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1 Introduction

The Large Hadron Collider (LHC) at CERN has been built to explore the TeV energy scale

and pin down the mechanism responsible for the breaking of the electroweak symmetry.

With this respect, the discovery of a Higgs boson consistent with the Standard Model of

particle physics [1, 2] can be seen as a first success of the LHC physics programme. This also

consists of the first observation of a particle intrinsically unstable with respect to quantum

corrections. One can therefore expect either an unnatural fine-tuning or a stabilization

arising from physics beyond the Standard Model that would emerge at a scale reachable

at present and future colliders. Although we do not know which theory could be the most

suitable, a lot of efforts have been put, during the last decades, in the study of a plethora of

new physics models. The Minimal Supersymmetric Standard Model [3, 4] (MSSM) is one

of the most popular of these and it provides, additionally to curing the infamous hierarchy

problem, a solution for other conceptual issues plaguing the Standard Model.

There is currently no evidence for supersymmetry and limits on the superpartners of

the Standard Model particles are hence pushed to higher and higher scales. Most results

have however been derived either in the MSSM or within simplified models inspired by

the latter. There are nevertheless large varieties of alternative supersymmetric realizations

that could evade all current bounds and deserve to be investigated. For instance, the

MSSM inherits some of the flaws of the Standard Model and extending the model gauge

symmetry could provide a mechanism yielding the generation of the neutrino masses and

an explanation for the strong CP problem.

We consider in this work supersymmetric theories that exhibit a left-right symmetry [5–

8] and that are based on an SU(3)c × SU(2)L × SU(2)R × U(1)B−L gauge group. They

provide a solution for the hierarchy problem, explain the smallness of the neutrino masses,

can include a dark matter candidate, and they potentially solve the strong CP problem
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because of parity invariance at the fundamental level. Moreover, minimal supersymmetric

setups like constrained versions of the MSSM cannot usually predict, at the tree level, a

neutral Higgs boson mass compatible with the observations and require large higher-order

contributions. This issue can be alleviated by extending the Higgs sector, like in left-right

supersymmetric models where the spontaneous breaking of the left-right symmetry all the

way down to the U(1) electromagnetic group necessitates several Higgs fields [9–11].

Several left-right supersymmetric setups have been studied in the past, with different

Higgs sectors and symmetry breaking details. We choose to focus on a class of minimal

models featuring two SU(2)R Higgs triplets that are responsible for the breaking of SU(2)R×
U(1)B−L to the electroweak group, two extra SU(2)L Higgs triplets that allow for parity

invariance at higher scales and two SU(2)L×SU(2)R bidoublets yielding both the breaking

of the electroweak symmetry down to electromagnetism and the generation of acceptable

fermion masses and mixings [12–14]. In addition, we include an extra singlet field to achieve

a successful electroweak symmetry breaking in the supersymmetric limit [8]. With such a

choice for the Higgs sector, the interactions of the lepton supermultiplets with the triplets

are sufficient for generating neutrino masses through a see-saw mechanism [15], and the

presence of the singlet solves the so-called µ-problem of the MSSM as all bilinear terms of

the superpotential can be generated dynamically. These models are currently probed at the

LHC through traditional supersymmetry [16, 17] and extra gauge boson searches [18, 19],

as well as analyses dedicated to the doubly-charged (Higgs and Higgsino) states induced by

the SU(2)L and SU(2)R triplets [18, 19]. The observation of such doubly-charged particles

would indeed provide valuable information about the symmetry breaking pattern of the

underlying theory.

The minimization of the scalar potential of the model is known to lead to a tree-level so-

lution in which either R-parity invariance [12, 13] or electric charge conservation [14] is lost.

Including one-loop heavy Majorana neutrino contributions however allows for satisfactory

solutions to the minimization equations [8, 20]. In this case, the right-handed sneutrino

fields are prevented from getting non-vanishing vacuum expectation values so that R-parity

is conserved and no dangerous lepton number violating operators appear in the superpoten-

tial. Additionally, these radiative corrections also protect the doubly-charged Higgs bosons

from being tachyonic and breaking electromagnetism. This has been demonstrated both

in pioneering calculations relying on the Coleman-Weinberg effective potential [8] and in

a more recent calculation using a diagrammatic approach in the gaugeless limit where all

contributions proportional to the gauge couplings are neglected [20].

In this work, we start with a brief description of the considered left-right supersym-

metric models (section 2) and then show, in section 3, that the previously calculated

corrections to the doubly-charged Higgs mass are not sufficient to render it compatible

with the current experimental bounds [21]. We subsequently evaluate the complete one-

loop result and demonstrate that the doubly-charged Higgs mass can be increased well

above the present limits. Other recent LHC constraints are investigated in section 4 and

we further study the minimum of the scalar potential at the one-loop level in section 5,

analyzing the requirements for ensuring this minimum to be global. Our conclusions about

the phenomenological viability of the model are given in section 6.
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2 The Model

Many left-right supersymmetric setups have been developed in the past. We adopt the

configuration introduced in ref. [8]. The Standard Model left- and right-handed quarks

(leptons) are embedded, together with their scalar superpartners, in QL and QR (LL and

LR) supermultiplets lying in the fundamental representation of the SU(2)L and SU(2)R
gauge groups, respectively. The Higgs(ino) sector is constituted of two SU(2)L triplets (∆1L

and ∆2L with a B−L charge QB−L = ∓2), two SU(2)R triplets (∆1R and ∆2R with QB−L =

∓2), two SU(2)L× SU(2)R bidoublets (Φ1 and Φ2 not charged under the B−L symmetry)

and one gauge singlet (S). As demonstrated in pioneering works, this configuration allows

for a successful symmetry breaking of the SU(2)L × SU(2)R × U(1)B−L gauge symmetry

down to the U(1) electromagnetic gauge group, it includes a see-saw mechanism yielding the

generation of the neutrino masses and it provides acceptable fermion masses and mixings

with respect to data [12–15].

Assuming a discrete Z3 symmetry, the superpotential only contains terms that are

trilinear in the fields,

W = QLy
Q
1 Φ1QR +QLy

Q
2 Φ2QR + LLy

L
1 Φ1LR + LLy

L
2 Φ2LR + LLy

L
3 ∆2LLL

+ LRy
L
4 ∆1RLR + λLS∆1L ·∆2L + λRS∆1R ·∆2R + λ1SΦ1 ·Φ1 + λ2SΦ2 ·Φ2

+ λ12SΦ1 ·Φ2 +
1

3
λSS

3 ,

(2.1)

where we refer to ref. [22] for details on the underlying (understood) index structure. In

those notations, the various coupling strengths have been embedded into 3 × 3 Yukawa

matrices (yiQ and yjL with i = 1, 2 and j = 1, 2, 3, 4) and λ parameters dictating the size

of the Higgs self-interactions. The supersymmetry-breaking Lagrangian contains sfermion

and gaugino mass terms as well as trilinear (T ) interactions whose structure is given by

their superpotential counterparts.

