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1 Introduction and summary of results

Holographic techniques have been applied in recent years to a wide range of quantum sys-

tems exhibiting strong dynamics, both in high energy and condensed matter physics. Even

though the application of holography to most real-world systems is entirely phenomenolog-

ical, holographic models have been very successful in capturing certain qualitative aspects

of strongly coupled systems. Indeed, such models provide an effective theory description

for certain strongly coupled systems, completely on par with an effective field theory de-

scription, which, as is the case for non-BCS superconductors [1, 2], is often not known.

A class of phenomena that have attracted particular attention lately are phenomena

occurring in the presence of a strong magnetic field, and considerable effort has been

devoted to understanding such phenomena both within the field theory [3–12] and the

holographic [13–27] frameworks. In particular, the focus in [7, 10, 11, 21] was on condensed

matter phenomena, such as the Quantum Hall Effect [3–6, 15, 18, 19, 22, 28–32], while [9,

23, 27] study the effect of the magnetic field on heavy ion collisions and [8, 10, 13, 16, 17,

20, 26, 33] explore the Stark, chiral magnetic, chiral vortical, and Nernst effects. In fact,

many of these phenomena have topological origin, which allows for a unified understanding

of both condensed matter and heavy ion physics in strong magnetic fields [12].

Thermoelectric conductivities have been computed holographically from dyonic back-

grounds at finite temperature in the pioneering works [34–36]. The magnetic field plays a

crucial role in regulating the DC electric conductivity at finite charge density, removing the

Drude peak that appears in any system with translation invariance. Translation invariance

can also be broken in a number of other ways, leading to momentum relaxation (see e.g. [26]

and references therein). Numerical dyonic backgrounds with running scalars at zero and

finite temperature have also been considered recently in the study of the Fractional Quan-

tum Hall Effect [22]. Finally, dyonic backgrounds with a mass gap provide the interesting

possibility to study thermalization in heavy ion collisions in the presence of finite charge

density and magnetic field, extending previous works studying thermalization in confining

backgrounds as an initial value problem [37–40].

The purpose of the present work is twofold. Firstly, we put forward a general frame-

work for systematically extracting holographic data from asymptotically locally AdS dyonic

backgrounds in the presence of running scalars, based on a radial Hamiltonian formulation

of the bulk dynamics. Although the general techniques we present here are not new, we

feel that their power in simplifying the extraction of the holographic data has not been

appreciated enough. In this respect we emphasize three aspects of the holographic dictio-

nary: i) holographic renormalization and its importance to preserve the Ward identities,

ii) n-point functions can be extracted directly from the bulk solutions, without evaluating

the on-shell action, and iii) there are fundamental advantages in formulating the fluctua-

tion equations as first order Riccati equations. All three aspects fundamentally rely on a

Hamiltonian formulation of the dynamics. Indeed, there is a lot of millage one can get by

exploiting the manifest symplectic structure of the Hamiltonian dynamics. This is because

the local RG formulation of a quantum field theory [41], which is the natural language

in the context of holography, inherently equips the space of local couplings and operators
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with a symplectic structure.

As we shall see, correctly renormalizing the theory is crucial for holographically deriv-

ing Ward identities like (2.41) that relate 2- and 1-point functions, and which are required

for expressing all thermoelectric conductivities in terms of the electric ones only. Moreover,

the derivation of such identities becomes almost a triviality in the Hamiltonian language,

since they follow directly from the first class constraints reflecting local symmetries in the

bulk theory. Point ii) is important here as well. Namely, the 1-point functions are identi-

fied with the renormalized canonical momenta, in the presence of sources. This has a very

concrete consequence which leads to drastic simplification of the computation of e.g. the

2-point functions: the 2-point functions can be computed by further differentiation of the

1-point functions, without evaluating the on-shell action. This is linear response theory

applied directly to the bulk. Point iii) highlights the fact that the Riccati equations are

precisely equations for the response functions directly, eliminating the sources from the

problem at the very beginning. The advantages of doing this are that a) it becomes almost

trivial to correctly renormalize individual 2-point functions, computing only the terms that

contribute to a given correlator [42], b) the numerical solution of the fluctuation equations

is considerably simpler since only a single regularity condition must be imposed in the IR

and the arbitrary sources have already been eliminated from the problem [43], and c) the

fact that the Riccati equations follow from the Hamiltonian formulation of the dynam-

ics implies that the response functions are automatically compatible with the symplectic

structure of the theory, thus avoiding the necessity of evaluating the symplectic form to

correctly identify the modes in generic coupled systems [44].

The second aim of this paper is to present exact analytic dyonic backgrounds with run-

ning scalars, some of which are confining. Most of the holographic backgrounds that have

been used to study phenomena at finite charge density and magnetic field are known only

numerically, or in some asymptotic limit. This is particularly the case for backgrounds that

involve running scalars. Here, we present infinite classes of new analytic zero temperature

solutions corresponding to dyonic renormalization group (RG) flows. In fact, utilizing the

radial Hamiltonian formulation of the dynamics we derive a fake supergravity description

of such backgrounds, both at zero and finite temperature. In the zero temperature case,

and in the context of a bottom up model, this allows us to generate new solutions simply

by specifying a superpotential at will.

The model

The theory we consider is a generic bottom-up Einstein-Maxwell-Axion-Dilaton (EMAD)

model described by the action

S =
1

2κ2

∫
M

dd+1x
√
−g (R[g]−∂µφ∂µφ−Z(φ)∂µχ∂

µχ−V (φ, χ)−Σ(φ)FµνF
µν)+SGH+SCS ,

(1.1)

where κ2 = 8πG is Newton’s constant and

SGH =
1

2κ2

∫
∂M

ddx
√
−γ 2K, (1.2)
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is the Gibbons-Hawking term ensuring that this action admits a Hamiltonian description.

Moreover, SCS stands for a Chern-Simons term whose explicit form depends on the space-

time dimension. For d = 3, which we will mostly focus on, the Chern-Simons term takes

the form1

SCS = − 1

2κ2

∫
M

d4x
√
−g Π(χ)εµνρσFµνFρσ. (1.3)

All four functions V (φ, χ), Σ(φ), Z(φ) and Π(χ) specifying the action are a priori completely

general, provided that the theory admits asymptotically AdS solutions. These functions

can be restricted by demanding that the action (1.1) can be obtained as a consistent

truncation of a gauged supergravity action, or by imposing a specific global symmetry,

such as SL(2,Z) invariance as e.g. in [22]. The equations of motion following from (1.1)

take the form

Rµν −
1

2
Rgµν −

(
∂µφ∂νφ−

1

2
gµν∂ρφ∂

ρφ

)
+

1

2
gµνV

−Z
(
∂µχ∂νχ−

1

2
gµν∂ρχ∂

ρχ

)
− 2Σ

(
FµρFν

ρ − 1

4
gµνFρσF

ρσ

)
= 0, (1.4a)

2�gφ− Vφ − Zφ∂ρχ∂ρχ− ΣφFρσF
ρσ = 0, (1.4b)

2∇µ (Z∂µχ)− Vχ −Πχε
µνρσFµνFρσ = 0, (1.4c)

∇µ (ΣFµν + ΠεµνρσFρσ) = 0. (1.4d)

Summary of results

In this paper we focus on homogeneous background solutions of these equations of motion

with a finite electric charge density, a constant magnetic field, and running scalars. The

presence of the electric charge density and constant magnetic field imply that these back-

ground solutions break Lorentz invariance, even at zero temperature. One of our main

results is a completely general description of such backgrounds in terms of a fake super-

potential (3.14) and first order BPS-like flow equations (3.15). Since Lorentz invariance is

broken even at zero temperature, the fake supergravity description we develop here applies

equally to both zero temperature RG flows and finite temperature black hole solutions.

For solutions with zero charge density and magnetic field it reduces to the standard fake

supergravity for Poincaré domain walls at zero temperature, but it provides a non-trivial

generalization to black hole solutions. It should be emphasized that the fake supergravity

description we develop here follows from Hamilton-Jacobi (HJ) theory and it is quite dif-

ferent from the first order formulation in e.g. [45]. In particular, the superpotential (3.14)

depends in general on both the scalars and the warp factor. Moreover, once a solution of

the superpotential equation is given, the solutions of the equations of motion follow imme-

diately from the first order equations (3.15). This is quite distinct from the formulation

of [45], where the superpotential effectively facilitates a change of variables in order to

write the second order equations as a system of coupled first order equations.

1We write εµνρσ = eµae
ν
b e
ρ
ce
σ
d ε̃
abcd with ε̃n̂txy = 1, where n̂ is the Lorentz frame index corresponding to

the direction orthogonal to the boundary of ∂M in M.
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In the context of a bottom up model like the one we study here, where the functions

specifying the action are a priori arbitrary, the HJ origin of our fake supergravity descrip-

tion is particularly useful. In particular, one can very easily construct solutions of the

superpotential equation (3.14) which immediately lead to exact solutions of the equations

of motion. We present such an infinite class of exact RG flows in four dimensions specified

by an arbitrary function Wo(φ) in the superpotential (3.18) in section 3. These RG flows

interpolate between AdS4 in the UV and a hyperscaling violating geometry with exponents

1 < z < 3 and θ = z + 1 in the IR. By computing the Schrödinger potential of the fluc-

tuations we show that the subclass of flows with 1 < z < 2 has a discrete spectrum of

fluctuations, while the spectrum is continuous for 2 ≤ z < 3. A complete analysis of these

exact backgrounds will presented elsewhere [46].

Besides the description of general homogeneous backgrounds with finite charge density

and constant magnetic field, our aim in this paper is to provide a general framework for

computing the renormalized 2-point functions of the dual stress tensor, current and scalar

operators in any such background and for a generic model of the form (1.1). In this respect

we describe the holographic renormalization of any such theory in terms of a counterterm

potential U(φ, χ) that is obtained by solving a superpotential equation in a Taylor series

in φ and χ, and we explicitly write the renormalized 1-point functions in the presence of

sources in terms of the renormalized radial canonical momenta in (2.37) [47]. This iden-

tification not only provides general expressions for the VEVs in any dyonic background

in (3.32), but also allows one to extract the 2-point functions directly from the canonical

momenta, without the need to evaluate the on-shell action. Moreover, using this identi-

fication of the renormalized 1-point functions in terms of the canonical momenta enables

us to immediately identify the first class constraints in the Hamiltonian formalism, which

reflect local symmetries in the bulk, with the Ward identities (2.38), (2.39), and (2.40),

reflecting global symmetries in the dual field theory. Since these Ward identities hold for

the 1-point functions in the presence of arbitrary sources, differentiating with respect to

the stress tensor and current sources one obtains two Ward identities for the 2-point func-

tions, which are given in (2.41). As we show in section 5.2, these Ward identities together

with the Kubo formulas allow one to express all thermoelectric conductivities in terms

of the electric conductivities, generalizing the corresponding result of [36] for the dyonic

Reissner-Nordström black hole to more general backgrounds including running scalars.

Another important aspect of our general framework for computing the renormalized 2-

point functions is that we formulate the fluctuation equations in terms of first order Riccati

equations instead of second order linear equations. The advantage of the Riccati equations

is that they are differential equations for the response functions directly, with only one

integration constant per equation, which can be fixed by imposing an IR condition. This

drastically simplifies both the holographic renormalization of the 2-point functions [42] and

especially the numerical solution of the fluctuation equations, since the arbitrary source

is factored out of the problem from the onset [43]. For the finite frequency and zero spa-

tial momentum fluctuations we consider here the fluctuation equations reduce to a single

Riccati equation (4.15) (or equivalently (6.41)), from which all conductivities can be de-

termined. This Riccati equation generically is not integrable, but some progress can be

– 5 –
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made by considering various limiting cases. Particularly interesting is the small frequency

expansion which we determine up to (and including) O(ω3) in section 6.4. The correspond-

ing result we obtain for the conductivities is given in (6.34) and agrees completely with

that obtained in [34] for the dyonic Reissner-Nordström black hole. Moreover, we find

that using two different Padé approximants based on the small frequency expansion of the

response functions (6.33) captures completely both the hydrodynamic and small magnetic

field approximations discussed in [36], including the location of the poles closest to the

origin of the complex frequency plane.

Organization of the paper

The rest of the paper is organized as follows. In section 2 we present the radial Hamiltonian

formulation of the dynamics described by the action (1.1) and we set up the algorithm for

holographically renormalizing any such theory. This leads to a holographic derivation of

the Ward identities, which we later use to relate various 2-point functions and conductivi-

ties. In section 3 we discuss a general class of homogeneous backgrounds with finite charge

density, constant magnetic field and running scalars and we develop a fake supergravity

formalism that allows us to construct an infinite family of RG flows in four dimensions.

Moreover, general expressions for the renormalized vacuum expectation values (VEVs)

corresponding to these backgrounds are derived. Section 4 contains the analysis of the

fluctuation equations around the backgrounds described in section 3 for certain class of

time dependent fluctuations at zero spatial momentum. In particular, after decoupling the

fluctuation equations following [22, 34, 36], we reduce the system to a single decoupled

first order Riccati equation [42, 43]. In section 5 we show how the renormalized 2-point

functions can be extracted directly from the radial canonical momenta and the solution of

the Riccati equation, showing that evaluating the on-shell action is a completely redundant

step. Moreover, we discuss how the various conductivities are related to the 2-point func-

tions of the current and stress tensor through the Kubo formulas, and derive the relations

implied by the Ward identities. Section 6 addresses the solution of the Riccati equation

in various limiting cases. In particular, we derive the UV and IR asymptotic expansions

and obtain general perturbative solutions for small and large frequency. All the machin-

ery developed in the previous sections is applied to the dyonic Reissner-Nordström black

hole in four dimensions in section 7, where we solve numerically the Riccati equation and

compare with the various approximate solutions discussed in section 6. We end with some

concluding remarks in section 8, and three appendices where we provide a few more ex-

amples of exact RG flows in various dimensions, as well as the Gauss-Codazzi and general

fluctuation equations following from the action (1.1).

2 Radial Hamiltonian formalism and the holographic dictionary

The on-shell action is usually the starting point for any holographic computation since

this is identified with the generating function of the dual field theory [48, 49]. However,

unless one wants to evaluate the free energy of a particular state, corresponding to the

value of the (renormalized) on-shell action, evaluating the on-shell action is a redundant

– 6 –
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step since the radial canonical momenta are holographically identified with the one-point

functions of the dual operators [47], which contain the same information. In particular,

the vacuum expectation values (VEVs) of the dual operators correspond to the values of

the (renormalized) radial momenta on a particular solution, while higher-point functions

are obtained by successively differentiating the canonical momenta with respect to the

sources. All n-point functions can therefore be extracted directly from the bulk solutions,

without the need to evaluate the on-shell action. This is especially important in Lorentzian

signature where it is often much harder to evaluate the on-shell action as a function of

the sources than the canonical momenta. Moreover, the radial Hamiltonian formulation

of the bulk dynamics allows one to most straightforwardly carry out the procedure of

holographic renormalization, either fully non-linearly [47, 50, 51] or perturbatively to the

desired order that contributes to the n-point functions one wants to renormalize [42].

Finally, the holographic Ward identities follow immediately from the radial Hamiltonian

dynamics since they correspond to first class constraints.

In order to formulate the bulk dynamics in a Hamiltonian language we begin by decom-

posing the bulk variables in components along and transversely to the radial coordinate,

as in the standard ADM treatment of gravity [52], except that the Hamiltonian time now

is the radial coordinate instead of real time. In particular the bulk metric is written in

the form

ds2 = (N2 +NiN
i)dr2 + 2Nidrdx

i + γijdx
idxj , (2.1)

in terms of the lapse function N , the shift function Ni and induced metric γij , while the

U(1) gauge field is decomposed as

A = adr +Aidx
i. (2.2)

In terms of these variables the bulk Ricci scalar becomes

R[g] = R[γ] +K2 −KijK
ij +∇µ (−2Knµ + 2nν∇νnµ) , (2.3)

where Kij is the extrinsic curvature given by

Kij =
1

2N
(γ̇ij −DiNj −DjNi) , (2.4)

and nµ =
(

1
N ,−

N i

N

)
is the unit normal vector to the constant r hypersurfaces. Here and

in the following a ˙ denotes a derivative with respect to the radial coordinate r and Di

represents the covariant derivative with respect to the induced metric γij . Inserting these

expressions in the action (1.1) and using the identities

√
−g = N

√
−γ, gµν =

(
1
N2 −N i

N2

−N i

N2 γ
ij + N iNj

N2

)
, (2.5)
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we find that the action can be written in the form S =
∫

drL and SCS =
∫

drLCS with

L =
1

2κ2

∫
ddxN

√
−γ
{
R[γ] +K2 −KijK

ij − 1

N2

(
φ̇−N i∂iφ

)2
− Z(φ)

N2
(χ̇−N i∂iχ)2

− 2

N2
Σ(φ)γij(Ȧi − ∂ia−NkFki)(Ȧj − ∂ja−N lFlj)

−γij∂iφ∂jφ− Z(φ)γij∂iχ∂jχ− Σ(φ)FijF
ij − V (φ, χ)

}
, (2.6)

and provided d = 3,

LCS = − 1

2κ2

∫
d3x
√
−γ4Π(χ)εijk(Ȧi − ∂ia)Fjk. (2.7)

This Lagrangian is the basis of the radial Hamiltonian analysis.

