
J
H
E
P
0
7
(
2
0
1
5
)
1
4
4

Published for SISSA by Springer

Received: March 12, 2015

Revised: July 6, 2015

Accepted: July 9, 2015

Published: July 27, 2015

Un-oriented quiver theories for Majorana neutrons

Andrea Addazia,b and Massimo Bianchic

aDipartimento di Fisica, Università di L’Aquila,
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1 Introduction

Recently we have proposed the possibility that a Majorana mass term for the neutron could

be indirectly generated by non-perturbative quantum gravity effects present in string the-

ory: the exotic instantons [1, 2].1 In theories with open and un-oriented strings, instantons

have a simple geometrical interpretation: they are nothing but Euclidean D-branes (a.k.a.

E-branes) wrapping internal cycles of the compactification. ‘Gauge’ instantons are E-

branes wrapping the same cycles as some D-branes present in the vacuum configuration.

‘Exotic’ stringy instantons are E-branes wrapping cycles different from those wrapped by

the D-branes present in the background. For ‘gauge’ instantons, a very natural and intu-

itive embedding of the ADHM data [3] is represented by open strings with at least one end

on the E-branes. Exotic instantons admit a similar description that however escapes the

ADHM construction in that — in the simplest and most interesting case — the moduli are

purely fermionic. Non-perturbative effects generated by both ‘gauge’ and ‘exotic’ instan-

tons are calculable in string inspired extensions of the (supersymmetric) Standard Model.

1For the classification of instanton effects in strings theory see: [4]–[9] for world-sheet instantons in the

heterotic string, [10]–[12] for E2-instantons in the Type IIA string, [13]–[15] for M2-brane and M5-brane

instantons in M-theory, [16]–[18] for the D3-D(−1) system in type IIB, [19] for the effect of background

fluxes on E2-instantons, [20] for E3-instantons in Type IIB theory. In [21, 22], instantons in Z3 orbinfolds

are discussed.

– 1 –



J
H
E
P
0
7
(
2
0
1
5
)
1
4
4

Exotic instantons can break both anomalous axial symmetries and vectorial ones. Gauge

instantons can break anomalous symmetries only.

Recall that in the SM only B −L is non-anomalous. Baryon and Lepton numbers are

separately anomalous and can be broken by non-perturbative finite-temperature instanton-

like effects due to ‘sphalerons’ [27]. At low temperature, as in the present cosmological

epoch, sphaleron effects are highly suppressed but SU(2) EW ‘sphalerons’ play an important

role during the early stages of the universe, up to the electro-weak phase transition. In

the primordial thermal bath (B − L)-preserving transitions can be induced by sphalerons

because of the thermal fluctuations in the weakly coupled plasma. They have only the

net effect to convert B to L and vice versa: they cannot provide separate mechanisms

for Baryogenesis or Leptogenesis without Physics Beyond the Standard Model [28]. As

explicitly noticed by t’Hooft, these (B−L)-preserving transitions are suppressed by factors

of order 10−120 and are thus absolutely impossible to detect in the laboratory [29]. (See

also [30] for a classical textbook on these aspects).

On the other hand, ‘exotic’ instantons can also break vector-like and non-anomalous

symmetries and in principle they can be unsuppressed. This peculiar feature of exotic

instantons can lead to interesting B- (or L-) and B − L violating physics testable in lab-

oratories, such as a Majorana mass for the neutron and related n − n̄ oscillations [1].

These effects can also dynamically propagate from the string scale to much lower ener-

gies, as shown in [1].2 The possibility of an effective Majorana mass term for the neu-

tron was firstly proposed by Majorana himself in [31]. Such a mass term could induce

neutron-antineutron transitions, violating Baryon number, contrary to the predictions of

the Standard Model [36–38]. The next generation of experiments is expected to test PeV

physics [39, 40] by improving the limits on the oscillation time to τn−n̄ ' 1010 s, two orders

of magnitude higher than the current limits [41].

Let us suppose instead that n− n̄ oscillations be found in the next run of experiments:

then it would be challenging to generate such an effect with a time-scale around 1010 s ≈
300 yr without fast proton decay (τp > 1034 yr) or unsuppressed FCNC’s. The class of

models that we consider seems to meet these requirements. Exotic instantons propagate

the quantum gravity stringy effects to much lower scales, that can be as low as 1000 TeV.

The main purpose of the present paper is to clarify aspects of the mechanism proposed

in [1] and to identify quiver theories leading to the interesting phenomenology introduced

in [1]. The paper is organized as follows: in section 2 we briefly review the main fea-

tures of the models with Majorana mass terms for the neutron; in section 3, we discuss

the phenomenology related to neutron-antineutron oscillations, reviewing and extending

our previous considerations and constraining the allowed region in parameter space, with

particular attention to possible signatures at LHC; in section 4 we briefly review the con-

struction of (un-oriented) quiver theories and identify SM-like (un-oriented) quivers for

a Majorana neutron; in section 5 we discuss possible quantum corrections to the Kähler

potential and D-terms as well as the role of susy breaking; in section 6 we present our

conclusions and a preliminary discussion of Pati-Salam extensions presented in [42].

2For other recent developments of this idea see also [32–35].
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2 A simple class of models

The models we consider are based on D6-branes wrapping 3-cycles in CY3 and giving rise

to such gauge groups as U(3) × U(2) × U(1)1 × U(1)′ or U(3) × Sp(2) × U(1)1 × U(1)′.

We will also need Ω-planes for local tadpole cancellation and E2-branes (instantons). The

un-oriented strings between the various stacks account for the minimal super-field content

of the MSSM

Qi,α+1/3 Lα−1 U ci,−4/3 Ec+2 Dc
i,+2/3 Hα

u,+1 Hα
d,−1 (2.1)

where we indicated explicitly the hyper-charge of the various super-fields (table 1). These

interact via the super-potential

W = ydH
α
dQ

i
αD

c
i + ylH

α
d LαE

c + yuH
α
uQ

i
αU

c
i + µHα

uHαd (2.2)

Flavour or family indices are understood unless strictly necessary. Note that W preserves

R-parity. The last term violates the continuous R-symmetry and can be generated by E2-

branes (instantons) as discussed in [43–45] or by ‘supersymmetric’ bulk fluxes as reviewed

later on.

