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ABSTRACT: We propose a deflected anomaly mediation scenario from SUSY QCD which
can lead to both positive and negative deflection parameters (there is a smooth transition
between these two deflection parameter regions by adjusting certain couplings). Such
a scenario can naturally give a SUSY spectrum in which all the colored sparticles are
heavy while the sleptons are light. As a result, the discrepancy between the Brookheaven
gu — 2 experiment and LHC data can be reconciled in this scenario. We also find that the
parameter space for explaining the g, — 2 anomaly at 1o level can be fully covered by the
future LUX-ZEPLIN 7.2 Ton experiment.
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1 Introduction

As an appealing candidate for the TeV-scale new physics, low energy supersymmetry
(SUSY) can give an explanation for the gauge hierarchy problem, realize the gauge coupling
unification and provide a viable dark matter candidate. It is remarkable that the 125 GeV
Higgs boson recently discovered by the ATLAS [1] and CMS collaborations [2] agrees per-
fectly with the mass prediction of 115-135 GeV by the Minimal Supersymmetric Standard
Model (MSSM). Actually, SUSY can satisfy all current experimental constraints [3, 4] and
especially can yield sizable contributions to the muon anomalous magnetic moment which
can solve the discrepancy between the E821 experiment at the Brookhaven AGS [5, 6] and
the Standard Model (SM) prediction [7-10].

On the other hand, so far no SUSY partners have been detected at the LHC and
the mass limits on squarks and gluinos mgz > 1.5TeV for mgz ~ mg and mgz 2 1TeV for
mg > mg have been obtained for the constrained MSSM (CMSSM) [11-14]. Together with
the heavy top squarks required by the 125 GeV Higgs boson mass (the mass bounds from
the direct LHC search are not so stringent for top squarks [15]), this indicates rather heavy
colored sparticles.! Considering the light uncolored sparticles (neutralinos, charginos and
smuons) around O(100) GeV required by the explanation of the muon g, — 2 anomaly [22,
23], this poses a tension for the popular CMSSM [24, 25]. So the SUSY spectrum from
SUSY breaking seems to have a intricate structure [26-33]. The origin of SUSY breaking
and its mediation mechanism are crucial for the phenomenology.

The anomaly mediated SUSY breaking (AMSB) [34, 35] is one of the most attractive
scenarios in supergravity. Not only the sparticle mass spectrum are predicted to be flavor
blind and thus automatically solves the SUSY flavor problem, but also the sparticle masses
at low energies are insensitive to any high energy theories [37] since the SUSY breaking is
mediated through the superconformal anomaly. Unfortunately, the AMSB scenario leads to
tachyonic sleptons so that the minimal theory must be extended. The deflected AMSB [36],

'"However, the recent ATLAS Z-peaked excess [16] may indicate a gluino as light as 800 GeV [17-21].



which introduces a messenger sector in the AMSB, can deflect the Renormalization Group
Equation (RGE) trajectory and give new contributions to the soft SUSY breaking terms.
The tachyonic slepton problems can be naturally solved by such a deflection.

The SUSY spectrum with heavy colored sparticles and light sleptons can be naturally
realized in such a deflected AMSB scenario, especially when the deflection parameter is
positive [39-41]. However, the positive-deflected AMSB model cannot be easily realized
and special efforts are need for model building. We propose in this paper a scenario from
SUSY QCD in which both positive and negative deflection parameters can be realized and
smoothly connected. Messenger sectors can be generated automatically without additional
assumptions. With positive-deflected parameters, the tension between g, —2 anomaly and
LHC data can be ameliorated in such a AMSB scenario.

This paper is organized as follows. In section 2, we briefly review the AMSB mech-
anism. In section 3, we propose a scenario which can realize both positive and negative
deflected AMSB from SUSY QCD-type theory. A smooth transition can occur for both
possibilities and all the contents can origin from a SUSY strong dynamics. In section 4,
we examine the parameter space of our deflected AMSB to explain both the LHC results
and the Brookhaven g, — 2 experiments. Section 5 contains our conclusions.

