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1 Introduction

Far from equilibrium dynamics and thermalization of strongly coupled systems has at-

tracted a lot of attention in the past decade. The reason for this is twofold. On the one

hand experiments at RHIC and the LHC revealed that the quark gluon plasma created

in heavy ion collisions behaves as a strongly coupled liquid that thermalizes extremely

fast [1–4]. On the other hand, in condensed matter experiments it is now possible to drive

an isolated system to a far from equilibrium state by a quantum quench, i.e. a control

parameter of the system is varied rapidly [5].

One powerful tool to study strongly coupled systems out of equilibrium is the gauge

gravity duality where classical supergravity in d+ 1 dimensions is dual to a d-dimensional

strongly coupled large-N field theory that loosely speaking lives on the boundary of the
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gravity theory [6–8]. The thermalization process of field theories with a conformal field

theory fixed point in the ultraviolet is then mapped to black hole (or black brane) formation

in asymptotically Anti-de Sitter (AdS) space [9].

Particularly useful theoretical observables to monitor the thermalization process are

the vacuum expectation value of the stress-energy tensor, correlation functions of gauge

invariant operators and entanglement entropy (EE). The former two are easy to define on

the field theory side and, given some standard assumptions that we recall below, easy to

calculate on the gravity side. We recall now relevant aspects of EE, see [10] for more details

and references.

On the field theory side EE is defined in the following way. Dividing a system into

two subsystems A and B the EE SA of the subsystem A is defined as the von Neumann

entropy of the reduced density matrix obtained by tracing out the degrees of freedom of

the subsystem B.

On the gravity side, the holographic entanglement entropy (HEE) is defined as the area

of a minimal surface extending from some predefined surface A on the boundary into the

bulk [11, 12]. For time-dependent backgrounds the minimal surface has to be replaced by

an extremal surface [13]. It is noteworthy — both for conceptual and for technical reasons

— that the relevant surfaces used to determine HEE can extend beyond the apparent

horizon. Conceptually, this implies that HEE provides a ‘classical’ way (on the gravity

side) to extract (quantum) information from the region beyond the horizon. Technically,

this requires the numerical determination of (part of) the spacetime region beyond the

apparent horizon, which can be a challenge since that region ends in a singularity.

EE is notoriously hard to compute in quantum field theories; so far this is only pos-

sible in highly symmetric theories such as (relativistic) conformal field theories [14–16] or

Galilean conformal field theories [17]. In a seminal work, Calabrese and Cardy [18] were

able to compute the time evolution of the EE after a quench in a two dimensional confor-

mal field theory and in the Ising spin chain model in a transverse magnetic field. In both

cases they find that for an entangling interval of length l, the EE increases linearly with

time until t ∼ l/2 after which it saturates. The linear scaling with time and the crossover

at t ∼ l/2 can be understood in terms of entangled quasiparticles pairs emitted from the

initial state and is therefore expected to hold for a wider class of systems.

The holographic duality offers a playground where one can study various different

systems and search for universal and novel properties of HEE in dynamical situations.

The simplest example where one can study the analog of quenches in the holographic

setup are spacetimes where thin shells collapse to form a black hole, first utilised in [19].

The behaviour of the EE in these setups has been studied extensively [19–25] and indeed

shows universal behaviour consistent with the findings of Cardy and Calabrese. Namely

the initial short early time epoch is followed by a long period where the EE grows linearly

with time and is independent of the entangling boundary region. This was first worked out

in the Vaidya spacetime [19, 25, 26] where the shell is composed out of null dust and later

generalized to matter with arbitrary equation of states [27, 28]. The linear scaling is even

present in geometries with Lifshitz scaling and hyper scaling violation [29, 30]. In addition,

in the above works the HEE is a monotonically increasing function that saturates to its
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equilibrium value from below. Note that these quenches are thermal quenches because the

end state is a thermal state.

Another way of studying thermal quenches is by turning on a radially collapsing scalar

field that forms a black hole. This situation is more complicated because in order to obtain

the geometry from which one can then obtain the HEE, Einsteins equations have to be

solved numerically [31–33]. In [32, 34] this was done for a radial collapsing massless scalar

field in global AdS where the scalar field can have many bounces between the boundary and

the center of AdS before a black hole forms resulting in a periodic behaviour of the HEE.

In [33] a massive scalar field dual to a massive fermionic operator was turned on,

treating the quench as a perturbation on the static spacetime. In this setup the HEE is

also not monotonic and in some cases approaches the equilibrium value from above. This

reveals a qualitative difference of EE to the thermal entropy which, on general grounds,

must be monotonically growing in a closed system.

An additional motivation to study HEE comes from the question how to measure

entropy production in (holographic models for) heavy ion collisions [35]. Within the

gauge/gravity duality the entropy of the (stationary) black hole corresponds to the en-

tropy of the field theory. However, in time-dependent backgrounds entropy as defined from

the area of the apparent horizon is ambiguous because it depends on the choice of time

slicing. By contrast the definition of the HEE is unique and therefore may serve as an

alternative measure for entropy production.

So far nearly all studies of HEE have relied on the simplifying assumption of a spheri-

cally symmetric spacetime (see [36] for a notable exception). In the paper at hand we drop

this assumption and investigate the effect of anisotropies on the evolution of the HEE.

The paper is organized at follows. In section 2 we introduce the anisotropic spacetime

we will use, recall general aspects of 2-point correlators and simplify the determination

of HEE to a geodesic problem in an auxiliary spacetime. In section 3 we discuss the

numerical strategy that we used, relegating details to the appendices. In section 4 we

present results for the background geometry, holographic stress tensor, 2-point correlators

and HEE. In section 5 we analyze the late time behaviour of correlators and HEE and relate

it to the lowest lying quasinormal mode. In section 6 we conclude with a brief summary

of our results and some possible next steps. In appendix A we comment on the spectral

method and other numerical routines used to solve the 5-dimensional vacuum Einstein

equations. In appendix B we explain the relaxation code used to determine geodesics and

extremal surfaces.