We could also consider some of the possible perturbative R-parity breaking terms

(see [46] for a review on the subject):

WRPV = λLLEL
αLαE

c + λ′
LQD

LαQiαD
c
i + λ′′

UDD
εijkU ciD

c
jD

c
k + µLHL

αHu
α (2.3)

Moreover, soft susy breaking terms can be generated by ‘non-supersymmetric bulk’

fluxes or other means, that produce scalar mass terms, Majorana mass terms for gaugini

(zino, photino, gluini), trilinear A-terms, bilinear B-terms [47, 48].

In the first case, the hypercharge Y is a combination of the four U(1) charges

U(3)×U(2)×U(1)×U(1)′ ' SU(3)× SU(2)×U(1)3 ×U(1)2 ×U(1)×U(1)′ (2.4)

In fact the four U(1)’s can be recombined into U(1)Y , U(1)B−L and two anomalous U(1)’s.

In the other case, with gauge group U(3) × Sp(2)×U(1)×U(1)′, one has

U(3)× Sp(2)×U(1)×U′(1) ' SU(3)× SU(2)×U(1)3 ×U(1)×U(1)′ (2.5)

and Y is a linear combination of q1,1′,3.

The presence of anomalous U(1)’s is not a problem in string theory. A generalisation of

the Green-Schwarz mechanism disposes of anomalies. In particular in the string-inspired

extension of the (MS)SM under consideration, new vector bosons Z ′ appear that get a

mass via a Stückelberg mechanism [50–53] and interact through generalized Chern-Simon

(GCS) terms, in such a way as to cancel all anomalies [22, 54–56].3

If the relevant D-brane stacks intersect four rather than three times, i.e. #U(3) ·U(1) =

4, a 4th replica D′ = Dc
f=4 of the three MSSM Dc

f=1,2,3 appears. Moreover, compatibly

with tadpole and anomaly cancellation, another chiral super-field Ci = 1
2ε
ijkCjk appears

3We mention that stringent limits on another application of the Stückelberg mechanism in massive

gravity were discussed in [23].
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at the intersection of the two images of the U(3) stack of D6-branes, reflecting each other

on the Ω-plane.4

D′cY=+2/3(B = −1/3) and CiY=−2/3(B = −2/3) = 1
2ε
ijkCjk form a vector-like pair

with respect to SU(3)×U(1)Y . For the moment, we just introduce such a vector-like pair

of superfields ad hoc, we will later see how the precise hyper-charge and baryon number

assignments arise in the D-brane context. With the desired choice of hypercharges, such a

pair does not introduces anomalies for the SM gauge group.5 In the following, we will show

appropriate examples of (un-)oriented quivers, that can possibly embed such a model.

Compatibly with gauge invariance, one can introduce new perturbative Yukawa-like

interactions of D′ and C:

W1 = hD′Q
αiHd

αD
′c
i (2.6)

and

W2 = hCQ
iQjCij (2.7)

A non-perturbative mixing mass term

Wexotic =
1

2
M0ε

ijkD
′c
i Cjk (2.8)

can be generated by non-perturbative E2-instanton effects. The relevant E2-brane (ex-

otic instanton) is transversely invariant under Ω and intersects the physical D6-branes, as

discussed in [1]. The non-perturbative mass scale is M0 ∼ MSe
−SE2 with MS the string

scale, SE2 the E2 instanton action, depending on the closed string moduli parameterizing

the complexified size of the 3-cycle wrapped by the world-volume of E2.

Integrating out the vector-like pair an effective super-potential of the form

Weff = hD′hC
1

M0
Qαif1H

d
αQ

j
βf2
Qkβf3 εijk (2.9)

is generated.

In this way, one can start with a theory preserving R-parity and have it broken dy-

namically only through the non-renormalizable R-parity breaking operator (2.9).

In principle, one can also consider some explicit R-parity breaking terms, including

perturbative ones (2.3), but then one has to carefully study the dangerous effect of these

on low-energy processes violating baryon and lepton numbers.

3 Phenomenology: neutron-antineutron physics and LHC

An operator like (2.9) generates neutron-antineutron transitions, violating baryon number

with ∆B = 2, as shown in figure 1 and discussed in [1]. The scale M5
nn̄ = m2

g̃M2
0MH̃

in (udd)2/M5
nn̄ is a combination of the gaugino (gluino or zino) mass mg̃, of the mixing

4Note that the first two ingredients — MSSM super-fields and R-preserving super-potential — have been

widely explored in the literature, the additional vector-like pair and the Ω-plane mark the main difference

between our model, proposed in [1], and the ones already known.
5For instance, no extra SU(3)3 anomalies are introduced since, for Nc = 3, TrNc(Nc−1)/2(T aT bT c) =

(Nc − 4)dabc = −dabc = −TrNc(T aT bT c).
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Super-fields B L

D′c(3̄, 1; +2/3) −1/3 0

C(3, 1;−2/3) −2/3 0

Hu(1, 2; +1) 0 0

Hd(1, 2;−1) 0 0

Q(3, 2; +1/3) +1/3 0

U c(3̄, 1;−4/3) −1/3 0

Dc(3̄, 1; +2/3) −1/3 0

L(1, 2;−1) 0 +1

Ec(1, 1; 2) 0 −1

Table 1. In the table, we summarise the matter super-field content in our model. In particular,

we introduce one extra vector-like pair D′
c, C with respect to the SM super-fields. We list their

representations with respect to SM gauge group SU(3)× SU(2)×U(1)Y , their Baryon and Lepton

numbers B,L.