The canonical momenta following from this Lagrangian are

πij =
δL

δγ̇ij
=

1

2κ2

√
−γ
(
Kγij −Kij

)
, (2.8a)

πφ =
δL

δφ̇
= − 1

κ2

√
−γ
N

(
φ̇−N i∂iφ

)
, (2.8b)

πχ =
δL

δχ̇
= − 1

κ2

√
−γ
N

Z(φ)
(
χ̇−N i∂iχ

)
, (2.8c)

πi =
δL

δȦi
= − 2

κ2

√
−γ
N

Σ(φ)
(
γij(Ȧj − ∂ja)−NjF

ji
)
− 2

κ2

√
−γ
(

Π(χ)εijkFjk

)
, (2.8d)

while the canonical momenta conjugate to the fields N , Ni, and a vanish identically since

the corresponding velocities do not appear in the Lagrangian. Note that the only contri-

bution of the Chern-Simons term is the last term in the canonical momentum conjugate

to the gauge field Ai. Clearly this term is present only for d = 3. Using these expressions

for the canonical momenta we can evaluate the Legendre transform of the Lagrangian to

obtain the radial Hamiltonian, namely

H =

∫
ddx

(
πij γ̇ij + πφφ̇+ πχχ̇+ πiȦi

)
− L =

∫
ddx

(
NH+NiHi + aF

)
, (2.9)

where

H =− κ2

√
−γ

(
2

(
γikγjl −

1

d− 1
γijγkl

)
πijπkl

+
1

4
Σ−1(φ)

(
πi+

2

κ2

√
−γΠ(χ)εi

klFkl

)(
πi+

2

κ2

√
−γΠ(χ)εipqFpq

)
+

1

2
Z−1(φ)π2

χ+
1

2
π2
φ

)
+

√
−γ

2κ2

(
−R[γ] + Z(φ)∂iχ∂

iχ+ Σ(φ)FijF
ij + V (φ, χ) + ∂iφ∂

iφ
)
, (2.10a)

Hi =− 2Djπ
ij + F ij

(
πj +

2

κ2

√
−γΠ(χ)εj

klFkl

)
+ πχ∂

iχ+ πφ∂
iφ, (2.10b)

F =−Diπ
i. (2.10c)
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Since the canonical momenta for the fields N , Ni and a vanish identically, the corresponding

Hamilton’s equations imply the constraints

H = Hi = F = 0. (2.11)

These are first class constraints, reflecting the diffeomorphism and gauge invariance of

the bulk theory, and imply that the Hamiltonian is identically zero on-shell. These first

class constraints are the starting point for the analysis of the bulk dynamics and for the

construction of the holographic dictionary.

As is well known from HJ theory, the first class constraints (2.11) together with

the condition that the canonical momenta be expressible as gradients of a functional

S[γ,A, χ, φ], i.e.

πij =
δS
δγij

, πi =
δS
δAi

, πχ =
δS
δχ
, πφ =

δS
δφ
, (2.12)

are completely equivalent to the full set of second order equations of motion. In particular,

inserting these expressions for the canonical momenta in the constraints (2.11) leads to

a set of functional differential equations for the function S[γ,A, χ, φ]. These are the HJ

equations for Hamilton’s principal function S[γ,A, χ, φ], which is also identified with the

on-shell action evaluated with a radial cut-off. The most general solution of the second order

equations of motion is described by a complete integral of the HJ equations, i.e. a solution

that contains as many integration ‘constants’ (in this context functions of the transverse

coordinates) as generalized coordinates. These integration constants can be thought of as

the ‘initial momenta’ — the renormalized momenta denoted with a ̂ in (2.36)– and as we

shall see are identified holographically with the renormalized 1-point functions.

Given a complete integral of the HJ equations one can immediately write down first

order BPS-like flow equations by identifying the expressions (2.8) and (2.12) for the canon-

ical momenta. With the gauge choice N = 1, Ni = 0 and a = 0, which we will adopt from

now on, these flow equations become

γ̇ij =− 4κ2

√
−γ

(
γikγjl −

1

d− 1
γijγkl

)
δS
δγkl

, (2.13a)

φ̇ =− κ2

√
−γ

δS
δφ
, (2.13b)

χ̇ =− κ2

√
−γ

Z−1(φ)
δS
δχ
, (2.13c)

Ȧi =− κ2

2
√
−γ

Σ−1(φ)γij
δS
δAj
− Σ−1(φ)Π(χ)εi

jkFjk. (2.13d)

Integrating these first order equations leads to another set of integration constants, which

are identified holographically with the sources of the dual operators. The resulting space

of solutions is parameterized by 2n integration constants, where n is the number of gener-

alized coordinates, and hence spans the full space of solutions of the second oder equations

of motion. This observation is practically very useful since not only it drastically sim-

plifies the procedure of holographic renormalization, but it also often leads to new exact

background solutions.
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2.1 Holographic renormalization

Holographic renormalization [47, 50, 51, 53–55] can be understood as the systematic proce-

dure for determining the boundary terms required to render the bulk variational problem

at infinity well posed. Once the variational problem is well posed the finiteness of the on-

shell action is automatic [44, 56]. In fact, the boundary term required is always a specific

solution of the radial HJ equation, not only for asymptotically locally AdS spaces [50], but

even more generally [44]. This should not be surprising given that a complete integral S of

the HJ equations coincides with the on-shell action evaluated on the most general solutions

of the equations of motion. In particular, inserting an asymptotic complete integral in the

flow equations (2.13) and integrating them asymptotically is a very efficient way to derive

the Fefferman-Graham asymptotic expansions and their generalizations for non asymptot-

ically AdS spaces. The key object therefore in renormalizing the theory and constructing

the holographic dictionary is the general asymptotic solution of the HJ equation.

If the bulk theory is renormalizable, all the ultraviolet (in the QFT sense) divergent

terms in this general asymptotic solution of the HJ equations must be local in transverse

derivatives, since they correspond to the local counterterms required to cancel the ultra-

violet divergences of the on-shell action. The constraints Hi = 0 and F = 0 respectively

impose invariance under transverse diffeomorphisms and U(1) gauge transformations. It

follows that as long as we look for a local, gauge and transverse diffeomorphism invari-

ant functional S[γ,A, χ, φ], the only equation that we have to solve is the Hamiltonian

constraint H = 0.

In fact we only need to solve the Hamiltonian constraint asymptotically, but in a

covariant way, i.e. every term should be a function of the induced fields, without any

explicit radial dependence.2 This can be achieved by formally expanding the functional

S[γ,A, χ, φ] in a covariant expansion in eigenfunctions of a suitable functional differential

operator δ. For asymptotically locally AdS spaces this can be the dilation operator [47],

but the form of this operator depends on the various functions of the scalars φ and χ that

parameterize the Lagrangian, since these determine the leading asymptotic behavior of the

induced fields. If we do not specify the explicit form of these functions, or even if we want

to consider non asymptotically AdS backgrounds, then a covariant expansion still exists

but in eigenfunctions of the operator [57]

δγ =

∫
ddx2γij

δ

δγij
. (2.14)

In the absence of a vector field this operator counts transverse derivatives, but this is not

strictly the case when there is a Maxwell field in the theory. What (2.14) always counts is

the number of inverse induced metrics, γij , which coincides with the number of derivatives

in the absence of a Maxwell field. When the solution of the HJ equations can be expanded

both in eigenfunctions of the dilatation operator and of δγ , then the two expansions are

2Keeping the boundary dimension d arbitrary allows one to write the conformal anomaly in covariant

form as well, without any explicit dependence on the radial cut-off. However, the cut-off dependence emerges

via dimensional regularization by replacing the pole in the coefficients of the asymptotic solution of the HJ

equations with the radial cut-off [47].
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simple rearrangements of each other. For example, different powers of the scalars would

appear at different orders in the expansion according to the dilatation operator while they

would all be part of the zero order solution of the expansion in eigenfunctions of δγ .

Before we proceed with the recursive solution of the HJ equation H = 0 for the function

S, a few comments are in order regarding the role of the Chern-Simons term. Note that

using (2.12) we can write

πi+
2

κ2

√
−γΠ(χ)εiklFkl=

1

κ2

√
−γΠ′(χ)εijkAj∂kχ+

δ

δAi

(
S+

1

κ2

∫
d3x
√
−γΠ(χ)εijkAiFjk

)
.

(2.15)

It follows that if and only if Π(χ) is a constant then the effect of the Chern-Simons term

is simply a shift of the on-shell action S according to

S → S̃ = S +
1

κ2

∫
d3x
√
−γΠ(χ)εijkAiFjk, (2.16)

where S̃ satisfies the HJ equation derived from a Lagrangian without a Chern-Simons

term. Crucially, this boundary term is gauge-invariant if and only if Π(χ) is a constant. In

that and only that case therefore we can simply determine S by solving the Hamiltonian

constraint in the absence of a Chern-Simons term and then replace S with S̃. For non-

constant Π(χ), however, the Hamiltonian constraint in the presence of the Chern-Simons

term cannot be reduced to that without such a term. Hence, to determine S one must solve

directly the Hamiltonian constraint in (2.10). Nevertheless, we only need to determine the

divergent part of the on-shell action S and it is straightforward to show that provided

the equations of motion admit asymptotically locally AdS solutions the Chern-Simons

term is asymptotically finite.3 For the purpose of determining the boundary counterterms

therefore, even for non-constant Π(χ), we can always solve the Hamiltonian constraint

corresponding to the theory without a Chern-Simons term. As we shall see though, the CS

term leads to a gravitational anomaly in the holographic Ward identities.

In order to construct the asymptotic solution of the HJ equation for general potentials

in the Lagrangian we therefore proceed by formally expanding S as

S = S(0) + S(2) + · · · , (2.17)

where each term S(2k) in this expansion is an eigenfunction of δγ with eigenvalue d − 2k,

i.e.

δγS(2k) = (d− 2k)S(2k). (2.18)

The zero order term S(0) must contain no transverse derivatives and be gauge invariant

and so it must take the form

S(0) =
1

κ2

∫
ddx
√
−γU(φ, χ), (2.19)

for some function of the scalars U(φ, χ). Inserting this in the Hamiltonian constraint H = 0

leads to the ‘fake superpotential’ equation

U2
φ + Z−1(φ)U2

χ −
d

d− 1
U2 = V (φ, χ), (2.20)

3This would not necessarily be the case for a massive gauge field though. See e.g. [58].
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where the subscripts denote partial derivatives with respect to the corresponding field.

In asymptotically locally AdS spacetimes this PDE can be solved by seeking a solution

U(φ, χ) in the form of a Taylor expansion, with the quadratic term determining the scaling

dimension of the dual operator. In particular, for asymptotically locally AdS spacetimes

the potential takes the form

V (φ, χ) = −d(d− 1)

L2
+m2

φφ
2 +m2

χχ
2 + · · · , (2.21)

where the scalar masses must satisfy the Breitenlohner-Freedman bound [59]

m2
φL

2, m2
χL

2 ≥ −
(
d

2

)2

, (2.22)

and are related to the dimensions ∆φ and ∆χ of the dual operators as

m2
φL

2 = −∆φ(d−∆φ), m2
χL

2 = −∆χ(d−∆χ). (2.23)

The possible solutions of (2.20) are of the form

U(φ, χ) =
d− 1

L
+

1

2L
µφφ

2 +
1

2L
µχχ

2 + · · · , (2.24)

where µφ and µχ can each take two values, respectively ∆φ or d−∆φ and ∆χ or d−∆χ.

However, only a solution of the form

U(φ, χ) =
d− 1

L
+

1

2L
(d−∆φ)φ2 +

1

2L
(d−∆χ)χ2 + · · · , (2.25)

can be used as counterterms [42] and therefore one must seek a solution of this form.

Once the relevant solution U(φ, χ) is determined by solving (2.20), the higher order

terms S(2k) are determined through the linear equations obtained by substituting the

formal expansion (2.17) in the Hamiltonian constraint, namely4

2κ2

√
−γ

(
2π(0)

i
jπ(2k)

j
i −

2

d− 1
π(0)π(2k) +

1

2
πφ(0)πφ(2k) +

1

2
Z−1πχ(0)πχ(2k)

)
= R(2k), (2.26)

where

π(2k)
ij =

δS(2k)

δγij
, π(2k)

i =
δS(2k)

δAi
, π(2k)χ =

δS(2k)

δχ
, π(2k)φ =

δS(2k)

δφ
, (2.27)

and the inhomogeneous source of this linear equation is given by

R(2) =

√
−γ

2κ2

(
−R[γ] + Z(φ)∂iχ∂

iχ+ ∂iφ∂
iφ
)
,

R(4) =

√
−γ

2κ2
ΣFijF

ij − κ2

√
−γ

(
2π(2)

i
jπ(2)

j
i−

2

d−1
π(2)

2+
1

4
Σ−1π(2)

iπ(2)i+
1

2
πφ(2)

2+
1

2
Z−1πχ(2)

2

)
,

R(2k) =− κ2

√
−γ

k−1∑
`=1

(
2π(2`)

i
jπ(2k−2`)

j
i −

2

d− 1
π(2`)π(2k−2`) +

1

4
Σ−1π(2`)

iπ(2k−2`)i

+
1

2
πφ(2`)πφ(2k−2`) +

1

2
Z−1πχ(2`)πχ(2k−2`)

)
, k > 2. (2.28)

4As discussed earlier, we use the Hamiltonian constraint without a Chern-Simons term since this term

only contributes at finite order in the on-shell action.

– 12 –



J
H
E
P
0
7
(
2
0
1
5
)
0
9
4

Using the explicit form (2.19) of the leading order solution S(0) these recursive equations

become

− 2

d− 1
Uπ(2k) + Uφπφ(2k) + Z−1Uχπχ(2k) = R(2k). (2.29)

This can be simplified further by writing

S(2k) =

∫
ddxL(2k), (2.30)

and using the identity

δγijπ(2k)
ij + δAiπ(2k)

i + δφπφ(2k) + δχπχ(2k) = δL(2k) + ∂iv(2k)
i, (2.31)

for some vector field v(2k)
i. Applying this identity to the variations under δγ and using the

freedom to define L(2k) up to a total derivative we arrive at the relation

2π(2k) = (d− 2k)L(2k), (2.32)

which allows us to simplify the recursion relations to(
Uφ

δ

δφ
+ Z−1Uχ

δ

δχ

)∫
ddxL(2k) −

(
d− 2k

d− 1

)
UL(2k) = R(2k). (2.33)

These linear functional PDEs can be solved systematically following the procedure devel-

oped in [57]. Importantly, only the inhomogeneous solution, which is unique, contributes

to the divergences. The homogeneous solutions are ultraviolet finite. The counterterms

are therefore defined as

Sct := −
[d/2]∑
k=0

S(2k). (2.34)

Carrying out this calculation keeping the dimension d as a parameter one finds that cer-

tain terms contain a pole at particular dimensions, e.g. 1/(d − 4). Such terms lead via

dimensional regularization to cut-off dependence according to the replacement rule

1

d− 4
→ ro, (2.35)

where ro is the radial cut-off in the canonical radial coordinate r [47, 57]. The sum of all

such terms is then identified with the holographic conformal anomaly [53].

