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1 Introduction

The properties of the Standard Model (SM) Higgs Boson are consistent with the measured

properties of the 0+ particle discovered in 2012. The discovery of this state was the main

accomplishment of the first run of the LHC. After a two year shutdown, the beams of the

LHC have started circulating once again and within a month, collisions will start providing

data from Run II. The effects of beyond the Standard Model (BSM) physics will be robustly

searched for in Run II, in searches for new resonances and by studying the properties of

the discovered 0+ state ever more precisely. It is important to systematically improve

the theoretical frameworks that allow consistent interpretations of the increasingly precise

measurements of the properties of the 0+ state in tandem with the increasing experimental

precision. In this paper, we advance this effort by determining the complete one loop

contribution to Γ(h → γ γ) due to a set of higher dimensional operators, including finite

terms, in the linearly realized Standard Model Effective Field Theory (SMEFT). The linear

SMEFT assumes that the low energy limit of any BSM physics is adequately described when

two requirements are fulfilled; the observed 0+ scalar is embedded in the Higgs doublet,

and higher dimensional operators, denoted Oi and built out of the SU(3) × SU(2) × U(1)
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invariant SM fields, are added to the renormalizable SM interactions. In the remainder of

this paper, all statements are to be understood to apply to the linear SMEFT.

The operator with lowest dimension to add to the SM, suppressed by a cut off scale,

is of dimension five.1 A complete classification of the dimension six operators is given

in refs. [1, 2], the latter of which finds that there are 59 (+ h.c) independent operators,

assuming baryon number conservation, after eliminating redundant operators. Recently,

the dimension seven operators have also been classified in ref. [3].

In this paper, we calculate a set of one loop contributions from dimension six operators

to Γ(h → γ γ). The one loop improvement of Γ(h → γ γ) is necessary for a precise study

of this process in the SMEFT. Such a calculation accounts for the scale dependence of the

operators, which is required to interpret deviations at the scale µ ' mh in terms of an

underlying new physics model, matched onto at the scale µ ' Λ� mh.

The first step in such an analysis is to determine the Renormalization Group (RG)

running of the Oi.
2 For the basis in ref. [2], the required results were systematically

determined in refs. [4–8]. Most of the log(µ) dependence that is present in the physical

impact of the Oi at one loop can be directly determined in the unbroken phase of the theory

(i.e. calculating when 〈H†H〉 = 0). We demonstrate how to determine the remaining log(µ)

dependence.

The main focus of this paper is, however, on the calculation of the non log finite

terms in Γ(h → γ γ). The effects of the Oi decouple as Λ � mh. As such, even when all

the Λ enhanced log terms are known, they are only modestly enhanced compared to the

remaining finite terms. For example, for Λ ∼ 3 TeV, the Λ enhanced log terms are ∼ 6,

and larger numerical factors can occur in one loop diagrams as pure “finite terms”. For

this reason, it is essential to go beyond a minimal RG analysis when precisely interpreting

future experimental bounds on Γ(h→ γ γ).

Using the broken phase of the theory, (i.e. calculating when 〈H†H〉 = v2) to determine

one loop finite terms, is somewhat technically demanding. We show how these technical

challenges are overcome in the case of Γ(h → γ γ), and advance the full characterization

of this process at one loop in the SMEFT. Many of our results have broad implications

and inform ongoing efforts to systematically develop the SMEFT to next to leading order

(NLO).3 The summary of the most important developments are:

• We explicitly demonstrate how the counterterms determined in a one loop RG analy-

sis can be incorporated into full one loop calculations in the SMEFT, see section 2.1.

• In some cases, we find that the one loop renormalization of the theory does not

directly give the full log(µ) dependence relevant to the one loop contribution of the

Oi to a physical process. When calculating assuming 〈H†H〉 = 0, one can identify all

the operator counterterms. However, the running of the vacuum expectation value

1We neglect the effect of this operator, which we associate with neutrino mass generation and a high

lepton number violating scale.
2Or equivalently the Wilson coefficients of these operators. In this paper, we refer to the RG of the Oi

not emphasizing this minor distinction.
3See for example the discussion in refs. [9–15].
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(vev), or, equivalently, the running of 〈H†H〉, introduces further log(µ) dependence,

see section 3.2.

• We discuss how the Background Field Method (BFM) implementing Rξ gauge fixing

is generalized into the case of the SMEFT, and how this leads to the sourcing of

ghosts in interactions proportional to Oi Wilson coefficients, see appendix A.

• We show how a full one loop calculation can yield a “pure finite term” contribution to

a process proportional to an Oi Wilson coefficient, in a manner that is unanticipated

in a RG analysis. This result makes clear that recent speculation on the structure of

the one loop RG in the SMEFT is not speculation on the full one loop structure of

the SMEFT, see section 3.2.

The outline of the paper is as follows. In section 2 we introduce the Effective La-

grangian, from which we calculate the finite contributions to the Γ(h→ γγ) decay. In this

section, we also explain the renormalization scheme and we show the cancellation of the

divergent contributions explicitly. In section 3, the finite results are presented, including

both the direct contributions from the one loop diagrams, as well as the contributions

entering through the definition of the vev and through renormalization conditions defining

the external fields and couplings. Subtleties regarding extra contributions through redefini-

tions of gauge fields and mixing angles, leading to ghost contributions, are also discussed in

this section. In section 4 some phenomenological implications are presented. We conclude

in section 5.

2 Calculational framework

The one loop improvement of Γ(h → γ γ), due to the Oi of the SMEFT, is given in part

by the Effective Lagrangian

L(0)
6 = C

(0)
HB O

(0)
HB + C

(0)
HW O

(0)
HW + C

(0)
HWB O

(0)
HWB + C

(0)
W O

(0)
W ,

+ C
(0)
eW
rs

O(0)
eW
rs

+ C
(0)
eB
rs

O(0)
eB
rs

+ C
(0)
uW
rs

O(0)
uW
rs

+ C
(0)
uB
rs

O(0)
uB
rs

+ C
(0)
dW
rs

O(0)
dW
rs

+ C
(0)
dB
rs

O(0)
dB
rs

+ h.c.

