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1 Introduction

Black hole thermodynamics has maintained its popularity, partly because black holes make

for compelling and elegant thermodynamic systems whose behaviour can be linked to the

nature of quantum gravity. Of particular relevance to this work are the asymptotically

Anti de-Sitter (AdS) black holes, which have significance in various proposed gauge-gravity

dualities.

Extended phase space thermodynamics, in which the cosmological constant Λ is re-

garded as a thermodynamic variable [1] analogous to pressure [2–18], has recently become

of considerable interest as the proper venue for a complete thermodynamic description of

AdS black holes [19]. The mass of an AdS black hole is then understood as the enthalpy

of the spacetime [3]. It was soon realized that the critical exponents of the 4-dimensional

Reissner-Nordström AdS black hole are the same as those in the van der Waals liquid-gas

phase transition [12], completing an analogy explored previously in a more restricted con-

text [20–23]. Subsequently a broad range of new thermodynamic behaviour was discovered,

including reentrant phase transitions, tricritical points, and more general van der Waals

behaviour with standard critical exponents [13, 24–42], with an extensive review of these

issues in the context of rotating black holes presented in [43].

– 1 –



J
H
E
P
0
7
(
2
0
1
5
)
0
7
7

One of the most recent discoveries of interest was obtained in 3rd-order Lovelock grav-

ity [28, 44]. Multiple-reentrant-phase-transition behaviour as well an isolated critical point

with non-standard critical exponents for a D = 7 third-order (cubic) Lovelock asymptoti-

cally AdS black hole were found. This latter phenomenon is the first example of a critical

point with non-standard critical exponents obtained in a geometric theory of gravity. It was

subsequently shown that it occurs for topological black holes in any K = (2k + 1)th-order

Lovelock gravity theory, provided the Lovelock couplings are appropriately adjusted [44].

This corresponds to a double swallowtail behaviour in the Gibbs free energy, giving rise to

two first-order transitions between the small and large black hole phases.

Our key interest for this paper is to see if these more recently discovered phenomena

can occur in a broader context. To this end we explore the extended phase space ther-

modynamics of black holes in cubic quasitopological gravity. Quasitopological gravity was

proposed [45–47] as an extension to the Lovelock [48] higher curvature terms. While the

Lovelock terms are topological invariants below a certain critical dimensionality, the qua-

sitopological terms are still active in some lower dimensions. The trade-off is that when

spherical symmetry does not hold, the quasitopological terms produce higher than second

order derivative terms in the Einstein field equations.

With cubic quasitopological gravity we can obtain field equations in D = 5 similar to

those of cubic Lovelock gravity. We will examine whether we can likewise obtain similar

thermodynamics but in fewer dimensions. One particularly compelling notion for a D = 5

black hole is that the basic idea behind AdS/CFT will link it to a D = 4 field theory, and so

perhaps universality relationships with well understood D = 4 thermodynamic systems will

become apparent. We find that indeed new features are present in D = 5, particularly the

first instance of reentrant phase transitions, a phenomenon so far seen only in D ≥ 6 [27].

We consider quasitopological additions corresponding to 3rd-order curvature correc-

tions to Einstein-Maxwell-Gauss-Bonnet gravity that maintain second-order field equations

with respect to the metric under conditions of spherical symmetry. We employ the action

I =

∫

dDx
√−g

(

−2Λ + L1 +
λ

(D − 3)(D − 4)
L2 +

8µ

(D − 3)(D − 6)
L3 − FµνF

µν

)

(1.1)

where the couplings have been redefined from their original formulation [45–47] to allow

a direct and straightforward comparison with Lovelock gravity. Here D is the number of

dimensions, Fµν = ∂[µAν], µ and λ are the correction terms’ coefficients, L1 = R is the

Ricci scalar, L2 = RµνγδR
µνγδ − 4RµνR

µν + R2 is the Gauss-Bonnet Lagrangian, and L3

is the 3rd order quasitopological gravity term. This term has the form

L3 =
2D − 3

3D2 − 15D + 16

[

Rµ
ν
α
βRν

τ
β
σRτ

µ
σ
α +

1

(2D−3)(D−4)

(

3(3D−8)

8
RµανβR

µανβR

− 3(D − 2)RµανβR
µαν

τR
βτ + 3D ·RµανβR

µνRαβ + 6(D − 2)Rµ
αRα

νRν
µ

− 3(3D − 4)

2
Rµ

αRα
µR+

3D

8
R3

)]

(1.2)

and is only effective in higher dimensions (D > 4), while becoming a surface term in 6

dimensions [45].
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Of particular importance to this work is the scaling of the higher-curvature coupling

coefficients. Written in this form, λ and µ are dimensionful, since the Riemann terms

obey scaling ∼ L−2, where L is some lengthscale set by the metric coordinates. Therefore,

λ ∼ L2 and µ ∼ L4. Later, when we use an Eulerian argument to construct an extended

Smarr formula from a 1st law, the scaling of these terms will set the coefficients in the

Smarr formula.