The spontaneous symmetry-breaking mechanism proceeds in two steps. The SU(2)R×
U(1)B−L group is first broken to the hypercharge group and the two SU(2)R Higgs triplets

develop non-vanishing vacuum expectation values (vevs). In a second step, the electroweak

symmetry is broken to electromagnetism and the bidoublet Higgs fields get non-zero vac-

uum expectation values. The vacuum state is characterized by the vevs of all the neutral

components of the Higgs fields,

〈∆1L〉 =

〈 ∆−1L√
2

∆0
1L

∆−−1L −
∆−1L√

2

〉 =

(
0 v1L√

2

0 0

)
, 〈∆2L〉 =

〈∆+
2L√
2

∆++
2L

∆0
2L −

∆+
2L√
2

〉 =

(
0 0
v2L√

2
0

)
,

〈∆1R〉 =

〈 ∆−1R√
2

∆0
1R

∆−−1R −
∆−1R√

2

〉 =

(
0 v1R√

2

0 0

)
, 〈∆2R〉 =

〈∆+
2R√
2

∆++
2R

∆0
2R −

∆+
2R√
2

〉 =

(
0 0
v2R√

2
0

)
,

〈Φ1〉 =
〈(Φ0

1 Φ+
1

Φ−1 Φ′01

)〉
=

(
vd√

2
0

0 0

)
, 〈Φ2〉 =

〈(Φ′02 Φ+
2

Φ−2 Φ0
2

)〉
=

(
0 0

0 vu√
2

)
,

〈S〉 =
vS√

2
, (2.2)
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where all vevs are taken real and positive (as allowed by suitable field redefinitions). Al-

though the Φ′0 fields could also develop non-zero vacuum expectation values giving rise

to W/WR mixing, these are strongly constrained by kaon data so that they are ignored.

Moreover, the phase of vS cannot in principle be rotated away but we omit it for sim-

plicity. The remaining vevs can be further constrained. Both the viR vevs are imposed

to be large by the masses of the WR and ZR gauge bosons. Furthermore, the small-

ness of the Standard Model neutrino masses and electroweak precision data require that

the vevs developed by the SU(2)L Higgs triplets viL are negligible.1 Finally, the size

of vS is related to the effective µ-terms of the superpotential, and we consequently im-

pose the hierarchy vS , v1R, v2R � vu,d � v1L≈v2L≈0. For further references, we define

v2
1R + v2

2R = v2
R, tanβR = v2R/v1R, v2

d + v2
u = v2 and tanβ = vu/vd and we additionally

assume λ1 = λ2 = 0, analogously to refs. [22, 23].

The vacuum configuration of eq. (2.2) does not necessarily yield a minimum of the

scalar potential [12]. In fact, the true global minimum is in general charge-breaking and

the ∆−−1R and ∆++
2R fields develop a vev

〈∆iR〉CB =

(
0 viR

2
viR
2 0

)
for i = 1, 2 , (2.3)

so that the D-term contributions to the scalar potential are minimized. We will further

address this issue in section 3.

In order to design viable left-right supersymmetric benchmark scenarios, we have im-

plemented the model described above in the SARAH package [24–28] to automatically gen-

erate a numerical code based on the SPheno programme [29, 30].2 Physical spectra are

then calculated in several steps. One begins with the derivation of the soft-supersymmetry

breaking masses from the tadpole equations at the tree level, which allows for the calcu-

lation of a tree-level mass spectrum. Next, one-loop corrections are evaluated in the DR

scheme and a one-loop-accurate mass spectrum is computed. As explained in the next

section, we have modified the automated SARAH-SPheno procedure due to special features

associated with the mass of the doubly-charged Higgs boson. Several analytical cross checks

with the model implementation in FeynRules [31, 32] have been performed. For the evalu-

ation of the LHC bounds performed in section 4, the SSP package [33, 34] has been used to

scan randomly the parameter space of the model. Moreover, we have estimated WR signal

cross sections by means of the MadGraph5 aMC@NLO programme [35] after having linked the

UFO library [36] obtained from the SARAH implementation.

3 The doubly-charged Higgs mass

In the class of supersymmetric left-right symmetric models under consideration, we have

four doubly-charged Higgs bosons, two of them being related to the SU(2)L sector and two

of them being related to the SU(2)R one. While at the tree level, these fields do not mix, a

1Another acceptable choice implies that the yL3 couplings are tiny and the yL4 ones are large. This is

however very unnatural with the left-right symmetry.
2The code can be obtained from the authors upon request.
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Figure 1. The squared mass eigenvalue of the lightest doubly-charged Higgs state m2
H±± for

the desired vacuum configuration of eq. (2.2) (left panel, blue) and for the charge-breaking one of

eq. (2.3) (left panel, purple) as a function of tan βR. We also zoom into the region with tan βR ≈ 1

(right panel) and present results for the tan β = 1 (blue) and tan β = 50 (red) cases. Moreover,

the condition |v2u − v2d| > 2|v22R − v21R| that is discussed in the text is illustrated by vertical lines.

The relevant model parameters have been set to vR = 5.5 TeV, vS = 10 TeV, λR = 0.5, λS = −0.5,

λ12 = −0.02 and TλR = 0.

small mixing is induced at the loop level. It however does not lead to any observable effect

so that the following discussion is solely focusing on the SU(2)R sector. The mixing effects

are nevertheless included in our numerical results.

3.1 Tree-level results

The squared mass matrix of the doubly-charged SU(2)R Higgs bosons reads, at the tree

level and in the (∆−−1R , ∆++
2R
∗
) basis,

m2 =

(
D++ − tanβR F++ F++

F++ −D++ − cotβR F++

)
. (3.1)

In our conventions, the D-term and F -term contributions are respectively given by

D++ =
g2
R

2

[
v2
d − v2

u + 2
(
v2

2R − v2
1R

) ]
,

F++ =
λ2
R

2
v1Rv2R +

λRλS
2

v2
S −

λRλ12

2
vdvu +

TλR√
2
vS ,

(3.2)

where gR stands for the SU(2)R gauge coupling. First, the form of this squared mass

matrix implies that one of the physical states is massless in the gaugeless limit, i.e., when

all gauge couplings are neglected. Next, once the contributions proportional to the gauge

couplings are taken into account, the condition

|v2
u − v2

d| > 2|v2
2R − v2

1R| (3.3)

must be satisfied in order to render both doubly-charged Higgs squared mass eigenvalues

positive [14]. Equivalently, this condition can be casted as tan βR − 1 � 1 since we have

imposed, for phenomenological reasons, that vR � vu, vd (see section 2).3

3The special case where tan βR = 1 corresponds to a saddle point and not to a minimum of the potential.
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Figure 2. Generic one-loop diagrams contributing to the doubly-charged Higgs self-energy.