Figure 1. Diagram inducing neutron-antineutron transitions through vector-like pair of fermions

D′, C (the white blob represent the non-perturbative mass term induced by exotic instantons), an

Higgsino, and a conversion of squarks into quarks through gaugini, like zini or gluini.

mass term M0 for the vector-like pair and the Higgsino mass MH̃ . In order to satisfy

the present experimental bound Mnn̄ > 300 TeV, we can consider different scenarios. We

focus on some of these in the following.6 i) Higgsini, Gaugini and vector-like pairs at the

same mass scale 300 − 1000 TeV, in order to trivially satisfy the bound; ii) Susy breaking

at the TeV scale, with MH̃ ' Mg̃ ' 1 TeV, and M0 ∼ 1015÷16 GeV; iii) Heavy Higgsini

and gaugini: Mg̃ 'MH̃ 'MSUSY ' 104 TeV, M0 ' 1 TeV.7

6In [1], we have made the tacit and not fully justified assumption that the gaugino mass were mg̃ 'M0.

Here, we relax this assumption.
7In [24], a string-inspired non-local susy QFT model was studied, while in [25] the formation of non-

perturbative classical configurations in scattering amplitudes of an effective non-local QFT was studied,

with possible connections with exotic instantons’ productions in collisions.

– 5 –
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Figure 2. Diagram inducing neutron-antineutron transitions through vector-like pair of scalars and

an Higgsino. The scalars of the superfields D′ −C are mixing through a loop of their fermionic su-

perpartners (the white blob represent the non-perturbative mass term induced by exotic instantons)

and a gaugino.

Another diagram generating n − n̄ transitions is depicted in figure 2, the analysis of

the parameter space is roughly the same as for the first case.

These diagrams respect R-parity at all the vertices, except for the non-perturbative

mixing term of the vector-like pair. In fact the super-potential has R(W) = −1 as usual,

and one can consistently assign R-charges to C and D′, so that their tri-linear Yukawa terms

be invariant. Yet their mass term necessarily violates R-parity. Omitting the coupling

constants one schematically has

L−y = ψ−C q̃
−q+ + φ−D′q

+ψ−Hd
+ φ+

Cq
+q+ + ψ+

D′q
+φ+

Hd
+M0ψ

−
Cψ

+
D (3.1)

where ± indicates the R-parity, φC,D′ and ψC,D′ are the scalars and the fermions respec-

tively in the superfields C,D′, q, q̃ are quarks and squarks, φHu,d
are Higgs bosons, ψHu,d

are the two Higgsini. Note how R-parity is violated only by the last non-perturbative term

with mixing mass parameter M0 not directly connected to the Dirac mass term for D′,

emerging from its ‘standard’ coupling to the Higgs.

More precisely, M0 is replaced by the mass parameter of the lightest mass state, be it

a fermion ψD′,C as in figure 1, or a scalar φD′,C as in figure 2. The scalars φD′,C have in

general a non-diagonal mass matrix [2] of the form

M2
b =


m2
φD′

0 δµ2 0

0 m2
φD′

0 −δµ2

δµ2 0 m2
φC

0

0 −δµ2 0 m2
φC

 (3.2)

written in the basis (φ1
D′ , φ

2
D′ , φ

1
C , φ

2
C), with φD′,C = φ1

D′,C + iφ2
D′,C (assuming δµ = δµ∗),

and with

Lm = m2
φD′

φ†D′φD′ +m2
φC
φ†CφC + h.c (3.3)

and δµ2 ∼ mg̃M0 as in figure 2.

– 6 –
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The mass eigenvalues of (3.2) are

λ2
± =

1

2

(
m2
φD′

+m2
φC
±
√

4δµ4 + (m2
φD′
−m2

φC
)2
)

(3.4)

both doubly degenerate, as manifest in (3.2). Note that, in the case of mφD′ = mφC = 0

and δµ 6= 0, one of the mass eigenvalues is negative, i.e. leading to a condensate, break-

ing SU(3)c.

On the other hand, we would like to note that Dirac mass terms for fermions ψD′ and

ψC are not present at all. For instance, ψD′ is like a 4th right-handed down quark without

a Left-Handed counterpart. As a result m± = ±M0, where the sign, in fact any phase,

can be absorbed into a redefinition of the phases of the fermionic fields.

We can distinguish two branches for LHC and FCNC’s phenomenology: i) First Susy

hierarchy; ii) Second Susy hierarchy.

In the First Susy hierarchy, scalars φD′,C are the lighest mass eigenstates λ− � |m−|,
i.e. scalars have lower masses with respect to their fermionic partners. This case corresponds

to an ordinary susy hierarchy for C and to an inverted susy hierarchy for D′. In this

case, the relevant contribution for Neutron-Antineutron oscillations is the one in figure 2.

In string inspired models scalars can get extra contributions from non-supersymmetric

closed-string fluxes (NS-NS or R-R), not contributing to fermion masses.8 Thus inverting

the hierarchy for D′, i.e. getting mφD′ < mψD′ , may required the inclusion of loop effects.

In principle, M0mg̃ has to be replaced by the lighest mass λ2
−, in the parametric estimate

for n − n̄ oscillations shown above. For m2
φC
� m2

φD′
' mg̃M0, we obtain λ− ' M0,

and dangerous FCNC’s can be suppressed if mφC � mφD′ [2]. In particular, assuming

m2
φC
' 106m2

φD′
and M2

0 ' m2
φD′

, we obtain, from (3.4): λ2
− ' m2

φD′
and λ2

+ ' m2
φC

, with

mixing angles θ13 = θ24 ∼ 10−6. So, mixings between φC and φD′ are strongly suppressed

in this case, but may be enough for neutron-antineutron transitions: a prefactor of 10−12

in a n− n̄ scale (M4
0µ)1/5 has to be included. This drastically changes the constraints on

the other parameters: forM0 = 1−10 TeV, a light ψ of µ = 1÷100 GeV would be enough!