Given the local counterterms Sct the renormalized action (evaluated at a radial cut-off)

is given by

Sren := S + Sct =

∫
ddx

(
γij π̂

ij +Aiπ̂
i + φπ̂φ + χπ̂χ

)
, (2.36)

where the quantities π̂ij , π̂i, π̂φ and π̂χ are arbitrary functions that correspond to inte-

gration ‘constants’ of the HJ equation. They correspond to the renormalized canonical
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momenta and can be identified with the renormalized 1-point functions of the dual opera-

tors through the relations5

〈T ij〉 = − 2√
−γ

δSren
δγij

= − 2√
−γ

π̂ij , 〈J i〉 =
1√
−γ

δSren
δAi

=
1√
−γ

π̂i,

〈Oφ〉 =
1√
−γ

δSren
δφ

=
1√
−γ

π̂φ, 〈Oχ〉 =
1√
−γ

δSren
δχ

=
1√
−γ

π̂χ.

(2.37)

It should be emphasized that these are the 1-point functions in the presence of arbitrary

sources and so any higher-point function can simply be obtained from these by further

functional differentiation. These expressions are central to our subsequent analysis, and

more generally to the holographic dictionary, since they allow one to extract the n-point

functions of the dual operators directly from the radial canonical momenta, i.e. from the

bulk solution of the equations of motion, without having to evaluate the on-shell action in

terms of the sources.

2.2 Holographic Ward identities

The identification of the renormalized 1-point functions with the renormalized canonical

momenta in (2.37) allows us to translate the constraints Hi = 0 and F = 0 into Ward iden-

tities for the 1-point functions in the presence of arbitrary sources. Since these constraints

are linear in the canonical momenta, they hold at each order of the expansion (2.17) in

eigenfunctions of the operator δγ . In particular, they hold for the renormalized momenta

leading respectively to the diffeomorphism,

Dj〈T ji 〉+ Fij〈J j〉+ 〈Oχ〉∂iχ+ 〈Oφ〉∂iφ = − 2

κ2
Π(χ)εjklFijFkl, (2.38)

and U(1),

Di〈J i〉 = 0, (2.39)

Ward identities, which reflect symmetries that are always present in the bulk and so they

hold irrespectively of the asymptotic form of the background. Notice that the Chern-Simons

term introduces a gravitational anomaly in the dual theory, given by the r.h.s. of (2.38).

For asymptotically locally AdS backgrounds we also have the trace Ward identity (for a

derivation see e.g. [47])

〈T ii 〉+ (d−∆χ)〈Oχ〉∂iχ+ (d−∆φ)〈Oφ〉∂iφ = A, (2.40)

where A is the conformal anomaly, given by the coefficient of the cut-off dependent terms

in Sct.
Since these Ward identities hold in the presence of arbitrary sources, we can differen-

tiate them with respect to the sources to obtain constraints on higher-point functions. In

5To avoid cluttering the notation we do not differentiate between the renormalized 1-point functions

evaluated at the cut-off, as e.g. in (2.37), and the limit obtained by multiplying these 1-point functions with

the appropriate factor of the cut-off and sending the cut-off to infinity, as in e.g. (3.32).
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particular, differentiating (2.38) with respect to the sources of the stress tensor and the
current we get respectively

Dj〈T ji (x)T kl(x′)〉−2Dj

(
δ

(k
i 〈T

l)j(x)〉δ(d)(x,x′)
)
−γkl〈T ji (x)〉Djδ

(d)(x,x′)+〈T kl(x)〉Diδ
(d)(x,x′)

+ Fij(x)〈T kl(x′)Jj(x)〉+ 〈T kl(x′)Oχ(x)〉∂iχ+ 〈T kl(x′)Oφ(x)〉∂iφ =

γklδ(d)(x,x′)Dj〈T ji 〉 −
4

κ2
Π(χ)εjpqFijFpqγ

klδ(d)(x,x′) = 0, (2.41a)

Dj〈T ji (x)Jk(x′)〉+ 〈Jj(x)〉
(
δkj ∂i − δki ∂j

)
δ(d)(x,x′) + Fij(x)〈Jj(x)Jk(x′)〉+ 〈Oχ(x)Jk(x′)〉∂iχ

+ 〈Oφ(x)Jk(x′)〉∂iφ = − 2

κ2
Π(χ)εjpq

(
Fpq(x)

(
δkj ∂i − δki ∂j

)
+ 2Fij(x)δkq ∂p

)
δ(d)(x,x′), (2.41b)

where all derivatives are with respect to x, the covariant delta function is defined through

δ(d)(x,x′) ≡ 1√
−γ

δ(d)(x− x′), (2.42)

and we have used that

〈J j(x)T kl(x′)〉 = 〈T kl(x′)J j(x)〉+ γklδ(d)(x,x′)〈J j(x)〉, (2.43)

and similarly for the 2-point functions of the stress tensor and the scalar operators. We

will revisit these two Ward identities for the 2-point functions in section 5.

3 Dyonic backgrounds

Having established the holographic dictionary for the model (1.1), we are now interested

in computing the holographic 2-point functions in backgrounds of the form

ds2
B = dr2 + e2A(r)

(
−f(r)dt2 + dx2 + dy2

)
, (3.1a)

AB = α(r)dt+
H

2
(xdy − ydx), (3.1b)

φB = φB(r), χB = χB(r), (3.1c)

where H is a constant background magnetic field, f(r) is the blackening factor and A(r)

is the warp factor. The gauge field strength on such backgrounds is given by

FB = dAB = α̇dr ∧ dt+Hdx ∧ dy. (3.2)
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Inserting the ansatz (3.1) in the Gauss-Codazzi equations (B.2) we obtain the following set

of equations for backgrounds of this form:

Ä+ Ȧ

(
dȦ+

1

2
f−1ḟ

)
+

V

(d− 1)
+

2Σ

(d− 1)
e−2Af−1

(
fe−2AH2 + α̇2

)
= 0, (3.3a)

(d− 1)

(
Ä− 1

2
f−1ḟ Ȧ

)
+ φ̇2 + Zχ̇2 = 0, (3.3b)

f̈ + ḟ

(
dȦ− 1

2
f−1ḟ

)
− 4Σe−2A

(
fe−2AH2 + α̇2

)
= 0, (3.3c)

2φ̈B + 2

(
dȦ+

1

2
f−1ḟ

)
φ̇B − Vφ − Zφχ̇2

B − 2Σφ
e−2A

f

(
fe−2AH2 − α̇2

)
= 0, (3.3d)

2Zχ̈B + 2Z

(
dȦ+

1

2
f−1ḟ

)
χ̇B − Vχ + 2Zφφ̇Bχ̇B − 8Πχ

e−dA√
f
α̇H = 0, (3.3e)

∂r

(
e(d−2)A Σ√

f
α̇− 2ΠH

)
= 0. (3.3f)

Note that due to the presence of the Chern-Simons term (1.3) these equations make sense

either in any d provided Π = 0, or for any Π in d = 3. In what follows we keep Π arbitrary

and work in d = 3, but our results can be adapted to general d provided Π is set to zero.

In the following it will often be more convenient to work with an alternative radial

coordinate defined through

∂r = −
√
fe−A∂u, (3.4)

so that the background metric in (3.1) takes the form

ds2
B = e2A(u)

(
du2

f(u)
− f(u)dt2 + dx2 + dy2

)
. (3.5)

Denoting with a prime differentiation with respect to the radial coordinate u, the back-

ground equations for d = 3 become

A′′ + 2A′
(
A′ +

1

2
f−1f ′

)
+

1

2f
e2AV + Σf−1e−2A

(
H2 + α′2

)
= 0, (3.6a)

2
(
A′′ −A′2

)
+ φ′2B + Zχ′2B = 0, (3.6b)

f ′′ + 2A′f ′ − 4Σe−2A
(
H2 + α′2

)
= 0, (3.6c)

φ′′B+2

(
A′+

1

2
f−1f ′

)
φ′B−

1

2
f−1Vφe

2A− 1

2
Zφχ

′2
B−Σφe

−2Af−1
(
H2+α′2

)
= 0, (3.6d)

Zχ′′B + 2Z

(
A′+

1

2
f−1f ′

)
χ′B−

1

2
f−1Vχe

2A+Zφφ
′
Bχ
′
B+4Πχe

−2Af−1α′H = 0, (3.6e)(
Σα′ + 2ΠH

)′
= 0. (3.6f)

Notice that the last equation can be integrated in general leading to

α′ =
1

Σ
(Q̃− 2ΠH), (3.7)

where the integration constant Q̃, as we shall see momentarily, determines the time com-

ponent of the vacuum expectation value of the conserved U(1) current and so corresponds

to the background electric charge density.
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3.1 First order flow equations and the fake superpotential

The radial Hamiltonian formulation of the dynamics we developed in section 2 allows us to

describe any solution of the second order equations (3.3) in terms of first order equations

and a ‘fake superpotential’. In order to derive these first order equations we observe that

for backgrounds of the form (3.1) the canonical momenta (2.8) (in the gauge N = 1,

Ni = a = 0) become

πij =
1

2κ2
e(d+2)Af1/2

(
(d− 1)Ȧ (δij − (1 + f)δi0δj0) +

ḟ

2f
(δij − δi0δj0)

)
, (3.8a)

πφ =− 1

κ2
edAf1/2φ̇, (3.8b)

πχ =− 1

κ2
edAf1/2Z(φ)χ̇, (3.8c)

πi =
2

κ2

(
Σe(d−2)Af−1/2α̇− 2HΠ

)
δi0 = − 2

κ2
Q̃δi0. (3.8d)

Moreover, a variation of the on-shell action with respect to a metric of the form (3.1) takes

the form

δS = πttδγtt + πabδγab = 2δAπ + f−1δfγttπ
tt, (3.9)

and hence

δS
∂A

= 2π =
1

2κ2
edAf1/22(d− 1)

(
dȦ+

ḟ

2f

)
, (3.10a)

δS
∂f

= f−1γttπ
tt =

1

2κ2
edAf1/2(d− 1)f−1Ȧ. (3.10b)

Eliminating Ä from the first two equations in (3.3) and replacing the velocities with partial

derivatives of S(A, f, φ, χ, α) using these expressions leads to the HJ equation for back-

grounds of the form (3.1), namely(
κ2edA

f1/2

)2(
4

d− 1
fSf (SA − dfSf )− S2

φ − Z−1S2
χ

)
+ Veff(A, φ, χ) = 0, (3.11)

where

Veff(A, φ, χ) ≡ V (φ, χ) + 2Σ(φ)e−4AH2 + 2Σ−1(φ)e−2(d−1)A
(
Q̃− 2HΠ(χ)

)2
. (3.12)

Notice that the background magnetic field and electric charge makes the effective potential

dependent on the warp factor A in addition to the scalars φ and χ. The dependence of S
on f and α can be eliminated by the separable ansatz

S = − 1

κ2

∫
ddx

(
edAf1/2W (A, φ, χ) + 2Q̃α

)
, (3.13)

where the term proportional to Q̃ accounts for the canonical momentum conjugate to the

time component α of the vector field and the fake superpotential W satisfies the equation

W 2
φ + Z−1(φ)W 2

χ −
1

d− 1
(d+ ∂A)W 2 = Veff(A, φ, χ). (3.14)
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Note that this ansatz is capable of providing an almost complete integral of the HJ equation,

with “almost” referring to the fact that this ansatz does not contain an integration constant

for the generalized coordinate f . Inverting the momenta (3.8) and using the ansatz (3.13)

for the on-shell action S leads to the advertised first order equations

Ȧ = − 1

d− 1
W, (3.15a)

ḟ

f
= − 2

(d− 1)
WA, (3.15b)

φ̇ = Wφ, (3.15c)

χ̇ = Z−1Wχ, (3.15d)

α̇ = −Σ−1e−(d−2)Af1/2
(
Q̃− 2HΠ(χ)

)
. (3.15e)

As is guaranteed by the HJ construction (and can be checked explicitly using the back-

ground equations (3.3)), given a fake superpotential that satisfies (3.14) any solution of the

first order equations (3.15) leads to a solution of the second order equations of motion (3.3).

3.2 Exact families of dyonic backgrounds

In fact, the superpotential equation (3.14) together with the first order equations (3.15)

amounts to a (fake supergravity [60]) solution generating technique for dyonic backgrounds

with running scalars, which becomes particularly powerful in the context of a bottom up

model where the potentials defining the action (1.1) are a priori unspecified. To support

this claim we provide two explicit examples here: a superpotential that gives the general

dyonic Reissner-Nordström black hole in arbitrary dimension, and an infinite class of RG

flows between AdS4 in the UV and a hyperscaling violating Lifshitz geometry in the IR.

Additional solutions of the superpotential equation (3.14), including in other dimensions,

are presented in appendix A.

Generalized dyonic Reissner-Nordström black hole

The dyonic Reissner-Nordström black hole in arbitrary dimension can be obtained imme-

diately from the flow equations (3.15), which imply that a universal consistent solution,

independently of the form of the potentials as long as they admit asymptotically AdS so-

lutions, is given by φ = χ = 0. In that case the superpotential equation (3.14) can be

integrated to obtain

WRN (A) = −d− 1

L

√
1 +

2L2Σ−1(Q̃− 2ΠH)2e−2(d−1)A

(d− 1)(d− 2)
− 2L2ΣH2e−4A

(d− 1)(d− 4)
− Ce−dA,

(3.16)

where C is an integration constant and Π is understood to be zero unless d = 3. In-

troducing the new radial coordinate u through6 e−A = u/L one can integrate the first

6This is a priori a different radial coordinate than the one introduced in (3.4), but for the Reissner-

Nordström black hole the two coincide.
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order equations (3.15) to obtain the general form of the backgrounds corresponding to the

superpotential (3.16), namely

ds2
d+1 =

L2

u2

(
f−1(u)du2 − f(u)dt2 + dx2

)
, (3.17a)

f(u) = 1 +
2L−2(d−2)Σ−1(0)(Q̃− 2Π(0)H)2

(d− 1)(d− 2)
u2(d−1) − 2L−2Σ(0)H2

(d− 1)(d− 4)
u4 − CL−dud,

(3.17b)

α = α0 +
L−(d−3)

d− 2
Σ−1(0)(Q̃− 2Π(0)H)ud−2. (3.17c)

From these expressions we identify the integration constant C in (3.16) with the black hole

mass, namely M = L−dC, while the integration constant α0 in the gauge field is identified

with the chemical potential µ.

Exact dyonic RG flows

For d = 3 (AdS4), the superpotential equation (3.14) admits a solution of the form

W (A, φ) = Wo(φ)
√

1 + q2e−4A, (3.18)

where the parameter q is defined through

H2Σ0 + (Q̃− 2Π0H)2Σ−1
0 = q2L−2, (3.19)

and the scalar potentials V (φ) and Σ(φ) are determined in terms of a single arbitrary

function Wo(φ) as

V (φ) = W ′2o −
3

2
W 2
o ,

H2Σ(φ) + (Q̃− 2Π0H)2Σ−1(φ) =
q2

2

(
W ′2o +

1

2
W 2
o

)
. (3.20)

In order to solve explicitly the second equation for Σ(φ) we need to distinguish two cases,

depending on whether the ratio |Q̃− 2Π0H|/|H| is smaller or greater than 1. To do this it

is convenient to introduce two parameters, τe and τm through the identifications

Q̃− 2Π0H

Σ0H
=:

{
coth(τe/2), |Q̃− 2Π0H| > |H|,
tanh(τm/2), |Q̃− 2Π0H| < |H|,

(3.21)

so that the corresponding expressions for Σ(φ) are

|Q̃− 2Π0H| > |H| :

Σ−1(φ) =
1

2
L2Σ−1

0 (1+tanh2(τe/2))

1

2

(
W ′2o +

1

2
W 2
o

)
+

√
1

4

(
W ′2o +

1

2
W 2
o

)2

−L−4 tanh2 τe

 ,

|Q̃− 2Π0H| < |H| :

Σ(φ) =
1

2
L2Σ0(1+tanh2(τm/2))

1

2

(
W ′2o +

1

2
W 2
o

)
+

√
1

4

(
W ′2o +

1

2
W 2
o

)2

−L−4 tanh2 τm

 .

(3.22)
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Note that since Wo ∼ −2/L+O(φ2) in the UV, the quantities under the square root are

always non-negative. Moreover, since Σ(φ) depends explicitly on the parameters τe or τm,

these parameters (i.e. the ratio of the electric charge density to the magnetic field) must

be considered as a specification of the theory — not of the solutions.