The condition of eq. (3.3) turns out to be extremely fine-tuned, as illustrated in figure 1

where we depict the dependence of the smallest mass eigenvalue m2
H±± on tanβR. In the left

panel of the figure, we present numerical predictions for the desired vacuum configuration

of eq. (2.2) (blue) as well as for the charge-breaking one of eq. (2.3) (purple). In contrast

to the latter case where the squared mass is generally positive, there exists only a small

region of the parameter space, featuring tan βR ≈ 1, where the vacuum structure does not

break electric charge invariance. In the right panel of figure 1, we zoom into this region and

study scenarios for which tan βR ≈ 1. In the case where tan β = 1 (blue), or in other words

when |v2
u − v2

d| = 0, the condition of eq. (3.3) imposes that the lightest doubly-charged

Higgs boson is either tachyonic or massless. In contrast, when tan β increases, a small

window where the squared mass of the lightest doubly-charged Higgs boson is positive

opens (red, for the example of tan β = 50). However, this configuration implies that one

of the pseudoscalar Higgs bosons gets tachyonic [37].

As a consequence, it is impossible to construct, at the tree level, left-right supersym-

metric setups that are phenomenologically viable. The only alternative option would be

to consider solutions of the potential minimization equations featuring R-parity breaking

vevs for the right-handed sneutrinos [12, 37].

3.2 Results at the one-loop level

The problems mentioned above are a tree-level artefact and can be solved by considering

one-loop contributions. Attempts including quantum corrections derived either from the

Coleman-Weinberg potential [8, 38] or within a Feynman diagrammatic approach [20] have

shown that a charge-conserving minimum of the scalar potential could be obtained. A

complete one-loop calculation however exhibits logarithmic terms with a negative argument

resulting from contributions depending on the self-interactions of the doubly-charged Higgs

bosons, and the subsequent imaginary part of the one-loop corrected potential is a sign

of a dangerous unstable vacuum (see section 5). More precisely, these earlier works have

argued that contributions stemming from the Majorana neutrino Yukawa coupling yL4 were

sufficient to render the doubly-charged Higgs squared mass positive [20] and to make the

vacuum configuration of eq. (2.2) a deeper minimum than the one of eq. (2.3) [8]. However,

in this last case, the right slepton soft squared masses m2
LR

must be negative, which further

implies large one-loop gaugino contributions to the slepton mass eigenvalues to avoid charge

and R-parity breaking.

– 6 –
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Figure 3. Comparison of our calculation of the one-loop corrections from yL4 , evaluated in the

gaugeless limit and for one generation of right-handed neutrinos (red dashed), to the results of

ref. [20] (grey). The contour lines represent m2
H±± isomass lines in GeV2. We present results

in the (vR, log10(m2
LR
/GeV2)) plane with yL4 = 0.4 (left panel) and in the (vR, y

L
4 ) plane with

m2
LR

= 2 · 106 GeV2 (right panel). In both cases, the remaining relevant parameters are fixed to

λR = 0.4, tanβR = 1.02 and vS = 10 TeV and the white areas are regions where one of the right

sneutrinos is tachyonic.

In this work, we have extended the Feynman-diagram-based calculations of ref. [20],

the latter having been achieved in the gaugeless limit, for one generation of right-handed

neutrinos and considered only diagrams depending on yL4 . We have instead computed all

one-loop contributions to the doubly-charged Higgs boson mass, the associated Feynman

diagrams being presented in figure 2. In figure 3, we start by numerically comparing our

results, evaluated in the appropriate limit, to those of ref. [20] and demonstrate that a good

agreement has been found.4 In the parameter space regions probed on the figure, the soft

slepton mass m2
LR

and the effective supersymmetric Higgs mass parameter µeff
R = λRvS/

√
2

are not too large, which leads to a doubly-charged Higgs boson that is still tachyonic. The

loop corrections are even in this case negative and thus counterproductive to restore a

vacuum state that conserves the electric charge. Only for large values of λRvS (not shown

on the figure), a positive contribution could emerge. This requirement however also yields

a significant CP -splitting of the right sneutrinos, so that large values for m2
LR

are as well

required to prevent them from being tachyonic and breaking R-parity. Assuming that all

sfermions have similar masses, realistic setups of the class of models under study are thus

unlikely to be observable from standard sfermion searches at the LHC.

As shown in the rest of this section, the situation improves when the complete one-loop

result is considered. Technically, our predictions rely on the SARAH-SPheno procedure for

generating the particle spectrum. In the usual running mode of both programmes, the

4The authors of ref. [20] have confirmed a typo in the first line of their eq. (138) in which the ‘+1’ should

be read outside of the logarithm.
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Figure 4. Contours of mH±± [in GeV] including the complete one-loop calculation in the

(vR, log10(m2
LR
/GeV2)) plane for a scenario featuring the same setup as the left panel of figure 3

(left), as well as for a scenario featuring a smaller yL4 = 0.1 and a larger λR = 0.9 value (right).

tree-level DR-masses are used for the particles running into the loop diagrams. In the left-

right supersymmetric models under consideration, this leads to problematic log(m2
H±±/Q

2)

terms as the lightest doubly-charged Higgs boson is tachyonic at the tree level. To avoid

this issue, we have modified the SARAH-SPheno procedure in a way that is inspired by the

on-shell scheme, and inserted one-loop corrected masses into the loops. Iteratively, this

consists of:

• first iteration: m2
[1] = m2(m2

[0]) using m2
[0] = |[m2

H±± ]tree−level|;

• m2
[k] = m2(m2

[k−1]) until
|m[k]−m[k−1]|

m[k]
< ε� 1.

We have fixed ε = 10−4 so that four iterations are generally necessary for any benchmark

scenario. Moreover, the initial value m2
[0] is in principle arbitrary so that we could have

chosen m2
[0] = 0. We have verified the invariance of the predictions with respect to this

choice. Although our prescription breaks gauge invariance at the two-loop level, the associ-

ated effects are expected to be significantly smaller than the genuine two-loop contributions

and thus under good control. Here and in the following sections mH±± denotes the mass

of the lightest doubly-charged Higgs boson.