Before starting we mention some of our conventions. We use mostly + signature and

set the AdS radius and final black brane mass to unity.

2 Theoretical setup

2.1 Anisotropic asymptotically AdS5 spacetimes

In this section we review the most important details of the model first introduced in [37]

and studied further in [38–41].
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The 5-dimensional bulk metric that introduces anisotropy between the longitudinal

and transverse directions with an O(2) rotational invariance in the transverse plane can be

written conveniently in Eddington-Finkelstein coordinates,

ds2 = −A(r, v) dv2 + 2 dr dv + Σ2(r, v)
(
e−2B(r,v) dx2

‖ + eB(r,v) d~x2
⊥

)
(2.1)

where the functions A, B and Σ only depend on the holographic coordinate r and (ad-

vanced) time v. In this coordinate system the vacuum Einstein equations read

0 = Σ(Σ̇)′ + 2Σ′Σ̇− 2Σ2 (2.2a)

0 = 2Σ(Ḃ)′ + 3(Σ′Ḃ +B′Σ̇) (2.2b)

0 = A′′ + 3B′Ḃ − 12Σ′Σ̇/Σ2 + 4 (2.2c)

0 = 2Σ̈−A′Σ̇ + Ḃ2Σ (2.2d)

0 = 2Σ′′ + (B′)2Σ (2.2e)

where prime denotes radial derivative and dot time derivative, viz.

h′ ≡ ∂rh ḣ ≡ ∂vh+
1

2
A∂rh (2.3)

for any function h(r, v).

The Einstein equations (2.2) have to be solved for special initial conditions and appro-

priate boundary conditions. There are, at least, two ways to create a far from equilibrium

state. On the one hand one can turn on a time dependent anisotropy function at the bound-

ary B(r =∞, v) = B0(t) as in the original works of [37, 38] and let the system evolve. In

this case the boundary metric is curved and the conformal anomaly is present [42]. On the

other hand one can specify the initial state in the absence of external sources by specifying

the metric in the bulk on the initial time slice [39] with a flat boundary geometry. For

simplicity, in the following we will study the setup where the boundary metric is flat and

time independent.

Requiring that the spacetime is asymptotically AdS5, Einstein’s equations in the near

boundary expansion (r →∞) are solved by1

A = r2 +
a4

r2
− 2b4(t)2

7r6
+O(r−7) (2.4a)

B =
b4(t)

r4
+
∂tb4(t)

r5
+O(r−6) (2.4b)

Σ = r − b4(t)2

7r7
+O(r−8) . (2.4c)

The coefficients in the asymptotic expansion determine the expectation value of the stress

energy tensor in the dual field theory [43]

〈Tµν〉 =
N2
c

2π2
diag

[
E , P‖(t), P⊥(t), P⊥(t)

]
(2.5)

1We fix a residual gauge freedom that preserves the form (2.1), r → r + f(v), by demanding that the

first subleading term in the function A falls off like O(r−2). Note that in several numerical simulations in

the literature the same freedom is fixed by placing the apparent horizon at a specific value of the radial

coordinate r.
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where

E = −3

4
a4 P‖(t) = −1

4
a4 − 2b4(t) P⊥(t) = −1

4
a4 + b4(t) . (2.6)

In order to determine the fourth order coefficients one needs to solve Einstein’s equations

numerically for some initial conditions. When doing the actual calculation we work with

the inverse radial coordinate z = 1/r so that the boundary is located at z = 0.

For our initial data we follow [40, 41] and choose for the anisotropy function on the

initial time slice

B(r, v0) =
β

r4
exp

[
−
(1

r
− 1

r0

)2
/ω2

]
(2.7)

with β = 6.6, r0 = 4 and w = 1. In addition the initial conditions have to be supplemented

with a value for the coefficient a4 which sets the energy density of the initial state, for

which we take a4 = −1, corresponding to an equilibrium temperature T = 1/π, as we

now recall.

At late times we expect isotropization, B = 0. In that case we recover the usual

static AdS black brane solution as follows. Solving (2.2e) and using residual gauge trans-

formations yields Σ = r. This implies Σ′ = 1 and Σ̇ = 1
2 A. Solving (2.2a) then yields

A = r2 (1 − 1/r4), where we fixed the integration constant such that a4 = −1. [The

other equations are either trivial, (2.2b) and (2.2d), or redundant, (2.2c).] The result for

A is the usual Killing norm for the static AdS black brane. Surface gravity is given by

κ = 1
2 A
′∣∣
r=1

= 2 so that the Hawking temperature is T = κ/(2π) = 1/π.

In the generic anisotropic case, B 6= 0, we solve the Einstein equations (2.2) numerically

for the initial conditions (2.7). In this background we then study the evolution of 2-point

correlation functions for operators of large conformal weights and the HEE. This in turn

requires us to determine the background sufficiently far beyond the apparent horizon. In

section 3.1 below we discuss the numerical implementation.

2.2 2-point correlators

The equal time 2-point function for an operator of large conformal weight ∆ can be com-

puted via a path integral as [44, 45]

〈O(t, ~x)O(t, ~x′)〉 =

∫
DP ei∆L(P) ≈

∑
geodesics

e−∆Lg ≈ e−∆L (2.8)

where the integral is a sum over all possible paths with endpoints at (t, ~x′) and (t, ~x)

and L(P) is the proper length of the path. The first approximation neglects perturbative

corrections and is the so called geodesic approximation, which holds in the limit when the

conformal weight of the operator is large. The conformal weight effectively plays the role

of 1/~ in usual perturbative expansions of path integrals. Then it can be shown that the

sum over all paths reduces to a sum over all geodesics where Lg denotes the length of the

corresponding geodesic. To leading order only the geodesic with the smallest value of Lg
contributes, whose length we denote by L, which explains the second approximation.2 It

neglects instanton corrections.