2 A brief review of AMSB

In the MSSM, the SUSY breaking effects can be communicated from some hidden sector
to visible sector through gauge [42-48] or gravitational [49-57] interactions. Gravitational
effects typically lead to sparticle masses from contact terms suppressed by powers of the
Planck scale. However, if the two sectors are completely sequestered and these contact
terms are absent, the sparticle masses of order mg3 5 /(1672) will still be generated due to the
superconformal anomaly.? Anomaly mediation can be regarded as the pure supergravity
contributions to the soft SUSY breaking terms. They are determined by the VEV of
the auxiliary compensator field Fy within the graviton supermultiplet. The couplings of
compensator F-term VEVs to the MSSM are purely quantum effects from the super-Weyl
anomaly. The supergravity effects can be studied in the superconformal tensor calculus
formalism by the introduction of compensator field [60]. The theory with the compensator
can be seen to be equivalent to ordinary non-conformal SUGRA after gauge fixing.

Assume that the only source of SUSY breaking comes from a non-vanishing value of
Fy4 of compensator field with

(¢) =14 6°Fy, (2.1)

and Fy, ~ m3/5. The couplings of ¢ are restricted by a spurion scale symmetry under which
¢ has a mass dimension of +1. Therefore, ¢ only appears in terms with dimensionful
couplings. Although there is no SUSY breaking at tree level, soft masses at loop level

emerges because the cut-off in a supersymmetric regulator is a dimensionful coupling which

2The analysis in [58] clarifies several physical aspects of AMSB and demonstrates that anomaly mediation
of SUSY breaking is in fact not a consequence of any anomaly of the theory [59].



must be made covariant. The Lagrangian of the visible sector can be written as
= /d492 (%) OfeVQ + /d29 [S (%) WaW, + AQ3] +he (2.2)
After the replacement

Z(K)->Z<A\/“%>, S(K)%S(A\;%), (2.3)

and the expansion in 6, the gauginos acquire masses

u :£d9—2 _ ng
AT 2dlnp ? T 1672

Fy, (2.4)

which are typically at the scale m3/,. The sfermions, on the other hand, acquire masses of

the form o )
g Y 2
M;=—=75,8+ 5,0 )IF 2.5
f 4 (3959"" ayﬂy> [Fol™ (2.5)
where at leading order
bg3 1 5 ) y , ,
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So they give
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Sfermion masses are in practice family independent but the squared slepton masses are
predicted to be tachyonic in this minimal scenario.

3 Deflected AMSB from SUSY QCD

Various attempts have been proposed to solve the tachyonic slepton problem for the
AMSB. For example, additional gravitational contributions or additional D-term contribu-
tions [38, 61] can be added to overcome this problem. It is also possible to generate large
Yukawa couplings for sleptons with additional Higgs doublets [62]. An elegant solution is
the ‘deflected anomaly mediation’ scenario [36] in which the soft spectrum is modified by
the presence of a light modulus (massless in the supersymmetric limit). Such a negatively
deflected anomaly mediation scenario tends to release the gaugino hierarchy at the elec-
troweak scale and drag down some of the squark masses, which is not favored by the null
search results of sparticles at the LHC. In order to have relatively heavy colored sparticles
and light sleptons, we need a positively deflected scenario [39] which gives a possible real-
ization with some particular choice of the power for the singlet S. In our following analysis,
we will show that such a positively deflected scenario can be fairly generic in SUSY QCD
type theory. The messenger fields, including their couplings, are also naturally obtained
from the SUSY QCD dynamics.