(2.1)

The operator notation used here follows that in ref. [2], and the operators in the second

line of eq. (2.1) have Hermitian conjugates. The indices r, s are flavour indices. The bare

operators considered in detail in this paper are normalized as

O(0)
HB = g2

1 H
†H Bµ ν B

µ ν , O(0)
HW = g2

2 H
†HW a

µ νW
µ ν
a ,

O(0)
HWB = g1 g2H

† σaH Bµ νW
µ ν
a . (2.2)

The SM fields and couplings are also bare on the right hand side of eq. (2.2), but the (0)

labels are suppressed. σa are the Pauli matrices for weak isospin. The gi are the SM gauge

couplings. The gauge coupling normalization of the operators in eq. (2.1) is chosen so that
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in the unbroken phase, the BFM can be more directly used to determine the counterterms.4

The notation ḡi is used for the canonically normalized couplings in ref. [7]. Although we

canonically normalize the theory as in ref. [7], the bar notation is suppressed in this paper.

Also note that the Wilson coefficients are dimensionfull as they include a factor of 1/Λ2.

We choose to consider in detail the subset of operators in eq. (2.2), as these operators

illustrate the basic issues involved with determining the Electroweak finite terms in the

SMEFT. In particular, the operator OHWB, which leads to a redefinition of the mixing

angles and Z,A fields in the SM, generates most of the technical challenges introduced in

the SMEFT.5 Of course, a full one loop improvement, including all Oi allowed at one loop,

is eventually required. Further, the effect of redefining the input parameters of the SM

prediction of Γ(h → γ γ) is required for a complete one loop treatment of this process in

the SMEFT. Our results are a first step in this direction, when considering finite terms.

2.1 Operator counterterms

The operators are renormalized through introducing a renormalization matrix Zij to cancel

the extra operator induced divergences, such that

O(0)
i = Zi,j O(r)

j , (2.3)

and we restrict our attention to i, j = HB,HW,HWB in this paper. Here, the superscript

(r) is used to denote a renormalized operator. With the normalization in eq. (2.2), the one

loop operator counterterms are

Zi,j = δi,j +
Zi,j

16π2 ε
, (2.4)

where the matrix Zi,j (for d = 4− 2 ε dimensions in the MS scheme) is [4]

Zi,j =


g21
4 −

9g22
4 + 6λ+ Y 0 g2

1

0 −3g21
4 −

5g22
4 + 6λ+ Y g2

2
3g22
2

g21
2 −g21

4 +
9g22
4 + 2λ+ Y

 , (2.5)

in the basis of the operators given by Oi = (OHB, OHW , OHWB). Our notation is such that

Y = Tr
[
NcY

†
uYu +NcY

†
d Yd + Y †e Ye

]
≈ Ncy

2
t , (2.6)

while the Higgs potential is defined so that v ∼ 246 GeV and m2
h = 2λ v2. The renormalized

interactions are introduced as

L(0)
6 = ZSM Zi,j CiO(r)

j ,

= ZSM

(
NHB O(r)

HB +NHW O(r)
HW +NHWB O(r)

HWB

)
. (2.7)

4This normalization of the operators by the gauge couplings was adopted in ref. [4], which is closely

related to this work. The normalization chosen, however, differs by a factor of −2 from that used in ref. [4].

Conversely, the complete renormalization results of refs. [5–7] do not introduce gauge coupling factors into

the normalization of the operators.
5The Wilson coefficient of this operator corresponds to the S parameter, and the effects that we will

discuss are present in any operator basis. In some alternative operator basis, the S parameter is related to

a sum of operators, which enhances the challenges involved in developing the SMEFT to NLO.

– 4 –



J
H
E
P
0
7
(
2
0
1
5
)
1
5
1

The operators are multiplied by Ni that includes the corrections from the counterterm

matrix Z and absorbs coupling factors. The N ’s are given by

NHB =
1

16π2 ε

[(
16π2 ε+

g2
1

4
− 9g2

2

4
+ 6λ+ Y

)
CHB(Λ) +

3 g2
2

2
CHWB(Λ)

]
, (2.8)

NHW =
1

16π2 ε

[(
16π2 ε− 3g2

1

4
− 5g2

2

4
+ 6λ+ Y

)
CHW (Λ) +

g2
1

2
CHWB(Λ)

]
,

NHWB =
1

16π2 ε

[(
16π2 ε− g2

1

4
+

9g2
2

4
+ 2λ+ Y

)
CHWB(Λ) ,

+g2
1 CHB(Λ) + g2

2 CHW (Λ)

]
.

Although the subtraction required due to the introduction of the Oi has been performed

to render the theory finite, the subtractions to renormalize the SM interactions are still

required. This is indicated by the inclusion of ZSM in the above expressions. The exact

forms of the required ZSM and Zi,j depend on the normalization and scheme chosen.6

2.2 The Background Field Method

The renormalization scheme we use is to define the one loop finite terms in Γ(h→ γ γ) in a

manner that is consistent with implementing the MS scheme, while simultaneously utilizing

the BFM. In the BFM [16–18], fields are split into classical and quantum components, and a

gauge fixing term is added that maintains the gauge invariance of the classical background

fields, while breaking the gauge invariance of the quantum fields. We use Rξ gauge with

background gauge fixing, with φ±, φ0, the Goldstone bosons defined through the convention

H =
1√
2

( √
2iφ+

h+ v + δv + iφ0

)
. (2.9)

The one loop vev (v+ δv) is defined as the classical background field expectation value for

which the one point h function vanishes. This induces finite (and gauge dependent) terms

into the definition of the vev, which are discussed further in section 3. The requirement to

include these terms is indicated by the introduction of δv in the above expression, which

is formally of one loop order.

Technical simplifications result from the use of the BFM. One can choose a gauge

in the quantum calculation to one’s advantage. Also, the counterterms accounting for

the renormalization of the SM gauge fields and couplings cancel for a specific choice of

operator normalization. This follows from the unbroken Ward identities of the theory,

when using the BFM. The Ward identities result in the following relations among the SM

counterterms [19],

ZAZe = 1, Zh = Zφ± = Zφ0 , ZWZg2 = 1. (2.10)

6Once the counterterm matrix is determined in the unbroken phase of the theory, it can be directly used

in the broken phase. This can be done even if the BFM is not used to render the SMEFT finite, as the one

loop operator counterterms so obtained are gauge independent. This is fortunate, as directly determining

the counterterm matrix in the broken phase of the theory is difficult.
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The gauge fixing is undertaken in the BFM in a manner discussed in refs. [19, 20].7 The

renormalized fields (where F = A,W,Z and S = h, φ0, φ±) and couplings (denoted c =

e, g2, g1) are defined in terms of bare fields and couplings via

Fµ =
1√
ZF

F (0)
µ , S =

1√
Zs

S(0), c =
1

Zc
µ−ε/2c(0). (2.11)

The factor µ−ε/2 is included in the coupling relation to render the renormalized coupling

dimensionless [21]. The vev is also renormalized with the inclusion of v = v(0)/
√
Zv. All

the subtractions in the SM are defined in the MS scheme for d = 4− 2 ε dimensions.