2For a comparison of the 2-point correlation function obtained by using the “extrapolate” dictionary

and the geodesic approximation in AdS3 Vaidya spacetime see [46].
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However, the length of the geodesic has a divergence originating from the asymptot-

ically AdS boundary and therefore needs to be renormalized. We choose to subtract the

length of a geodesic in the static black brane background, which we denote by Ltherm. In

terms of the renormalized length δL = L− Ltherm the 2-point function becomes

〈O(t, ~x)O(t, ~x′)〉 ∼ e−∆δL . (2.9)

This means that we can obtain the time evolution of 2-point functions by looking at space-

like geodesics that are anchored at the boundary at fixed separation l and calculating their

length at different times. Due to the anisotropy in the system we only solve for the subset

of correlation functions that are either separated in the longitudinal direction or in the

transverse directions.

To this end we let all the coordinates depend on one parameter σ, which lies in the

interval σ ∈ [−σm, σm]. To obtain the lengths of the geodesics we have to solve the geodesic

equation for the two subspaces given by the line elements

ds2
⊥ = −A dv2 − 2

z2
dz dv + Σ2eB dx2

⊥ (2.10)

ds2
‖ = −A dv2 − 2

z2
dz dv + Σ2e−2B dx2

‖ . (2.11)

For the separation in the transverse direction the geodesics end at (v(±σm) = t,

x⊥1(±σm) = ±x0/2, x⊥2(±σm) = 0, x‖(±σm) = 0), where t is the boundary time. Simi-

larly, for the longitudinal separation we take
(
v(±σm) = t, x‖(±σm) = ±x0/2, ~x⊥(±σm) =

0
)
. With this choice of boundary conditions the lengths of the geodesics in the back-

ground (2.1) are given by

L⊥ =

∫ σm

−σm
dσ

√
−A(v′)2 − 2

z2
z′v′ + Σ2eB(x′⊥)2 (2.12)

L‖ =

∫ σm

−σm
dσ

√
−A(v′)2 − 2

z2
z′v′ + Σ2e−2B(x′‖)

2 (2.13)

where prime denotes the derivative with respect to σ.

It is important to point out that we can only study geodesics after some advanced

time v > vmin with boundary separations below a maximal separation l < lmax. This comes

from the fact that by solving Einstein’s equations numerically we have to choose a finite

computational domain. Also, by specifying the initial state in the entire bulk on the initial

time slice the advanced time interval at our disposal is v ∈ [v0,∞]. As the geodesics

reach into the bulk they bend back in advanced time leaving the computational domain for

advanced times v < vmin as well as extending too far into the bulk for separations l > lmax.

In section 3.2 below we discuss how to solve the geodesic equations numerically.

2.3 Holographic entanglement entropy

In time dependent systems the covariant HEE [13] for some boundary region A is obtained

by extremizing the 3-surface functional

A =

∫
d3σ

√
det
(∂Xµ

∂σa
∂Xν

∂σb
gµν

)
(2.14)
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that ends on the boundary surface A. In the dual field theory the EE is then conjectured

to be given by [11, 13, 47]

SEE =
A

4GN
. (2.15)

Usually the boundary regions of interest are either a sphere or a strip that has finite

extent in one direction and infinite extent in the other two directions. In spacetimes with

spherical symmetry in the three spatial dimensions the problem of finding the extremal

area functional (2.14) effectively reduces to finding geodesics. In our case where spherical

symmetry is broken this is not the case anymore. For example, finding the extremal area

for a spherical boundary region would require to solve nonlinear coupled partial differential

equations. However, in the case of a strip with finite extent either in the transverse or

longitudinal direction it is possible to reduce the problem to finding geodesics in a suitable

auxiliary spacetime, as we now demonstrate.

We introduce two scalar fields φi(x
α) and write the line element as

ds2 = gµν dxµ dxν = hαβ dxα dxβ + φ2
1 dx2

2 + φ2
2 dx2

3 (2.16)

where hαβ is a 3-dimensional metric with coordinates (v, r, x1) where x1 represents the

coordinate we choose to have finite spatial extent, i.e. either x‖ or one of x⊥. The remaining

(non-compact) coordinates are then denoted by x2, x3, which we choose to be two of

our three world-volume coordinates; the third one is denoted by σ. Parametrizing the

3-dimensional coordinates as xα =
(
v(σ), r(σ), x1(σ)

)
, the area functional (2.14) can be

written as

A =

∫
dx3

∫
dx2

∫
dσ

√
φ2

1φ
2
2hαβ

∂xα

∂σ

∂xβ

∂σ
. (2.17)

Performing the integration over the Killing coordinates x2 and x3 yields a (possibly infinite)

constant volume factor through which we are going to divide. Thus, instead of calculating

HEE we calculate a HEE density per Killing volume. The problem of extremizing the

3-surface corresponding to a boundary region A of strip-topology is then reduced to a

1-dimensional problem.

In fact, from the expression (2.17) one can see that the problem of finding the extremal

3-surfaces reduces to finding geodesics of the conformal metric

ds̃ = h̃αβ dxα dxβ = φ2
1φ

2
2hαβ dxα dxβ . (2.18)

The 3-dimensional conformal metrics for separation in the transverse and longitudinal

directions for which we have to solve the geodesic equation in our case are given by

ds̃2
⊥ = Σ4e−B

(
−A dv2 + 2 dr dv + Σ2eB dx2

⊥
)

(2.19a)

ds̃2
‖ = Σ4e2B

(
−A dv2 + 2 dr dv + Σ2e−2B dx2

‖
)
. (2.19b)
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3 Numerical implementation

3.1 Einstein equations

We solve the Einstein equations (2.2) using pseudo spectral methods as described in detail

in [41], with the only difference that we do not fix the location of the apparent horizon,

see appendix A for some details. Not fixing the apparent horizon facilitates the study

of geodesics and extremal surfaces that reach behind the apparent horizon, which is of

relevance for 2-point functions and HEE. For that reason we want a large computational

domain in the holographic coordinate z = 1/r. In all the computations we took z ∈ [0, 1.6]

with the final position of the horizon located at z = 1. For the time evolution it is sufficient

to use a fourth order Runge Kutta method with time steps δt = 10−3. All the computations

were done with the open source software GNU Octave [48].