In figure 4, we show predictions for the H±± mass obtained when using our complete

one-loop calculation. The results are presented in (vR, log10(m2
LR
/GeV2)) planes, first (left

panel of the figure) when all the other model parameters are fixed as in the left panel

of figure 3. Although both the tree-level and the approximate one-loop predictions yield

tachyonic doubly-charged Higgs bosons, the fully-one-loop-corrected mass is positive and of

the order of a few hundreds of GeV. Moreover, the dependence on m2
LR

is explained by the

yL4 -dependent contributions. In the right panel of figure 4, we increase the value of λR and

– 8 –
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decrease the one of yL4 so that the dependence on m2
LR

almost vanishes and the one-loop-

corrected H±± mass reaches values beyond 500 GeV. The most important contributions

to the full one-loop result consist of positive corrections arising from WR/singly-charged

Higgs boson and doubly-chargino/neutralino loop-diagrams, as well as from negatively

contributing yL4 -induced loop-diagrams, singly-charginos and doubly-charged Higgs bosons.

The parametric dependence of the loop contributions is highly non-trivial because of

the large number of different contributing sectors. However, some generic features can be

extracted using the information given in figure 5, where we add successively different loop

contributions for an exemplary benchmark scenario. We start by adding to the tree-level

results the yL4 -dependent contributions which have already been discussed: they become

negative for large values of yL4 and m2
LR

.

In order to describe the additional contributions that will be further added, we recall

that the structure of the relevant chargino and neutralino couplings reads

ΓL
χ̃++
R χ̃0

jH
−−
k

= −i
(
λRU

0,∗
j,S̃
Z−−
k,∆−−1R

+
√

2

(
gBLU

0,∗
j,B̃
Z−−
k,∆++,∗

2R

+ gRU
0,∗
j,W̃R,3

Z−−
k,∆++,∗

2R

))
,

ΓR
χ̃++
R χ̃0

jH
−−
k

= −i
(
λRU

0
j,S̃
Z−−
k,∆++,∗

2R

−
√

2
(
gBLU

0
j,B̃
Z−−
k,∆−−1R

+ gRU
0
j,W̃R,3

Z−−
k,∆−−1R

))
, (3.4)

ΓL
χ̃+
i χ̃

+
j H
−−
k

= i
√

2gRZ
−−
k,∆++,∗

2R

(
U+,∗
i,W̃+

R

U+,∗
j∆̃+

+ U+,∗
i∆̃+

U+,∗
j,W̃+

R

)
,

ΓR
χ̃+
i χ̃

+
j H
−−
k

= −i
√

2gRZ
−−
k,∆−−1R

(
U−
i,W̃+

R

U−
j,∆̃+

+ U−
i∆̃+

U−
j,W̃+

R

)
,

where we have parameterised the vertices as Γ = ΓLPL + ΓRPR. In our notations, U0, U±

and Z−− are the mixing matrices of the neutralinos, charginos and doubly-charged Higgs

bosons respectively, whose elements are written as Ui,X and Zi,X . These matrix elements

hence denote the X field component of the ith mass eigenstate. We also introduce a set of

vector and Higgs boson interactions whose strengths are given by

ΓH−−j W+
RW

+
R

= −i
√

2g2
R

(
v1RZ

−−
j,∆−−1R

+ v2RZ
−−
j,∆++

2R

)
,

ΓH−−j H+
k W

+
R

= −i
(
gRZ

−
k,∆−,∗

1R

Z−−
j,∆−−1R

+ gRZ
−
k,∆+

2R

Z−−
j,∆++,∗

2R

)
, (3.5)

ΓH−−i H+
j H

+
k

=
i√
2
g2
R

(
2

(
v2RZ

−
j,∆+

2R

Z−
k,∆+

2R

Z−−
i,∆++,∗

2R

+ v1RZ
−
j,∆−,∗

1R

Z−
k,∆−,∗

1R

Z−−
i,∆−−1R

)
−
(
Z−
j,∆+

2R

Z−
k,∆−,∗

1R

+ Z−
j,∆−,∗

1R

Z−
k,∆+

2R

)(
v2RZ

−−
i,∆−−1R

+ v1RZ
−−
i,∆++,∗

2R

))
,

the momentum and metric dependence being omitted from the Feynman rules.

Beside the yL4 contributions, a set of self-energy diagrams also contribute negatively.

These involve either two singly-charged Higgs bosons, the doubly-charged Higgs boson

and a vector boson or two singly-charged charginos. The sign of the latter, where one

would have naively expected a positive contribution, can be understood from the large

mixing between the gaugino and the singly-charged Higgs bosons of the SU(2)R sector.

The contributions to the diagonal entries of the doubly-charged Higgs mass matrix are
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Figure 5. Dependence of m2
H±± on the SU(2)R-breaking scale vR. The lines correspond to to

the tree level prediction (grey solid) and add then successively different contributions: tree-level

+ yL4 -dependent (s)lepton and (s)neutrino contributions (blue dotted), + singly/doubly charged

Higgses and neutral gauge bosons (blue dashed), + chargino contributions (blue solid), + neutralinos

and doubly-charged Higgsinos (black dashed). The full result (black solid) finally contains also

WR/H
± contributions. The employed benchmark scenario is defined by λR = 0.4, tanβR = 1.02,

m2
LR

= 2 · 106 GeV, yL4 = 0.25 and features one generation of right-handed neutrinos.

proportional to
(
|ΓL
χ̃+
i χ̃

+
j H
−−
k

|2 + |ΓR
χ̃+
i χ̃

+
j H
−−
k

|2
)
m2
H±± whereas the contributions to its off-

diagonal entries are proportional to
(

ΓL
χ̃+
i χ̃

+
j H
−−
k

)(
ΓR
χ̃+
i χ̃

+
j H
−−
l

)∗
mχ̃+

i
mχ̃+

j
. The masses of

the relevant charginos are however proportional to vR and the wino soft supersymmetry-

breaking mass so that they are in general much larger than mH±± . The contributions to

the off-diagonal entries of the doubly-charged Higgs mass matrix turn therefore out to be

much larger than those to the diagonal ones. After diagonalisation, this yields a negative

contribution to mH±± .

The main positive contribution to the doubly-charged Higgs mass are loop diagrams

containing a neutralino and a doubly-charged higgsino. The difference with the singly-

chargino case depicted above stems from the singlino component of the neutralinos. In the

respective entries of the mass matrix, the product
(

Γ
L/R

χ̃++
R χ̃0

jH
−−
k

)(
Γ
L/R

χ̃++
R χ̃0

jH
−−
l

)∗
involves

λR-dependent terms whose sign is different from the one of the gauge contributions. These

terms will hence dominate for large values of λR. Additionally, the WR/H
+ loop diagrams

also contribute positively to the diagonal entries of the H±± mass matrix.