The remaining SM counterterms required to render the theory finite are well known.

The Higgs wavefunction renormalization in the BFM with the gauge fixing in eq. (A.3) is

given by8

Zh = 1 +
(3 + ξ) (g2

1 + 3 g2
2)

64π2 ε
− Y

16π2 ε
. (2.12)

The sum of the divergent terms in the vev renormalization constant Zv and δv also needs

to be fixed. A simple approach to determine this divergence that avoids operator mixing

complications is to consider the operator H†HGµ νGµ ν . The counterterm associated with

this operator is [4]

ZHG = 1 +
1

16π2 ε

[
−3g2

1

4
− 9g2

2

4
+ 6λ+ Y

]
. (2.13)

Considering the one loop h→ gg decay with the diagrams in figure 1, this fixes (
√
Zv+

δv
v )div

to be (√
Zv +

δv

v

)
div

= 1 +
(3 + ξ) (g2

1 + 3 g2
2)

128π2 ε
− Y

32π2 ε
. (2.14)

The left hand side of eq. (2.14) reflects an ambiguity that remains in Electroweak per-

turbation theory when using the MS scheme at one loop in this way. This requires the

renormalization condition to fix δv, as discussed above. We choose to adopt the vev defining

condition described in ref. [19], which fixes the finite terms of the vev as in section 3.

The renormalizations of the vev and the Higgs field are seen to satisfy the following

relation, (√
Zv +

δv

v

)
div

=
√
Zh. (2.15)

This is in fact expected in the BFM, see ref. [24].

7Some implications of the BFM and standard t’Hooft gauge fixing differ in the SM compared to the

SMEFT. We discuss some of these subtleties in the appendix.
8The gauge coupling normalization convention used here is the same as in refs. [4–7]. Another convention

used in the literature in refs. [22, 23] has an alternative Hypercharge normalization convention.
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(a)

h

h, φ0

h, φ0

g

g

(b)

h

φ±

φ±

g

g

h

g

g

(c)

Figure 1. Diagrams contributing to h→ gg decay from OGG.

2.3 The Effective Lagrangian

Expanding the Oi into the mass eigenstate fields, one finds the renormalized effective

interactions relevant to the one loop improvement of Γ(h→ γ γ).9 In all of the Leff terms,

other than some forms given in the first line of eq. (2.16), the contribution to Γ(h → γ γ)

decay is itself a one loop contribution. As such, the relevant Leff for the one loop Γ(h→ γ γ)

result simplifies to O(v) in the following way

Leff(v0, v) =
1

2
(h2 + 2h

√
Zh (v

√
Zv + δv) + φ2

0) (NHB +NHW −NHWB) e2AµνA
µν ,

+(φ+φ−) (CHB + CHW + CHWB) e2AµνA
µν + (2h v)CHW g2

2 W
+
µνW

µν
− ,

−2 i e g2
2 (2h v)CHW

[
AµW

−
ν Wµν

+ +AνW
+
µ Wµν

− −Aµ νW+
µ W ν

−
]
,

+2 e2 g2
2 (2h v)CHW

(
W+
µ Wµ

−Aν A
ν −W+

µ W ν
−Aν A

µ
)
,

−i eCHWB g2

[
g2 (2h v)

(
Aµ νW

+
µ W ν

−
)
− (v + h)Aµ ν(φ+W

−
µ ν − φ−W+

µ ν)
]
,

+CHWB v e
2 g2

(
Aµ(φ+W−ν + φ−W+

ν )− (φ+W−µ + φ−W+
µ )Aν

)
Aµν . (2.16)

Each Ni in Leff now contains dependence on the counterterms Zg1 , Zg2 , etc. implicitly.

In the same way, the fields and couplings of lines two through six in Leff should be multiplied

by their respective renormalization constants. However, these corrections are two loop order

and neglected. This expression is also simplified using the relations given in eq. (2.10). All

of the operator Wilson coefficients in this expression are evaluated at the scale µ = Λ,

which allows a direct interpretation of any measured deviation in terms of the underlying

BSM physics sector. The combination of Wilson coefficients given by

Cγ γ = CHB + CHW − CHWB, (2.17)

corresponds to the effective Wilson coefficient for h→ γ γ at tree level and one scale. This

effective Wilson coefficient, however, does not physically correspond to this process in a

scale independent fashion in the SMEFT, see section 3.2.

9The distinction between the net Effective Lagrangian of the SMEFT in terms of mass eigenstate fields

(eq. (2.16)), and an operator basis of linearly independent dimension six operators has been unfortunately

de-emphasized in some recent literature. Obscuring this important distinction makes calculations in the

SMEFT beyond tree level systematically more challenging. This also leads to the concept of “dependent”

and “independent” couplings, when discussing the neologism, the “Higgs Basis” in refs. [25, 26].
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In addition to the terms in eq. (2.16), contributions proportional to v2 are present in

Leff . These terms are not expected to contribute with divergent terms to the amplitude

before renormalization, as the Oi counterterm subtraction is proportional to v.10 We find

by explicit calculation that this is true.

However, finite terms could exist at one loop in Γ(h → γ γ) due to v2 terms in Leff .