3.2 Geodesics

To compute 2-point functions we need to find curves of extremal length in a curved space-

time whose endpoints reside on fixed positions on the boundary of that spacetime. These

curves are solutions to the geodesic equation subject to boundary conditions at the end-

points. For numerical reasons it turns out to be convenient to use a non-affine parameter

σ , where τ = τ(σ) is the usual affine parametrization, dXµ

dτ
dXν

dτ gµν = 1. In terms of σ the

geodesic equation reads

Ẍµ + ΓµαβẊ
αẊβ = −JẊµ (3.1)

where Ẋµ = dXµ

dσ and J = d2τ
dσ2 /

dτ
dσ denotes the Jacobian which originates from the change

in parametrization. This form of the geodesic equation gives us the freedom to choose

parametrizations resulting in better convergence behaviour of the relaxation algorithm than

the affine parametrization does. In physical terms the right hand side in (3.1) introduces

a fictitious viscous force that enhances numerical convergence.

In our case the geodesic equation is given by a set of three coupled nonlinear ODEs

of second order for the geodesic coordinates V,Z,X. This set of equations can be reduced

to a set of six first order equations in terms of the geodesic coordinates and their first

derivatives:

pV = V̇ (3.2a)

pZ = Ż (3.2b)

pX = Ẋ (3.2c)

ṗV + ΓV V V p
2
V + ΓV XX p

2
X = −JpV (3.2d)

ṗZ + ΓZV V p
2
V + 2ΓZV Z pV pZ + ΓZZZ p

2
Z + ΓZXX p

2
X = −JpZ (3.2e)

ṗX + 2ΓXVX pV pX + 2ΓXZX pZpX = −JpX (3.2f)

This set of equations is a two-point boundary value problem, which is usually either

solved with shooting methods or relaxation methods [49]. We do not shoot but relax. The

geodesics obtained in appendix B serve as the initial guess for the relaxation algorithm.
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Figure 1. Left: anisotropy function B(r, v). Right: transverse and longitudinal pressure.

Since we are interested in one-parameter families of geodesics (evaluated at different con-

stant time slices) we can take the solution for the nth family member as initial guess for

the (n+ 1)st family member. More details of our implementation of the relaxation method

are described in appendix B.

3.3 Extremal surfaces

The same method as above works also for HEE. Namely, for our problem at hand the

evaluation of extremal surfaces is reduced to the evaluation of geodesics in some auxiliary

spacetime, as we have shown in section 2.3.

4 Results

In this section we display and discuss our main results. In all figures where a time-axis

is plotted we measure the boundary time t or the bulk advanced time v in units of the

temperature of the final black brane, T = 1/π. The separation length l of 2-point functions

and HEE and the corresponding boundary coordinates are given in units of T as well. To

make the approach to thermal equilibrium most transparent we use normalized quantities

for the geodesic length Lren and HEE Sren defined by

Lren =
L− Lth

Lth
(4.1a)

Sren =
S − Sth

Sth
(4.1b)

where L (S) is the unrenormalized length (HEE) and Lth (Sth) is the corresponding ther-

mal value.

4.1 Background geometry and holographic stress tensor

Figure 1 displays the most salient features of the background geometry. The left figure plots

the anisotropy function B(r, v) and displays the regions outside and inside the apparent

– 9 –
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Figure 2. The green (black) line indicates the z-position of the apparent (event) horizon; the

dark blue curve is the Poincaré patch AdS geodesic we use to initialize the simulation; red curves

are geodesics with different boundary separation probing the thermal regime (none of them crosses

the apparent horizon); the cyan curve in the left part of each plot is a geodesic which probes the

non-thermal regime and reaches beyond event and apparent horizon. Isometric view (left) and view

in x-direction (right).

horizon, as well as the event horizon. The black lines depict a null congruence of geodesics

close to the event horizon to exhibit their ingoing/outgoing nature. The right figure plots

transversal and longitudinal pressures as function of boundary time t. Note the quick

thermalization of the pressure components.

4.2 2-point correlators

As we have noted before geodesics can extend beyond the apparent horizon. This is made

explicit in figure 2 where the blue curve serves as our initial guess for the relaxation code.

The red geodesics at late times approach the apparent horizon without crossing it. At

sufficiently early times (and sufficiently large separation) the geodesics cross the apparent

horizon, an example of which is depicted by the cyan curve.

The evolution of the renormalized lengths in the transverse and longitudinal directions

for different separations are depicted in figure 3. Depending on the separation the 2-

point functions start at t = tmin which is the time when the geodesics extend beyond the

computational domain.

The first observation is that the transverse and longitudinal directions oscillate out

of phase as shown in figure 4. The same feature is seen in the transverse and longitudi-

nal pressure. By comparing the thermalization times of the one point functions, i.e. the

expectation value of the stress energy tensor with the 2-point functions we see that the

2-point functions thermalize later as expected. Also, the thermalization time increases if

the boundary separation is increased.
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Figure 3. Renormalized length of geodesics for different separations in longitudinal and transverse

directions.
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Figure 4. Comparison of longitudinal and transverse geodesic lengths for the same boundary

separation.

4.3 Holographic entanglement entropy

The extremal surface equations — which we mapped to geodesic equations in an auxiliary

spacetime — are solved again by a relaxation method. We observe the same qualitative

features as for geodesics in figure 2 above: at early times extremal surfaces can extend

beyond the apparent horizon, while at sufficiently late times they approach it from the

outside without crossing. However, there are also notable differences to geodesics, which

we discuss now.