The phenomenology of (i) is discussed in [2]. In [2], a toy-model was shown in which the so

called X ,Y are nothing but φD′,C respectively. There are some differences not allowing a

perfect identification X = φD′ and Y = φC . For example, the main interactions terms are

YuRdR rather than φCuLuR, and XdRψ rather than φCdLH̃, with ψ a sterile Majorana

fermion with zero hyper-charge rather than an Higgsino. This leads to different hyper-

charge assignments (reversed in the vector-like pair) and Baryonic number assignment

(opposite sign in both), compatibly with gauge symmetries. Even so, the phenomenology

is very similar to the one discussed in [2], in so far as neutron-antineutron oscillations,

LHC signatures, FNCN’s, and Post-Sphaleron Baryogenesis are concerned. For instance,

the lightest mass eigenstate scalars can have λ− ' 1 TeV, with possible detection channels

at LHC. In particular, pp→ jjET/ is expected, avoiding stronger constraints from FCNC’s

processes. Our models also predict pp→ 4j (direct bound of 1.2 TeV) or pp→ tt̄jj (direct

bound of 900 GeV), but FCNC bounds are stronger than LHC ones, in these cases.

8See for example [47, 48], for discussions about soft susy breaking terms generated by fluxes in MSSM’s

in (unoriented) open string theories.
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In the Second Susy Hierarchy, we consider the opposite scenario in which M0 � λ−,

i.e. susy fermions ψD′,C are lighter than scalars φD′,C . In this case, D′ has a normal susy

hierarchy, while C has an inverted one. An inverted hierarchy can be understood as an

effect of non-supersymmetric fluxes that give extra contributions to scalar masses with

respect to their susy partners. In this case, direct detection of ψC − ψD′ at LHC would

be possible. Their production is possible in several different processes, having peculiar

decay channels like ψC → qq̃. We would like to note that in our case one can also generate

perturbative Yukawa coupling of ψD′ with the bottom quark, leading to a decay channel

ψD′ → Hb. Moreover, an electroweak mixing with the top quark is also possible, that

would lead to ψD′ → Wt. These could be interesting for LHC. The present limits on

these rare processes are shown in ATLAS EXPERIMENT Public Results in the section

devoted to Exotics [57]. The limits on the mass of an additional vector-like pair are of

order 500–850 GeV.

In summary, thanks to the non-perturbative R-parity breaking mixing mass term

M0ε
ijkCijD

′
k, the phenomenology of our model is somewhat different with respect to the

one of other models with vector-like pairs. On the other end, a low mass higgsino and

consequently a low mass LSP neutralino, detectable at LHC, would be possible if the mass

of the vector-like pair M0 were around 1012÷15 TeV. This last scenario can be compatible

with susy breaking scale around some TeV’s.

3.1 Dangerous operators: no proton decay without right-handed Majorana

neutrini

Let us consider a complete and extended super-potential consisting of the R-parity preserv-

ing Yukawa terms of the MSSM (2.2), the new perturbative Yukawa terms of C and D, the

non-perturbative mixing mass term of the vector-like pair, and the interaction terms of an

extra Right-Handed neutrino N , with Majorana mass term and perturbative Yukawa term:

W = yuHuQU
c + ydHdQD

c + ylHdLE
c + yNHuLN

c + µHuHd (3.5)

+
1

2
mNN

2 + hCCQQ+ hD′HdQD
′c +M0D

′C

It is technically natural to neglect other R-parity violating terms, allowed by gauge sym-

metry. Indeed they do not arise in the quivers discussed later.

In order to integrate out the massive super-fields, N , Hu, Hd, C, D′, we have to

evaluate the field-dependent mass matrix MIJ(Φ), where Φ collectively denotes the light

super-fields, and invert it

Weff(Φ) =
1

2
F I(MF )−1

IJ (Φ)F J (3.6)

where FI = {FN , FHu , FHd
, FC , FD′} indicate the ‘massive’ F-terms. The relevant mass

– 8 –
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matrix is the inverse of9

MF =


mN L 0 0 0

L 0 µ 0 0

0 µ 0 0 Q

0 0 0 0 M0

0 0 Q M0 0

 (3.7)

Due to the non-trivial dependence on the superfields Q and L, direct inversion of (3.7)

becomes laborious but straight-forward with the result

(MF )−1 =



1
mN

0 − L
mNµ

LQ
mNM0µ

0

0 0 1
µ − Q

M0µ
0

− L
mNµ

1
µ

L2

mNµ2
− L2Q
mNM0µ2

0
LQ

mNM0µ
− Q
M0µ

− L2Q
mM0µ2

L2Q2

mM2
0µ

2
1
M0

0 0 0 1
M0

0

 (3.8)

A perturbative approach, alternative but equivalent to the exact inversion (3.8) is reported

in appendix.

On-shell the F-terms yield

FN = 0 (3.9)

FHu = QU c (3.10)

F = QDc + LEc (3.11)

FC = QQ (3.12)

FD′ = 0 (3.13)

Replacing their expressions into Weff(Φ), we obtain the following extra and potentially

dangerous operators (relevant coupling constants are omitted for simplicity):

W1st +W2nd =
1

µM0
QQQQU c +

L2

µ2mN
(QDc + LEc)2 (3.14)

W3rd =
L2Q

mNµ2M0
(QQ)(QU c + LEc) (3.15)

We report also the only one remaining at the 4th order:

W4th = εijkεi′j′k′(Q
iQj)

QkLLQi
′

µ2mNM2
0

(Qj
′
Qk
′
) (3.16)

In the limit of mN → ∞, all the dangerous operators are automatically suppressed. In

fact, only QQQQU c/µM0 remains, but this cannot lead to proton decay, as discussed

in [1]. Also combining such operator with other perturbative ones, one can check that all

the resulting effective operators are innocuous: there is no operator leading to a final state

9For simplicity, couplings and flavour structure are understood since they are not relevant in the subse-

quent discussion.

– 9 –



J
H
E
P
0
7
(
2
0
1
5
)
1
4
4

without at least one susy partner (so, no available phase space for proton decay), without

violation of any fundamental symmetry like charge, spin or fermion number.