Eventually, the negative growth of the tree-level contribution to the H±± mass (grey

line in figure 5) with increasing vR cannot be compensated anymore so that the H±± gets

again tachyonic for large enough vR. This scale turns to be vR ' 14 TeV for the example

of figure 5.

Both LHC collaborations have set bounds on the mass of the doubly-charged Higgs

boson. These limits however strongly depend on the final state in which the doubly-

charged Higgs boson decays into [21, 39]. In this way, mH±± is constrained to be larger

than 204 GeV, 459 GeV, 396 GeV and 444 GeV for ττ , µµ, eµ or ee final states, respectively.

As shown in figure 4, there is usually a large range of vR values, while keeping all other

parameters fixed, for which these LHC constraints are satisfied. However, vR also sets the

mass scale of the WR boson so that one can combine these constraints with LHC limits on

the WR mass (see section 4).
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4 LHC bounds

The model parameters entering in the above computations can also be experimentally

constrained by searching for the rest of the particle spectrum. We focus here on the

electroweak part, i.e., extra gauge bosons and right-handed neutrinos, updating the results

first given in the report of the 2013 Les Houches workshop [23].

In the left-right supersymmetric setup under study in this work, the extra ZR boson

is always heavier than its WR charged counterpart. We hence focus on the latter since it is

more constraining. In general, a WR boson can decay into pairs of fermions as the Standard

Model W boson, into pairs of Standard Model bosons, into pairs of sfermions, into a

chargino and a neutralino final state, and into a charged lepton and a right-handed neutrino.

Therefore, one can experimentally look for it in several search channels, each setting its own

bounds. The seemingly most stringent one is typically set by investigating the signature

of a charged lepton and missing energy, assuming that the new WR boson decays into a

lepton and a low-mass neutrino which escapes detection. However, in a left-right scenario

this bound does not apply. When neutrino data is explained by a seesaw mechanism, the

decay of the WR into a lepton and a low-mass neutrino is generally suppressed by the small

neutrino mixing, while the WR → `νR mode will typically give rise to more complicated

final states. Before focusing on the latter channel, more involved due to the unknown

right-handed neutrino mass, we review the simpler searches with hadronic two-body final

states, i.e., WR → jj and WR → tb. In the first case, we can reinterpret the CMS inclusive

dijet search of ref. [40]. In the second case, a direct comparison to the CMS search for

WR bosons in the tb channel of ref. [41] is in order. We do not consider the ATLAS

counterparts because they are less sensitive. The above searches do apply to left-right

models since the coupling strength of the WR boson to a pair of quarks is equal to that of

the Standard Model W boson, given that gR = gL holds. Their reinterpretation is done by

comparing the pp → WR → jj(tb) cross sections evaluated with the MadGraph5 aMC@NLO

programme [35] to the excluded cross sections as a function of the WR mass. More precisely,

our predictions have been evaluated by convoluting leading-order squared matrix elements

with the CTEQ6L1 set of parton densities [42] and include a K-factor of 1.23 and 1.2 for

pp→ jj and pp→ tb, respectively.

In figure 6 the cross sections excluded by CMS are compared to those computed in

our model. In the right panel of the figure, we observe that considering the full model

spectrum decreases the constraint by typically 50–100 GeV, due to the appearance of ex-

tra decay modes for the WR that are not considered in the simplified models adopted

in the experimental analyses. These extra channels get the WR decay width proportion-

ally larger, slightly suppressing the branching ratios into the final states that are searched

for. The spread in the model prediction reflects the scan over the parameter space. The

dijet final state, shown in the left panel of the figure, is the one setting the tightest

bound, MWR
>∼ 2.3 TeV. The corresponding bound on the right-handed vev is given by

vR >∼ 4.9 TeV. A value of the WR boson mass between 1.8 and 2.0 TeV, which could be

allowed by the dijet search depending on the specific choice of the input parameters, is

fully excluded when the tb search is also considered.
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Figure 6. Bounds on the WR boson obtained from the CMS dijet search (left) and analysis of

tb leptonic events (` = e, µ, τ) (right). The CMS exclusion curves are taken from ref. [40] and

ref. [41], respectively. In the latter search, CMS puts a direct bound of MWR
> 2.05 TeV, while no

such bound exists in the former CMS analysis.

We move now to the constraints in the WR → `νR process. It is usually assumed in

left-right symmetric models that the right-handed neutrinos can only decay via the WR

boson, which can be either on- or off-shell, with the subsequent decay of the latter into two

jets in two thirds of the cases. Therefore, footprints of the left-right models are searched

for in the pp → ``jj (` = e, µ) final state. This is used by experimental collaborations

to set strict bounds on a combination of masses of νR and WR, as, e.g., in ref. [43]. As

shown in refs. [23, 44], this simplified assumption can sometimes be too restrictive. This

is particularly true in the left-right supersymmetric models under consideration, where

new two-body decay channels for the νR can be present, such as νR → `∓H± and decays

into a neutral (charged) slepton and a chargino (neutralino). Furthermore, several other

decay modes for the WR boson exist, thereby providing new three-body decays for the

right-handed neutrinos. This is pictorially shown in figure 7.

All these new decay modes for the right-handed neutrinos have the net effect of reducing

its branching ratio into the search channel of interest, i.e., νR → `jj. Two main effects are

visible. The right-handed neutrino prefers to decay into the lightest charged Higgs, if this

channel is kinematically viable, with the subsequent H+ → tb̄ decay. However, this decay

is possible only due to the (small) right-handed Higgs triplet component of the lightest

charged Higgs. Therefore it is dominant only when the WR needs to be far off-shell for the

three-body decays to occur, otherwise the latter will dominate, as happens for large masses

of the right-handed neutrino. We observe the second effect on the figure. The presence

of extra decay modes for the WR (mainly charginos and neutralinos) further suppresses

the searched channel, which in the experimental approximation has a constant branching

ratio of 67%. However, the branching ratio BR(νR → `∓H±) depends on the right-handed

neutrino mass as well as on the singly-charged Higgs mass. It can get up to O(80%) for

very light singly-charged Higgs bosons and right-handed neutrinos and conversely heavy

WR bosons.
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Figure 7. Right-handed neutrino branching ratios for a charged-Higgs mass of 400 GeV < MH± <

500 GeV. ‘Other’ refers to all other three-body decays via an off-shell WR boson.
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Figure 8. Allowed (green) and excluded (red) points from the CMS search for WR and νR in the

eejj channel for a lightest right-handed neutrino of electron flavour (of mass mνR,e), for 400 <

MH±/GeV < 500, in the (mνRe ,MWR
) plane (left) and (y4L[1, 1], vR) plane (right). The CMS

exclusion curve (in black in the left panel of the figure) is taken from ref. [43]. The red shaded area

represents the dijet bound.