As can be seen from figure 9 in appendix B.2 conformal geodesics reach much further

into the bulk compared to the pure AdS case. Therefore the boundary separations we

can study for the HEE are smaller compared to the 2-point functions. This is also the

reason why for the same boundary separation the HEE reaches equilibrium later as the

2-point functions. For the same boundary separation and at the same boundary time

conformal geodesics reach deeper into the bulk and further back in time and therefore are

more sensitive to out of equilibrium effects which are most pronounced at early times. In

addition the shape of the curves differ from the 2-point functions with the oscillations less

pronounced. We exhibit these features now in some plots.

Figure 5 plots HEE for different separations in logitudinal and transverse directions.

Comparison with figure 3 shows that the oscillations are less pronounced for HEE.
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Figure 5. Longitudinal and transverse HEE for different separations.
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Figure 6. Longitudinal and transverse HEE for same separation.

Figure 6 plots HEE for a fixed separation in longitudinal and transverse directions.

Again the behaviour of the curves is out of phase, in the sense that maxima of one curve

correspond to minima of the other. Comparison with figure 4 shows again that the oscil-

lations are less pronounced for HEE.

5 Late time behaviour and quasinormal modes

After the early far from equilibrium phase the geometry relaxes to the static Schwarzschild

black brane solution. As noted in [40, 41] the anisotropy of the system is exponentially

damped and at sufficiently late times one enters the linearized regime. In this regime

the approach to equilibrium is accurately described by the lowest lying quasinormal mode

(QNM) which characterizes the response of the system to infinitesimal metric perturbations.

In the case at hand the relevant channel for the gravitational fluctuations is the spin two

symmetry channel which coincides with the fluctuations of a massless scalar field in the

static black brane geometry. The asymptotic response of the pressure anisotropy then takes

the form

b4(t) ∼ Re
[
c1e
−i ω1t

]
(5.1)

with the lowest QNM given by [50, 51]

ω1

πT
= ±3.119452− 2.746676 i . (5.2)
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Figure 7. Left: renormalized geodesic length for longitudinal (red) and transverse (blue) separa-

tion for lT = 0.32 multiplied by the imaginary part of the lowest QNM. Right: renormalized HEE

for the same parameters as on the left.

On the field theory side QNMs appear as poles in the retarded Green function [51–54]. It

is therefore expected that also the late time behaviour of the correlation functions obtained

in the previous section is described by the lowest QNM. We now show that this is indeed

the case.

In figure 7 (left) we plot the renormalized geodesic length multiplied with the imaginary

part of the lowest QNM e−Im[ω1t]Lren for transverse and longitudinal separations. One

clearly sees that after a short period of time the evolution of the correlator is accurately

described by the ringdown of the black brane with constant amplitude and frequency.

The connection between the late time behaviour of correlation functions and QNMs was

previously also observed in [55–57].

It turns out that HEE also follows this pattern. In [58] a connection between QNMs

and the behaviour of the HEE was found. From linearised Einstein equations one can

derive a differential equation for the first order correction ∆SA of the HEE describing its

change when a given ground state is excited. By imposing infalling boundary conditions at

the horizon one obtains a QNM dispersion relation putting a constraint on HEE. With our

numerical solution we can demonstrate that the late time behaviour of HEE indeed follows

the QNM ringdown even without imposing infalling boundary conditions. In figure 7 (right)

we show the HEE multiplied with e−Im[ω1t]Sren for the infinite strip with finite separation

in longitudinal and transverse direction. As for the correlation function, at late times, the

HEE shows quasinormal ringing with constant amplitude and frequency. These oscillations

show that HEE must not approach its thermal value from below but rather shows oscillatory

behaviour around its thermal value.

To conclude this section we finally study the departure of the length of the geodesics

and HEE from equilibrium for different times as a function of the boundary separation.

This time we normalized the length of geodesics by subtracting a cutoff dependent piece.

The case for the 2-point function with separation in the transverse direction is displayed in

figure 8. Out of equilibrium effects manifest themselves as oscillations around the thermal

value. The curves terminate when the geodesics leave the computational domain, so for

early times we only have access to rather small boundary separations. The same effect

is seen for HEE.
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Figure 8. Left: renormalized length of geodesics as a function of their boundary separation in

transverse directions for different fixed boundary times t = 0.5, 1, 1.5 (endpoints from left to right).

The curves terminate when the geodesics leave the computational domain. The black dashed line

shows the thermal limit. Right: HEE (blue) and geodesic length (red) in the thermal (solid) and

zero temperature (dashed) limit.

In the thermal limit the scaling for the geodesic length at small and large boundary

separation is dictated by conformal symmetry and is proportional to 2 log(l/2) and 2l

respectively. At large separation the HEE also scales linearly with the separation length,

whereas at small separation it is proportional to 1/l2. All these results agree precisely with

the perturbative expressions derived in the limits of small and large temperatures [47, 59].

Our numerical results are shown in figure 8 where we also plot the corresponding zero

temperature results, which coincide with the thermal curves for small separations.

6 Conclusions

In the paper at hand we have studied the time evolution of 2-point correlation functions in

the geodesic approximation and holographic entanglement entropy in an anisotropic N = 4

SYM plasma.

To obtain the 2-point correlation function for separation in transverse and longitudinal

direction we solved for the length of the geodesics in the anisotropic background (2.1) by

using a relaxation method with the zero temperature geodesic as an initial guess. At the

n-th step the solution of the (n− 1)-st step is used as initial guess.

Choosing an infinite strip with finite separation either in the transverse or longitudinal

direction and using the symmetries of the system the problem of finding minimal surfaces

was reduced to finding geodesics in an auxiliary conformally related spacetime and the

same strategy as for the 2-point correlation function goes through.