In fact our models may be chosen not to violate Lepton number, by setting mN = 0, by

turning on fluxes or other means that prevent any E2-brane instanton that may generate

mN [58]. The price to pay is that a type I see-saw mechanism for the neutrino is not

allowed: we cannot generate a Majorana mass without fast proton decay. So, such processes

as neutrino-less double-β decay would provide evidence against these class of models. Of

course, a Dirac mass for the neutrino W = Hα
uLαN → Ly = φαHu

`tαν0 is allowed if R-H

sterile neutrini are present.

3.2 Flavour changing neutral currents

Extra contributions to FCNC’s may appear in our models, mediated by φC , in normal susy

hierarchy, as cited above. But these can be sufficiently suppressed, compatibly with n− n̄
limits.

Other possible contributions, directly connected to n − n̄ transitions, are strongly

suppressed in our model, as discussed in [1] (See figure 11–12 in [1]: note that extra quarks-

squarks conversions are understood that would further suppress the diagrams by the mass

of the gaugini). In particular, extra contributions to neutral meson-antimeson oscillations

like K0 − K̄0 are strongly suppressed, approximately by a power M−4
0 M−2

H̃
M−2
SUSY . The

choice of MSUSY , i.e. whether gaugini or squarks give extra suppressions, depends on the

diagram under consideration. Also in meson decays into two mesons, the suppressions are

of the same order: M−4
0 M−4

H̃
M−2
SUSY .

4 Standard Model like quivers generating a Majorana neutron

Our aim, in this section, is to identify possible (un)oriented quiver field theories for the

models introduced above, thus generating a neutron Majorana mass. As discussed above

the ingredients are un-oriented strings stretched between stacks of D6-branes, wrapping 3-

cycles in a Calabi-Yau 3-fold CY3. Thanks to the local CY condition, the resulting theory

preserves N = 1 supersymmetry. We will also need Ω-planes for anomaly cancellation

and E2-branes, wrapping (different) 3-cycles in order to generate some non-perturbative

interactions.

4.1 What is a quiver field theory?

In general, a quiver, a collection of arrows, represents a gauge theory, with its matter

(super)field content. In a quiver, gauge groups are represented by nodes, and the fields are

represented as (oriented) lines between the nodes. Adjoint representations start and end

on the same node, bi-fundamental representations (N, M̄) or (N̄,M) connect two different

nodes. A common example is U(N)× U(M) in the oriented case. In the un-oriented case

SO(N) and Sp(2N) arise from nodes invariant under a mirror-like involution Ω, associated

to the presence of Ω-planes. In this case, (anti)symmetric representations N(N± 1)/2) or

N̄(N̄± 1)/2) as well as (N,M) or (N̄, M̄) correspond to strings going through the mirror.

In the non-supersymmetric case, a quiver distinguishes scalars and fermions as different
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kinds of arrows between nodes. On the other hand, in a supersymmetric case, a quiver

becomes more economic: arrows are superfields, representing both scalars and fermions, and

nodes include gaugini as well as gauge fields.10 The number of arrows on a line correspond

to the number of generations or replicas of the same (super)field. A quiver encodes also the

possible interactions: closed paths (triangles, quadrangles, etc) that respect the orientation

of the arrows, represent possible gauge-invariant super-potential or interaction terms. An

effective low energy description of the dynamics of D3-branes at Calabi-Yau singularities

can be represented as a quiver field theory. In this case, standard D-brane stacks are

nodes, lines connecting the nodes are (un)oriented open strings stretching between two

D-brane stacks, Euclidean D-branes (instantons) are represented by extra or unoccupied

nodes, ‘dashed’ oriented lines connecting these with the original nodes represent modulini.

In the quiver notation, interactions between modulini and standard fields also correspond

to closed polygons (usually triangles) of lines and dashed lines.

A large class ofN = 1 superconformal QFTs can arise form D3-branes transverse to CY

singularities. Near the horizon, the geometry is AdS5 ×X , where X is an Einstein-Sasaki

space, base of a Calabi-Yau cone [59–62]. Quivers can be complicated, by the inclusion of Ω-

planes and flavor branes. These generically break superconformal invariance [63]. Including

such elements seems necessary for realistic particle physics model building [63, 73–76], in

open string theories [64, 72]. The brane system is located at the fixed point of the orientifold

involution, and the low energy dynamics is described, locally, by an un-oriented quiver

theory, with local tadpole cancellation for its consistency at the quantum level, i.e. absence

of chiral gauge and gravitational anomalies. An interesting example, studied in [77], is

the case of C3/Zn singularities, in the presence of non-compact D7-branes, fractional D3-

branes, and Ω-planes.

4.2 Explicit examples

An example of a simple quiver theory generating a Majorana mass for the neutron is shown

in figure 3. This consists in: one stack of three D6-branes producing the U(3) gauge group,

that includes the SU(3) color group and an extra U(1); two stacks of single D6-branes

producing two U(1) gauge groups, an Ω-plane identifying the D-brane stacks with their

images; one stack of two D6-branes, on the Ω-plane, producing an Sp(2) gauge group,

equivalent to the SU(2)L weak group. As usual in quiver convention, the gauge groups

(D-branes stacks) are identified with black circles (with a label 3 for U(3), a label 2 for

Sp(2) and labels 1, 1′ for U(1),U(1)′); the fields, living in the bi-fundamental representation

of two gauge groups (strings stretched between two stacks of D-branes) are represented as

arrows linking the two groups involved.

All the Standard Model super-fields are recovered in the present construction. Another

check for consistency is to verify that the standard Yukawa super-potential terms are

recovered. In this notation, these corresponds to closed circuits (oriented triangles) with

sides the super-fields coupled via the Yukawa terms. For example, it is straightforward

10For extended SUSY models with N = 2, 4 one can either use an N = 1 notation, with arrows repre-

senting chiral multiplets and nodes representing vector multiplets, or an N = 2 notation, with unoriented

lines representing hyper-multiplets and nodes representing vector multiplets.
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Figure 3. (Susy) Standard Model quiver generating a Majorana mass for the neutron.

to verify that Q,D,Hd form an oriented triangle respecting the orientation of the arrows.

