) =

1

8
δji |Z(q)|2 . (B.6)

The covariant derivative in tangent frame acts on the central charge as

DijklZpq(q) = 3

(
δ[ij
pqZ

kl](q)− Ω[ijδk[pZq]
l](q)− 1

4
ΩpqΩ

[ijZkl](q)− 1

12
Ω[ijΩkl]Zpq(q)

)
,

(B.7)

such that

Dijkl|Z(q)|2 =
1

4
Z[ijZkl] +

1

96
Ω[ijΩkl]|Z(q)|2 . (B.8)

One computes that

Dijkl|Z(q)|−2s = s

(
1

4
Z(q)[ijZ(q)kl] +

1

96
Ω[ijΩkl]|Z(q)|2

)
|Z(q)|−2(s+1) , (B.9)
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and

DijpqDklpq|Z(q)|−2s =

(
−2

3
s(3− 2s)

(
Z(q)ijZ(q)kl − Z(q)i[kZ(q)l]j

)
+

1

36
s(63− 10s)Ωi[kΩl]j |Z(q)|2

+
1

36
s(9− 2s)ΩijΩkl|Z(q)|2

)
|Z(q)|−2(s+1) . (B.10)

The right-hand-side decomposes into an Sp(4) singlet and a tensor in the irreducible rep-

resention [0, 2, 0, 0]

Z(q)ijZ(q)kl
∣∣
[0,2,0,0]

=
1

2

(
Z(q)ijZ(q)kl−Z(q)i[kZ(q)l]j− 1

72
ΩijΩkl|Z(q)|2+

1

72
Ωi[kΩl]j |Z(q)|2

)
(B.11)

One deduces the Laplace equation

∆|Z(q)|−2s =
1

3
DijpqDijpq|Z(q)|−2s =

8

3
s(s− 6)|Z(q)|−2s , (B.12)

and one gets at third order

DijrsDrspqDklpq|Z(q)|−2s (B.13)

=

(
−1

3
s
(
8s2 − 42s+ 33

)
Z(q)ijZ(q)kl − 1

108
s
(
14s2 − 81s+ 54

)
Ωi[kΩl]j |Z(q)|2

− 1

216

(
8s3−54s2+27s

)
ΩijΩkl|Z(q)|2− 2

3
s
(
2s2−15s+6

)
Z(q)i[kZ(q)l]j

)
|Z(q)|−2(s+1) .

The right hand side can be expressed in terms of lower oder derivatives of |Z(q)|−2s using

the relations (B.9) and (B.10), such that

DijrsDrspqDklpq|Z(q)|−2s

=

(
2

3
s(s− 6) +

5

2

)
Dijkl|Z(q)|−2s

+(3− s)
(
DijpqDklpq +

1

27

(
Ωi[kΩl]j +

1

8
ΩijΩkl

)
DpqrsDpqrs

)
|Z(q)|−2s . (B.14)

Moreover, one straightforwardly works out that the third order derivative projected to the

[2, 0, 0, 1] irreducible representation of Sp(4) vanishes

D3
[2,0,0,1]|Z(q)|−2s = 0 . (B.15)

B.2 SO(6, 6) Eisenstein series

We define first the series associated to anti-chiral spinors. The associated ‘central charge’

is Zi
ı̂ and its complex conjugate Ziı̂, where i = 1, 4 of one SU(4) factor and ı̂ = 1, 4 of the

other. The rank one constraint on the spinor is the pure spinor constraint, that reads

Zik̂Zj
k̂ =

1

4
δijZ

k
l̂Zk

l̂ , Zkı̂Zk
̂ =

1

4
δ̂ı̂Z

k
l̂Zk

l̂ ,
1

2
εijpqZ

p
k̂Z

q
l̂ =

1

2
εk̂l̂p̂q̂Zi

p̂Zj
q̂ .

(B.16)
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One computes then that the covariant derivative over SO(6, 6)/(SO(6) × SO(6)) acts on

the central charge as

Dijk̂l̂Z
p
q̂ =

1

2
εk̂l̂q̂r̂δ

p
[iZj]

r̂ , Dijk̂l̂Zp
q̂ =

1

2
εijprδ

q̂

[k̂
Zrl̂] . (B.17)

Considering a homogeneous function of |Z|2 = Zi̂Zi
̂, one has

Dijk̂l̂|Z|
−2s = −s εk̂l̂p̂q̂Zi

p̂Zj
q̂|Z|−2s−2 , (B.18)

and more generally in the vector representation (note that Dij k̂l̂ = 1
2ε
ijpqDpqk̂l̂ and etc...)