The 2-point correlation functions as well as holographic entanglement entropy show os-

cillatory behaviour around their thermal value, where transverse and longitudinal directions

oscillate out of phase. Both quantities approach their equilibrium value by exponentially

damped oscillations and after the initial far from equilibrium epoch the thermalization

process is accurately described by the lowest quasinormal mode. That the late time be-

haviour of holographic entanglement entropy is captured by the ring down of the black

brane geometry is one of the main results of this work and to our knowledge the first ex-

– 14 –



J
H
E
P
0
7
(
2
0
1
5
)
1
4
6

plicit verification of the connection between QNMs and holographic entanglement entropy

found in [58].

The methods developed and applied in this work can be generalized to other time-

dependent asymptotically anti-de Sitter backgrounds of interest, such as colliding shock-

wave backgrounds [60, 61], which have been constructed numerically in the past few

years [62–64]. Another interesting generalization would be the consideration of compact

entangling regions, e.g. with spherical topology to check the (in-)dependence of our results

on the form of the entangling region.
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A Spectral method

In this appendix we give some details on how we numerically solve the Einstein equa-

tions (2.2). We work with the inverse radial coordinate z ≡ 1/r such that the boundary

is located at z = 0. Due to asymptotic AdS boundary conditions, the metric functions

A and Σ diverge as z → 0. It is numerically favourable to define new functions with the

known divergent pieces removed and rescale them with appropriate powers of z so that the

resulting functions are finite or vanish as z → 0; the precise boundary conditions on the

new functions are presented in (A.6) below. This leads us to the following field redefinitions

A(z, v) → 1
z2

+ zA(z, v) B(z, v) → z3B(z, v) (A.1a)

Σ(z, v) → 1
z + z2Σ(z, v) Σ̇(z, v) → 1

2z2
+

1

2
z2Σ̇(z, v) (A.1b)

Σ̈(z, v) → 1
2z3

+ 1
4 Σ̈(z, v) Ḃ(z, v) → −2z3Ḃ(z, v) . (A.1c)

The redefined anisotropy function B allows to extract b4(t) simply from the boundary value

of B′

b4(t) = B′(z = 0, v = t), (A.2)

where B′ = ∂zB. In terms of the redefined fields the first four Einstein equations (2.2) can

be rewritten in the form

Σ′′ +
6

z
Σ′ +

(
6

z2
+

9

2
z4B2 + 3z5BB′ +

1

2
z6B′2

)
Σ = jΣ (A.3a)

Σ̇′ +
2z2(3Σ + zΣ′)

1 + z3Σ
Σ̇ = jΣ̇ (A.3b)

Ḃ′ +
3(1 + 4z3Σ + z4Σ′)

2(z + z4Σ)
Ḃ = jḂ (A.3c)

A′′ +
4

z
A′ +

2

z2
A = jA (A.3d)
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with the source functions given by

jΣ = −9

2
zB2 − 3z2BB′ − 1

2
z3B′2 (A.4a)

jΣ̇ = −2(5Σ + 2z3Σ2 + zΣ′)

z2 + z5Σ
(A.4b)

jḂ =
3(1 + z4Σ̇)(3B + zB′)

8z2(1 + z3Σ)
(A.4c)

jA = −6(Σ(4 + z3Σ) + z4Ḃ(1 + z3Σ)2(3B + zB′) + zΣ′ − zΣ̇(1− 2z3Σ− z4Σ′))

(z + z4Σ)2
. (A.4d)

The relation between dot-derivative and time-derivative, originally given in (2.3), turns into

Ḃ = −1

2
∂vB +

1

4
B′ +

3

4z
B +

3

4
z2AB +

1

4
z3B′A . (A.5)

The boundary conditions for the redefined fields read

Σ(z = 0, v) = 0 Σ′(z = 0, v) = 0 (A.6a)

Σ̇(z = 0, v) = a4 (A.6b)

Ḃ(z = 0, v) = B′(z = 0, v) (A.6c)

A(z = 0, v) = 0 A′(z = 0, v) = a4 (A.6d)

where we set a4 = −1. On the initial time slice the boundary condition (A.6c) is computed

from the initial conditions

B(z, v0) = βz exp
[
− (z − z0)2

ω2

]
(A.7)

where we set β = 6.6, z0 = 1/4 and ω = 1.

For a given set of initial and boundary data the system of equations (A.3) allows for

the following solution strategy:

1. With the initial conditions (A.7) and the boundary conditions (A.6a) we first

solve (A.3a) for Σ on the initial time slice.

2. For given Σ and the boundary condition (A.6b) we solve (A.3b) for Σ̇.

3. Having B, Σ and Σ̇ we next solve (A.3c) for Ḃ using the boundary condition (A.6c).

4. With B, Σ, Σ̇ and Ḃ and the boundary conditions in (A.6d) we solve (A.3d) for A.

5. Finally we integrate (A.5) to get the new B on the next time slice and repeat the

whole procedure all over again.

For constant v we solve each of the equations (A.3) with a pseudo-spectral method [65]

where the N + 1 grid points ui on an intervall [a, b] are located at

zi =
1

2

(
(a+ b) + (a− b) cos(iπ/N)

)
i = 1, . . . , N + 1. (A.8)
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In our computations we choose zi ∈ [0, 1.6] and N = 60. These points can be used to

construct the entries of the spectral differentiation matrix Dij [66]:

D00 =
2N2 + 1

6
DNN = −2N2 + 1

6
(A.9)

Djj =
−zj

2(1− z2
j )

j = 1, . . . , N − 1 (A.10)

Dij =
ci
cj

(−1)i+j

(zi − zj)
j 6= j i, j = 0, . . . , N (A.11)

where c0 = cN = 2 and otherwise ci = 1. The derivative of a function f(zi) ≡ fi on the

spectral grid points is obtained by multiplication with this diffentiation matrix

f ′i = Dijfj . (A.12)

This allows to turn each of the equations (A.3) into a system of linear equations. For

example the second equation in (A.3) translates to

LijΣ̇j = (jΣ̇)i (A.13)

where the matrix Lij is given by

Lij = Dij + diag
[2z2(3Σ + zΣ′)

1 + z3Σ

]
ij

(A.14)

and the source vector (jΣ̇)i by

(jΣ̇)i =
[
− 2(5Σ + 2z3Σ2 + zΣ′)

z2 + z5Σ

]
i
. (A.15)

The boundary condition Σ̇1 = a4 is implemented by setting (jΣ̇)1 = a4 and L1j = δ1j . The

solution vector Σ̇i is then obtained by multiplying the inverse of Lij with the source vector

Σ̇i = [Lij ]
−1(jΣ̇)j . (A.16)

We do this with the OCTAVE routine linsolve. The equations for Σi, Ai and Ḃi can be

solved in the same way.