We find by explicit calculation that such terms do contribute at one loop. Terms of order

v2 come about due to the direct expansion of the operators present and from the canonical

normalization of the SMEFT. Interestingly, terms of this form involve ghost fields (denoted

u±), which come about due to the effects of canonically normalizing the SMEFT. The

relevant O(v2) terms in Leff are

Leff(v2) = 2 e4 v2CHWB

(
AµA

µW+
ν W

ν
− −AµAνW

µ
+W

ν
−
)
− i e g2

2 v
2CHWB Aµ νW

+
µ W ν

−,

+i
e3 v2CHWB

ξ

(
AµW

µ
+∂νW

ν
− −AµW

µ
−∂νW

ν
+ + 2 eW+

µ W ν
−Aν A

µ
)
,

+i e3 v2CHWB

(
AµW

+
ν W

µν
− −AµW−ν W

µν
+ +W+

µ W−ν Aµν
)
,

+e3 v2CHWB (i φ−Aµ ∂
µφ+ − i φ+Aµ ∂

µφ− − 2 e φ+ φ−AµA
µ) ,

−1

2
e3 g2 v

2CHWB Aµ
(
Wµ
−φ+φ0 +Wµ

+φ−φ0

)
,

−2 e4 v2CHWB AµA
µ
(
ū+ u+ + ū− u−

)
,

+ie3v2CHWB

((
ū+Aµ ∂µu

+ − ū−Aµ ∂µu−
)

+ ∂µA
µ
(
ū+u+ − ū−u−

))
. (2.18)

2.4 Cancelation of the divergent terms

In this section, we explicitly demonstrate that the counterterm subtractions render the

theory finite and cancel the ξ gauge dependence of the divergent terms while doing so. The

required one loop diagrams explicitly calculated are shown in figures 2, 3. To calculate the

diagrams in the BFM, the Feynman rules of the theory, determined using the results of

ref. [19], are used. Our gauge coupling conventions differ from those chosen in ref. [19], so

we summarize our conventions in appendix A. It is convenient to introduce the notation

Ahγγαβ = 〈h|hAµ ν Aµ ν |γ(pa, α), γ(pb, β)〉 = −4
(
pa · pb gαβ − pβa pαb

)
,

Cε =
i e2 v

16π2 ε
, CHWε =

4 Cε g2
2 CHW
3

, (2.19)

to simplify results. The divergent contributions of the diagrams shown in figure 2 are

as follows

iAa = CεCγ γ
(
− 4λ− 1

4
(g2

1 + g2
2) ξ

)
Ahγγαβ , (2.20)

iAb = Cε(Cγ γ + 2CHWB)

(
− 2λ− 1

2
g2

2 ξ

)
Ahγγαβ , (2.21)

10This is true at one loop.
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(a)

h

h, φ0

h, φ0

γ

γ

(b)

h

φ±

φ±

γ

γ

(c)

h

W±

W±

γ

γ

(d)

h W±

γ

γ
(e)

h

W±

φ±

γ

γ

(f)

h

W±

W±

γ

γ

(g)

h

φ±

W±

φ±

γ

γ

(h)

h

φ±

W±

W±

γ

γ

(i)

h

W±

W±

W±

γ

γ

h

γ

γ

(j)

Figure 2. One loop diagrams contributing to h → γγ decay through interactions in Leff(v0, v).

Arrows on propagators indicate charge flow. The insertion of the Effective Lagrangian in the

diagrams is indicated with a black square. Diagrams (f-i) have mirror diagrams that are not shown,

where the photons are exchanged in a less trivial manner than in diagrams (a-e). Diagram (j)

corresponds to the insertion of the one loop counterterms present in Leff . Here, h is the Higgs field,

φ0,± are the Goldstone bosons and W , Z and γ are the gauge fields.

iAc = Cεg2
2 CHW

[(
1− 1

ξ

)
4

3
pβa p

α
b − 12m2

W

(
3 +

1

ξ

)
gαβ ,

+

(
13 +

5

ξ

)
4 pa · pb

3
gαβ

]
, (2.22)

iAd = 6 Cε g2
2 CHW m2

W

[
3 + ξ2

]
gαβ , (2.23)

iAe = Cε g2
2 CHWB

(3 + ξ)

2
Ahγγαβ , (2.24)

iAf = 4 g2
2 Cε

[
−3m2

W (ξ2 + 3)CHW gαβ − (ξ + 3)

4
(2CHW − CHWB)Ahγγαβ

]
, (2.25)
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iAg = Cε g2
2 CHWB (−1)Ahγγαβ , (2.26)

iAh = Cε g2
2 CHWB

− (1 + ξ)

2
Ahγγαβ , (2.27)

iAi = CHWε
[(

6 ξ + 17 +
1

ξ

)
pβap

α
b +

9

2
m2
W

(
ξ2 + 9 +

2

ξ

)
gαβ ,

−
(

6 ξ + 31 +
5

ξ

)
gαβpa · pb

]
. (2.28)

The ξ gauge dependence of the Zh and vev counterterms cancel against the sum of iAa,b.
The one loop counterterms of the operators in eq. (2.5) are gauge independent. As a result

all of the remaining ξ dependence in iAa−j must cancel. This occurs in a nontrivial manner.

The sum of the divergent results of iAa−i is

iAa...i =
Cε
2

[
CHWB(6 g2

2 + 4λ)− 12λ(CHB + CHW )
]
Ahγγαβ . (2.29)

Here we are suppressing the dependence on the gauge parameter that exactly cancels

against the gauge dependence in the
√
Zh,
√
Zv + δv/v counterterms in Aj . The gauge

independent divergent contributions exactly cancel the insertion of the gauge independent

counterterms for the Oi in Aj , which gives

〈h|h
√
Zh

(
v
√
Zv + δv

)
(NHB +NHW −NHWB) e2AµνA

µν |γ(pa, α) γ(pb, β)〉,

= −Cε
2

[
CHWB(6 g2

2 + 4λ)− 12λ(CHB + CHW )
]
Ahγγαβ , (2.30)

establishing that the process is rendered finite as expected. This is another non-trivial

check of the mixing results reported in ref. [4]. The remaining divergences from iAb,k−o in

figure 3 due to Leff(v2) must vanish as argued, which occurs via the intermediate results

iAb = −iAm = Cε e2 v2CHWB (8λ+ 2 g2
2 ξ) g

αβ , (2.31)

iAk = −iAl = −1

2
Cε e2 v2 g2

2 CHWB

(
9 +

3

ξ
+ ξ + 3 ξ2

)
gαβ , (2.32)

iAn = −iAo = Cε e2 v2 g2
2 CHWB 4 ξ gαβ . (2.33)

3 Finite terms

The finite terms in the calculation come about from expanding the results of the diagrams

in figures 2, 3 to O(ε0), as well as from finite one loop terms defined via renormaliza-

tion conditions in the MS scheme for the fields and couplings entering at tree level in the

calculation. The latter correspond to the one loop correction to the vev, (δv), the renor-

malization conditions fixing the external two point functions for the Higgs (δRh) and the

photon (δRA) fields, and the definition of the electric coupling e, which fixes δRe.
11 These

BSM physics contributions enter the S matrix element as

〈h(ph)|S|γ(pa, α), γ(pb, β)〉BSM = (1 +
δRh

2
) (1 + δRA) (1 + δRe)

2 i
∑

x=a...o

Ax. (3.1)

11The definition of these so-called R factors is well explained in refs. [27, 28].
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h

φ0

φ0

γ

γ

(b) (k)

h

W±

W±

W±

γ

γ

(l)

h

W±

W±

γ

γ

(m)

h

φ±

φ±

φ±

γ

γ

(n)

h

u±

u±

u±

γ

γ

(o)

h

u±

u±

γ

γ

Figure 3. Diagrams contributing to h → γγ decay due to Leff(v2). The divergent terms exactly

cancel in this class of contributions, as expected. u± are ghost fields.