Dijp̂q̂Dklp̂q̂|Z|−2s =
s(s− 5)

4
δijkl |Z|

−2s , (B.19)

in the chiral spinor representation

Dipk̂q̂Djpl̂q̂|Z|
−2s =−s(s− 1)

2
Zil̂Zj

k̂|Z|−2s−2 +
s(s− 4)

8
δijδ

k̂
l̂
|Z|−2s ,

Dipk̂q̂D
prq̂ŝDjrl̂ŝ|Z|

−2s =
2s2 − 10s+ 5

8
Dijk̂l̂|Z|

−2s , (B.20)

and in the anti-chiral representation

Dipk̂q̂Djpl̂q̂|Z|
−2s =

s(s− 1)

2
Zi
k̂Zj l̂|Z|

−2s−2 +
s(s− 7)

16
δji δ

k̂
l̂
|Z|−2s ,

Dipk̂q̂Dprq̂ŝDjr l̂ŝ|Z|−2s =−3s(s− 1)(s− 2)

8
Zi
k̂Zj

l̂|Z|−2s−2 +
s2 − 11s+ 4

16
Dij k̂l̂|Z|−2s .

(B.21)

As in the preceding section, one can define the series

E[ s
0000

0

] =
∑

Λ∈Z32

ΛΓMNΛ=0

(
Z(Λ)i̂Z(Λ)i

̂
)−s

. (B.22)

The series only converges for s > 5, and satisfies to

E[ s
0000

0

] = π
15
2

Γ
(
s− 9

2

)
Γ
(
s− 7

2

)
Γ
(
s− 5

2

)
ζ(2s− 9)ζ(2s− 7)ζ(2s− 5)

Γ(s− 2)Γ(s− 1)Γ(s)ζ(2s− 4)ζ(2s− 2)ζ(10− 2s)
E[ 5-s

0000
0

].
(B.23)

The first critical function is E[ 1
0000

0

], which solves a quadratic equation in all three funda-

mental representation,

Dijp̂q̂Dklp̂q̂|Z|−2 =−δijkl |Z|
−2 ,

Dipk̂q̂Djpl̂q̂|Z|
−2 =−3

8
δijδ

k̂
l̂
|Z|−2 ,

Dipk̂q̂Djpl̂q̂|Z|
−2 =−3

8
δji δ

k̂
l̂
|Z|−2 . (B.24)
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and is in fact proportional to E[ 0
0000

1

] and E[ 0
2000

0

]. This function is associated to the min-

imal unitary representation of SO(6, 6). The next one is E[ 2
0000

0

], which solves a quadratic

vector equation and two cubic spinor equations

Dijp̂q̂Dklp̂q̂|Z|−4 =−3

2
δijkl |Z|

−4 ,

Dipk̂q̂D
prq̂ŝDjrl̂ŝ|Z|

−4 =−7

2
Dijk̂l̂|Z|

−4 ,

Dipk̂q̂Dprq̂ŝDjr l̂ŝ|Z|−4 =−7

2
Dij k̂l̂|Z|−4 . (B.25)

It is equal to E[ 0
0000



]. The divergent Eisenstein series are

E[ 0
0000

+ε

] =
45

2π ε
E[ 0

0000


] + Ê[ 0
0000



] +O(ε) ,

E[ 0
0000

+ε

] =
14 175 ζ(3)

8π3 ε
E[ 0

0000


] + Ê[ 0
0000



] +O(ε) ,

E[ 0
0000

+ε

] =
1 488 375 ζ(3)ζ(5)

256π5 ε
+ Ê[ 0

0000


] +O(ε) , (B.26)

We will now consider a charge Q in the vector representation, satisfying 〈Q,Q〉 = 0.

In this case it is convenient to use vector indices, with the definition

Dijk̂l̂ =
1

4
γaijγ

b̂
k̂l̂Dab̂ . (B.27)

The real ‘central charges’ Za and Zâ then satisfy to the constraint

ZaZ
a = ZâZ

â , (B.28)

and

Dab̂Zc =
1

2
δacZb̂ , Dab̂Zĉ =

1

2
δb̂ĉZa . (B.29)

One computes then that a homogeneous function of ZaZ
a satisfies to

Dab̂(ZcZ
c)−s =−sZaZb̂(ZcZ

c)−s ,

D[a
[ĉDb]d̂](ZeZ

e)−s = 0 ,

DaĉDbĉ(ZdZd)−s = s(s− 2)ZaZb(ZcZ
c)−s−1 − s

2
δab(ZcZ

c)−s ,

DaĉDdĉDbd̂(ZeZ
e)−s = (s2 − 5s+ 5)Dab̂ (ZcZ

c)−s . (B.30)

The second equation implies that this function always satisfies to a quadratic equation in

the two spinor representations, whereas it only satisfies to a quadratic constraint in the

vector representation for the critical value s = 2.