To advance the solution for B to the next time slice it is sufficient to use a simple

fourth order Runge Kutta method [49]

B(z, v + δv) = B(z, v) + δv
(

1
6k1 + 1

3k2 + 1
3k3 + 1

6k4

)
. (A.17)

where the koefficients ki are given by

k1 = ∂vB(z, v) (A.18)

k2 = ∂v(B(z, v) + 1
2k1) (A.19)

k3 = ∂v(B(z, v) + 1
2k2) (A.20)

k4 = ∂v(B(z, v) + k3) (A.21)

and ∂vB is computed from (A.5). In our simulations we use a stepsize of δv ≈ 0.01 which

is sufficient to achieve a stable time evolution.
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B Relaxation method

In relaxation methods differential equations are replaced by approximate finite difference

equations (FDEs) on a discrete set of points. The solution is determined by starting with

an inital guess and improving it iteratively. In this iterative procedure the result is said to

relax to the true solution.

First we define a grid σi = h i of equidistant spacing h = σN−σ1
N with i = 1, . . . , N . We

use a grid with N = 500 points in all our simulations. The upper and lower bound of this

grid are given by σ1 =−1+ε and σN =1−ε respectively, where ε denotes a UV cutoff. The

discretized version of our trial solution on this grid is written as

Xµ(σi) ≡ Xµ
i = (Vi, Zi, Xi) . (B.1)

The explicit form of the trial solutions used in the computations of 2-point functions and

HEE are given in appendix B.1 and appendix B.2, respectively. In all our simulations we

evaluate the cutoff ε such that the z-position of the corresponding cutoff surface is fixed at

ZUV = 0.05, i.e. at rUV = 20. The boundary conditions are imposed at this cutoff surface

V1 = VN = t (B.2)

Z1 = ZN = ZUV (B.3)

X1 = −l/2 XN = l/2 (B.4)

where t denotes the time and l the separation on the cutoff surface.

The finite difference representation of the geodesic equation (3.2) is given by

E1
i = Vi+1 − Vi − h(p̄V )i (B.5a)

E2
i = Zi+1 − Zi − h(p̄X)i (B.5b)

E3
i = Xi+1 −Xi − h(p̄X)i (B.5c)

E4
i = (pV )i+1 − (pV )i + hJ̄i(p̄V )i + h((Γ̄V V V )i(p̄V )2

i + (Γ̄V XX)i(p̄X)2
i ) (B.5d)

E5
i = (pZ)i+1 − (pZ)i + hJ̄i(p̄Z)i + h((Γ̄ZV V )i(p̄V )2

i

+2(Γ̄ZV Z)i(p̄V )i(p̄Z)i + Γ̄ZZZ)i(p̄Z)2
i + Γ̄ZXX)i(p̄X)2

i ) (B.5e)

E6
i = (pX)i+1 − (pX)i + hJ̄i(p̄X)i + 2h((Γ̄XXV )i(p̄X)i(p̄V )i + (Γ̄XXZ)i(p̄X)i(p̄Z)i) (B.5f)

where Eki is the residual at point i in equation k; further (pV )i = V̇i denotes the first

derivatives of the geodesic coordinates; quantitities with bar are averaged like (p̄V )i =
(pV )i−1+(pV )i

2 ; the Christoffel symbols (Γ̄XXZ)i are evaluated from the averaged metric

functions; the explicit form of the Jacobian J̄i for the case of 2-point functions and HEE

are given in appendix B.1 and appendix B.2.

The initial guess will in general not satisfy these FDEs very well, i.e. the residua Eki
will be rather large. To quantify the deviation of a given trial solution to the true solution

we use the following measure

δ =

∑
i,k |Eki |
6N

. (B.6)
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The strategy is to compute increments ∆Xµ for the geodesic coordinates Xµ such that

Xµ
new = Xµ

old + ∆Xµ is an improved approximation to the previous solution Xµ
old. This we

do iteratively until we reach

δ < 10−15 . (B.7)

Equations for the increments are obtained by demanding the first order Taylor expansion

of the finite difference equations with respect to small changes in the coordinates to vanish.

We do this following exactly the procedure described in the section on relaxation methods

in reference [49].

The correction ∆Xµ generated from the first order Taylor expansion is in general only

an improvement close to the true solution. We account for this by introducing a weight α

that modifies the correction in each relaxation step

Xµ
new = Xµ

old + α∆Xµ, (B.8)

We choose the weight α such that the full correction is used only close to the true solution.

α =

{
0.05 if δ ≥ 0.05

1 else
(B.9)

In the time evolution we use as ansatz geodesic at time ti = ti−1 +δt the geodesic form

the previous time step ti−1. With a step size of δt ≈ 0.05 usually less than 5 relaxation

steps turned out to be sufficient to reach our accuracy goal of δ < 10−15.