In the remainder of this work, we will first generalize the exact solution found in [49]

to both D = 5 as well as D = 7. We will compare the resulting thermodynamic behaviour

of the D = 7 solution with previous work from cubic Lovelock gravity [28], and we will

discuss any new features that arise as we take D = 5.

2 Exact solution

The metric ansatz we employ is

ds2 = − r2

L2
f(r)dt2 +

L2dr2

r2g(r)
+ r2dΩ2

k (2.1)

where dΩ2
k is the metric of a constant curvature hypersurface

dΩ2
k = dθ1

2 +
sin2

(√
kθ1

)

k



dθ2
2 +

D−2
∑

i=3

i−1
∏

j=2

sin2 θjdθ
2
i



 (2.2)

The parameter k = −1, 0, 1, corresponds to hyperbolic, flat, and spherical geometries,

respectively. Topological black holes are obtained by putting appropriate identifications

on the former two [50]. We parameterize the Maxwell gauge field with a function h(r) as

At = q
r

L
h(r). (2.3)

Substituting this ansatz into the action, using

Λ = −(D − 1)(D − 2)

2L2
(2.4)

as the cosmological constant and simplifying using integration by parts to remove terms

proportional to derivatives of f(r), we find

I=
1

L2

∫

dD−1x

∫

dr

√

f

g

({

(D − 2)rD−1

(

1−κ+
λ

L2
κ2 − µ

L4
κ3
)}′

+ 2q2rD−2 g

f

[

(rh)′
]2
)

(2.5)

where a prime denotes differentiation with respect to r and κ = g(r)− L2k/r2. Note that

in eq. (2.5) the determinant of the angular part of the metric has been suppressed, since it

is unimportant in obtaining the field equations.
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We substitute f(r) = N2(r)g(r) and vary the action with respect to g(r), N(r) and

h(r) to obtain the field equations
(

−1 +
2λ

L2
κ− 3µ

L4
κ2

)

N ′ = 0 (2.6)

[

(D − 2)rD−1

(

1− κ+
λ

L2
κ2 − µ

L4
κ3

)]′

=
2q2rD−2

N2

[

(rh)′
]2

(2.7)

(

rD−2 (rh)′

N

)′

= 0. (2.8)

Clearly, N = 1 solves equation (2.6) and this solution will be taken for the remainder

of the paper. Finding h(r) from equation (2.8) and solving for the gauge field from (2.3),

we find

At =

√

(D − 2)

2(D − 3)

q

rD−3
. (2.9)

Solving the remaining differential equation, we obtain the fundamental relationship

1− κ̃+
λ

L2
κ̃2 − µ

L4
κ̃3 =

L2m

rD−1
− q2L2

r2(D−2)
(2.10)

where

κ̃ =
L2

r2
(F (r)− k) (2.11)

and F (r) = r2g(r)/L2 is defined such that the metric reads: −F (r)dt2 + · · · . Note that if

we were to use the function g(r) as defined previously, we would be excluding factors of L

from the mass and charge. Since in extended phase space we consider L to be a parameter

that is varied, it is more convenient to write expressions in terms of F (r). Note also that

the mass parameter m and the charge parameter q have been defined such that we recover

the RN-AdS solution in the form presented in [13] when we take µ = λ = 0 .

3 Smarr relation and 1st law

When considering the thermodynamics of these black holes it is useful to work explicitly

with eq. (2.10). The utility of using this expression is that one is not restricted to consid-

ering only one branch of the solution. As a result of this, it is natural to expect that all

thermodynamic quantities should limit to the standard D−dimensional RN-AdS results as

µ = λ = 0.

We now move on to considering the thermodynamics for these black holes in extended

phase space, where all dimensionful parameters are considered to be thermodynamic vari-

ables [51]. We employ the extended first law,

dM = TdS + V dP +ΦdQ+Ψλdλ+Ψµdµ (3.1)

where

M =
(D − 2)

16π
ωD−2m (3.2)

Q =

√

2(D − 2)(D − 3)

8π
ωD−2 q (3.3)
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as in [13, 51], where

ωD ≡ 2π(D+1)/2

Γ
(

D+1
2

) (3.4)

is the surface area of a D-dimensional sphere.

The potentials introduced by the quasitopological and Gauss-Bonnet parameters follow

from the procedure introduced in [28]. The entropy of this solution was found to be

S =
rD−2
h ωD−2

4

(

1 +
2(D − 2)λk

(D − 4)r2h
+

3(D − 2)µk2

(D − 6)r4h

)

(3.5)

and the temperature can be found from

T =

(

∂F (r)/∂r

4π

)∣

∣

∣

∣

r=rh

where rh is the outermost root of F (r) = 0. In practice, to compute ∂F (r)/∂r it is easiest

to differentiate eq. (2.10) and solve for the derivative term. Doing so yields

T =
1

4π
(

r4h + 2kλr2h + 3k2µ
)

[

(D − 1)r5h
L2

+ (D − 3)kr3h

+(D − 5)k2λrh +
(D − 7)k3µ

rh
− (D − 3)Q2

r2D−9
h

]

(3.6)

The remaining potentials can be calculated by requiring consistency of the first law.