For either of the two cases, inserting the superpotential (3.18) in the first order equa-

tions (3.15) allows us to obtain the explicit form of the metric in the form

ds2 =
dφ2

W ′2o (1 + q2e−4A)
+ e2A

(
−
(
1 + q2e−4A

)
dt2 + dx2 + dy2

)
, (3.23)

where the warp factor is expressed in terms of the scalar via

A = −1

2

∫ φ

dφ̄
Wo(φ̄)

W ′o(φ̄)
. (3.24)

This geometry is asymptotically AdS4 in the UV. Assuming that in the IR7 φ → ∞ and

the function Wo(φ) behaves as

Wo(φ) ∼ woeλφ, λ > 0, (3.25)

the flow equations imply (up to an additive constant that depends on the specific function

Wo(φ) and affects the Lifshitz radius in the IR metric (3.28))

A ∼ − 1

2λ
φ. (3.26)

Introducing the radial coordinate

v = e−(λ+1/2λ)φ, (3.27)

in the IR the metric asymptotes to the hyperscaling violating Lifshitz geometry [61–68]

ds2
IR = vθ−2

(
dv2

q2λ2w2
o(λ+ 1/2λ)2

− q2v−2(z−1)dt2 + dx2 + dy2

)
, (3.28)

with Lifshitz and hyperscaling violating exponents

z =
λ2 + 3/2

λ2 + 1/2
, θ = z + 1, 1 < z < 3. (3.29)

These are type IIIb hyperscaling violating backgrounds for 1 < z ≤ 2 and type IVb for

2 < z < 3 according to the classification of solutions of the null energy conditions in [69].

It is interesting to note that for the purely electric solution (H = 0), these IR geometries

correspond to solutions of an Einstein-Maxwell-Dilaton theory with a vanishing scalar

potential [61, 68–70]. In the present case, however, the scalar potential is not zero! The

reason for this apparent puzzle is that the scalar potential is asymptotically subleading

in the IR in the purely electric case, and there are necessarily subleading terms, contrary

to the case of pure exponential potentials. Another point we must emphasize is that,

7The case φ→ −∞ is completely analogous, with λ < 0.
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contrary to what is often claimed in the literature, these geometries are not singular, since

the concept of a curvature singularity in the presence of a diverging scalar is inherently

ambiguous. Indeed, as it was shown in [69], these geometries are perfectly well behaved in

the ‘dual frame’ where they become Lifshitz and the singularity is completely absorbed in

the diverging scalar. It follows that there is no need for applying Gubser’s criterion for this

kind of IR geometries, in the same way that this criterion is not applicable to RG flows

between two AdS fixed points.

In the far IR, the radial coordinate v is related to the conformal coordinate u introduced

in (3.4) as

v ∼


u

2λ2+1

2λ2−1 , u→ +∞ λ2 < 1
2 ,

e−c
2
0u, u→ +∞, λ2 = 1

2 ,

(u∗ − u)
2λ2+1

2λ2−1 , u→ u−∗ , λ
2 > 1

2 ,

(3.30)

where c0 is a non vanishing constant that depends on the charges. Computing the Schrödinger

potential for the fluctuation equations (4.12) one finds that for both H 6= 0 and H = 0

cases it behaves in the IR as

VSch =
1

2
h′1 +

1

4
h2

1 − h0 ∼ k2v
− 2(2λ2−1)

2λ2+1 , (3.31)

where k2 ∼ q2 is non-zero. We therefore expect that the spectrum of fluctuations is

discrete and gapped for λ2 > 1/2 (1 < z < 2), continuous and gapped for λ2 = 1/2

(z = 2), and continuous and ungapped for λ2 < 1/2 (2 < z < 3). A full analysis of these

RG flows, including the possibility of embedding them in gauged supergravity will appear

elsewhere [46].

3.3 Vacuum expectation values

Using the identification (2.37) of the 1-point functions with the renormalized canonical
momenta we can now evaluate the vacuum expectation values (VEVs) of the dual operators
in these backgrounds. Combining (2.37) and (3.8) we find that the general form of the
renormalized 1-point functions evaluated in backgrounds of the form (3.1) take the from

〈Tij〉 = − lim
r→∞

e(d−2)r/L

(
e2A

κ2

(
(d− 1)Ȧ (δij − (1 + f)δi0δj0) +

ḟ

2f
(δij − δi0δj0)

)
+

2e−3A

√
f

πctij

)
,

(3.32a)

〈Oφ〉 = lim
r→∞

e∆φr/L

(
− 1

κ2
φ̇+ e−3Af−1/2πctφ

)
, (3.32b)

〈Oχ〉 = lim
r→∞

e∆χr/L

(
− 1

κ2
Z(φ)χ̇+ e−3Af−1/2πctχ

)
, (3.32c)

〈J i〉 = − 2

κ2
Q̃δi0. (3.32d)

To simplify these expressions we need the form of the counterterms Sct and the corre-

sponding canonical momenta πctij , π
ct
φ and πctχ evaluated in backgrounds of the form (3.1).

These counterterms can be computed in full generality using the algorithm presented in
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section 2.1, but this analysis can be simplified by focusing on background solutions only.

In particular, in section 2.1 terms involving the field strength Fij were counted as deriva-

tive terms and do not appear in the leading order solution (2.19) parameterized by the

function U(φ, χ). Since the field strength is constant in backgrounds of the form (3.1)

however, we can take its effect into account by a modified function U(A, φ, χ) that satis-

fies the same equation (3.14) as the fake superpotential W (A, φ, χ), instead of the simpler

equation (2.20). In fact, since we need to determine only the divergent part of U(A, φ, χ)

we can drop the term proportional to Q̃− 2HΠ in the effective potential (3.12) since this

term would only affect U at order e−2(d−1)A, which is always subleading relative to e−dA.

The counterterm function U(A, φ, χ) for general backgrounds of the form (3.1) therefore

can always be obtained as a Taylor expansion solution of the following PDE:

U2
φ + Z−1(φ)U2

χ −
1

d− 1
(d+ ∂A)U2 = V (φ, χ) + 2Σ(φ)e−4AH2. (3.33)

As we emphasized in section 2.1, the relevant solution must have a Taylor expansion of

the form (2.25). From the form of (3.33) we immediately deduce that the counterterm

function U(φ, χ) will be a function only of the scalars φ and χ as long d < 4 since in

that case the term involving the background magnetic field contributes at subleading order

relative to e−dA. It follows that for d < 4 the function U(φ, χ) can be obtained by solving

the simpler equation (2.20). For the marginal case d = 4 this term will contribute to U with

a coefficient that has a pole of the form 1/(d − 4) (see (3.16)) which via the dimensional

regularization described in section 2.1 leads to a cut-off dependent divergence and a related

conformal anomaly. For d > 4 the magnetic field in (3.33) will contribute to the ultraviolet

divergences in the standard way.

Finally, having determined the counterterm function U(φ, χ) for backgrounds of the

form (3.1) through (3.33), we obtain the renormalized 1-point functions

〈Tij〉 = − 1

κ2
lim
r→∞

edr/L

((
(d−1)Ȧ−U

)
(δij−(1+f)δi0δj0)+

(
ḟ

2f
− UA
d−1

)
(δij−δi0δj0)

)

=
1

κ2
lim
r→∞

edr/L
(

(W + U) (δij − (1 + f)δi0δj0) +
1

d− 1
(WA + UA) (δij − δi0δj0)

)
,

(3.34a)

〈Oφ〉 = − 1

κ2
lim
r→∞

e∆φr/L
(
φ̇+ Uφ

)
= − 1

κ2
lim
r→∞

e∆φr/L (Wφ + Uφ) , (3.34b)

〈Oχ〉 = − 1

κ2
lim
r→∞

e∆χr/L (Zχ̇+ Uχ) = − 1

κ2
lim
r→∞

e∆χr/L (Wχ + Uχ) , (3.34c)

〈J i〉 = − 2

κ2
Q̃δi0. (3.34d)

As was mentioned earlier, we see from these expressions that the integration constant Q̃

corresponds to the conserved electric charge density of the background. Moreover, the

energy density ε is given by

ε := 〈T tt 〉 = −〈Ttt〉 = − 1

κ2
lim
r→∞

edr/L
(

(d− 1)Ȧ− U
)
, (3.35)
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while the pressure density corresponds to (no index summation)

P := 〈Tii〉 = − 1

κ2
lim
r→∞

edr/L

(
(d− 1)Ȧ− U +

ḟ

2f
− UA
d− 1

)
. (3.36)

4 Fluctuation equations at zero spatial momentum

We next consider linear fluctuations around general backgrounds of the form (3.1), and

for arbitrary potentials V (φ, χ), Σ(φ), Z(φ) and Π(χ). In order to be able to decouple

the fluctuation equations (which we present in full generality for d = 3 in appendix C)

we follow [22, 34, 36] and consider only fluctuations that are independent of the spatial

transverse coordinates and we set certain components of the fluctuations consistently to

zero.

In particular, denoting the most general fluctuations that preserve the gauge N = 1,

Ni = a = 0 by

γij = γBij + hij , Ai = ABi + ai, φ = φB + ϕ, χ = χB + τ, (4.1)

with Sji ≡ γ
jk
B hki, we switch off the fluctuations Stt = Sxx = Syy = Syx = ϕ = τ = at = 0 and

only keep the components ax = ax(r, t), ay = ay(r, t), S
x
t = Sxt (r, t) and Syt = Syt (r, t). For

such fluctuations the only non-trivial equations are

Einstein xt:(
∂2
r +

(
3Ȧ− 1

2
f−1ḟ

)
∂r − 4Σe−4AH2

)
Sxt = −4Σe−2A

(
α̇ȧx +He−2A∂tay

)
, (4.2a)(

∂2
r +

(
3Ȧ+

3

2
f−1ḟ

)
∂r + 4Σe−2Af−1α̇2

)
Stx = 4Σe−2Af−1

(
α̇ȧx +He−2A∂tay

)
,

(4.2b)

Einstein yt:(
∂2
r +

(
3Ȧ− 1

2
f−1ḟ

)
∂r − 4Σe−4AH2

)
Syt = −4Σe−2A

(
α̇ȧy −He−2A∂tax

)
, (4.2c)(

∂2
r +

(
3Ȧ+

3

2
f−1ḟ

)
∂r + 4Σe−2Af−1α̇2

)
Sty = 4Σe−2Af−1

(
α̇ȧy −He−2A∂tax

)
,

(4.2d)

Einstein rx:

∂tṠ
x
t = −4Σe−2A (Hα̇Syt +Hfȧy + α̇∂tax) , (4.2e)

Einstein ry:

∂tṠ
y
t = −4Σe−2A (−Hα̇Sxt −Hfȧx + α̇∂tay) , (4.2f)

Maxwell x:

∂r

(
Σf−1/2eA (α̇Sxt + fȧx)

)
= Σf−1/2e−A(∂2

t ax +H∂tS
y
t ) + 2Πχχ̇B∂tay, (4.2g)

Maxwell y:

∂r

(
Σf−1/2eA (α̇Syt + fȧy)

)
= Σf−1/2e−A(∂2

t ay −H∂tSxt )− 2Πχχ̇B∂tax. (4.2h)
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Note that (4.2a) and (4.2b) as well as (4.2c) and (4.2d) are trivially related since

Stx = −f−1Sxt , Sty = −f−1Syt . (4.3)

The remaining equations can be decoupled by introducing the complexified variables

S±t ≡ Sxt ± iS
y
t , ht± ≡ htx ± ihty, a± ≡ ax ± iay, (4.4)

so that we can write(
∂2
r +

(
3Ȧ− 1

2
f−1ḟ

)
∂r

)
S±t = −4Σe−2A

(
α̇ȧ± ∓ iHe−2A∂ta± −H2e−2AS±t

)
, (4.5a)

∂tṠ
±
t = 4Σe−2A

(
±iH(α̇S±t + fȧ±)− α̇∂ta±

)
, (4.5b)

∂r

(
Σf−1/2eA

(
α̇S±t + fȧ±

))
= Σf−1/2e−A(∂2

t a± ∓ iH∂tS±t )∓ 2iΠχχ̇B∂ta±, (4.5c)

or after Fourier transforming in time (∂t → iω)

∂r

(
e3Af−1/2Ṡ±t

)
= −4ΣeAf−1/2

(
α̇ȧ± ± ωHe−2Aa± −H2e−2AS±t

)
, (4.6a)

ωṠ±t = 4Σe−2A
(
±H(α̇S±t + fȧ±)− ωα̇a±

)
, (4.6b)

∂r

(
Σf−1/2eA

(
α̇S±t + fȧ±

))
= Σf−1/2e−A(−ω2a± ± ωHS±t )± 2ωΠχχ̇Ba±. (4.6c)

Note that multiplying (4.6b) with e3Af−1/2, taking the radial derivative and substitut-

ing (4.6c) in the resulting expression gives back (4.6a), which is therefore not independent,

unless ω = 0.

In order to decouple these equations for ω 6= 0 we replace a± with the linear combina-

tions

E± ≡ ωa± ∓HS±t , (4.7)

in terms of which (4.6) become

ω∂r

(
e3Af−1/2Ṡ±t

)
= −4ΣeAf−1/2

(
α̇Ė± ± α̇HṠ±t ± ωHe−2AE±

)
, (4.8a)(

ω2 − 4Σe−2AfH2
)
Ṡ±t = 4Σe−2A

(
±Hf Ė± − ωα̇E±

)
, (4.8b)

ωΣf−1/2eAα̇Ṡ±t + ∂r

(
Σf1/2eA(Ė± ±HṠ±t )

)
= −ω2Σf−1/2e−AE± ± 2ωΠχχ̇BE±, (4.8c)

where we have used the last equation in (3.3) to obtain (4.8c). Substituting now the

expression for Ṡ±t from (4.8b) into (4.8a) leads to the two decoupled equations for E±

Ë± + g1(ω,H)Ė± + g0(ω,±H)E± = 0, (4.9)

where

g1(ω,H) =∂r log
∣∣∣ΣeAf1/2Ω−1

∣∣∣ , (4.10a)

g0(ω,±H) =f−1e−2A(Ω− 4Σα̇2)∓ ω

H
f−1α̇∂r log

∣∣∣ΣeAf−1/2α̇Ω−1
∣∣∣ , (4.10b)
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with

Ω ≡ ω2 − 4ΣH2fe−2A. (4.11)

In terms of the u coordinate these equations read

E ′′± + h1(ω,H)E ′± + h0(ω,±H)E± = 0, (4.12)

where

h1(ω,H) =∂u log
∣∣ΣfΩ−1

∣∣ , (4.13a)

h0(ω,±H) =f−2(Ω− 4Σfe−2Aα′2)∓ ω

H
f−1α′∂u log

∣∣Σα′Ω−1
∣∣ . (4.13b)

Riccati form of the fluctuation equations

Finally, these linear second order fluctuation equations can be expressed in first order

Riccati form by introducing the response functions R± [42, 43], namely

Ė± = R±E±, (4.14)

so that (4.9) take the Riccati form

Ṙ± +R2
± + g1(ω,H)R± + g0(ω,±H) = 0. (4.15)

Since these are first order differential equations there is only one integration constant

for each, which is fixed by imposing suitable boundary conditions in the interior of the

geometry. This is one of the advantages of the Riccati formulation of the fluctuation

equations, since they compute directly the response functions, without any dependence on

the arbitrary sources.

5 Renormalized Green’s functions, Kubo formulas, and transport coef-

ficients

Another advantage of the Riccati form (4.15) of the fluctuation equations is that, as we now

show, the 2-point functions can be determined in general in terms of the response functions

R±. Therefore, solving the Riccati equations directly determines the 2-point functions,

without the need to evaluate the on-shell action and then take functional derivatives.

The Riccati formulation of the fluctuation equations implements linear response theory in

the bulk.