As done previously for the hadronic two-body decays of the WR boson, we now reinter-

pret the CMS bounds on the WR → `νR → ``jj channel of ref. [43]. Figures 8–9 display the

allowed points (green dots) as well as the excluded points (red dots) when the considered

right-handed neutrino is of electron and of muon flavour, respectively, in the (mνR ,MWR
)

plane on the left panel of the figure, and in the (y4
L, vR) plane on its right panel.

We have found that the bounds set by CMS are generally too strong to be naively

imposed in our left-right supersymmetric setup, and quite large areas within the excluded

regions survive, especially for an electron right-handed neutrino. Investigating also figure 7,

we identify three regions where exist parameter configurations which are allowed. First,

for very light right-handed neutrinos, its decay products are too few energetic and appear

below threshold. This consists of the lower region, below the black curve, in figures 8–9.

Next, the region at high masses for both the WR and the νR, that contains allowed points

because of extra two-body decays of the WR that suppress the search channels. Last, the

bulk area in figure 8 is now allowed, contrary to the CMS results, because of the suppression

of the associated cross section due to the νR → `∓H± decay channel which is dominant
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Figure 9. Same as in figure 8, for a lightest right-handed neutrino of a muon flavour (of mass mνR,µ).

for moderate νR masses when such channel is kinematically open. Such an area does not

appear for a muonic right-handed neutrino because of the much stronger CMS bounds.

In fact, a fluctuation of about 3σ has been found in the eejj CMS search channel, for

MWR
' 2.0 TeV, which our model can fit, as noted in refs. [45, 46] for similar cases.

5 Analysis of the vacuum stability

In section 3 we have shown that loop corrections have the power to switch the SU(2)L ×
U(1)Y breaking saddle point into a minimum and to give a positive squared mass for

H±±. Having now a local minimum with a proper breaking of SU(2)L × U(1)Y does not

necessarily imply that this is also the global minimum of the theory. In particular, it is not

obvious that it is deeper lying than the charge-breaking minimum of eq. (2.3) after taking

into account consistently all loop effects. For further references, we denote in the following

the vacuum configuration with the desired symmetry breaking pattern as ‘DSB’ and the

charge-breaking vacuum as ‘CB’.

The tadpole conditions cannot be solved analytically at the one-loop level so that one

has to rely on numerical methods. However, the main features of the vacuum configura-

tion can already be understood by considering a simplified model where we focus on the

SU(2)R×U(1)B−L gauge sector, including only the two SU(2)R Higgs triplets ∆1R and ∆2R

as well as one generation of right-handed (s)leptons. The corresponding superpotential is

given by

W = yL4 L
T
R ∆1R ε LR + λR S Tr(∆1R ∆2R) +

1

3
λS S

3 , (5.1)

where we have written down the full SU(2) matrix structure for the first term using

LR = (νcR, `
c
R)T as well as the ε tensor defined by ε12 = −ε21 = 1. The tree-level scalar

potential V0 reads

V0 = VF + VD + Vsoft (5.2)

– 14 –



J
H
E
P
0
7
(
2
0
1
5
)
1
4
7

with

VF = λ2
R |S|2

(
Tr(∆†1R ∆1R) + Tr(∆†2R ∆2R)

)
+
∣∣∣λR Tr(∆1R ∆2R) + λS S

2
∣∣∣2

+ yL4 λR

(
S∗ L̃TR ∆†2R ε L̃R + h.c.

)
+ (yL4 )2 (L̃†RL̃R)2

VD =
g2
R

2

3∑
i=1

(
Tr(∆†1R[τi,∆1R]) + Tr(∆†2R[τi,∆2R])− L̃†R τi L̃R

)2

+
g2
BL

2

(
Tr(∆†2R ∆2R)− Tr(∆†1R ∆1R) +

1

2
L̃†RL̃R

)
Vsoft = m2

∆1R
Tr(∆1R ∆†1R) +m2

∆2R
Tr(∆2R ∆†2R) +m2

S |S|2 +m2
LR
L̃†RL̃R

+

(
TλR S Tr(∆1R ∆2R) +

1

3
TλS S

3 + TL4 L̃TR ∆1R ε L̃R + h.c.

)
.

(5.3)

In these expressions, τi = 1
2σi, where σi are the Pauli matrices. For simplicity we set

the trilinear soft supersymmetry-breaking couplings to zero as they do not change the

qualitative features that we are aiming to describe.

We start by removing the soft supersymmetry-breaking masses m2
∆1R

, m2
∆2R

and m2
S

from the equations by requiring that the tadpole equations for the desired charge-conserving

case of eq. (2.2) are solved,

∂V0

∂X

∣∣∣
DSB:〈∆0

iR〉=
viR√

2
,〈S〉= vS√

2

= 0 for X =
{

∆0
1R,∆

0
2R, S

}
, (5.4)

so that the expression of Vsoft is optimized for the DSB case. However, as argued above,

the global minimum of V0 consists of a configuration where the vevs of the triplet fields

are aligned along the τ1 direction. Taking the effect of the soft supersymmetry-breaking

masses into account, the magnitudes of viR (with i = 1, 2) get slightly modified by factors

αi which are close to one, so that we can relate the vevs derived in the DSB case to those

derived in the CB case,

〈∆0
1R〉|CB = 〈∆−−1R 〉|CB = α1

v1R

2
and 〈∆0

2R〉|CB = 〈∆++
2R 〉|CB = α2

v2R

2
. (5.5)

Consequently, we trade the tadpole equations for the doubly-charged fields with

∂V0|CB

∂αi
= 0 . (5.6)

For the evaluation of the mass spectrum at the DSB and the CB minima, we split all

complex scalar fields into their scalar and pseudoscalar components as for the CB minimum,

as electromagnetism is eventually broken. Taking into account all possible vevs, we rewrite

every scalar field X as X = 1√
2
(vX+φSX+iφPX). After rotating out the unphysical would-be

Goldstone bosons in each configuration, we compute a 15 × 15 scalar mass matrix

(
M2
S

)DSB/CB

ij
=

∂2V0

∂φi∂φj

∣∣∣
DSB/CB

. (5.7)
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The fermionic part of the spectrum can be evaluated for the SU(2)R (U(1)B−L) gauginos

W̃ i
R (B̃), Higgsino triplets ∆̃iR as well as the the singlet fermion S̃ and the lepton doublet

LR from the Lagrangian terms

Lfermions
mass =− λS S S̃ S̃ − λR

(
S̃ Tr(∆̃1R ∆2R) + S̃ Tr(∆1R ∆̃2R) + S Tr(∆̃1R ∆̃2R)

)
− yL4

2

(
2LTR ∆1R ε LR + L̃TR ∆̃1R ε LR + LTR ∆̃1R ε L̃R

)
−
√

2gR

3∑
i=1

W̃R,i

(
Tr(∆†1R[τi, ∆̃1R]) + Tr(∆†2R[τi, ∆̃2R])− L̃†R τi LR

)
−
√

2gBLB̃

(
Tr(∆†2R ∆̃2R)− Tr(∆†1R ∆̃1R) +

1

2
L̃†R τi LR

)
− 1

2
mW̃R

3∑
i=1

W̃R,i W̃R,i −
1

2
mB̃ B̃ B̃ + h.c. .