We start from a microscopic model of SU(N) SUSY QCD with Ng flavor, where we
require N+1 < Np < 3N so that the theory is asymptotic free in the UV limit and confines



at the scale A. The global symmetry of the theory is SU(Np)r, x SU(Np)r x U(1)y xU(1)g.
We can weakly gauge the subgroup of the global symmetry to accommodate the standard
model gauge group. In terms of SU(N) x SU(Ng)r x SU(Np)r x U(1)y x U(1)r group,
the quantum number of matter contents @;, Qj are given as

QiN(NaNFa 17 17(NF_N)/NF)7 QJN(Na 17NF7_17(NF_N)/NF)' (31)
The superpotential in the microscopic ‘electric’ description is introduced as the ISS-type [63]
W = Tl"(m()QzQz) s (3.2)

which below the confining scale A will have an alternative ‘magnetic’ description in terms
of SU(Np — N) gauge theory via Seiberg duality with the following superpotential

W = —hji’Tr® + hTrqdq, (3.3)

with ¢, ¢ and ® related to the dual baryon B and meson M, respectively. The parameters
are defined as

M Jah ) )
- h=¥ ——moA, An=A N.=Np—N,
\/&A’ A ) H moi\, F

ABN=Np p3Ne=Np — (_1)Ne {NF (3.4)

where o which determines the coupling h is a dimensionless parameter in the Kahler
potential for M.

It is well known that SUSY QCD of vector type does not break SUSY [64]. So this
theory leads to a metastable SUSY breaking vacua [63] and at the same time has SUSY
preserving vacua at large field value. In our scenario, SUSY breaking arises from the
anomaly mediation effects instead of the ISS-type rank conditions. So we will concentrate
on the originally SUSY preserving vacua and study the deviations from such a SUSY limit
after we taking into account the supergravity effects. Consequently, constraints on the
parameters € = i/A,, from the lifetime of the meta-stable vacuum in ordinary ISS model
will no longer be needed in our scenario.

After integrating out the mass terms h® of ¢, ¢, the low energy superpotential is

Wi = No (W AP det @) /N — 2 Te(@). (3.5)

The SUSY breaking effects from Fj, also prompts Fg to be nonzero at large values of ®.
Adding the compensator field into the previous superpotential, we have

W, = N, (hNFAiﬂnNc—NF det ‘I>) 1/Ne ¢3—NF/NC _ hﬂ2¢2T1“((I)) , (36)

where all fields within ® have Weyl weight of 1. When Fj is turned on, the tree-level
potential for the scalar ® is

N
V = |Fy, 2 = N, (BVFABNNF dot @)/ <3 - NF > Fy + 2hji2 F,Te(®), (3.7)



which gives the minimum condition of (®) még

2 (NFAE’;NF/NCmNF/Nc*l _ [PNF> (Np/N, — 1)NpA3~Ne/Nepy Ni /Ne—2

N
— NpA3~Ne/Nep N /Ne—1 (3 — NF) Fy +2ji*NpFy = 0. (3.8)

c

Here we use m = hm. This equation is a transcendental equation which can not be solved
exactly. For a large N, with N./Np — 1 (if the dual description is introduced as the

input), we have
Np — N.)A2
m = N = N FF A (3.9)
é

which gives
hW2Np(A7, — i*)Fy h®Np

Fg
— = ~ — F 1
D (Ve — No)AZ, (Ve — Ny o (3.10)

when A2, >> [i?. The low energy wave function only depends on d=0 /¢ with

Fy Ty h2Np

2 _"2 Fyrx——
*7 T (Np - N,

=% (3.11)

So we can see that we obtain a negatively deflected contribution.
In the limit of Np/N. — 3/2 which is Np — 3N in the original theory, we have

3 - .
5/\;”,{212;5(\/5)2 — (NpA3, + 2% Fy) Vm + Npji?AY? = 0. (3.12)
A positive solution for y/m requires
A= (NpA2, + 22F;)? — 603, FyNpji® > 0. (3.13)

So for A, > fi, F, we can obtain

4 o

m = §N%A%1/F£, mA N (3.14)

Here only the first solution depends on Fy and therefore we keep such a anomaly mediation
contribution solution. Then we can obtain the deflection parameter

Fy F 3
f = a‘b —Fym— (2h2 + 1> Fy. (3.15)

In this limit, the deflection parameter is still negative.