5.1 Holographic Green’s functions and Ward identities

In order to unravel the relation between the response functions R± and the 2-point func-

tions we need to determine the canonical momenta (2.8), which as we have seen in section 2

are identified with the 1-point functions, to linear order in the fluctuations. For the fluctua-

tions we considered in section 4 the only non-trivial components of the canonical momenta
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to linear order in the fluctuations are

(1)

πij = − 1

2κ2

√
−γB

(
1

2
Ṡikγ

kj
B + 2ȦSij +

ḟ

2f

(
Sij − Sitγ

tj
B

))
, (5.1a)

(1)

πi =
2

κ2

√
−γBΣ

(
α̇Sit − γijB ȧj

)
+

4iω

κ2
Π
(
δixay − δiyax

)
, (5.1b)

whose only non-zero components are

(1)

π±h =− 1

4κ2

√
−γBγttB

(
Ṡ±t + 4ȦS±t

)
, (5.2a)

(1)

π±a =
2

κ2

√
−γBγttB

(
Σ
(
α̇S±t + fȧ±

)
∓ 2ωΠe−Af1/2a±

)
, (5.2b)

where π±h = πxt± iπyt, π±a = πx± iπy. Using the defining relations (4.14) for the response

functions R± we can express the velocities Ṡ±t and ȧ± in terms of the fluctuations E± as

Ṡ±t = 4Σe−2AΩ−1 (±HfR± − ωα̇) E±, (5.3a)

ȧ± = Ω−1
(
ωR± ∓ 4HΣe−2Aα̇

)
E±. (5.3b)

Hence, the only non-zero components of the momenta to linear order in the fluctuations

take the form

(1)

π±h =
1

2

√
−γB

(
C±hhht± + C±haa±

)
,

(1)

π±a =
√
−γB

(
C±haht± + C±aaa±

)
, (5.4)

where

C±hh(r, ω) =
2

κ2
γttBe

−2A
(
±HΣe−2AΩ−1 (±HfR± − ωα̇)− Ȧ

)
, (5.5a)

C±ha(r, ω) = − 2

κ2
γttBΣΩ−1e−2Aω (±HfR± − ωα̇) , (5.5b)

C±aa(r, ω) = ± 2

κ2
γttB

ω

H

(
ΣΩ−1ω (±HfR± − ωα̇)− Q̃e−Af1/2

)
, (5.5c)

and we have used the fact that eAf−1/2Σα̇−2ΠH = −Q̃ is a constant (see (3.7) and (3.4)).

In order to renormalize these expressions for the canonical momenta linear in the

fluctuations we must take into account the contribution of the boundary counterterms,

which for d = 3 take the form

Sct = − 1

κ2

∫
d3x
√
−γ (U(φ, χ) + Θ(φ, χ)R[γ]) , (5.6)

where U is determined through (2.20), while Θ is determined by the algorithm described

in section 2.1. However, for backgrounds of the form (3.1), where the Ricci scalar of the

induced metric vanishes, and for fluctuations of the form discussed in section 4 it is straigh-

forward to check that the counterterm involving the Ricci scalar does not contribute (see

last equation in (C.2)). In particular, when expanded to second order in the fluctuations

the counterterms for d = 3 take the form

(2)

Sct =
1

2κ2

∫
d2x

∫
dω
√
−γBγttBUe−2Aht+(ω)ht−(−ω). (5.7)

– 26 –



J
H
E
P
0
7
(
2
0
1
5
)
0
9
4

These counterterms lead to the renormalized response functions

Cren±hh (r, ω) = C±hh(r, ω) +
1

κ2
e−2AγttBU

=
2

κ2
γttBe

−2A

(
±HΣe−2AΩ−1 (±HfR± − ωα̇)− Ȧ+

1

2
U

)
, (5.8a)

Cren±ha (r, ω) = C±ha(r, ω) = − 2

κ2
γttBΣΩ−1e−2Aω (±HfR± − ωα̇) , (5.8b)

Cren±aa (r, ω) = C±aa(r, ω) = ± 2

κ2
γttB

ω

H

(
ΣΩ−1ω (±HfR± − ωα̇)− Q̃e−Af1/2

)
. (5.8c)

Notice that only the coefficients C±hh get renormalized.

Using (2.37) we can now express the renormalized 1-point functions in terms of the

renormalized momenta, namely

〈T t±〉 ≡ 〈T tx〉 ± i〈T ty〉 = − 2√
−γB

π̂±h ,

〈J±〉 ≡ 〈Jx〉 ± i〈Jy〉 =
1√
−γB

π̂±a , (5.9)

or, after lowering the indices

〈Tt±〉 =
2√
−γB

e4Afπ̂±h = 2eAf1/2π̂±h , 〈J±〉 =
1√
−γB

e2Aπ̂±a = e−Af−1/2π̂±a . (5.10)

The 2-point functions can now be obtained by functional differentiation of these 1-point

functions with respect to the fluctuations. The precise coefficients of the functional deriva-

tives with respect to ht± and a± that correspond to an insertion of respectively Tt∓ and

J∓ can be determined by computing the variation

δSren = 2π̂xtδhxt+2π̂ytδhyt+π̂
xδax+π̂yδay =

1

2

(
2π̂+

h δht− + 2π̂−h δht+ + π̂+
a δa− + π̂−a δa+

)
,

(5.11)

where the factor of 2 in the metric momenta is due to the fact that we must sum over the

two possible index combinations. It follows that

〈Tt±(ω)〉 = 2eAf1/2 δSren
δht∓(−ω)

, 〈J±(ω)〉 = 2e−Af−1/2 δSren
δa∓(−ω)

. (5.12)

We now have all the ingredients in order to evaluate the renormalized 2-point functions.

Combining (5.9) and (5.4) we get

〈Tt±〉 = e4A
(
C±renhh ht± + C±renha a±

)
, 〈J±〉 = e2A

(
C±renha ht± + C±renaa a±

)
. (5.13)

From (5.12) then follows that the 2-point functions are obtained as

〈Tt+(ω)Tt−(−ω)〉 = 2eA
δ

δht+(ω)
〈Tt+(ω)〉 = 2e5AC+ren

hh (ω),

〈Tt+(ω)J−(−ω)〉 = 2e−A
δ

δa+(ω)
〈Tt+(ω)〉 = 2e3AC+ren

ha (ω),

〈J+(ω)J−(−ω)〉 = 2e−A
δ

δa+(ω)
〈J+(ω)〉 = 2eAC+ren

aa (ω), (5.14)
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and similarly for the fluctuations ht− and a−. In particular, the full set of renormalized

2-point functions that can be computed with the fluctuations we considered are

〈Tt+(ω)Tt−(−ω)〉 = 2 lim
r→∞

(
e7r/LC+ren

hh (r, ω)
)
, (5.15a)

〈Tt−(ω)Tt+(−ω)〉 = 2 lim
r→∞

(
e7r/LC−renhh (r, ω)

)
, (5.15b)

〈Tt+(ω)J−(−ω)〉 = 2 lim
r→∞

(
e5r/LC+ren

ha (r, ω)
)
, (5.15c)

〈Tt−(ω)J+(−ω)〉 = 2 lim
r→∞

(
e5r/LC−renha (r, ω)

)
, (5.15d)

〈J+(ω)J−(−ω)〉 = 2 lim
r→∞

(
e3r/LC+ren

aa (r, ω)
)
, (5.15e)

〈J−(ω)J+(−ω)〉 = 2 lim
r→∞

(
e3r/LC−renaa (r, ω)

)
, (5.15f)

with all other 2-point functions vanishing identically. In the x, y basis these become

〈Ttx(ω)Ttx(−ω)〉= 〈Tty(ω)Tty(−ω)〉= 1

2
lim
r→∞

(
e7r/L

(
C+ren
hh (r, ω) + C−renhh (r, ω)

))
,

(5.16a)

〈Ttx(ω)Tty(−ω)〉= − 〈Tty(ω)Ttx(−ω)〉= i

2
lim
r→∞

(
e7r/L

(
C+ren
hh (r, ω)− C−renhh (r, ω)

))
,

(5.16b)

〈Ttx(ω)Jx(−ω)〉 = 〈Tty(ω)Jy(−ω)〉 =
1

2
lim
r→∞

(
e5r/L

(
C+ren
ha (r, ω) + C−renha (r, ω)

))
,

(5.16c)

〈Ttx(ω)Jy(−ω)〉 = − 〈Tty(ω)Jx(−ω)〉 =
i

2
lim
r→∞

(
e5r/L

(
C+ren
ha (r, ω)− C−renha (r, ω)

))
,

(5.16d)

〈Jx(ω)Jx(−ω)〉 = 〈Jy(ω)Jy(−ω)〉 =
1

2
lim
r→∞

(
e3r/L

(
C+ren
aa (r, ω) + C−renaa (r, ω)

))
,

(5.16e)

〈Jx(ω)Jy(ω)〉 = − 〈Jy(ω)Jx(ω)〉 =
i

2
lim
r→∞

(
e3r/L

(
C+ren
aa (r, ω)− C−renaa (r, ω)

))
.

(5.16f)

The limits on the r.h.s. can be evaluated explicitly by considering asymptotically AdS

backgrounds of the form (3.1) so that

α = α0 + Σ−1
0 (Q̃− 2HΠ0)Le−r/L +O

(
e−2r/L

)
, (5.17a)

A =
r

L
+O

(
e−r/L

)
, (5.17b)

f = 1−ML−3e−3r/L +O
(
e−4/L

)
, (5.17c)

and asymptotically Σ ∼ Σ0, Π ∼ Π0 for some constants Σ0 and Π0. Note that this

asymptotic form of f follows from the third equation in (3.6), even for backgrounds with

running scalars. As we shall see, these asymptotic conditions for the background imply

that the response functions R± asymptotically behave as

R±(r, ω) = R±(1)(ω)e−r/L +O(e−2r/L), (5.18)
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where the functions R±(1)(ω) are determined by the boundary conditions in the interior of

the bulk spacetime. Evaluating the limits (5.16) using these asymptotics we finally obtain

〈Ttx(ω)Ttx(−ω)〉= 〈Tty(ω)Tty(−ω)〉= i
H

ω
〈Ttx(ω)Jy(−ω)〉+ 〈Ttt〉, (5.19a)

〈Ttx(ω)Tty(−ω)〉= − 〈Tty(ω)Ttx(−ω)〉= − iH
ω
〈Ttx(ω)Jx(−ω)〉, (5.19b)

〈Ttx(ω)Jx(−ω)〉 = 〈Tty(ω)Jy(−ω)〉 = i
H

ω
〈Jx(ω)Jy(−ω)〉 − 〈J t〉, (5.19c)

〈Ttx(ω)Jy(−ω)〉 = − 〈Tty(ω)Jx(−ω)〉 = − iH
ω
〈Jx(ω)Jx(−ω)〉, (5.19d)

where

〈Jx(ω)Jx(−ω)〉 = 〈Jy(ω)Jy(−ω)〉 = − 2

κ2
Σ0R+

(1)(ω) , (5.20a)

〈Jx(ω)Jy(−ω)〉 = − 〈Jy(ω)Jx(−ω)〉 = − 2i

κ2

(
Σ0R−(1)(ω)− 2Π0ω

)
, (5.20b)

with

R±(1)(ω) ≡ 1

2

(
R+(1)(ω)±R−(1)(ω)

)
, (5.21)

and the renormalized 1-point functions 〈Ttt〉 and 〈J t〉, corresponding respectively to the

energy and charge densities, are given in (3.35) and (3.34). Notice that the only independent

2-point functions are the current-current ones, while all other non identically vanishing

2-point functions are expressed in terms of the current-current 2-point functions and the 1-

point functions of the background. In fact, the relations (5.19) are nothing but the Fourier

transform of the 2-point function Ward identities (2.41), and so they are purely kinematic.

A number of comments are in order here. Firstly, note that the Ward identities (5.19)

imply that certain 2-point functions can potentially diverge as ω → 0 for non-zero magnetic

field. However, as we shall see in section 6.4, the leading behavior of the response functions

R±(1)(ω) for small ω is (see (6.33))

R±(1)(ω) = ± 1

Σ0

(
2HΠ0 − Q̃

) ω
H

+O(ω2), (5.22)

independently of the regularity condition imposed in the IR.8 This ensures that the 2-point

functions do not diverge in the small frequency limit for H 6= 0. Another remark is that

all the expressions for the 2-point functions we have discussed so far, including the Ward

identities (5.19), are independent of the IR boundary conditions. In order to compute

the conductivities we will impose infalling boundary conditions on the horizon in order to

obtain the retarded 2-point functions [71], but any other thermal 2-point function can be

obtained by imposing the corresponding boundary condition on the horizon. As we shall

show in section 6.2, imposing infalling boundary conditions on the horizon implies that the

response functions R±(ω) are related via R+(ω) = R−(−ω)∗, and hence

R+(1)(ω) = R−(1)(−ω)∗. (5.23)

8More precisely, it is independent of the IR boundary conditions, as long as the constant c1 in section 6.4

is non-zero.
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Finally, it should be stressed that we have computed the renormalized 2-point functions

without ever evaluating the on-shell action, contrary to the usual procedure in the litera-

ture. What allowed us to do this is the fact that the renormalized canonical momenta are

identified with the 1-point functions in the presence of sources via (2.37). This is practi-

cally very important in Lorentzian holography, since the proper evaluation of the on-shell

action for thermal correlators involves multiple boundaries [72–74].

5.2 Kubo formulas and transport coefficients

The thermoelectric conductivities are defined in linear response theory via the relations(
〈 ~J〉
〈 ~Q〉

)
=

(
σ̂ T α̂
T ̂̄α T ̂̄κ

)(
~E

−~∇ log T

)
, (5.24)

where ~J is the electromagnetic current and ~Q is the mixed thermoelectric current defined by

〈Qa〉 = 〈Tat〉 − µ〈Ja〉, a, b = x, y, (5.25)

and µ is the chemical potential. ~E here is the applied electric field and ~∇T is the spatial

temperature gradient. The linear responses in the currents are encoded in the matrix of

thermoelectric conductivities, where σ̂ is electric conductivity, α̂ and ̂̄α are the thermo-

electric coefficients and ̂̄κ is the thermal conductivity. Each of these quantities is a 2 × 2

antisymmetric matrix. The hats indicate that these quantities are the conductivities in the

presence of a magnetization current [35].

Combining this definition of the conductivities with the expressions (5.13) for the

1-point functions of the stress tensor and electromagnetic current and the 2-point func-

tions (5.16) we arrive at the Kubo formulas

σ̂ab = iω−1〈Ja(ω)Jb(−ω)〉R, (5.26a)

T α̂ab = iω−1〈Qa(ω)Jb(−ω)〉R = iω−1〈Tat(ω)Jb(−ω)〉R − µσab, (5.26b)

T ̂̄κab = iω−1〈Qa(ω)Qb(−ω)〉R = iω−1〈Qa(ω)Tbt(−ω)〉R − µT α̂ab
= iω−1〈Tat(ω)Tbt(−ω)〉R − µiω−1〈Ja(ω)Tbt(−ω)〉R − µT α̂ab, (5.26c)

where the subscript R indicates that the retarded correlators must be used.

We can now use the Ward identities (5.19) — which we emphasize were derived holo-

graphically — to express the thermoelectric coefficients and the thermal conductivity in

terms of the electric conductivities only. From (5.19) we get

−iωT α̂xx = Hσxy + iωµσxx − ρ, (5.27a)

ωT α̂xy = −iHσxx − ωµσxy, (5.27b)

where ρ ≡ 〈J t〉 = −2Q̃/κ2 is the electric charge density we found in (3.32). Combining

these two relations as

ωT (α̂xy ± iα̂xx) = ∓H (σxy ± iσxx)− ωµ (σxy ± iσxx)± ρ, (5.28)

– 30 –



J
H
E
P
0
7
(
2
0
1
5
)
0
9
4

and defining

σ± = σxy ± iσxx, α̂± = α̂xy ± iα̂xx, (5.29)

we arrive at the expressions

ωT α̂± = −(ωµ±H)σ± ± ρ, (5.30)

reproducing the result of [36]. However, here we have arrived at this result through a holo-

graphic derivation of the Ward identities (2.41), which hold in a generic theory including

scalar operators. Similarly, combining (5.26c) and (5.19) we get

ωT ̂̄κ± = −(ωµ±H)T α̂± ± (ε− µρ), (5.31)

where ̂̄κ± = ̂̄κxy ± î̄κxx, and ε is the energy density defined in (3.35).