Note that δv appears explicitly in Aj . We choose to use a scheme [19, 27] that utilizes the

BFM, where the finite on shell renormalization conditions are defined as follows:12

• The tree level vev of the Higgs is defined by the potential

LV = −λ
(
H†H − v2

2

)2

. (3.2)

The one loop correction (δv) to the vev is fixed by the condition that the one point

function of the Higgs field vanishes to one loop order, including δv in the definition

of H in eq. (2.9). Including one loop corrections in the BFM, shown in figure 4, the

finite terms linear in the Higgs field are modified to

T = m2
h h v

1

16π2

[
−16π2 δv

v
+ 3λ

(
1 + log

[
µ2

m2
h

])
+

1

4
g2

2 ξ

(
1 + log

[
µ2

ξ m2
W

])
,

+
1

8
(g2

1 + g2
2) ξ

(
1 + log

[
µ2

ξ m2
Z

])
− 2

∑
f

y2
f Nc

m2
f

m2
h

(
1 + log

[
µ2

m2
f

])
,

+
g2

2

2

m2
W

m2
h

(
1 + 3 log

[
µ2

m2
W

])
+

1

4
(g2

1 + g2
2)
m2
Z

m2
h

(
1 + 3 log

[
µ2

m2
Z

])]
.

(3.3)

Setting T = 0 defines the vev at one loop and fixes the finite terms of δv. Gauge

dependence is thus present in the one loop definition of the vev of the Higgs. The

12In calculating the renormalization conditions with the BFM, the two and three point functions and

all external fields are treated as classical. An alternative scheme where systematically the two and three

point functions are treated as having mixed classical and quantum external states, combined with a suitable

modification of the results due to figures 2, 3, can also be consistent.
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h, φ0, φ±

h

u±, u0

h

Z,W±

h

f

h

Figure 4. One loop contributions to the one point expectation value 〈h〉. Here u0,± are ghost

fields and f is a fermion field.

remaining contributions to Γ(h→ γ γ) from the sum of all other “tadpole” diagrams

and insertions of δv vanish due to this chosen renormalization condition. These

contributions are not shown in figures 2, 3.

• The one loop correction to the electric charge e(0) = (1 + δRe) e
(r) is fixed by the on

shell renormalization condition defining the electric charge as the e e γ coupling in

the Thompson limit. Fixing all corrections to this vertex to vanish on shell at zero

momentum transfer fixes the finite terms given by δRe. The Ward identities of the

theory also fix

δRe = −1

2
δRA, (3.4)

where δRA is the wavefunction renormalization finite term fixed via the on shell renor-

malization condition of the photon field. Due to the above relation, no dependence

on the photon two point function appears in the S matrix element at one loop.

• The finite terms present in the wavefunction renormalization of the Higgs is defined

via the on shell renormalization condition

δRh = −∂Πhh(p2)

∂p2
|p2=m2

h
, (3.5)

where p is the momentum of the Higgs field. Here Πhh(p2) is the two point function

of the Higgs calculated using the BFM, which is reported in appendix B.

Combining these results gives the BSM contributions to the S matrix element relevant for

Γ(h→ γ γ), due to the set of operators, we have considered. Using the notation

I[m2] ≡
∫ 1

0
dx log

(
m2 −m2

h x (1− x)

m2
h

)
,

Iy[m2] ≡
∫ 1−x

0
dy

∫ 1

0
dx

m2

m2 −m2
h x (1− x− y)

,

we find the result for this amplitude to be remarkably compact,13

iANPtotal

i v e2Ahγγαβ

= Cγ γ

(
1 +

δRh
2

+
δ v

v

)
,

+

(
Cγ γ
16π2

(
g2

1

4
+

3 g2
2

4
+ 6λ

)
+
CHWB

16π2

(
−3 g2

2 + 4λ
))

log

(
m2
h

Λ2

)
,

13We have implemented Passarino-Veltman reductions [29] and made use of the tools Form, FormCalc

and FeynCalc [30–32] to carry out independent checks of the results.
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+
Cγ γ
16π2

((
g2

1

4
+
g2

2

4
+ λ

)
I[m2

Z ] +

(
g2

2

2
+ 2λ

)
I[m2

W ] + (
√

3π − 6)λ

)
,

+
CHWB

16π2

(
2e2

(
1 + 6

m2
W

m2
h

)
− 2 g2

2

(
1 + log

(
m2
W

m2
h

))
+
(
4λ− g2

2

)
I[m2

W ],

+ 4

(
3e2 − g2

2 − 6e2m
2
W

m2
h

)
Iy[m2

W ]

)
,

−g
2
2 CHW
4π2

(
3
m2
W

m2
h

+

(
4−

m2
h

m2
W

− 6
m2
W

m2
h

)
Iy[m2

W ]

)
. (3.6)

This equation is the main result of this paper.

3.1 Gauge independence of the results

The result in eq. (3.6) is gauge independent. Our use of the BFM allows us to choose a

gauge for the quantum fields (we use the convenient choice ξ = 1), while maintaining the

explicit gauge invariance of the result. We have also verified the gauge independence of the

results with extensive checks of the calculation, which include the following:

• The gauge independence of the coefficient of Cγ γ is due to a cancelation of the gauge

dependence in δRh, δv and the one loop contributions of diagrams a) and b) in figure 2

proportional to Cγ γ . We have explicitly verified this gauge independence numerically

using the CUBA library for numerical integration [33].

• The gauge independence of the remaining results proportional to CHW and CHWB in

eq. (3.6) due to figures 2, 3 has also been checked numerically. Moreover, the results

in Feynman Rξ gauge and unitary gauge have been compared analytically, finding

exact agreement.14

3.2 Implications of the results for the one loop structure of the SMEFT

The results in eq. (3.6) are presented with terms grouped together in the following manner.