In the limit Np/N, — 3 with Np < 3N, (which amounts to Np > 3/2N and the
theory lies in the conformal window), the ‘magnetic’ theory will no longer be IR free.
However, the dynamically superpotential will still have the form (3.5). Following our
previous discussions, the resultant cubic equation takes the form

F
2m® — 20%m + QN—?; =0, (3.16)



in this limit which can always give negative solutions for m due to the continuous nature
of the cubic function. Numerical calculations indicate that the expression

Fp _ P’Np(m* - ji°)

o = = ch®F,,
m
~ 0.53h2Npji ~ 0.26h* F,, when m ~ —1.3i, Fy = 2Ngf,
~ 0.04h*Npji ~ 0.4h*Fy, when m =~ —1.02fi, Fy = 0.1Npf, (3.17)

always gives a coefficient ¢ less than 1. Therefore we can obtain the deflection parameter
for a large N,

_ o~ 12
= Ci>F¢ = oF, l~ch—1 (3.18)
with 0 < ¢ < 1. Depending on the size of the coupling h, the deflection parameter can be
positive or negative. We can see that there is a smooth transition between the positive and
negative deflected regions by adjusting the value of h for general choices of Np and N.. A
positive deflection corresponds to a relatively large coupling h.

The general results of the deflected anomaly mediation scenario are given by [36, 39]

i _& 9 _ 9 -1
a(p) 2 <8lnu d81n¢'|>a (1, @),

2 2
m?(ﬂ):—|F¢’ < 0 d 0 >ani(N,@)a

4 dlnp  Oln|®|
Fy 0 0
Ai(p) = —— — InZ;(u, ®). 1

=5 (5o~ dgorg ) W5 () (3.19)

The gaugino masses which acquire an additional contributions from gauge mediation are
given by

o
m () =~ By, 4 an), (3.20)

with b; being the beta functions for the gauge couplings. Similarly, the contribution for
sfermions are

m; () =2 Ca(r) <CZ(7’:))2 |Fs0:G (1, @) (3.21)
Gi
with
G(p, ®) = <J\£F — ]2[2%) 2d® + <J\;)Fd + 1)2, (3.22)
= ﬁ = [1 + %a(@) In (%jf’)] : (3.23)

Here the MSSM beta function are b; = (—33/5, —1, 3) and the quadratic Casimir for SU(N)
fundamental representation is Co(N) = (N? — 1)/2N. The trilinear couplings Ay related
to superpotential terms \;;jxQ;Q;Qr are given by Ay = (Ag, + Ag, + Ag, ) Aijr. with

dNp Fy

A) =26 [ =)+ “F (@(®) = )] £ + w52

3272°

(3.24)



The generations of higgsino mass p and the soft SUSY breaking parameter B, are not
straightforward and should be seen as an independent problem of anomaly mediation.
For example, they can be generated by a mechanism proposed in [65] with an additional
singlet S. Therefore, we will consider them as free parameters and do not give their explicit
expressions in terms of the model inputs.

4 Reconcile g, — 2 and LHC data in deflected AMSB
The SM prediction of the muon anomalous magnetic moment is
a;M = 116591834(49) x 1071, (4.1)
which is smaller than the experimental result of E821 at the Brookhaven AGS [66, 67]
Pt = 116592089(63) x 107" (4.2)
The deviation is then about 3o
Aay,(expt — SM) = (255 £ 80) x 10 1. (4.3)

SUSY can yield sizable contributions to the muon g, — 2 which dominately come from
the chargino-sneutrino and the neutralino-smuon loop diagrams. At the leading order the
analytic expressions for the SUSY contributions are presented in [68]. The g, —2 anomaly,
which is order 1072, can be explained for mgysy = O(100) GeV and tan 3 = O(10).