It follows that the only conductivities we actually need to compute are the electric

conductivities, which are holographically expressed in terms of the response functions

through (5.20) as

σxx = σyy = − 2i

κ2
Σ0ω

−1R+
(1)(ω), (5.32a)

σxy = −σyx =
2

κ2

(
Σ0ω

−1R−(1)(ω)− 2Π0

)
, (5.32b)

where the response functions are computed with ingoing boundary conditions on the hori-

zon. Note that there is no magnetization subtraction for the electric conductivities, which

is why we have dropped the ̂.
6 Response functions from the Riccati equation

In the preceding sections we have shown that the renormalized 2-point functions and the

corresponding conductivities for generic asymptotically AdS backgrounds of the form (3.1)

can be expressed in terms of the response functions R±(1)(ω), which are as yet undeter-

mined. These response functions are computed by solving the Riccati equations (4.15) and

imposing appropriate regularity conditions in the interior of the bulk spacetime. Typi-

cally these equations can only be solved numerically, but certain analytic results can be

obtained by taking various limits. In this section we determine the general solution of

the Riccati equations in the small and large frequency limits, as well as the ultraviolet

and infrared asymptotic solutions, before presenting an algorithm for obtaining the exact

solution numerically.

6.1 UV asymptotic solutions

We begin by determining the UV behavior of the response functions R±(r, ω). Inserting

the UV expansions (5.17) for the background fields in the coefficients (4.10) of the Riccati

equations we obtain

g1(ω,H) =
1

L
+O(e−r/L), g0(ω,±H) = ω2e−2r/L +O(e−3r/L). (6.1)

– 31 –



J
H
E
P
0
7
(
2
0
1
5
)
0
9
4

It then follows trivially from the Riccati equations (4.15) that the general UV behavior of

the response functions takes the form

R±(r, ω) = R(1)±(ω)e−r/L +O(e−2r/L), (6.2)

whereR(1)±(ω) are the only integration constants of these first order equations. As we have

seen, these integration constants, which are determined by imposing suitable regularity

conditions in the IR, are the quantities encoding all the dynamical information in the

2-point functions and the corresponding transport coefficients.

6.2 IR asymptotic solutions

The IR behavior of the response functions R±(r, ω) depends crucially on the type of back-

ground considered. The ansatz (3.1) includes both zero temperature (no horizon) and finite

temperature backgrounds and the results for the renormalized Green’s functions obtained in

section 5 are applicable to both types of backgrounds. However, the conductivities involve

the retarded Green’s functions at finite temperature and so they are relevant observables

for backgrounds with a horizon. We will therefore consider explicitly only the IR asymp-

totics for finite temperature backgrounds of the form (3.1) here. Confining backgrounds of

the form (3.1) at zero temperature are discussed e.g. in [22, 46].

Assuming the geometry exhibits a horizon at u = uh (corresponding ot the smallest

root of the equation f(u) = 0) giving rise to a finite temperature T , the function f increases

from zero at u = uh in the IR to the value f = 1 at u = 0 in the UV. In particular, f(u)

admits a Taylor expansion near uh of the form

f(ρ) = 4πTρ+O
(
ρ2
)
, ρ ≡ uh − u, (6.3)

while the warp factor satisfies eA(ρ) = O(1) as ρ → 0+. These asymptotic conditions,

together with the assumption that Σ(φ) and Π(χ) remain finite at the horizon, allows one

to determine the leading asymptotic form of the coefficients (4.13), namely

h1 = −1

ρ
+O (1) , h0 =

ω2

(4πT )2ρ2
+O

(
ρ−1
)
. (6.4)

It follows that the near horizon behavior of the general solution of the fluctuation equa-

tions (4.12) takes the form

E±(ρ) = cin
±(ω)ρ−

iω
4πT (1 +O(ρ)) + cout

± (ω)ρ
iω

4πT (1 +O(ρ)) , (6.5)

where cin
± and cout

± are arbitrary integration constants, multiplying the two linearly indepen-

dent solutions — respectively infalling and outgoing — of the second order equations (4.12).

The retarded Green’s functions are computed by setting the outgoing mode to zero at the

horizon, while the advanced Green’s functions correspond to setting the infalling mode to

zero [71]. It follows that the near horizon behavior of the response functions

R± = ∂r log |E±| = f1/2e−A∂ρ log |E±|, (6.6)
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must be of the form

R±(ρ, ω) =

{
−iωe−A(uh)(4πTρ)−1/2 +O(ρ1/2), Retarded,

iωe−A(uh)(4πTρ)−1/2 +O(ρ1/2), Advanced,
(6.7)

depending on whether we want to compute the retarded or advanced 2-point functions.

These conditions on the horizon determine the sole integration constants R(1)±(ω) in the

solution of the Riccati equations (4.15). Note that these boundary conditions are invariant

under the combined transformation ω → −ω and complex conjugation. This leads to the

relation (5.23) we mentioned earlier between the response functions. Another important

remark is that the expansion (6.5) as written here is only strictly valid for nonzero ω. This

is because the O(ρ) terms that appear in this expansion contain inverse powers of ω, thus

rendering the limit ω → 0 ill defined. We need to keep this fact in mind when determining

the small ω behavior in section (6.4).

6.3 Universal large ω solution

Besides the UV and IR asymptotic expansions, the large and small frequency solutions of

the fluctuation equations can be obtained analytically. These determine respectively the

large and small frequency behavior of the response functions R(1)±(ω), and hence of the

conductivities.

In the large frequency limit the coefficients (4.13) become

h0 =
ω2

f2
+O(ω), h1 = ∂u log |Σf |+O

(
ω−2

)
. (6.8)

Assuming these expansions hold uniformly in [0, uh], the fluctuation equations (4.12) to

leading order in ω simplify to

f∂u(ΣfE ′±) + ω2ΣE± = 0, (6.9)

whose general solution is

E± =
(
c1 +O(ω−1)

)
exp

(
iω

∫ u

0

du′

f(u′)

)
+
(
c2 +O(ω−1)

)
exp

(
−iω

∫ u

0

du′

f(u′)

)
, (6.10)

with c1 and c2 arbitrary integration constants. From the near horizon behavior of f in (6.3)

we deduce that infalling boundary conditions on the horizon corresponds to setting c2 = 0.

This yields

R± = ∂r log |E±| = −f1/2e−A∂u log |E±| = −iωf−1/2e−A +O(ω0), (6.11)

and so from (6.2) we conclude that

R±(1)(ω) =

{
−iω +O(ω0), Retarded,

iω +O(ω0), Advanced.
(6.12)

From (5.32) then follows that for large frequencies the conductivities behave as

σxx(ω) = σyy(ω) = − 2

κ2
Σ0 +O(ω−1), σxy(ω) = −σyx(ω) = − 4

κ2
Π0 +O(ω−1). (6.13)

Notice that this result is independent of the particular background considered here and is

thus universally valid for asymptotically locally AdS backgrounds of the form (3.1).
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6.4 Universal small ω solution and its Padé approximant

A universal result for the response functions R±(1)(ω) can also be obtained in the small

frequency limit. From (4.13a) and (4.13b), using the background equations (3.6), we deduce

that

h1(ω,H) = 2A′ +
1

4H2

(
e2A

fΣ

)′
ω2 +O

(
ω4
)
, (6.14a)

h0(ω,±H) = −e
−2A

f

(
e2Af ′

)′ ∓ e−2A

H

(
e2Aα′

f

)′
ω +

ω2

f2
∓ 1

4H3

α′

f

(
e2A

Σf

)′
ω3 +O

(
ω4
)
.

(6.14b)

Inserting an expansion of the form

E± = E(0)
± + ω E(1)

± + ω2E(2)
± + ω3E(3)

± +O
(
ω4
)
, (6.15)

in the fluctuation equations (4.12) leads to the following equations up to O(ω3):

O(ω0) : E ′′(0)
± + 2A′E ′(0)

± − e−2A

f

(
e2Af ′

)′ E(0)
± =

e−2A

f

(
e2Af2

(
E(0)
±
f

)′)′
= 0, (6.16a)

O(ω1) :

(
e2Af2

(
E(1)
±
f

)′)′
= ± f

H

(
e2Aα′

f

)′
E(0)
± , (6.16b)

O(ω2) :

(
e2Af2

(
E(2)
±
f

)′)′
= −e

2A

f
E(0)
± −

e2Af

4H2

(
e2A

fΣ

)′
E ′(0)
± ± f

H

(
e2Aα′

f

)′
E(1)
± , (6.16c)

O(ω3) :

(
e2Af2

(
E(3)
±
f

)′)′
=± e2A

4H3
α′
(
e2A

Σf

)′
E(0)
± −

e2A

f
E(1)
± −

e2Af

4H2

(
e2A

fΣ

)′
E ′(1)
± ± f

H

(
e2Aα′

f

)′
E(2)
± .

(6.16d)

Note that the O(ω0) equation is a homogeneous second order equation and hence the cor-

responding general solution contains two integrations constants. Moreover, the subleading

in ω equations are second order inhomogeneous equations but with the same homogeneous

solutions as the O(ω0) equations. Without loss of generality we will absorb all freedom

in choosing the homogeneous solutions into the O(ω0) solution by allowing the integration

constants to potentially depend on the frequency.

At O(ω0) the two linearly independent solutions are

E(0)
± = c1f + c2fp, p(u) ≡

∫ u

0

du′

e2Af2
, (6.17)

where the lower limit of integration in p(u) has been chosen so that the integral is well

defined. In the UV these behave as

f(u) = 1−Mu3 +O
(
u4
)
, p(u) =

u3

3L2
+O

(
u4
)
, (6.18)

while near the horizon we have

f(u) = 4πTρ+O
(
ρ2
)
, p(ρ) =

e−2A(uh)

(4πT )2ρ
+O (log ρ) . (6.19)
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Both f and fp are therefore regular on the horizon and so we cannot a priori exclude

any of the two solutions at this order in the frequency. As we shall see, we need to

determine the expansion (6.15) up to O(ω2) in order to find suitable linear combination of

the integration constants c1 and c2 that corresponds to the desired IR boundary conditions.

The inhomogeneous solution at O(ω1) takes the form

E(1)
± = ± f

H

∫ u

0

dū

e2Af2

(
c1

∫ ū

uh

f2

(
e2Aα′

f

)′
d¯̄u+ c2

∫ ū

0
f2p

(
e2Aα′

f

)′
d¯̄u

)
. (6.20)

where again the lower limits of integration have been chosen so that the integrals are well

defined. Near the horizon these the O(ω1) solution behaves as

E(1)
± ∼ ±

(Q̃− 2HΠh)

HΣh

(
c1ρ log ρ− c2

e−2A(uh)

(4πT )2
log ρ

)
, (6.21)

where Πh ≡ Π(χ(uh)). In the UV we have

E(1)
± = c1

(
± 1

HΣ0

(
Q̃− 2HΠ0

)
u+O

(
u2
))

+ c2O(u4). (6.22)

Combining the O(ω0) and O(ω1) results, near the horizon the small frequency expansion

behaves as

E± ∼ c1

(
4πTρ+ ωO(ρ log ρ) +O(ω2)

)
+ c2

(
e−2A(uh)

4πT
+ ωO(log ρ) +O(ω2)

)
. (6.23)

It follows that for any value of the integration constants c1 and c2 this expansion breaks

down when −|ω| log ρ ≈ 1. However, as long as ρ � e−1/|ω| the expansion (6.15) is well

defined. Going one order higher, the O(ω2) inhomogeneous solution takes the form

E(2)
± = −f

∫ u

0

dū

e2Af2

∫ ū

u∗

(
e2A

f
E(0)
± +

e2Af

4H2

(
e2A

fΣ

)′
E ′(0)
± ∓

f

H

(
e2Aα′

f

)′
E(1)
±

)
d¯̄u, (6.24)

where the lower limit of the first integration, 0 < u∗ < uh, is an arbitrary point between

the horizon and the boundary since the integrand diverges both at the horizon and the

boundary. Near the horizon this behaves as

E(2)
± = c1

(
− e

2A(uh)

4H2Σh
log ρ+O(1)

)
+ c2O((log ρ)2), (6.25)

where Σh ≡ Σ(φ(uh)), while in the UV

E(2)
± =

3L2

4H2Σ0

(
Mc1 −

1

3L2
c2

)
u+O(u2). (6.26)

At this point we can determine the relation between the integration constants c1 and

c2 corresponding to ingoing boundary conditions on the horizon. Provided ρ � e−1/|ω|,

the ingoing solution in (6.5) can be expanded as

E± = cin
±(ω)

(
1− i

4πT
ω log ρ+O(ω log ρ)2)

)
. (6.27)
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On the other hand, in the same limit the small ω solution we found behaves as

E± ∼ c2
e−2A(uh)

4πT

(
1∓ ω (Q̃− 2HΠh)

4πTHΣh
log ρ− c1

c2
ω2 e

4A(uh)4πT

4H2Σh
log ρ+ ω2O((log ρ)2)

)
,

(6.28)

and hence we conclude that

c1 = c2
4He−4A(uh)

(4πT )2ω

(
iHΣh ∓ (Q̃− 2HΠh)

)
. (6.29)

Applying the same argument to subleading orders in the expansion determines the point

u∗ in E(2)
± .

Finally, observing that

E ′(1)
± ∓ α′

Hf
E(0)
± = O(u3), (6.30)

as u→ 0, it is straightforward to show that E(3)
± = O(u2) and hence in the UV we get

E± = c1

(
1± ω

HΣ0

(
Q̃− 2HΠ0

)
u+

3L2ω2

4H2Σ0

(
M − 1

3L2

c2

c1

)
u+O(u2, ω4)

)
. (6.31)

It follows that

R±=∂r log |E±| = −f1/2e−A∂u log |E±| ∼
u

L

(
∓ ω

HΣ0
(Q̃−2HΠ0)− 3L2ω2

4H2Σ0

(
M− 1

3L2

c2

c1

))
,

(6.32)

from which we read off the response functions

R(1)±(ω) = ∓ ω

HΣ0

(
Q̃− 2HΠ0

)
− 3ML2ω2

4H2Σ0
+

(4πT )2e4A(uh)ω3

16Σ0H3(iHΣh ∓ (Q̃− 2HΠh))
+O(ω4).

(6.33)

Notice that the leading O(ω) part of this expression is universal and independent of the IR

boundary conditions as long as c1 6= 0. This temperature independent part of the response

functions determines the universal DC Hall conductivity and it is crucial to remove the

apparent pole at ω = 0 in the conductivities (5.32). From (5.32) it follows that the small

frequency behavior of the conductivities is

σxx = σyy =
3ML2

2H2κ2
iω − (4πT )2e4A(uh)Σhω

2

8H2κ2(H2Σ2
h + (Q̃− 2HΠh)2)

+O
(
ω3
)
, (6.34a)

σxy = −σyx =
ρ

H
− (4πT )2e4A(uh)(Q̃− 2HΠh)ω2

8H3κ2(H2Σ2
h + (Q̃− 2HΠh)2)

+O
(
ω3
)
. (6.34b)

Given that M is related to the temperature T , the second order correction in ω of the

response function brings in a temperature dependence in the leading nontrivial correction
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of the transport coefficients. From the Ward identities (5.19) then we obtain

〈Ttx(ω)Jx(−ω)〉 = 〈Tty(ω)Jy(−ω)〉 = − (4πT )2e4A(uh)(Q̃− 2HΠh)ω2

8H2κ2(H2Σ2
h + (Q̃− 2HΠh)2)

+O
(
ω3
)
, (6.35a)

〈Ttx(ω)Jy(−ω)〉=−〈Tty(ω)Jx(−ω)〉=−3ML2

2Hκ2
iω+

(4πT )2e4A(uh)Σhω
2

8Hκ2(H2Σ2
h+(Q̃−2HΠh)2)

+O
(
ω3
)
,

(6.35b)

〈Ttx(ω)Ttx(−ω)〉=〈Tty(ω)Tty(−ω)〉=−ε+ 3ML2

2κ2
+

(4πT )2e4A(uh)Σhiω

8κ2(H2Σ2
h+(Q̃−2HΠh)2)

+O
(
ω2
)
,

(6.35c)

〈Ttx(ω)Tty(−ω)〉 = −〈Tty(ω)Ttx(−ω)〉 =
(4πT )2e4A(uh)(Q̃− 2HΠh)iω

8Hκ2(H2Σ2
h + (Q̃− 2HΠh)2)

+O
(
ω2
)
.

(6.35d)

These agree with equations (49)-(51) in [34] for the dyonic Reissner-Nordström black hole,

but the present derivation holds even for backgrounds with non-trivial scalar profiles.

Padé approximant

The small frequency expansion (6.33) of the response functions can be considerably im-

proved by means of a Padé approximant, which is capable of capturing certain poles of the

conductivities. It turns out there are two different Padé approximants that correctly cap-

ture the behavior of the conductivities at different limits of parameter space. The two Padé

approximants correspond to two different terms dominating the response function (6.33).