(5.8)

As an example for the differences between both vacuum configurations, the lepton masses

are given by

mνR |DSB =
√

2 v1R y
L
4 , meR |DSB = 0

mνR |CB = α1 v1R y
L
4 , meR |CB = α1 v1R y

L
4 .

(5.9)

Finally, the masses of the vector bosons are derived from the non-derivative part of the

gauge-invariant kinetic terms of the Higgs bosons,

Lvector
mass = Tr

((
gR

3∑
a=1

Wµ,a
R [∆†1R, τ

a]−gBLBµ ∆†1R

)(
gR

3∑
b=1

W b
R,µ [τ b,∆1R]−gBLBµ ∆1R

)

+

(
gR

3∑
a=1

Wµ,a
R [∆†2R, τ

a]+gBLB
µ ∆†2R

)(
gR

3∑
b=1

W b
R,µ [τ b,∆2R]+gBLBµ ∆2R

))
.

(5.10)

This gives three heavy states of masses of O(vR) and one massless state for each vacuum

structure. In the DSB case, the hypercharge symmetry group remains unbroken by the

triplet vevs and the associated boson is thus massless. In the CB case, the vevs are aligned

along the τ1 direction so that this generator remains unbroken ([τ1,∆iR] = 0) and the WR,1

boson turns out to be massless. This is a consequence of the fact that a Higgs field in the

adjoint representation of an SU(N) group cannot break the rank of this group.

We now move on with the analysis of the one-loop effective potential

V1L,eff. = V0 + VCW , (5.11)

where VCW is the Coleman-Weinberg potential. It reads, in the DR scheme and using

Landau gauge,

VCW =
∑
n

(−1)2sn(2sn + 1)

64π2
m4
n

(
log

(
m2
n

Q2

)
− 3

2

)
, (5.12)
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Figure 10. Differences of the scalar potential depths between the DSB and the CB cases at the

one-loop level. For negative (positive) values of this difference, the DSB (CB) minimum is the

global one. In the left panel of the figure, we represent this difference at the tree (solid grey line)

and at the one-loop (solid black line) level as a function of tan βR for vR = 5.5 TeV, λR = 0.4,

yL4 = 0.25, m2
LR

= 2 · 106 GeV2 and vS = 10 TeV. In addition we split the results in terms of the

various contributions: slepton and lepton fields (blue dotted line), Higgs fields (blue dashed line),

gauginos/Higgsinos (red dotted line) and vector bosons (red dashed line). In the right panel of the

figure, we depict the total difference for tan βR = 1.02, yL4 = 0 and λR = 0.3 (solid black line), 0.4

(green dotted line), 0.5 (blue dashed line) and 0.6 (red dot-dashed line).

where n runs over all real scalar fields, Weyl fermions and gauge bosons. We denote by sn
and mn the respective spin and mass of the nth field and have also set the renormalization

scale Q to 1 TeV. We show on the left panel of figure 10 the difference

∆V = V DSB
1L,eff. − V CB

1L,eff. (5.13)

at the tree-level, at the one-loop level as well as after breaking down the result for the dif-

ferent contributions to the potential. For the chosen set of parameters, the global minimum

is of the DSB kind up for tan βR values in the [0.97, 1.03] range. As illustrated on this

figure, the observed behaviour is a consequence of the interplay between the fermionic and

the bosonic contributions in the Higgs and gauge sectors. In particular, the DSB vacuum

can be the global minimum only due to the fermionic contributions. This may seem to

contradict the results of the previous section where the charged Higgs and WR diagrams

are very important for getting a non-tachyonic doubly-charged Higgs. We however recall

that we are focusing here on the differences between the minima and not on the absolute

contributions.

We have shown in section 3 that a sizeable λR is needed to get m2
H±± positive. On the

right panel of figure 10, we study the dependence of ∆V on vR for different values of λR.

We observe that increasing λR also increases the relative depth of the DSB vacuum with

respect to the charge-breaking one. We have finally checked that the features discussed

so far do not depend on the choice of Q by varying it up to 2vR and evolving the model

parameters according to the renormalization group equations.

We now turn to the study of the full model and allow for additional vevs. We have used

SARAH to produce a Vevacious code [48] for the left-right supersymmetric models under

study. The Vevacious programme starts by evaluating the tree-level scalar potential for
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a given spectrum and finds all extrema in terms of all scalar particle vevs, given together

with the corresponding value of the potential. In a second step, the nearby extrema are

found and evaluated using a full one-loop potential. In principle one should allow for all

scalars to obtain a vev which however in models like the one considered in this work would

take an enormous amount of CPU time well beyond a year for a single point of parameter

space. Therefore, we restrict ourselves to vacuum configurations in which only the Φ0
1,2,

∆0
1R,2R and S neutral fields and the ∆−−1R and ∆++

2R doubly-charged fields could develop

non-vanishing vacuum expectation values. We further allow for one generation of right

sneutrinos to receive a vev in order to cover the possibility of a charge-conserving but

R-parity violating vacuum.

Under these assumptions, in the parameter regions where an R-parity conserving spec-

trum can be found at the one-loop level, the global minimum is found to be always either

of the desired kind of eq. (2.2), such that

〈Φ0
1〉 = vd/

√
2 , 〈Φ0

2〉 = vu/
√

2 , 〈S〉 = vS/
√

2 , 〈ν̃c〉 = 0 , (5.14)

〈∆0
1R〉 = v1R/

√
2 , 〈∆−−1R 〉 = 0 , 〈∆0

2R〉 = v2R/
√

2 , 〈∆++
2R 〉 = 0 , (5.15)

or the charge-breaking nature of eq. (2.3) with

〈Φ0
1〉 = 〈Φ0

2〉 = 0 , 〈S〉 = vS/
√

2 , 〈ν̃c〉 = 0 , (5.16)

〈∆0
1R〉 = 〈∆−−1R 〉 ' v1R/2 , 〈∆0

2R〉 = 〈∆++
2R 〉 ' v2R/2 . (5.17)

In figure 11, we depict in the (vR, y
L
4 ) plane the regions of the parameter space where

the desired vacuum configuration corresponds to the global minimum of the scalar potential

(green) and the ones where the charge-breaking configuration is preferred (red). We have

found that regions relevant for LHC physics (i.e., regions where the mass of the doubly-

charged Higgs is above the current limits) are not only exhibiting a viable local minimum

but also a global viable one. Moreover, as for the yL4 -dependent loop corrections to the H±±

mass, larger the yL4 and vR values are, the less favoured is the benchmark scenario under

consideration. Furthermore, as illustrated in the right panel of the figure, a larger value of

λRvS has the virtue of pulling the desired vacuum configuration into a deeper minimum.