Now we turn to the calculations in the deflected AMSB. From the expression of de-
flected AMSB spectrum, the gaugino mass ratio can be enlarged in the positive deflected
scenario while diminished in the negative deflected case. The gaugino mass ratio at the
electroweak scale is given by

Ms:My: M ~12:12:116~1:1:1, (4.4)

with d = —1 and Np = 5. On the other hand, for the positively deflected AMSB scenario,
we have at the electroweak scale

Ms:My: My~ —48: —8:1.6 ~ -30: —5:1, (4.5)

with d = 1 and Np = 5. So we can see that the g, — 2 anomaly may be explained in the
positively deflected AMSB scenario [69].

We scan the parameter space of our deflected scenarios with 3 > d > —3, Np > 5
and the messenger scale M. The messenger scale M = ® plays a role of the intermediate
threshold between the UV cutoff and the electroweak scale. At the messenger scale M, the
gaugino soft masses are given by

mn,(00) = - g, ). (16)



The sfermion masses at the messenger scale M are

M5, az(M)

a3(M) 3 a3(M) 11

= 8G3 — —Gy — — 4.7
F2 (4m)?2 7 (am?z 2 (4m)2 50V (47)
m2 2 2
oy _ az(M) ai(M) 88
= 8G3 — —G 4.8
B2 a2 T Ty 0T )
m2 2 2
Dy _ az(M) ai(M) 22
_ _ i 4.
IR o
m2 2 2
=— -Gy — ——5—G 4.10
e (4m)2 272 (4m)? 50 " (4.10)
2 2 2
“E i) 198 e L (4.11)
| Fo? (4m)? 25 7 |Fyl? |Fy? '
mZ m? 2
8 L Yi 16 , 2, 13 5 2
= — — 3 —g; —6 4.12
|F¢’2 ’F(;S‘Q (167T2)2 < 3 93 + 92 + 1591 Ye | ( )
where we define )
Np N2\ , (Ng
Gi:(bi —g d” + bid—i-l . (4.13)
The stop soft masses should also include the yukawa contributions
m%LS mé yt2 16 2 2 13 2 2
3 _ L _ - g — 4.14
’F¢’2 ’F¢’2 (1671'2)2 < 3 g3 + 392 =+ 1591 6yt> ) ( )
m2 m?2 2
i Us Yi 16 5 5 13, 9
— -9 b —ge — . 4.1
The trilinear soft terms are given by
———— = —a3(M) + —as(M) + —a1 (M) — — (6] (M M 4.16
Ay 8 3 7
=—as(M)+ —as(M) + —a (M
(F,/27) gas(M) + 502(M) + z5ai(M)
1
= o (D + 6[yp (M) + |y (M)?) (4.17)
A 3 9 1
T = Zag(M) + —a1 (M) — — (3|yp(M)|? + 4|y, (M)|?) . 4.18
o) = 520N+ ggen(M) = o (P 4, (O)P) (4.18)

Note that here we use the notation g%, = 3g?/5. The tachyonic slepton problem can be
solved with the choice of d and Np.

The inputs should be seen as the boundary conditions at the messenger scale which,
after RGE running to the electroweak scale, should give the low energy spectrum. The free
parameters are chosen as d, N, Fy, M, tan 3. We scan over the following ranges of these
parameters:



e In our scenario, the low energy soft SUSY parameters are mainly determined by the
value of Fy. The values of ;1 and B,, are model-dependent and we leave them as free
parameters because we do not give an explicit mechanism in our scenario. Different
mechanisms for @ and B, will in general lead to different SUSY spectrum, e.g., the
new Kahler (or superpotential) terms introduced in [65] will slightly modify the SUSY
spectrum, such as m%lu, m%]d and the third generation squark soft parameters.

e Constraints from the gaugino masses indicate that Fi, cannot be too low. Thus, we
choose Fy 2 O(10TeV). On the other hand, a too heavy Fj will spoil the EWSB
and lead to too heavy Higgs mass. In our scan we take the value of Fy in the range
10TeV < Fy < 500TeV.

e The messenger scale M can be chosen to be below the typical GUT scale 1016GeV.
It should be heavier than the sparticle spectrum. The lower bound is chosen to be
O(10TeV). We note that possible Landau pole problem can possibly be avoided by
setting the dynamical scale of the ISS sector to be high enough in a way that is
compatible with phenomenological requirements.

e We choose N > 5and 3 > d > —3. The value of tan (3 is chosen to be 40 > tan 5 > 2.

e The parameter p is chosen to have the same sign as Ms because this case gives
positive SUSY contributions to g, — 2.