Writing (6.33) as

R(1)±(ω) = R[1]
(1)±ω +R[2]

(1)±ω
2 +R[3]

(1)±ω
3 +O(ω4), (6.36)

the two relevant Padé approximants are

R(1)±(ω) =


ω(R[1]

(1)±)2

R[1]
(1)±−R

[2]
(1)±ω

+R[3]
(1)±ω

3 +O(ω4), R[1]
(1)±ω ∼ R

[2]
(1)±ω

2 � R[3]
(1)±ω

3,

R[1]
(1)±ω +

ω2(R[2]
(1)±)2

R[2]
(1)±−R

[3]
(1)±ω

+O(ω4), R[1]
(1)±ω � R

[2]
(1)±ω

2 ∼ R[3]
(1)±ω

3.

(6.37)

The first Padé approximant is a good approximation to the response functions at low

temperature, i.e. near extremality, and leads to a pole at

ω∗± ≈ ±
4H(Q̃− 2HΠ0)

3L2M
, (6.38)

which agrees with (81) of [36] in the small H limit keeping ω/H fixed. The second Padé

approximant leads to poles at

ω∗± ≈ −
12L2MH

(4πT )2
e−4A(uh)(iHΣh ∓ (Q̃− 2HΠh)), (6.39)

which agrees with (74) of [36] in the hydrodynamic limit where H and Q̃ are sent to zero

keeping H/ω and Q̃/ω fixed. As we shall see in section 7 these Padé approximants capture

the poles closest to the origin of the complex ω plane to very good approximation.
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6.5 Numerical solution of the Riccati equation

The Riccati equations (4.15), or equivalently the second order linear equations (4.12), are

not integrable in general and so one needs to solve these equations numerically. One can

solve either the Riccati equations or the second order equations, but the fact that the

Riccati equations directly determine the response function by imposing only IR boundary

conditions is a clear advantage compared to the second order equations where one must

keep track of the arbitrary source.9 Moreover, the relation R+(ω) = R−(−ω)∗ implies

that instead of computing R+ and R− for positive ω we can compute only R+(ω) for all

ω. Thus, in order to compute the conductivities one only needs to solve one first order

ordinary differential equation which is simpler than solving a set of coupled second order

differential equations as was previously done in the literature.

In order to solve the Riccati equations (4.15) numerically it is convenient to introduce

the new dependent variables

Θ± = Ω−1
[
ΣHeAf1/2R± ± ω

(
Q̃− 2ΠH

)]
, (6.40)

in terms of which the Riccati equations take the simpler form

f
(
HΘ′± + 4H2e−2AΘ2

±
)
− ΣH2 − Σ−1

(
ωΘ± ∓

(
Q̃− 2ΠH

))2
= 0. (6.41)

For retarded Green’s functions the horizon condition (6.7) translates to

Θ± ∼ ω−1
(
−iΣhH ±

(
Q̃− 2ΠhH

))
, (6.42)

on the horizon, while in the UV

Θ± ∼ ω−2
(
HΣ0R(1)± ± ω

(
Q̃− 2Π0H

))
, (6.43)

from which one can read off the renormalized response functions R(1)±. Equation (6.41) can

be integrated using any standard solver for ordinary differential equations. However, the

horizon is not a regular singular point and imposing boundary conditions on the horizon

requires some care in the numerical analysis. A standard technique is to use a Taylor

expansion in the vicinity of the horizon, and match the numerical solution at some small

distance away from the horizon. However, we found that even a near-horizon expansion

to O(uh − u)4 was not sufficient for stabilizing the numerics for (6.41) with NDSolve in

Mathematica.10 Instead, using a Padé approximant based on the near-horizon expansion

to O(uh − u)2 in order to impose the IR boundary condition sufficiently away from the

horizon worked very well with NDSolve.

9It is worth pointing out that the boundary value problem for the second order equations (4.12) is

well defined, despite the apparent singularity of the the coefficients h0 and h1 at the zeros of Ω = ω2 −
4H2Σfe−2A. Indeed, it is straightforward to see that h0 and h1 have a simple pole at the zeros of Ω and

therefore these correspond to regular singular points of the second order equations [22, 75].
10We also solved (6.41) using the ODE integrator from the Python library scipy, finding the same results.
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7 Example: dyonic Reissner-Nordström black hole

In this section we will apply the above general analysis to the dyonic Reissner-Nordström

black hole (3.17), which was first studied in [34, 36]. The dyonic Reissner-Nordström

black hole is a solution of the background equations (3.6) either for a model with constant

potentials, i.e. V (φ, χ) = −6/L2, Σ(φ) = Σ0, Z(φ) = Z0 and Π(χ) = Π0 as in [34,

36], or in a theory with arbitrary potentials that admits asymptotically AdS solutions,

provided the scalars are set to their vacuum AdS value, which can be taken without loss

of generality to be zero. Setting the scalars to zero is a consistent truncation of the

background equations (3.6) provided V (φ, χ), Σ(φ) and Π(χ) don’t have a linear term in

their respective variables in a Taylor expansion around φ = χ = 0. However, while in the

theory with constant potentials the dyonic Reissner-Nordström black hole — as we shall

demonstrate momentarily — is the only asymptotically AdS solution of the form (3.1),

this is not generically the case in the theory with non constant potentials. In particular, a

generic theory will admit in addition to the dyonic Reissner-Nordström black hole a hairy

black hole with the same charges and a phase transition between the two solutions will

generically occur at some critical temperature.

In order to show that the dyonic Reissner-Nordström black hole is the only asymptot-

ically AdS solution of the form (3.1) in the case of constant potentials, let us consider the

background equations (3.6), which in this case reduce to

(e2AfA′)′ − 3e4A

L2
+ Σ0

(
H2 + α′2

)
= 0, (7.1a)

2
(
A′′ −A′2

)
+ φ′2B + Z0χ

′2
B = 0, (7.1b)

(e2Af ′)′ − 4Σ0

(
H2 + α′2

)
= 0, (7.1c)

(e2Afφ′B)′ = 0, (7.1d)

(e2Afχ′B)′ = 0, (7.1e)

(Σ0α
′ + 2Π0H)′ = 0. (7.1f)

The general solution of the last equation is

α(u) = α0 −Qu, (7.2)

where the constant Q is related to Q̃ that we introduced before by Σ0Q = 2Π0H − Q̃.

Moreover, the scalar fields can be expressed in terms of f(u) and A(u) as,

φB(u) = φ0 + Cφ

∫ u

0

du′

e2A(u′)f(u′)
, χB(u) = χ0 + Cχ

∫ u

0

du′

e2A(u′)f(u′)
. (7.3)

where φ0, χ0, Cφ and Cχ are integration constants, while using the solution for α, the

blackening factor can be expressed in terms of A(u) as

f(u) = f0 +

∫ u

0
du′
(
3M + 4Σ0

(
H2 +Q2

)
u′
)
e−2A(u′), (7.4)
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where M is another integration constant. Finally, eliminating f from the first two equations

we obtain a second order equation for the warp factor A(u), which is the only remaining

unknown quantity, namely

(
C2
φ + Z0C

2
χ

) (
A′′+2A′2

)2
+ 2

(
A′′ −A′2

)(
3MA′ + (4A′u+ 1)Σ0(H2 +Q2)− 3e4A

L2

)2

=0.

(7.5)

However, since we are interested in asymptotically AdS solutions we must have A ∼
log(L/u) as u → 0. The last equation then requires that Cφ = Cχ = 0 for asymptoti-

cally AdS solutions and hence the scalars must be necessarily constant and so, without

loss of generality, we can set them to zero. The resulting solution is the dyonic Reissner-

Nordström black hole (3.17) in four dimensions for which

φB(u) = 0, A(u) = log(L/u), f(u) = 1−Mu3 +
Σ0

L2

(
H2 +Q2

)
u4,

χB(u) = 0, α(u) = α0 −Qu. (7.6)

The horizon radius uh is the smallest positive root of the quartic equation f(uh) = 0, i.e.

Mu3
h = 1 +

Σ0

L2

(
H2 +Q2

)
u4
h. (7.7)

This expression can be used to express the mass M in terms of the horizon radius uh,

namely

f(u) =

(
1− u3

u3
h

)
− Σ0

L2

(
H2 +Q2

)
uhu

3

(
1− u

uh

)
. (7.8)

Finally, the Hawking temperature can be found by the usual argument demanding that

the Euclidean section be free of conical defects, leading to the expression

T = −f
′(uh)

4π
=

1

4π

(
3

uh
− Σ0

L2

(
H2 +Q2

)
u3
h

)
, (7.9)

while the energy and pressure densities, respectively (3.35) and (3.36), become

ε =
ML2

κ2
, P = −ML2

2κ2
, ε+ 2P = 0. (7.10)

In figures 1 and 6 we plot the real and imaginary parts of the response functionR−(1)(ω)

as a function of a real frequency for two different choices of the electric and magnetic fields,

corresponding to different temperatures. The values of the electric and magnetic fields in

figure 1 correspond to a nearly extremal black hole, where the first Padé approximant

in (6.37) provides a good approximation of the response functions for small frequencies. In

particular, the Padé approximant very accurately reproduces the pole closest to the origin

of the complex frequency plane as can be seen explicitly in the plot. The conductivities

for these values of the electric and magnetic fields are plotted in figures 2, 3 and 4. The

fact that there is no Drude peak and the poles are not located at zero frequency is a

consequence of the broken translational symmetry due to the magnetic field [34, 36]. How

the Drude peak is recovered in the limit of vanishing magnetic field is illustrated in figure 5.
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Figure 1. Plots of the real and imaginary parts of the response function R−(1)(ω) as a function

of a real frequency ω for H = 0.6, Q = 1.6156, T = 0.00239, together with the small frequency

expansion (6.33), the first Padé approximant in (6.37), as well as the asymptotic behavior (6.12).

Both the location of the horizon uh and the AdS radius L are set to 1. As is evident from these

plots, the Padé approximant is a drastic improvement of the small ω expansion in this regime of

parameter space. In particular, it captures very well the pole in the Real part of R−(1)(ω), but

not the delta function at the same frequency (as predicted by the Kramers-Kronig relations) in the

imaginary part.

The values of the electric and magnetic fields in figure 6 are instead in the hydrodynamic

regime where the second Padé approximant in (6.37) provides a good approximation of the

response functions for small frequencies, including the location of the poles, which have

now moved away from the real axis according to (6.39). The corresponding conductivities

are plotted in figures 7, 8 and 9.

In figure 10 we compare the location of the pole of the conductivities σxx and σxy
nearest to zero on the real frequency axis as a function of the magnetic field H at a number

of different temperatures with the result (6.38) predicted by the first Padé approximant

in (6.37). As expected, the Padé correctly gives the location of the pole at very small

magnetic field, independently of the temperature. However, the lower the temperature

the agreement extends to a higher value of the magnetic field. An analogous plot for the

poles (6.39) in the hydrodynamic regime can be found in figure 3 of [36].

Finally, in figure 11 we plot |σ+| as a function of the complexified frequency for a

number of values of the electric and magnetic fields keeping H2 +Q2 = 1 fixed, reproducing

figure 1 in [36] (see also figure 9 in [26]). To capture the non-liner regime where the

cyclotron poles deviate from the semi-circle configuration it was necessary to impose the IR

boundary condition using a Padé approximant in the near horizon expansion, as discussed

in section 6.5. This transition regime is not visible in the plots of [36] and [26].
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Figure 2. Plots of the real and imaginary parts of the conductivities σxx and σxy as a function of

a real frequency ω for H = 0.6, Q = 1.6156, T = 0.00239, together with the small frequency expan-

sion (6.33), the first Padé approximant in (6.37), as well as the large ω asymptotic behavior (6.13).

Again the location of the horizon uh and the AdS radius L are set to 1. The location of the poles

in Imσxx and Reσxy are well approximated by the Padé approximant and are given by (6.38).

However, the delta functions in Re σxx and Imσxy, which are related to the aforementioned poles

via the Kramers-Kroning relations, are not captured by the Padé approximant. As H → 0 the

delta functions move towards the origin of the complex ω plane, giving rise to the well known

Drude peak, which reflects translation invariance. The fact that the poles (and hence the delta

functions) in these plots are away from the origin is a consequence of broken translation invariance

due to the magnetic field [34, 36]. A similar effect occurs when translation invariance is broken by

impurities [76].

8 Concluding remarks

In this paper we presented a general framework for the holographic analysis of asymp-

totically AdS backgrounds with finite charge density and a constant magnetic field, in-

cluding the systematic computation of the renormalized 1- and 2-point functions and the

corresponding transport coefficients. The importance of such dyonic backgrounds in the

holographic study of strongly coupled systems in both condensed matter and high energy

physics was our main motivation for carrying out the analysis in a general and systematic

fashion, in the hope that our results can be directly used in numerous applications.

There are three important aspects in our general holographic prescription that we

have tried to emphasize, all of which rely on a radial Hamiltonian formulation of the bulk

dynamics. The first is a general recursive prescription for holographically renormalizing

the theory. This is particularly important in the presence of running scalars, which can
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Figure 3. Plot of |σxx|2 as a function of a complex ω for H = 0.6, Q = 1.6156, T = 0.00239 (left),

together with the first Padé approximant in (6.37) (right). As is evident from these plots, the Padé

approximant captures the poles closest to the origin extremely accurately.

Figure 4. Plot of |σxy|2 as a function of a complex ω for H = 0.6, Q = 1.6156, T = 0.00239 (left),

together with the first Padé approximant in (6.37) (right).

contribute to the UV divergences. Moreover, correctly renormalizing the theory is crucial

to ensure that ultralocal and quasilocal terms in correlation functions (and hence transport

coefficients) are compatible with the Ward identities.

The second aspect we wanted to highlight is the fact that correlation functions are

much more efficiently extracted directly from the solutions of the equations of motion

instead of first evaluating the on-shell action and then taking derivatives. The (renormal-

ized) radial canonical momenta are holographically identified with the 1-point functions

of the dual operators in the presence of sources, which can be further differentiated with

respect to the sources to give any desired n-point function. The only instance one actu-

ally needs to compute the on-shell action is in the computation of the free energy of the

background solutions.

The third aspect of our analysis that we consider important concerns the fluctuation
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Figure 5. The parameters used in these plots are Q = 1, M = 3, Σ0 = 1, Π0 = 0 and L = 1.

Left panel: Reσxx as a function of ω for several values of the magnetic field H. As H decreases,

the real part of σxx tends to behave as a delta function keeping the area below the curve fixed but

rising sharply and becoming steeper. This behavior occurs for small but nonzero ω but for even

smaller ω it vanishes steeply. Right panel: Imσxx as a function of ω for several values of the

magnetic field H. As H decreases, the imaginary part of σxx tends to behave as ∼ 1
ω for small but

nonzero ω but for even smaller ω it vanishes steeply. We conclude that the magnetic field regulates

the delta function which is present at ω = 0 for zero magnetic field in which case there is a Drude

peak involved. In particular, the Drude peak predicts Im σxx ∼ 1/ω and Reσxx ∼ δ(ω) which is

what we find by taking a sequence of decreasing H configurations.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-2

-1

0

1

2

ω

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-2

-1

0
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Figure 6. Plots of the real and imaginary parts of the response function R−(1)(ω) as a function

of a real frequency ω for H = 0.28, Q = 0.04, T = 0.2324 and uh = L = 1, together with the

small frequency expansion (6.33), the second Padé approximant in (6.37), as well as the asymptotic

behavior (6.12). Again, the Padé approximant is a drastic improvement compared to the small ω

expansion in this regime of parameter space.
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Figure 7. Plots of the real and imaginary parts of the conductivities σxx and σxy as a function

of a real frequency ω for H = 0.28, Q = 0.04, T = 0.2324 and uh = L = 1, together with the

small frequency expansion (6.33), the second Padé approximant in (6.37), as well as the large ω

asymptotic behavior (6.13). Again, the location of the peaks is very well approximated by the Padé

approximant and is given by (6.39). Note that the poles have moved away from the real axis, which

is why only peaks appear in these plots.

equations for determining the 2-point (and higher) functions. These are in general a sys-

tem of coupled linear second order equations and require boundary conditions in the UV

and regularity conditions in the IR. Unless one can decouple these equations it is a pri-

ori tricky to identify which modes are the independent sources and which the responses,

although in principle this can be addressed systematically using the symplectic form of

the bulk theory [44]. However, there is a straightforward alternative which utilizes the

manifest symplectic structure of the Hamiltonian formalism. Namely, by trading the linear

second order fluctuation equations for the corresponding first order Riccati equations one

automatically eliminates the sources out of the problem and computes directly the correct

response functions by imposing only regularity conditions in the IR. Besides automatically

taking care of the identification of the sources and response functions, the Riccati equations

can be used to directly holographically renormalize the 2-point functions (only computing

the terms that are contributing to the particular 2-point function [42]), and they render

the numerical solution of the fluctuation equations considerably simpler by eliminating the

arbitrary sources from the start [43].