So, we recover the standard Yukawa terms Hα
dQ

i
αD

c
i , H

α
d LαE

c, Hα
uQ

i
αU

c
i with their flavor

structure. The insertion of the 4th generation of D-quarks involves another arrow for

the consistency of the quiver. This arrow is compensated exactly by C, coming from

the line between the two images of U(3)’s. The balance of the arrows is fundamental to

have an anomaly-free model and tadpole cancellation.11 On the other hand, also the new

perturbative Yukawa terms necessary for neutron-antineutron transition are generated in

our model. Qi in the left side and Q̂j in the right side of figure 3 are closing a triangle

with the new exotic field Cij living at the intersection between U(3) and Û(3) (with the

hat, we denote the images in the right side of the Ω-plane in figure 3). As a consequence, a

perturbative Yukawa term CijQiQ̂j is generated. On the other hand, D′cQHd is generated

exactly as the corresponding standard one DcQHd.

Finally, the relevant exotic O(1) instanton E2, generating the non-perturbative mixing

between D′ and C, is also represented in figure 3. As dashed lines we also denote the

modulini living at the intersections between E2 and the U(3) and U(1)′ stacks of D6-branes.

The hypercharge in this model is the combination of 3 charges, coming from U(1)3,

U(1) and U′(1):

Y (Q) = c3q3 + c1q1 + c′1q
′
1 (4.1)

11It may look suspicious that Ω acts symmetrical on the D-brane stack producing Sp(2) and anti-

symmetrical on the two images of U(3). In the end this is the only choice compatible with the absence of

irreducible anomalies. A symmetric irrep (6) of SU(3) would lead to an inconsistency.
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We can fix the coefficients in such a way as to recover the standard hypercharges:

Y (Q) =
1

3
= c3 (4.2)

Y (U c) = −4

3
= −c3 − c′1 (4.3)

Y (Dc) = Y (D′c) =
2

3
= −c3 + c′1 (4.4)

Y (L) = −1 = c1 (4.5)

Y (Hd) = −Y (Hu) = −1 = −c′1 (4.6)

Y (Ec) = 2 = −c1 + c′1 (4.7)

Y (NR) = 0 = −c1 − c′1 (4.8)

Y (C) = −2

3
= −2c3 (4.9)

leading to the result

c3 =
1

3
, c1 = −1, c′1 = 1 → Y =

1

3
q3 − q1 + q1′ (4.10)

For the quiver in figure 3, it is possible to generate a mixing mass term for the Higgses

like µHuHd through supersymmetric bulk fluxes since Hu, Hd form a vector-like pair.

The quiver in figure 3 is free of tadpoles and the hypercharge U(1)Y is massless. As

discussed in [78, 79], a generic quivers has to satisfy two conditions in order to be anoma-

lies’/tadpoles’ free and in order to have a massless hypercharge. The first one associated

to tadpoles’ cancellations is ∑
a

Na(πa + πa′) = 4πΩ (4.11)

where a = 3, 1, 1′ in the present case, πa 3-cycles wrapped by “ordinary” D6-branes and

πa′ 3-cycles wrapped by the “image” D6-branes. Condition (4.11) can be conveniently

rewritten in terms of field representations

∀ a 6= a′ #Fa −#F̄a + (Na + 4)(#Sa −#S̄a) + (Na − 4)(#Aa −#Āa) = 0 (4.12)

where Fa, F̄a, Sa, S̄a, Aa, Āa are fundamental, symmetric, antisymmetric of U(Na) and their

conjugate. For Na > 1 these coincide with the absence of irreducible SU(Na)
3 triangle

anomalies. For Na = 1, these are stringy conditions that can be rephrased as absence of

‘irreducible’ U(1)3 i.e. those arising from inserting all the vector bosons of the same U(1)

on the same boundary. Let us explicitly check tadpole cancellation for the 3, 1, 1′ nodes:

U(3) : 2nQ − nD+D′ − nU − (3− 4)nC = 6− 4− 3 + 1 = 0 (4.13)

U(1) : 2nL − nE − nN = 6− 3− 3 = 0 (4.14)

U(1)′ : nE − nN + 3nD+D′ − 3nU + (1− 4)nΞ = 3− 3 + 3·4− 3·3− 3 = 0 (4.15)

Notice that anti-symmetric representations of U(1)’s, though trivial in that they don’t

correspond to any physical state, contribute to the tadpole conditions. In particular the
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arrow Ξ, connecting the node U(1)′ with its image, contributes to tadpole cancellation in

the node 1′.

The condition for a massless vector boson associated to U(1)Y , with Y =
∑

a caQa,∑
a

caNa(πa − π′a) = 0 (4.16)

can be translated into

caNa(#Sa −#S̄a + #Aa −#Āa)−
∑
b 6=a

cbNb(#(Fa, F̄b)−#(Fa, Fb)) = 0 (4.17)

One can verify that also these conditions are satisfied for each nodes in figure 3 for cY3 =

1/3, cY1 = −1, c
′Y
1 = 1. Once again for U(1)′ one can either include Ξ in the counting

or replace its contribution in terms of ‘fundamentals’ using tadpole cancellation. The

massive (anomalous) U(1)’s are associated to 3Q3 + Q1 and to 3Q3 − Q′1, as can be seen

computing the anomaly polynomial. It is amusing to observe that, removing D′, C and Ξ,

any combination of B − L = Q3/3−Q1 and TR = Q′1/2 would remain massless.

We should remark that the quiver represented in figure 3 could not generate extra

R-parity breaking terms λ′LQDc in (2.3) or λ′′′LQD′c, leading to a mixing of quarks

and leptons. Due to (anomalous) gauge symmetries no renormalizable R-parity violating

coupling can be generated. Dangerous higher-dimension operators, associated to polygons

with more than three sides, may appear that are either suppressed or altogether absent

since not all closed polygons necessarily correspond to interaction terms.

Let us note that quiver in figure 3 is inspired by a Pati-Salam models SpL(2)×SpR(2)×
U(4): it can be operatively obtained from a Pati-Salam-like quiver.