In our scan we take into account the following collider and dark matter constraints:

(1) The lower bounds of LEP on neutralino and charginos masses, including the invis-
ible decay of Z-boson. We require mg+ > 103GeV and the invisible decay width
I'(Z — Xoxo) < 1.71 MeV, which is consistent with the 20 precision electroweak

measurement F’i[fvn_SM < 2.0 MeV.

(2) For the precision electroweak measurements, we require the oblique ‘S, T, U’ param-
eters [70, 71] to be be compatible with the LEP/SLD data at 20 level [72].

(3) The combined mass range for the Higgs boson: 123GeV < M} < 127GeV from
ATLAS and CMS [1, 2.

(4) The relic density of the neutralino dark matter satisfies the Planck result Qpy =
0.1199 + 0.0027 [73] (in combination with the WMAP data [74]).

In figures 1-3, we show the samples that survive the above constraints. From these
figures we obtain the following observations:

(i) Our scenario can account for both the g, — 2 anomaly and current Higgs mass mea-
surement at the LHC. It is clear from figure 1 that in order to solve the g, — 2
anomaly at 20 level, the Higgs mass can reach 125.5 GeV (see the blue points in the
left panel). However, to solve the g, — 2 anomaly at 1o level, the Higgs boson mass
cannot be in the best range 125.09 + 0.24 GeV [75] (the red points in the left panel
are upper bounded by 124.5 GeV). Such results are not surprising because the stop
sector can give sizeable contributions to Higgs mass only if A; is large enough which
however is controlled by Fy in our scenario. As shown in the right panel of figure 1,
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Figure 1. The left and right panels show the scatter plots of the parameter space for our deflected
AMSB scenario and the CMSSM, respectively. All the points survive the collider and dark matter
constraints (1-4).
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Figure 2. Same as figure 1, but showing the deflection parameter d versus the messenger scale M
for our deflected AMSB scenario.

in the CMSSM the Higgs boson mass is upper bounded by 120 GeV in order to solve
the g, — 2 anomaly at 20 level. So, our scenario is much better in solving the g, — 2
anomaly and satisfying the Higgs mass measurement.

From figure 2 we see the relations between the deflection parameter d, the messenger
mass scale M and Np. We find that M is constrained to below 10 GeV if the g, —2
anomaly is solved at 2¢ level. This upper bound on M is lowered to 107 GeV if the
gy — 2 anomaly is solved at 1o level. A low Np value corresponds to a relatively high
deflection parameter d. Besides, d is constrained in the range 0.7 < d < 3. It is clear
from the right panel of figure 3 that the value of tan S lies in the range 10 < tan 5 < 20
in order to explain the muon g, — 2 discrepancy at 1o level. The value of Iy which
determines the whole sparticle spectrum is upper bounded by 17 TeV (25 TeV) at 1o
(20) level.

,10,
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Figure 3. Same as figure 1, but showing the spin-independent cross section of dark matter (the
lightest neutralino) scattering off the nucleon versus the dark matter mass in the left panel and Fg
versus tan 8 in the right panel. The LUX [76] limits and the XENONI1T [77] and LUX-ZEPLIN
7.2 Ton [78] sensitivities are plotted.