Finally, the radial Hamiltonian formulation of the bulk dynamics often leads to pow-

erful solution generating techniques for background solutions, as we have demonstrated in

section 3.2 and appendix A. In particular, we found infinite families of exact RG flows in-
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Figure 8. Plot of |σxx|2 as a function of a complex ω for H = 0.28, Q = 0.04, T = 0.2324 (left),

together with the second Padé approximant in (6.37) (right). The plots on the top are zooming

in on the poles closest to zero visible in the plots at the bottom. Again, the Padé approximant

captures the poles closest to the origin extremely accurately.

terpolating between AdS in the UV and hyperscaling violating geometries in the IR, some

of which we expect exhibit a gapped and discrete spectrum of fluctuations. Interestingly,

even the purely electric version of these solutions is not strictly included in the classification

of hyperscaling violating geometries discussed in [61, 68, 70] since those assume a single

exponential behavior for the scalar potential. However, the exact solutions we present here

involve subleading terms in the scalar potential in an essential way.

Computing the conductivities in these backgrounds is one of our immediate priori-

ties [46]. Another interesting question is whether some of these solutions can be embedded

in gauged supergravity. The potential V (φ) can be easily embedded in supergravity by

choosing Wo(φ) to be (for example) the supersymmetric superpotential. However, the

gauge kinetic function Σ(φ) is then determined as well, which renders the embedding not

a completely trivial question. Finding exact families of dyonic black hole solutions with

scalar hair and adding momentum relaxation are two other interesting directions we plan

to explore [77].
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Figure 9. Plot of |σxy|2 as a function of a complex ω for H = 0.28, Q = 0.04, T = 0.2324 (left),

together with the second Padé approximant in (6.37) (right). The plots on the top are zooming

in on the poles closest to zero visible in the plots at the bottom. Again, the Padé approximant

captures the poles closest to the origin extremely accurately.
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René Meyer and Mikhail Stephanov for useful comments and discussions. IP would like to

thank the Galileo Galilei Institute for Theoretical Physics and the Vrije Universiteit Brus-

sel for the hospitality, as well as the INFN for partial support during the completion of

this work. The work of EJL, AT and JV was supported in part by the Belgian Federal Sci-

ence Policy Office through the Interuniversity Attraction Pole P7/37, by FWO-Vlaanderen

through project G020714N, and by the Vrije Universiteit Brussel through the Strategic

Research Program “High-Energy Physics”. The work of EJL was partially supported by

the ERC Advanced Grant “SyDuGraM”, by IISN-Belgium (convention 4.4514.08) and by

the “Communaute Francaise de Belgique” through the ARC program. The work of AT is

partially funded by the VUB Research Council. JV is Aspirant FWO.

– 47 –



J
H
E
P
0
7
(
2
0
1
5
)
0
9
4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 10. Plot of the location of the pole of σxx and σxy closest to zero on the positive real

ω axis as a function of H (solid lines), compared with the pole (6.38) predicted by the first Padé

approximant in (6.37). As expected, the agreement is best at small magnetic field and small

temperatures.

A Exact superpotentials and RG flows in various dimensions

In this appendix we provide a few more examples of solutions to the superpotential equa-

tion (3.14), leading to exact RG flows in various dimensions.

(i) d = 3:

The solution (3.18) can be generalized to include a non-trivial axion, namely

W (A, φ, χ) = Wo(φ, χ)
√

1 + q2e−4A, (A.1)

with the potentials given by

V (φ, χ) = W 2
oφ + Z−1(φ)W 2

oχ −
3

2
W 2
o ,

H2Σ(φ) + (Q̃− 2Π(χ)H)2Σ−1(φ) =
q2

2

(
W 2
oφ + Z−1(φ)W 2

oχ +
1

2
W 2
o

)
. (A.2)

However, contrary to the purely dilatonic case discussed in section 3.2, the func-

tion Wo(φ, χ) cannot be chosen arbitrarily here since it is constrained by the second

equation in (A.2).

(ii) d arbitrary, H = 0, Q̃ 6= 0:

For zero magnetic field the superpotential equation (3.14) admits a solution of the

form

W (A, φ) = Wo(φ)

√
1 + q2e−2(d−1)A, (A.3)
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Figure 11. Density plots of |σ+| as a function of complex frequency for H = 0 and Q = 1 (left),

H = Q = 1/
√

2 (center), and H = 1 and Q = 0 (right) at T = 1/2π (cf. figure 1 in [36] and figure 9

in [26]). The white regions correspond to poles, while the blue regions to zeros. The location of the

poles closest to zero forms a semicircle, along which the poles move as the values of H and Q are

shifted, keeping T fixed [36]. A 3-dimensional version of the plot in the center is shown in figure 9.

Figure 12. Plots of |σxx|2 (left) and |σxy|2 as functions of complexified frequency for H = Q =

1/
√

2, T = 1/2π. Note that the poles are arranged in a configuration between the near extremal

case in figures 3 and 4 and the hydrodynamic limit in figures 8 and 9.

– 49 –



J
H
E
P
0
7
(
2
0
1
5
)
0
9
4

in any dimension, with Q̃2Σ−1
0 = q2L−2 and

V (φ) = W ′2o −
d

d− 1
W 2
o , Σ(φ) =

2Σ0

L2(W ′2o + d−2
d−1W

2
o )
. (A.4)

As in the example in section 3.2 the function Wo(φ) can be prescribed at will. The

corresponding metrics again flow to a hyperscaling violating geometry in the IR with

exponents

1 < z <
2d− 3

d− 2
, θ = d+ z − 2, (A.5)

and it is important to keep in mind that d here includes time.

(iii) d = 5, Q̃− 2Π0H 6= 0:

In this case a possible solution of (3.14) is

W (A, φ) = W0(φ) + (Q̃− 2Π0H)W1(φ)e−4A, (A.6)

where

V (φ) = W ′20 −
5

4
W 2

0 , Σ(φ) =
2

W ′21 + 3
4W

2
1

,(
W ′21 +

3

4
W 2

1

)(
W ′0W

′
1 +

1

4
W0W1

)
=

2H2

Q̃− 2Π0H
, (A.7)

The last equation should be viewed as a differential equation for W1(φ), and the ratio

H2/(Q̃− 2Π0H) must be treated as a parameter of the theory, unless it drops out of

the combination W ′21 + 3
4W

2
1 . Again, W0(φ) can be any function.

B Gauss-Codazzi equations

In this appendix we write for completeness the full set of Gauss-Codazzi equations for the

model described by the action (1.1) in the gauge

ds2 = dr2 + γijdxidxj , A = Aidx
i, (B.1)

which is used throughout our analysis. These equations are the starting point for deriv-

ing the general fluctuation equations, which we give in appendix C. The Gauss-Codazzi

equations following from the equations of motion (1.4) are

Einstein rr:

K2 −KijK
ij = R[γ] + φ̇2 − ∂iφ∂iφ+ Z(φ)

(
χ̇2 − ∂iχ∂iχ

)
+ Σ(φ)

(
2γijȦiȦj − FijF ij

)
− V (φ, χ), (B.2a)

Einstein ri:

DjK
j
i −DiK = φ̇∂iφ+ Z(φ)χ̇∂iχ+ 2Σ(φ)Fijγ

jkȦk, (B.2b)

Einstein ij:

K̇i
j +KKi

j = Rij [γ]− ∂iφ∂jφ− Z(φ)∂iχ∂jχ− 2Σ(φ)
(
γikȦkȦj + F ikFj

k
)

+
1

(d− 1)
δij

(
Σ(φ)

(
2γklȦkȦl + FklF

kl
)
− V (φ, χ)

)
, (B.2c)
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Scalar φ:

φ̈+Kφ̇+ �φ− 1

2

(
Vφ + Zφ

(
χ̇2 + ∂iχ∂iχ

)
+ Σφ

(
2γijȦiȦj + FijF

ij
))

= 0, (B.3a)

Scalar χ:

Z (χ̈+Kχ̇+ �χ) + Zφ

(
χ̇φ̇+ ∂iφ∂iχ

)
− 1

2

(
Vχ + 4Πχε

ijkȦiFjk

)
= 0, (B.3b)

Maxwell i:

1√
−γ

∂r

(√
−γ
(

Σ(φ)γijȦj + Π(χ)εijkFjk

))
= Dj

(
Σ(φ)F ij + 2Π(χ)εijkȦk

)
, (B.4a)

Maxwell r:

Di

(
Σ(φ)γijȦj + Π(χ)εijkFjk

)
= 0. (B.4b)

C General fluctuation equations for d = 3

Although in the main body of the paper we consider only certain time-dependent fluc-

tuations around the backgrounds (3.1) with no spatial dependence, in this appendix we

provide the complete set of fluctuation equations for d = 3 following from the Gauss-

Codazzi equations in appendix B, with generic fluctuations around the backgrounds (3.1)

of the form

γij =γBij (r)+hij(r,x), Ai=ABi (r,x)+ai(r,x), φ=φB(r)+ϕ(r,x), χ=χB(r)+τ(r,x).

(C.1)

Introducing the quantities Sji ≡ γjkB hki, S ≡ Sii and S⊥ ≡ Sii − S0
0 , we have the following

useful identities:

Rij [γB] = 0, DB
i = ∂i, (C.2a)

(0)

Kj
i = Ȧδji +

ḟ

2f
δj0δ

0
i ,

(0)

K = dȦ+
ḟ

2f
,

(0)

Kij =
1

2

(0)

γ̇ij =e2A

(
Ȧδij−

1

2
(ḟ+2Ȧ(1+f))δi0δj0

)
,

(C.2b)

(0)(
γ̈kiγ

kj
)

= (4Ȧ2 + 2Ä)δji +
4Ȧḟ + f̈

f
δi0δ

0j , (C.2c)

(1)

Kj
i =

1

2
Ṡji +

ḟ

2f
(S0
i δ
j
0 − S

j
0δ

0
i ),

(1)

K =
1

2
Ṡ,

(1)

R = ∂i∂jS
j
i −�BS, (C.2d)

(1)

Γijk =
1

2

(
∂jS

i
k + ∂kS

i
j − ∂ihjk

)
,

(1)

Rji =
1

2

(
∂k∂iS

j
k + ∂k∂

jSki −�BS
j
i − ∂i∂

jS
)
. (C.2e)

Expanding the Gauss-Codazzi equations in appendix B and using these identities leads to
the following set of fluctuation equations for d = 3:

Einstein ij:
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(
∂2
r+

(
dȦ+

1

2
f−1ḟ

)
∂r+�B

)
Sji −f

−1ḟ
(
δ0
i Ṡ

j
0−δ

j
0Ṡ

0
i

)
+
ḟ

2f
Ṡδ0

i δ
j
0−
(
∂j∂kS

k
i + ∂i∂

kSjk − ∂
j∂iS

)
+ 4Σe−4A

(
e2Af−1α̇2 +H2

) (
S0
i δ
j
0 − S

j
0δ

0
i

)
+ δji

(
ȦṠ +

2

d− 1
(Vφϕ+ Vχτ)

)
+ 4Σφϕ

(
−f−1e−2Aδ0

i δ
j
0α̇

2+e−4A(δxi δ
j
x+δyi δ

j
y)H2

)
+4Σ

(
−f−1e−2Aα̇

(
δj0ȧi−α̇δ0

i S
j
0

)
+γjkB δ

0
i α̇ȧk

)
− 4HΣe−2A

(
He−2A

(
(δjxδ

x
i + δjyδ

y
i )(Sxx + Syy ) + δj0(S0

xδ
x
i + S0

yδ
y
i )
)

−γjkB
(
(δxkδ

l
y − δ

y
kδ
l
x)δpi + (δxi δ

l
y − δ

y
i δ
l
x)δpk

)
(∂pal − ∂lap)

)
− 4

d− 1
δjiΣe

−2A
(
−2f−1ȧtα̇+ f−1S0

0 α̇
2 + 2He−2A(∂xay − ∂yax)− e−2AH2(Sxx + Syy )

)
− 4

d− 1
e−2AδjiΣφϕ

(
−f−1α̇2 +H2e−2A

)
= 0, (C.3a)

Einstein ri:

∂j

(
Ṡji + f−1ḟ(S0

i δ
j
0 − S

j
0δ

0
i ) +

1

2
f−1ḟ δ0

i δ
j
0S

)
− ∂i

(
Ṡ +

1

2
f−1ḟS0

0 + 2φ̇Bϕ+ 2Zχ̇Bτ

)
=

− 4Σe−2Af−1α̇(∂iat − ∂0ai) + 4ΣHe−2A(δxi ȧy − δ
y
i ȧx)− 4ΣHe−2A(δxi S

0
y − δ

y
i S

0
x)α̇, (C.4a)

Einstein rr:

(d− 1)ȦṠ +
1

2
f−1ḟ Ṡ⊥ =

(
∂i∂j − δij�B

)
Sji + 2φ̇Bϕ̇+ 2Zχ̇B τ̇ +

(
Zφχ̇

2
B − Vφ

)
ϕ− Vχτ

− 2Σφϕe
−2A

(
f−1α̇2 +H2e−2A

)
+ 2e−2AΣ

(
f−1α̇2S0

0 − 2f−1α̇ȧt − 2He−2A(∂xay − ∂yax) +H2e−2A(Sxx + Syy )
)
, (C.4b)

Scalar ϕ:

ϕ̈+ 2(dȦ+
1

2
f−1ḟ)ϕ̇+ �Bϕ− Zφχ̇B τ̇ +

1

2
φ̇BṠ −

1

2

(
Vφφ + Zφφχ̇

2
B

)
ϕ− 1

2
Vχφτ

− Σφφϕe
−2A

(
H2e−2A − f−1α̇2

)
− Σφe

−2A
(
−2f−1α̇ȧt + f−1S0

0 α̇
2 −H2e−2A(Sxx + Syy ) + 2He−2A(∂xay − ∂yax)

)
= 0, (C.5a)

Scalar τ :

Z

(
τ̈ + (dȦ+

1

2
f−1ḟ + Z−1Zφφ̇B)τ̇ + �Bτ

)
+ Zφχ̇Bϕ̇+

1

2
Zχ̇BṠ −

1

2
Vχχτ

+

(
Zφ

(
χ̈B + (dȦ+

1

2
f−1ḟ)χ̇B

)
+ Zφφφ̇Bχ̇B −

1

2
Vχφ

)
ϕ

+ 2f−1/2e−dA (−2Πχχτα̇H + ΠχSα̇H − 2ΠχHȧt − 2Πχα̇(∂xay − ∂yax)) = 0, (C.5b)

Maxwell r:

Σα̇

(
∂iS

i
0 −

1

2
∂0S

)
− Σφα̇∂0ϕ+ fΣ

(
−f−1∂0ȧt + ∂xȧx + ∂yȧy

)
+ 2HΠχf

1/2e−(d−2)A∂0τ = 0,

(C.6a)
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Maxwell i:

∂r

(
f1/2edA

(
f−1e−2Aα̇

(
−δi0Σφϕ+ ΣSi0 −

1

2
Sδi0

)
+ ΣγijB ȧj

)
+ 2HΠχδ

i
0τ

)
+ 2Πχχ̇B ε̄

ijk∂jak =

2Πχα̇(δixδ
j
y − δiyδjx)∂jτ + f1/2edAΣ∂j(∂

iaj − ∂jai)

+Hf1/2e(d−4)A∂j

((
Σφϕ+

1

2
ΣS

)
(δixδ

j
y − δiyδjx)− ΣSik(δkxδ

j
y − δkyδjx)− ΣSjk(δixδ

k
y − δiyδkx)

)
.

(C.6b)

Note that ε̄ijk denotes the totally antisymmetric symbol in flat space.
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