As in the preceding section, one can define the series

E[ 0
s000

0

] =
∑
Q∈Z12

〈Q,Q〉=0

(Z(Q)aZ(Q)a)−s . (B.31)
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The series only converges for s > 5, and satisfies to

E[ 0
s000

0

] = π5 Γ
(
s− 9

2

)
Γ
(
s− 5

2

)
ζ(2s− 9)ζ(2s− 5)

Γ(s− 2)Γ(s)ζ(2s− 4)ζ(10− 2s)
E[ 0

-s000
0

] . (B.32)

The divergent series are

E[ 0
+ε000

0

] =
3

2 ε
E[ 0

000
0

] + Ê[ 0
000

0

] +O(ε) ,

E[ 0
+ε000

0

] =
945 ζ(5)

128 ε
+ Ê[ 0

000
0

] +O(ε) . (B.33)

However the function is finite at s = 4 and

E[ 0
000

0

] =
15 ζ(3)

2
E[ 0

000
0

] . (B.34)

B.3 SO(n, n) Eisenstein series in the adjoint

For SO(n, n) the adjoint representation decomposes with respect to SO(n) × SO(n) with

a running from 1 to n of the first SO(n) and â running from 1 to n of the second. We

decompose therefore the adjoint into the coset component Xab̂ and the two antisymmetric

tensors Λab and Λâb̂. The minimal representation is such that a charge Q ∈ so(n, n) is

nilpotent in all three fundamental representations, which reads explicitly

Λa
cΛbc = Xa

ĉXbĉ ,

Λ[abΛcd] = 0 ,

Λa
cXcb̂ = −Xa

ĉΛĉb̂ ,

Λ[abXc]d̂ = 0 ,

Λâ
ĉΛb̂ĉ = Xc

âXcb̂ ,

Xa[b̂Λĉd̂] = 0 ,

ΛabΛ
âb̂ = −2X[a

[ĉXb]
d̂] ,

Λ[âb̂Λĉd̂] = 0 .

(B.35)

They satisfy to

Dab̂Xcd̂ =
1

2
δacΛb̂d̂ +

1

2
δb̂d̂Λac , Dab̂Λcd = δa[cXd]b̂ , Dab̂Λĉd̂ = δb̂[ĉXa|d̂] . (B.36)

Using this one computes

Dab̂D
cb̂|X|−2s = s(2s− n+ 3)Xab̂X

cb̂|X|−2s−2 − s δca |X|−2s , (B.37)

such that

∆|X|−2s ≡ 2Dab̂D
ab̂|X|−2s = 2s(2s− 2n+ 3)|X|−2s . (B.38)

Note that the case s = n−3
2 is special, and reduces then to a spinor representation Eisenstein

function. In general one has still

DaĉDdĉDdb̂|X|
−2s =

(
s(2s− 2n+ 3)

2
+

(n− 2)(n− 3)

4

)
Dab̂|X|

−2s. (B.39)

One computes moreover that

D[a
[ĉDb]d̂]|X|−2s = s(2s− 1)X[a

[ĉXb]
d̂]|X|−2s−2 , (B.40)
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such that the representation s = 1
2 is special, and then reduce to a vector representation

Eisenstein function. Using representation theory, one straightforwardly check that there is

no possible rank 3 antisymmetric tensor that one can write, such that

D[a
[d̂Dbd̂Dc]f̂ ]|X|−2s = 0 . (B.41)

This implies that in particular an equation of the type

D 3
2n−1 |X|−2s = asD2n−1 |X|−2s , (B.42)

in the spinor representation, for a coefficient that can straightforwardly be fixed.

Moreover

Dcb̂
(
nXad̂X

cd̂|X|−2s−2 − δca|X|−2s
)

= −(n− 2)(2s− n)

2
Λa

cXcb̂|X|
−2s−2 , (B.43)

suggesting that the function

Eα2,
n
2

=
∑

Q∈so(n,n)
Q2=0

|X(Q)|−2s (B.44)

at s = n
2 decomposes into the sum

Eα2,s = Eα2,s + Ēα2,s , (B.45)

satisfying moreover to

DaĉDbĉ Eα2,
n
2

=
3− n

2
δabEα2,

n
2
. (B.46)

Similarly as for the E7(7) Eisenstein series in the fundamental representation, we expect

this property to generalise to s = n
2 +k for any integer k, such that D2+2kEα2,

n
2

+k restricted

to the symmetric rank 2 + 2k representation of SO(n) vanishes. For k = 1 on computes

indeed that

Dd
â

(
X(a

b̂Xb|b̂Xc
ĉXd)ĉ|X|−2s−4− 4

n+4
δ(abXc

b̂Xd)b̂|X|
−2s−2+

2

(n+2)(n+4)
δ(abδcd)|X|−2s

)
=
n(n+ 2− 2s)

2(n+ 4)

(
X(a

b̂Xb|b̂Xc)
ĉΛâĉ|X|−2s−4 − 3

n+ 2
δ(abXc)

b̂Λâb̂|X|
−2s−2

)
. (B.47)
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