(iii) In the ordinary AMSB scenario, dark matter is mostly wino like which should be 2.7-
3 TeV to provide enough cosmic dark matter content. Since the direct detection cross
section for the pure wino is extremely small, below O(10~47cm?), it is very difficult
to discover such a wino dark matter via direct detections. In our positively deflected
AMSB scenario with Np > 4 and d > 1, the lightest gaugino will in general no longer
be wino. We can see from the gaugino input that wino is always heavier than bino
with large Np and positive d ~ O(1). So the dark matter in our scenario can be
either bino-like or higgsino-like. In this case, the dark matter may be accessible at
the direct detections. As shown in the left panel of figure 3, the parameter space for
explaining the muon g, — 2 discrepancy at 1o level can be fully covered by the future
LUX-ZEPLIN 7.2 Ton experiment [78].

The details for two benchmark points are shown in table 1 and table 2. The benchmark
points shown in these tables have d > 0 and d < 0, respectively.
Finally, we comment on the amount of fine tuning involved in our scenario. From the

well known condition

my ~ =2 (myy, + |p?) +

(m%{d — m%{u) , (4.19)

m?% /2
max(,u,,m%[u 771’%{(1/ tan? 3)

The value of m%{“ tend to negative at the EW scale because the input value for m%{u

2
tan? 3
with tan 8 ~ O(10).

the fine tuning is mainly determined by A=! ~

and qud at the messenger scale which are typically the slepton masses square should be
light, of order [O(100)GeV]?, to interpret the g, — 2 anomaly. Therefore, the EWSB is
induced in the usual way and the EWSB condition requires |u|? ~ —quu. Light as m%{u is,
the fine-tuning in our scenario is relatively small and our scenario could be advantageous
in comparison with the ‘ordinary’ models, such as the gluino-SUGRA [25], which can also

reconcile the LHC search results and g, — 2 anomaly.
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Np d M Fy tanf
10 1.59 1.09 x 10* | 1.33 x 10* 15.0
m%ﬂ m%d M, Mo Ms
—4.99 x 10° (GeV)? | —2.01 x 10* (GeV)? 84.18 465.4 3952
3545 3513 3512 495.8 167.7
MQL Mge , Mps . Au Ap
3276 2975 3487 —2672 —3262
Ap Ar Ay Ay (1, Bp)
—103.6 —132 —2481 —3150 (2281,165.7)
Br(B — Xg7) Br(BY — ptp™) G —2 O, h? op!
3.25 x 1074 3.40 x 1079 1.82 x 107 0.117 1.09 x 1072 pb
mp, myo ms Myt mg
124.4 84.1 100.2 464.5 3949.4

Table 1. The spectrum of a benchmark point with d > 0 at the EW scale. All the quantities with
mass dimension are in GeV.

Np d M Fy tanp
10 —2.66 4.57 x 105 | 1.83 x 104 12.2
m%lu m%d M, Mo Ms3
—7.48 x 10° 5.43 x 10° 476.8 1232 5230
may Mmge Mpe mr, Mpe
4487 4391 4385 976.4 398
mQL’g mUE’g mf)i,:s Ay Ap
4145 3695 4354 5194 6149
Ay A, Ay Ay (1, By)
945 919.8 3650 5651 (2795,245.8)
Br(B — Xgv) | Br(BY — ptu™) Gu — 2 O, h? opt
3.27 x 1074 3.38 x 1077 —2.0 x 10710 — —
Mp, m)%? msz mﬁ[ mg
125.6 476.8 383.5 1231.4 5229.1

Table 2. The spectrum of a benchmark point with d < 0 at the EW scale. All the quantities with
mass dimension are in GeV. In this case the LSP is 7 and thus Q, h? and 02! can not be calculated.
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5 Conclusion

We proposed a deflected anomaly mediation scenario from SUSY QCD which can lead to
both positive and negative deflection parameters. There is a smoothly transition between
these two deflection parameter regions by adjusting certain couplings. This scenario can
naturally have a SUSY spectrum with heavy colored sparticles and light sleptons. The dis-
crepancy between the Brookheaven g, —2 experiment and the LHC data can be reconciled.
We also found that the parameter space for explaining the muon g, — 2 discrepancy at lo
level can be fully covered by the future LUX-ZEPLIN 7.2 Ton experiment.
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