However, as already above-mentioned, this increases the possibility of a tachyonic right

sneutrino due to large negative F -term contributions proportional to the λRvS product.

This happens at the tree level in the parameter space above the black line. In the region

indicated by light grey shading we consequently find R-parity violating global minima,

i.e. 〈ν̃c〉 6= 0, which still conserve electric charge but feature too large electroweak vevs of

the order of one TeV. In the dark grey area we find minima which break both, R-parity

and electric charge. We stress that this R-parity violation is solely due to the negative

F -term contribution which drives a sneutrino tachyonic and could be evaded by a larger

soft slepton mass. It is therefore of completely different origin than the R-parity violation

suggested in early studies of this kind of models [12, 37]. Finally, considering more than one

right-handed neutrino leads to a reduction of both the favoured region and the mass of the

doubly-charged Higgs boson. The blue lines in figure 11 show the separation between the

red and the green area as evaluated from the simplified model discussed in the beginning of
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Figure 11. Analysis of the vacuum stability. The results are presented in the (vR, y
L
4 ) plane with

λR = 0.3 and for one generation of right-handed neutrinos (left) and in the (yL4 , λR) plane with

vR = 5.5 TeV (right). The other model parameters have been fixed to tan βR = 1.02, m2
LR

=

2 ·106 GeV2 and vS = 10 TeV. The white contours depicted on the figures indicate isomass lines for

the doubly-charged Higgs boson in GeV as obtained with our full one-loop-corrected calculation.

The green regions correspond to setups where the vacuum configuration of eq. (2.2) is the global

minimum of the scalar potential whereas in the red regions, the charge-breaking vacuum configu-

ration consists of a deeper minimum. The blue lines separate the cases of a deeper DSB minimum

and a deeper CB minimum in the context of the simplified model discussed above. The parameter

space above the black line features a tachyonic sneutrino at the tree level and scenarios in the

grey regions consequently violate R-parity while conserving (lighter grey) or breaking (darker grey)

electric charge.

this section. This simplified description can thus safely be used to get rough information on

which of the two minima is the deeper one. It does however not cover the case of R-parity

violating global minima as one would need to extend the simplified setup with vevs for the

sneutrino fields.

Scenarios for which the global minimum is charge-breaking could nevertheless be viable

in cases where the tunneling time from the local SU(2)L×U(1)Y minimum to the global one

is sufficiently large. The decay of a vacuum state into a deeper minimum can be described

by the phase transition in which bubbles of true vacuum nucleate out of a false vacuum

state. For a successful phase transition, the bubble has to be of a critical size and can, at

zero temperature, be found by minimizing the Euclidean action [49]

SE =

∫
d4x

(
1

2
(∂µ~φ)(∂µ~φ) + V (~φ)

)
, (5.18)

where ~φ is a vector of all scalar fields and the coordinate x0 corresponds to the imaginary

time coordinate τ = it. Equivalently, the equations of motion have to be solved so that

δSE = 0, which eventually determines the optimal tunneling path in field space. For a

first estimation of SE , the straight tunneling path between two vacua can be used, which
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corresponds to a reduction of the problem to a one-dimensional problem. The latter can

be solved numerically to arbitrary precision by the so-called overshoot/undershoot method

(see, e.g., ref. [50]). The full path deformation in all field dimensions is computationally

extremely expensive and is hardly applicable to the dimensionality of the model studied in

this work. The decay rate of the false vacuum per unit volume V is then given by [49]

Γ/V = Ae−SE . (5.19)

In this expression, A is a quantity whose dimension is in the fourth power of energy E4

and is related to the eigenvalues of a functional determinant [51]. This determinant is in

practice usually estimated on dimensional grounds [50], A ∼M4 with M being the typical

mass scale of the model.

A first estimate using the direct tunneling path at zero temperature shows that all

scenarios included in the excluded region of the figure (red) are metastable which is due to

the large separation in field space of the different vacua.

It is however well known from the MSSM [52, 53] that allowing for additional vevs

and/or including thermal effects can imply that metastable vacua are in fact unstable. A

thorough investigation of this effect lies beyond the scope of this paper.

Combining the results of the right panel of figure 11 with the LHC constraint of

vR >∼ 4.9 TeV (see section 4) implies that all but a small strip of the parameter space turns

out to be excluded if one assumes that the right-handed neutrino is of a third generation

nature. In contrast, scenarios featuring a right-handed neutrino of one of the first two

generations turn out to be excluded. In this way, we have demonstrated how accounting

both for theoretical and experimental constraints has allowed us to almost exclude all

possible setups in the left-right supersymmetric models under consideration.

6 Conclusion

We have studied a specific class of supersymmetric models exhibiting a left-right gauge

symmetry and investigated to which extent experimental and theoretical constraints restrict

the viable regions of the parameter space. A particular property of this class of models

that feature Higgs fields lying in the triplet representation of the SU(2)R group is that one

of the corresponding doubly-charged Higgs bosons gets tachyonic when the scalar potential

is minimized at the tree level. Even though it was known that loop corrections taking into

account the Yukawa couplings of the right-handed neutrinos to the SU(2)R Higgs bosons

were modifying these conclusions, a complete one-loop calculation was still missing. We

have filled this gap and shown that in a large part of the parameter space, the complete

one-loop calculation is necessary for reliable predictions.

We have then studied to which extent the phenomenologically viable regions of the

parameter space (where the doubly-charged Higgs boson is non-tachyonic), are constrained

by experimental data and theoretical considerations concerning the global minimum of the

one-loop-corrected scalar potential. We have found that the latter favours lower values of

vR whereas the LHC gives tight lower bounds on this vev, in particular by exploring the

WR decays into jets. Moreover, the lightest doubly-charged Higgs boson is constrained to
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be well below 1 TeV for Yukawa couplings imposed to lie in the perturbative regime. The

left-right supersymmetric setup that we have investigated is therefore close to exclusion, in

particular if the future LHC searches for a WR and a doubly-charged Higgs boson do not

exhibit any signal within the next few years.
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