As an alternative, we can consider the quiver in figure 5, with right-handed neutrini

with Y = 0 stretching from U′(1) to U(1)′′. The Dirac mass term HuNL is present already

at the perturbative level, while the Majorana mass term mNN
2 can be generated by exotic

instantons, corresponding either to O(1) E2-brane instantons with double intersections with

both U(1) and U(1)′ to U(1)′′ or to Sp(2) E2-brane instantons with single intersection. (In

figure 5, we omit the presence of this third E2-instanton).

Despite the presence of N , lepton number is only violated non-perturbatively and no

additional R-parity breaking terms like µaLaHu with ∆L = 1 are present at the perturba-

tive level. Yet, integrating out N , Hu, Hd, C and D′c would lead to dangerous baryon and

lepton number violating terms as discussed in section 3.1.

We can assume that such a Majorana mass term is not even generated non-

perturbatively by turning on back-ground fluxes that would prevent E2-wrapping the rele-

vant 3-cycle if present at all. In the limit mN → 0 only QQQQU c/µM0 remains, but this

cannot lead to proton decay, as discussed in [1].

Since other R-parity violating terms in (2.3) are automatically disallowed at the per-

turbative level, our model is R-parity invariant to start with. Taking into account the

non-perturbative term QQQH indirectly generated through exotic instantons, the Majo-

rana mass of N and the µ-term µHuHd possibly generated by exotic instantons, one can
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expect new higher-order terms of the form

Wn>3 = yHuLHdDcQ
1

M2
S

HuLHdD
cQ+ yUcQHuHdDc

1

M2
S

HuU
cQHdD

c (4.18)

not present in the previous case. Clearly these operators are dangerous. For instance,

combining Wn>3 with the non-perturbative operator (2.9) with (4.18), yields

W ′eff =
1

MSM0µ
QQQQcU cDc +

1

MSM0µ
QQQLQDc (4.19)

where Qc denotes either U c or Dc. The first term can lead to neutron-antineutron tran-

sitions and di-nucleon decays pp → π+π+,K+K+, the second term to proton decay

p→ π0e+. The ratio of the proton life-time to the neutron-antineutron transition time is

τnn̄ '
M0

MS
τp−decay ' e−SE2 τp−decay (4.20)

This hierarchy is much higher than the present limit on D′−C vector-like pairs at colliders.

In fact, with τp−decay ' 1034÷35 yr and τnn̄ ' 3 yr, M0 ' 10−35MS � M0|exp, where

M0|exp ' 0.5 ÷ 1TeV is the direct bound from colliders discussed above. For di-nucleon

decay the situation is better, but also in this case the required tuning is extremely delicate,

considering that τdi−decay ' 1032 yr [80]. So, we conclude that a fine tuning of the coupling

constants yHuLHdDcQ, yHuUcQcHdDc close to zero would be necessary in this case.

Another class of un-oriented quivers where a Majorana mass could be generated non-

perturbatively, yet in a more contrived way is based on the quiver of figure 4. The hyper-

charge generator is Y = 2Q3/3−Q2. Many ‘standard’ Yukawa couplings, including HuU
cQ,

are disallowed in this case. They can be generated non-perturbatively as in U(5) D-brane

models, while undesired couplings such as LDcQ should be tuned to zero. Extra exotic

matter has to be considered in order to satisfy tadpoles’ cancellations and massless hyper-

charge conditions. We will not discuss this class of model any further here.

4.3 Extended quivers and CY singularities

The quivers, proposed in figure 3 or figure 4, have different numbers of arrows enter-

ing/exiting each node. As a consequence, these do neither seem to be systems of (frac-

tional) D3-branes transverse to a local Calabi-Yau singularity nor T-dual to these with

D6-branes. This condition seems to be a general rule before the Ω-projection of the sys-

tem. Figure 3 and figure 4 can be viewed as subsystems of larger quivers with empty

nodes, possibly corresponding to flavor branes or exotic instantons, that are not needed

for tadpole/anomaly cancellation. Yet one can restore in this way a perfect balance of en-

tering/exiting arrows and interpret the above quivers as projections of systems on a local

orbifold or CY singularity, in the presence of Ω-planes and Flavor Branes. Alternatively

one can introduce /remove arrows among the nodes that correspond to (chiral) super-fields

in anomaly/tadpole free combinations that can be made very massive by Yukawa couplings,

fluxes or exotic instantons.

In general, configurations, with flavor branes and orientifold planes Ω, can provide ex-

amples of realistic models for particle physics, containing SM. In these, the super-conformal
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Figure 4. Another example of quiver, inspired by U(5) models. In this model, not all standard

Yukawa couplings are generated. For simplicity, we show only the E2-instanton, non-perturbatively

generating HuU
cQ. We omit D′, C in this figure.

N = 4 theory is broken to an N = 1 theory. The low-energy dynamics is governed by

a local unoriented quiver theory, in which consistency at the quantum level depends on

local tadpole cancellation. For some examples of unoriented quivers with Flavor, it is

possible to show explicitly relations between tadpoles and anomalies in presence of flavor

branes [77, 81–83].

Among the variety of possibilities, we propose a simple extension of the quiver in

figure 3, shown in figure 5. We would like to stress that this is only one example among

different possible quivers. In this case the ‘flavor’ brane is an empty node (N0 = 0) in the

quiver invariant under Ω. As a consequence, one has to be careful about non-perturbative

effects possibly generated by an exotic instanton in this node. In the example shown in

figure 5 one can easily check that the putative E2 does not lead to any extra superpotential

term. Let us also observe that the extra arrows neither contribute to tadpoles nor to the

mass of the hypercharge vector boson.

5 Kähler potential, D-terms and perturbative corrections

So far we have focussed on the super-potential interactions, both perturbative and non-

perturbative ones. We have argued that barring explicit R-parity violating terms in the

Lagrangian, R-parity is broken dynamically by non-perturbative exotic instanton effects.