The first line is the tree level result and the modification of this result due to the on shell

renormalization conditions at one loop. The second line corresponds to log enhanced terms

with µ ≡ Λ. These results are consistent with the results reported in refs. [4, 34]. However,

the log(µ) dependence proportional to Cγ γ receives additional contributions from Rh and

δv. For ξ = 1, the relevant terms of this form are

16π2

(
δv

v

)
log(µ2)

=

(
3λ+

g2
2

4

(
1 + 6

m2
w

m2
h

)
,

+
g2

1 + g2
2

8

(
1 + 6

m2
z

m2
h

)
− 2

∑
f

y2
f Nc

m2
f

m2
h

)
log

[
µ2

m2
h

]
,

16π2 (δRh)log(µ2) =

(
g2

1 + 3g2
2 −

∑
f

y2
fNc

)
log

[
µ2

m2
h

]
. (3.7)

14One aspect of the gauge independence that is interesting is the generation of the λ dependence for one

loop corrections to CHWB in unitary gauge. This dependence is due to diagram (b) in Rξ gauges, but is

given by diagram (k) in unitary gauge, due to the appearance of a factor of m2
h in a numerator in the one

loop finite terms.
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Here we have normalized all log(µ2) terms to the scale m2
h. The scale dependence of the

RG results in ref. [4] for Cγ γ is obtained by adding

∆h γ γ
log(µ) = i v e2Cγ γ

(
δRh

2
− δ v

v

)
Ahγγαβ , (3.8)

to the result in eq. (3.6). The interpretation of this correction as a requirement to match the

one loop scale dependence determined from the RG of the Oi, to the results obtained in the

full one loop result is fairly transparent. This correction is diagonal in the Wilson coefficient

space of the Oi at one loop. The existence of this correction nevertheless illustrates quite

clearly the insufficiency of studying the one loop RG of the Oi in the SMEFT as a direct

proxy for the full one loop structure of the theory.

Furthermore, the last line of eq. (3.6) shows another important effect that is present

in loop corrections and not captured in studying the structure of the RG of the Oi alone.

Dependence on CHW is present at one loop, which is not absorbed into the dependence

on Cγ γ and is not hinted at in the one loop structure of the RG. Nevertheless, such terms

do exist. We refer to this class of terms as one loop “pure finite” terms, as no log(µ)

dependence is present for this class of contributions.

The form of the result in eq. (3.6) is exactly what one expects on general grounds.

Although a particular combination of the operators OHB, OHW and OHWB corresponds to

Γ(h→ γ γ) at tree level, there is no sense in which this particular combination of operators

is preserved at one loop in the SMEFT. The general expectation is that all three Wilson

coefficients will appear as three independent parameters contributing to Γ(h→ γ γ) at one

loop. This is exactly what is found in the explicit calculation of this process.

Finally, we note the effect of properly accounting for the class of effects due to Leff(v2)

in the results. These contributions do not contribute with divergences to be subtracted by

the Oi counterterms and so are expected to be pure finite terms. This can be understood

due to the scaling in v that these terms are proportional to. This is exactly what is found

in the explicit calculation. Again, studies of only the Oi RG of the SMEFT are blind to

such contributions. These contributions do not vanish at one loop when considering finite

terms, and are the source of the e4 terms in eq. (3.6).

For these reasons, the structure of the RG is not a good proxy for the full one loop

structure of the SMEFT.

4 Phenomenology

When considering the numerical effect of the Wilson coefficients of the Oi on measured

processes, there are two broad perspectives, one can adopt. The SMEFT can be studied

and experimentally constrained, while considering the SMEFT as a real and consistent

theoretical formalism. This approach is a “bottom up” EFT point of view, and does not

impose a UV bias or prejudice as to the size of the Wilson coefficients of various operators.

Within this approach, consistent organizational schemes to power counting operators can

be constructed. For example, a popular scheme is given by the Naive Dimensional Analysis

(NDA) approach laid out in ref. [35]. The NDA scheme is incomplete in some scenarios,
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but it can be consistently extended, see refs. [36, 37].15 Within this bottom up EFT

perspective, it is interesting to note that ref. [39] has recently advanced an elegant operator

level understanding of the approximate holomorphic structure of the SMEFT discussed in

detail in ref. [40]. These works are concerned with statements on the SMEFT without

invoking UV bias. The need to calculate finite terms that need not have the structure of

the RG, which is emphasized and explicitly demonstrated in this paper, is consistent with

the discussions in refs. [39, 40].

As an alternative to the bottom up approach, some literature employs UV dependent

assumptions to classify operators. For some discussion along these lines see refs. [41, 42].

We will not discuss UV bias in any great detail in this paper.

4.1 Numerical results

The perturbative results reported in this paper are one loop corrections to the effect of

the chosen Oi on the process Γ(h → γ γ). The size of the Oi Wilson coefficients is UV

dependent. We treat the Wilson coefficients as free parameters, to be constrained by

experiments, multiplying the naive power counting suppression O(v2/Λ2). Currently the

measured signal strength for γγ is given by ATLAS [43] as

µγγ = 1.17± 0.27, (4.1)

for mh = 125.4± 0.4 GeV, while CMS reports [44]

µγγ = 1.14+0.26
−0.23 , (4.2)

for mh = 124.70±0.34 GeV. The inferred results for the Higgs mass from these experiments

are consistent [45]. There is no evidence at this time for a deviation from the expectation

in the SM. The modified signal strength due to the chosen Oi Wilson coefficients can be

written as

µγγ ≡
Γ(h→ γγ)

ΓSM(h→ γγ)
'
∣∣∣∣1 +

ANPtotal

ASM

∣∣∣∣2 . (4.3)

The expression for ASM is well known from the literature, see for example refs. [46, 47],

and is given by

iASM =
i g e2

16π2mw

∫ 1

0
dx

∫ 1−x

0
dy (4.4)(

−4m2
w + 6x ym2

w + x ym2
h

m2
w − x ym2

h

+
∑
f

NcQ
2
f

m2
f (1− 4x y)

m2
f − x ym2

h

)
Ahγγαβ .

The corrections that we have computed are comparable in size to the RG log terms calcu-

lated in refs. [4, 34]. The results of the analyses of refs. [4, 34] are gauge independent. We

compare our results to ref. [4], which includes terms that were not calculated in ref. [34].