B.1 Initialization with Poincaré patch AdS geodesics

The line element in 3-dimensional Poincaré patch AdS space is given by

ds2 =
1

z2

(
− dv2 − 2 dz dv + dx2

)
. (B.10)

We parametrize the geodesics by an affine parameter τ and denote derivatives with respect

to it by dot. The geodesic equations of motion allow first integrals

ẋ = Lz2 v̇ = Ez2 − ż ż = ±z
√

1− (L2 − E2)z2 (B.11)

where L and E are constants of motion and the third equation comes from the spacelike

condition ds2 = 1. The last equation shows that the geodesics have two branches. It is

convenient to reparametrize both branches of the geodesics in terms of the holographic

coordinate z, i.e., to find expressions x±(z) and v±(z). We want to initialize the relaxation

code with geodesics that have a symmetric advanced time with respect to the exchange

of the branches, v+(z) = v−(z). This is achieved by setting E = 0. Then integrating the

above system yields

x±(z) = ±
√
L−2 − z2 v(z) = v0 − z (B.12)

where v0 is the boundary time and we have set to zero the additive integration constant in

x±. In the solution for the advanced time coordinate one clearly sees the ‘bending back in
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time’-effect as one goes deeper into the bulk. By this we mean simply that v(z) becomes

more negative as the holographic coordinate z increases.

With the choices above the constant of motion L is related to the separation l of the

two endpoints on the boundary

l =
∣∣x+ − x−

∣∣
z=0

=
2

L
. (B.13)

For our numerical algorithm it turns out to be useful to choose a non-affine parametrization

that lies in a fixed interval and covers both branches at the same time, namely

z(σ) =
l

2

(
1− σ2

)
x(σ) =

l

2

(
σ
√

2− σ2
)

v(σ) = v0 − z(σ) (B.14)

where σ ∈ [−1, 1]. We realize a UV-cutoff at a given value ZUV by truncating the non-affine

parater σ ∈ [−1+ε, 1−ε] with ε given by

ε = 1−
√

1− 2ZUV
l

. (B.15)

To get the Jacobian we need in the non-affine geodesic equation we first integrate the third

equation in (B.12) to express the affine parameter τ in terms of z

τ(z) = ±
∫

dz

z
√

1− l2

4 z
2

= ∓artanh
(√

1− l2

4 z
2
)
. (B.16)

Next we use the first equation in (B.14) and express the affine parameter τ in terms of the

non-affine parameter σ

τ(σ) = ∓artanh
(
σ
√

2− σ2
)
. (B.17)

The Jacobian is then given by

J(σ) =
d2τ

dσ2

/dτ

dσ
=

5σ − 3σ3

2− 3σ2 + σ4
. (B.18)

B.2 Initialization with conformal AdS geodesics

We proceed here similarly to appendix B.1. Starting with either of the line elements (2.19)

in the isotropic static limit (B = 0, Σ = r, A = r2) and introducing again z = 1/r yields

ds2 =
1

z6

(
− dv2 − 2 dz dv + dx2

)
(B.19)

where we called the third coordinate x, regardless of the specific case. Integrating the

geodesic equations, using ds2 = 1 and setting E = 0 yields

ẋ = Lz6 v̇ = −ż ż = ±z3
√

1− L2z6 . (B.20)

With help of the identity∫
dzzn√

1− L2z6
=

z1+n

1 + n
2F1

[
1
2 ,

1+n
6 , 1 + 1+n

6 ;L2z6
]

(B.21)
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the third equation in (B.20) can be used to express the affine parameter in terms of the

holographic coordinate

τ = ±
∫

dz

z3
√

1− L2z6
= ∓ 1

2z2 2F1

[
1
2 ,−

1
3 ,

2
3 ;L2z6

]
. (B.22)

In order to obtain the solution for the geodesic it turns out to be convenient to solve for x

in terms of z

x± = ±
∫

dz Lz3

√
1− L2z6

= ∓ l
2
± Lz4

4
2F1

[
1
2 ,

2
3 ,

5
3 ;L2z6

]
. (B.23)

The subscript ± corresponds to the two branches of the geodesic and l/2 is an integra-

tion constant corresponding to the boundary value of the geodesic since the hypergeometric

function is zero at the boundary z = 0. The endpoint of the geodesic is given by L2z6 = 1,

meaning that the two branches do not join in general. In order to get a smoothly joining

geodesic we need to adjust L and express it in terms of the boundary separation l

L =
π

3
2 Γ [5/3]3

8l3Γ [7/6]3
. (B.24)

Like for the Poincaré patch AdS geodesics we choose a non-affine parametrization

z(σ) = Zmax

(
1− σ2

)
(B.25)

x(σ) = sgn(σ)
(
− l

2
+
Lz(σ)4

4
2F1

[
1
2 ,

2
3 ,

5
3 ;L2z(σ)6

] )
(B.26)

v(σ) = v0 − z(σ) (B.27)

where σ ∈ [−1, 1] and Zmax = 2l√
π

Γ(7
6)
/

Γ(5
3) denotes the z-position at which the two

branches join. We realize a UV-cutoff at a given value ZUV by truncating the non-affine

parater σ ∈ [−1+ε, 1−ε] with ε given by

ε = 1−
√

1− ZUV
Zmax

. (B.28)

The affine parameter τ in terms of the non-affine parameter σ reads

τ(σ) = ∓ 1

2Z2
max(1− σ2)

2F1

[
1
2 ,−

1
3 ,

2
3 ;L2Z12

max(1− σ2)6
]
. (B.29)

The Jacobian is then given by

J(σ) =
d2τ

dσ2

/dτ

dσ
=
−51σ + 145σ3 − 205σ5 + 159σ7 − 65σ9 + 11σ11

(2− σ2)(1− σ2)(3− 3σ2 + σ4)(1− σ2 + σ4)
. (B.30)

As can be seen from figure 9 for the same boundary separation the conformal geodesic

extends much further into the bulk compared to the Poincaré patch AdS case. As a

consequence, the boundary separation we can choose for the HEE is much smaller than for

the 2-point functions for any given value of the boundary time.
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Figure 9. Comparison of the pure AdS geodesic (blue) with the conformal geodesic (red). For

the same separation the conformal geodesic extends about twice as far into the bulk.
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