This implies that it is preserved in perturbation theory, at least in so far as we keep

supersymmetry unbroken. Since supersymmetry has to be broken by ‘soft terms’ one

may be worried about proton decay and other undesired effects. However, even before

addressing the issues related to soft SUSY breaking, one may wonder whether D-terms

and corrections to the Kähler potential may affect our analysis significantly. Although

little is known about quantum corrections to the Kahler potential and D-terms in the

intersecting D-brane models, some progress has been made in [84–87]. The main idea is to

use in a sense the locally supersymmetric version of the exact Novikov-Shifman-Vainstein-

Zakharov β function in order to derive an exact (perturbative) relation between corrections
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Figure 5. An example of a simple extension of the quiver in figure 3, with a Flavor brane (square).

to K(Φ,Φ†) and thus anomalous dimensions γ, related to wave-function renormalisation

ZΦ, and running of gYM and thus β function. Except for theories or sectors with at least

N = 2 susy, whereby the Kähler potential for the vector multiplet is directly related to the

holomorphic pre-potential and thus to the gauge couplings i.e. the gauge kinetic function

and can be computed, when susy is minimal i.e. N = 1, the relation is much looser.

In principle K and the D-terms in general, can get any sort of perturbative corrections.

However these are to be compatible with the ‘classical’ symmetries, which include R-parity,

baryon number B and Lepton number L. It is also known that standard ‘gauge’ instantons

can only generate terms violating ‘anomalous’ symmetries, while ‘exotic’ instanton can

violate non-anomalous ones, such as B − L in the (MS)SM. Depending on the number

of fermionic zero-modes both gauge and exotic instantons may correct the gauge kinetic

function(s), D-terms and the Kahler potential. It is rather reasonable to assume that such

non-perturbative corrections be absent or very small in the quiver models in our classes,

even when the string scale is close to — but smaller than — the Planck scale so much so

that the full super-gravity structure should be taken into account.

In summary, the only ‘seed’ of R-parity breaking and Baryon (and/or Lepton) number

violation seems to be the super-potential.

When supersymmetry gets broken, say in a hidden (strongly coupled) sector and then

communicated to the visible sector, the situation gets more intricate. The structure of the

low-energy Lagrangian, though constrained by the original supersymmetry, allows for dan-

gerous mixings. In the quiver models we consider, proton stability, as previously discussed,

largely relies on Lepton number conservation or on the fact that the final states should

contain at least one susy partner. In Pati-Salam like models, it’s built in via the selection

rule ∆B = 2.
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6 Conclusions

We have produced two examples of consistent quiver fields theories, indirectly generating

a Majorana mass term for the neutron by means of exotic instantons. These are free of

local tadpoles and thus irreducible anomalies.

The phenomenology exposed by this class of models is interesting both for neutron-

antineutron physics and LHC or other colliders, where a new vector-like pair could be

detected. On the other hand, the models we suggest can be tuned to suppress FCNC’s.

However, in order to prevent fast proton decay, Lepton number is not to be violated. An

alternative is to consider SO(10) GUT models or Pati-Salam like models in string theory

that can lead to ∆B = 2 processes but no ∆B = 1 [88–93]. Although perturbative

un-oriented strings do not admit spinor representations of orthogonal groups, P-S like

models are easy to embed in this context [95]. In SO(10) neutrino Majorana masses

are generated by Higgses in the 126 that involve (10,3,1) + (10∗,1,3) of the PS group

SU(4)×SU(2)L×SU(2)R. These cannot appear either in perturbative open string settings.

Yet combining (10,1,1) + (10∗,1,1) with (1,3,1) + (1,1,3) that are allowed one can

achieve the goal of first breaking SU(4), then SU(2)R and finally SU(2)L×U(1)Y to U(1)e−m
and get Majorana neutrini and neutrons with a stable proton. We plan to discuss this class

of models in a forthcoming paper.

In principle, it is possible to construct various quivers with flavor branes, generating

other fascinating effects for phenomenology. A complete classification could reserve us some

surprises. It remains to search Calabi-Yau compactifications leading to global embeddings

of models of this kind.

To conclude, the class of models considered represents an intriguing example of a

phenomenological effective model of string theory beyond the standard model, that could

be tested by the next generation of experiments.
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A Integrating out massive super-fields

We find it more intuitive to apply a perturbative approach that we report in the following

for pedagogical purposes.
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Setting MF = M0
F + E , with

M0
F =


mn 0 0 0 0

0 0 µ 0 0

0 µ 0 0 0

0 0 0 0 M0

0 0 0 M0 0

 (A.1)

E =


0 L 0 0 0

L 0 0 0 0

0 0 0 0 Q

0 0 0 0 0

0 0 Q 0 0

 (A.2)

the inverse mass matrix can be calculated as a perturbative series

M−1
F = (M0

F )−1 − (M0
F )−1E(M0

F )−1 (A.3)

+(M0
F )−1E(M0

F )−1E(M0
F )−1 + (M0

F )−1E(M0
F )−1E(M0

F )−1E(M0
F )−1 + . . .

In our case, combining (A.2) and the inverse of (A.1) one gets the first perturbation

(M0
F )−1E(M0

F )−1 =


0 0 L

mNµ
0 0

0 0 0 0 Q
µM0

L
µM0

0 0 0 0

0 Q
µM0

0 0 0

0 0 0 0 0

 (A.4)

then the second perturbation is

(M0
F )−1E(M0

F )−1E(M0
F )−1 =


0 0 0 LQ

mNµM0
0

0 0 0 0 0

0 0 L2

mNµ2
0 0

QL
mNµM0

0 0 0 0

0 0 0 0 0

 (A.5)

the third perturbation is

(M0
F )−1E(M0

F )−1E(M0
F )−1E(M0

F )−1 =


0 0 0 0 0

0 0 0 0 0

0 0 0 L2Q
mNµ2M0

0

0 0 L2Q
mNµ2M0

0 0

0 0 0 0 0

 (A.6)

At the fourth order, we recover the exact result cited above in the paper.
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