15One can also introduce consistent power counting schemes, with well defined assumptions, when one

assumes that the underlying theory generating the Oi is strongly interacting, see for example ref. [38].
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For the coefficient of CHWB, the ratio of the full one loop terms, to the results of ref. [4] is

given by

RCHWB ' 1 + 0.7 log−1 m
2
h

Λ2
, (4.5)

so that for TeV cut off scales, the RG log terms are larger by only a factor of ∼ 6 (for

Λ ∼ 1 TeV). For the coefficient of CHW not already included in Cγ γ , there are no RG

terms. The pure finite term is given in eq. (3.6). The ratio of the size of this term to the

full one loop CHWB term, not already included in Cγ γ , is approximately

RCHWB/CHW '
CHWB

CHW

(
0.5 + 0.7 log

m2
h

Λ2

)
, (4.6)

which makes clear that the pure finite terms are not negligible in favour of an RG analysis

for cut off scales in the TeV range. If perturbative corrections are incorporated in an

analysis of future µγγ constraints, an RG analysis is simply insufficient.

Comparing the size of the one loop corrections included in our results that were ne-

glected in past results, it is clear that the appearance of the scale dependent term

2
∑
f

y2
f Nc

m2
f

m2
h

log

[
µ2

m2
h

]
, (4.7)

in δv is particularly problematic. For the top quark Yukawa, this is a dominant scale

dependent log that is not captured in past RG analyses of the SMEFT. However, the

interpretation of the numerical impact of this correction on µγ γ is more subtle. Naively

using v + δv as a numerical value of the vev extracted from a measured GF in µ− →
e− + ν̄e + νµ would assign a gauge dependent quantity a numerical value. It is required

that µ− → e− + ν̄e + νµ be calculated at one loop in the SMEFT16 to avoid this gauge

dependence and allow the measurement to be used as a direct input into the prediction of

µγ γ . This is beyond the scope of this work, but when doing so it is expected that the large

log in eq. (4.7) will be absorbed in the numerical value of the vev in the SMEFT.

Finally, we note that there is some interest in the literature on the question of a one

loop contribution from an operator that is not loop suppressed in a UV matching, leading

at one loop to a contribution to µγ γ through the RG. This can occur in general, but

does not occur in some cases if all UV physics is weakly coupled and renormalizable, see

refs. [11, 49–51] for some coherent related discussion. Again we note that when considering

the physical impact of such a scenario, studying the RG is only a part of a full one loop

correction to a physical amplitude.

5 Conclusions

In this paper we have calculated one loop finite terms for the contribution of the operators

OHB, OHWB and OHW to the decay Γ(h→ γ γ) in the SMEFT. The terms calculated are

16The required one loop calculation in the SM is known, see ref. [48].
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not small in general compared to terms that have been calculated in past works using the

RG of the SMEFT operators. If experimental bounds on Γ(h→ γ γ) are to be studied to

next to leading order in the SMEFT, these terms should not be neglected. In developing this

result at one loop in the SMEFT, we have also uncovered a number of interesting subtleties.

These have broad implications when developing the SMEFT to next to leading order.

Acknowledgments

We thank Poul Henrik Damgaard, Guido Festuccia, Alberto Guffanti, Gino Isidori, Simon

Caron-Huot and Aneesh Manohar for helpful communication related to this work. In

particular, we thank Simon and Aneesh, who also provided comments on the manuscript.

MT acknowledges generous support from the Villum Fonden. CH thanks Gudrun Heinrich

and Sophia Borowka for their guidance in the acquaintance of the technical tool FormCalc,

which was used to carry out calculations in this paper.

A Conventions and Feynman rules

We define our notational conventions and Feynman rules in this section. The covariant

derivative sign convention is defined as Dµ = ∂µ + ig2W
a
µT

a + ig1BµY , with Y the U(1)

Hypercharge generator. Here T a = σa/2, with σa being the Pauli matrices. The sign

convention in the covariant derivative fixes the sign conventions in the Yang-Mills part of

the Lagrangian to be

W a
µ ν = ∂µW

a
ν − ∂νW a

µ − g2 εabcW
b
µW

c
ν ,

DµW
a
ν = ∂µW

a
ν − g2 ε

abcWb,µWc,ν . (A.1)

The conventions used here are consistent with refs. [7, 21]. We use the BFM, and the

background fields are introduced with a hat superscript. Quantum fields are denoted

without the hat superscript. The gauge fixing is given by

LGF = − 1

2 ξW

∑
a

[
∂µW

a,µ − g2 ε
abcŴb,µW

µ
c + i g2

ξ

2

(
Ĥ†i σ

a
ijHj −H†i σ

a
ijĤj

)]2

,

− 1

2 ξB

[
∂µB

µ + i g1
ξ

2

(
Ĥ†iHi −H†i Ĥi

)]2

. (A.2)

From the gauge fixing term, choosing ξB = ξW , one directly finds

LGF = − 1

2 ξ

[
(GA)2 + (GZ)2 + 2G+G−

]
, (A.3)

where

GA = ∂µA
µ + ie

(
Ŵ+
µ W

−
µ −W+

µ Ŵ
−
µ

)
+ ie ξ

(
φ̂−φ+ − φ̂+φ−

)
,

GZ = ∂µZ
µ + ie

cw
sw

(
Ŵ+
µ W

−
µ −W+

µ Ŵ
−
µ

)
+ ieξ

1

2cw sw
(c2
w − s2

w)
(
φ̂−φ+ − φ̂+φ−

)
,

−e ξ 1

2 cwsw

(
φ̂0 h− ĥφ0 − vφ0

)
,
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G± = ∂µW±µ ± i e
[
Âµ +

cw
sw

Ẑµ
]
W±µ ∓ ie

(
Aµ +

cw
sw
Zµ
)
Ŵ±µ ,

−e ξ 1

2sw

(
(v + ĥ∓ iφ̂0)φ± − (h∓ iφ0)φ̂±

)
. (A.4)

This result is consistent (up to sign conventions) with the result in ref. [19]. From this, the

Feynman rules of the theory are straightforward to derive.

A.1 Digression on gauge fixing

Gauge fixing in the SMEFT has some interesting subtleties compared to gauge fixing in

the SM. Fundamentally, the number of degrees of freedom being fixed are the same, and

in this sense standard t’Hooft Rξ gauge fixing [52, 52] can be imposed. However, the

relationship between the SU(2)L × U(1)Y gauge fields W and B and the mass eigenstate

fields is modified in the SMEFT. In this sense, it is clearly legitimate to consider more

carefully the question — What exactly is being gauged in the SMEFT?

The fact that the relation between the W and B fields and the physical propagating

mass eigenstate fields changes order by order in the power counting of the theory, as do

the mixing angles, has a number of interesting consequences. These contributions can

physically contribute to amplitudes in pure finite terms at one loop, as we have shown.

As such, the interesting consequences of gauge fixing in the SMEFT are worthy of some

comment.

For example, the ghost Lagrangian can be derived from eq. (A.3) adding a standard

Faddeev-Popov term [53] to the Lagrangian, where

LFP = −ūα δG
α

δθβ
uβ . (A.5)

Here α, β are summed over the physical mass eigenstate fields, and δGα/δθβ is the variation

of the gauge fixing terms under the infinitesimal quantum gauge fixing transformations.

The gauge transformations in ref. [19] can be used to derive the ghost Lagrangian, includ-

ing the effect of redefining the mixing angles and states with SMEFT corrections. In this

manner, at O(v2/Λ2), we observe that the Wilson coefficient CHWB sources ghost inter-

actions. Another interesting consequence of gauge fixing in the SMEFT is the presence of

the interaction terms

− cw sw
ξB ξW

(ξB − ξW ) (∂µAµ ∂
ν Zν)− CHWBv

2(s2
w − c2

w)(s2
wξB + c2

wξW )

ξB ξW
(∂µAµ ∂

ν Zν) · · ·

(A.6)

where in this case the gauge fixing has not imposed the relation ξB = ξW . In the SM,

the choice ξB = ξW is usually made in t’Hooft gauge fixing, and as a consequence A-Z

mixing is not present at tree level. The same choice in the SMEFT results in tree level

A-Z mixing. This is due to the redefinition of the mass eigenstate fields of the theory at

O(v2/Λ2) in the SMEFT. These field redefinitions cause these terms to result from the

gauge fixing procedure.

The presence of such unanticipated interaction terms when generalising the SM into

the SMEFT emphasizes the importance of not obscuring the distinction between a basis
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of gauge invariant operators, and the Effective Lagrangian. The severe challenges of im-

plementing a calculation of the form presented here, if the distinction is lost, should be

manifest. This is a very serious limitation to the gauge dependent approach to the SMEFT

discussed in refs. [25, 26, 54], which is not well suited for long term use, as studies in the

SMEFT are already being systematically improved beyond tree level.

Conversely, avoiding some of the gauge dependence challenges in the SMEFT is a

feature in favour of the covariant derivative expansion discussed in refs. [11, 55, 56] and by

direct use of a well defined non-redundant basis, such as the Warsaw basis of ref. [2].

B Higgs self energy

The finite part of the Higgs self energy will define the R factors of the Higgs field and mass

renormalization. In Feynman gauge, setting ξ = 1, the finite part of the Higgs self energy

is calculated from the diagrams of figure 5 and is given by

16π2Afina = m2
z

(
1

4
(g2

1 + g2
2)

(
1− log

(
m2
z

µ2

))
+ λ

(
1− log

(
m2
z

µ2

)))
,

+ 3λm2
h

(
1− log

(
m2
h

µ2

))
,

+m2
w

(
1

2
g2

2

(
1− log

(
m2
w

µ2

))
+ 2λ

(
1− log

(
m2
w

µ2

)))
,

16π2Afinb =
1

2
m2
z

(
g2

1 + g2
2

) (
1− 2 log

(
m2
z

µ2

))
+ g2

2 m
2
w

(
1− 2 log

(
m2
w

µ2

))
,

16π2Afinc = −1

2
m2
z

(
g2

1 + g2
2

) (
1− I[m2

z]
)
− g2

2 m
2
w

(
1− I[m2

w]
)
,

16π2Afind = −2m2
f

∑
f

y2
f Nc

(
1− log

(
m2
f

µ2

)
− 2 I[m2

f ]

)
− p2

∑
f

y2
f Nc I[m2

f ],

16π2Afine = − 9λm2
h I[m2

h] −
(
m2
h

(
g2

2 + 2λ
)

+ g2
2 m

2
w

)
I[m2

w],

− 1

2

(
m2
h

(
g2

1 + g2
2 + 2λ

)
+m2

z (g2
1 + g2

2)
)
I[m2

z],

16π2Afinf = m2
z

(
g2

1 + g2
2

)
I[m2

z] + 2 g2
2 m

2
w I[m2

w],

16π2Afing = −2 g2
2 m

2
w

(
1 + 2 I[m2

w]
)
−m2

z

(
g2

1 + g2
2

) (
1 + 2 I[m2

z]
)
,

16π2Afinh = 2 g2
2 p

2 I[m2
w],

16π2Afini = p2
(
g2

1 + g2
2

)
I[m2

z], (B.1)

where p is the momentum of the external Higgs fields. From the sum of these results,

Rh = 1 + δRh can be found from,

δRh = −∂Πhh(p2)

∂p2
|p2=m2

h
. (B.2)
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(a)

h, φ0, φ±

h

(b)

Z,W±

h

(c)

u0, u±

h

(d)

f

h

(e)

h, φ0, φ±

h

(f)

u0, u±

h

(g)

Z,W±

h

(h)

W±

φ∓h

(i)

Z

φ0h

Figure 5. Diagrams contributing to the Higgs self energy.

For ξ = 1 we find the result for 16 π2 δRh,

2λ
(

6−
√

3π − Jx[m2
z]− 2Jx[m2

w]
)

+

(∑
f

y2
f Nc − g2

1 − 3g2
2

)
log

(
m2
h

µ2

)
,

+ 2 g2
2

((
Jx[m2

w]− 1

2

) (
1− 3m2

w

m2
h

)
− I[m2

w]

)
,

+
(
g2

1 + g2
2

) ((
Jx[m2

z]−
1

2

)(
1− 3m2

z

m2
h

)
− I[m2

z]

)
,

+
∑
f

y2
f Nc

(
1 +

(
1 +

2m2
f

m2
h

)
I[m2

f ]−
2m2

f

m2
h

log

(
m2
f

m2
h

))
. (B.3)

Here, we have used the notation

Jx[m2] ≡
∫ 1

0
dx

xm2

m2 −m2
h x (1− x)

, (B.4)

and we note that although we present this result with ξ = 1, it was determined in the BFM

with classical external Higgs fields assumed for the two point function.
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