Defining the pressure as

P = − Λ

8π
=

(D − 1)(D − 2)

16πL2
, (3.7)

a straightforward calculation yields

V =
ωD−2

D − 1
rD−1
h (3.8)

for the thermodynamic volume and

Ψλ =
ωD−2(D − 2)

16π
krD−5

h

(

k − 8πrhT

D − 4

)

, (3.9)

Ψµ =
ωD−2(D − 2)

16π
k2rD−7

h

(

k − 12πrhT

D − 6

)

. (3.10)

for the potentials conjugate to the couplings. One finds that these thermodynamic quan-

tities satisfy the Smarr relation

(D − 3)M =(D − 2)TS − 2PV + (D − 3)ΦQ+ 2λΨλ + 4µΨµ

which is consistent with Eulerian scaling.

We are now in a position to examine these black hole solutions for critical behaviour in

extended phase space. In the following sections we will adopt an approach which is similar

to that used in [28] insofar as we will employ dimensionless thermodynamic parameters

– 5 –
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to simplify our investigation. However (unlike the analysis performed in [28]) we will not

restrict ourselves to positive values of the coupling µ but will instead explore the entire

parameter space that is consistent with the entropy, pressure, and stability constraints

(or in other words a ghost-free vacuum) discussed in the following sections. The case of

positive quasitopological coupling will be considered in section 4, while section 5 will focus

on negative quasitopological coupling.

4 Positive µ thermodynamics

Analogous to [28], we define the dimensionless thermodynamic quantities1

rh = vµ1/4, q =
q

2

√

(D − 2)(D − 3)

π
µ−(D−3)/4,

t = (D − 2)µ1/4T. (4.1)

where we have performed a rescaling of the charge to make comparisons with [28] more

convenient. Note that from (3.8) rh will be non-linearly related to V . It is more convenient

to work with the specific volume v, than V . Qualitatively this has no effect on the results

we obtain, though care must be taken upon integration over v (for example in computations

involving the equal-area law) since the measure of integration will contribute.

In terms of these quantities, along with the parameters

α =
λ√
µ

p = 4
√
µP, (4.2)

we can write the dimensionless equation of state in the form

p =
t

v
− (D − 2)(D − 3)k

4πv2
+

2ktα

v3
− (D − 2)(D − 5)k2α

4πv4

+
3k2t

v5
− (D − 2)(D − 7)k

4πv6
+

q
2

v2(D−2)
. (4.3)

We see that eq. (4.3) is identical to the equation of state found in the study of 3rd order

Lovelock gravity (cf. eq. (4.7) from [28]). Hence the same thermodynamic behaviour seen

previously for D ≥ 7 — particularly multiple re-entrant phase transitions [28] and isolated

critical points [44] — will be seen here as well.

In this case we are permitted to study the D = 5 behaviour, since quasitopological

gravity is well-defined in five spacetime dimensions. For D = 5, some terms in (4.3) vanish

and others reverse in sign, and so we must directly analyze this particular case. We shall

carry out this analysis in the next subsection.

Next we compute the Gibbs free energy, G = M − TS for this solution (in dimension-

less form):

g =
µ(3−D)/4

ωD−2
G. (4.4)

1Note that the definition of the dimensionless charge differs from that in [28], while all other dimensionless

quantities are the same. This adjustment was made to the charge to account for the differences in coupling

to the electromagnetic field.
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Explicitly in the case k = ±1, this is given by

g =− 1

16π (v4 + 2αkv2 + 3)

[

− 3(D − 2)kvD−7

(D − 6)
− 3(D − 2)(D − 8)αvD−5

(D − 6)(D − 4)

+
4(D + 3)kvD−3

D − 6
− 2(D − 2)α2kvD−3

D − 4
− α(D − 8)vD−1

D − 4
(4.5)

+
60πpvD−1

(D − 1)(D − 6)
− kvD+1 +

24παkpvD+1

(D − 1)(D − 4)
+

4πpvD+3

(D − 1)(D − 2)

]

+
q
2

4(D − 3) (v4 + 2αkv2 + 3) vD−3

[

(2D − 5)v4

D − 2
+

2(2D − 7)αkv2

D − 4
+

3(2D − 9)

(D − 6)

]

.

Direct comparison between eq. (4.5) and eq. (4.9) in [28] reveals that the two expressions

are identical. That is, the dimensionless Gibbs energy in quasitopological gravity is the

same as the dimensionless Gibbs energy for 3rd order Lovelock gravity.

We see from eq. (3.5) that for certain choices of parameters the entropy can be negative.

In the thermodynamic considerations that follow, we consider only black holes with positive

entropy to be physical. For this reason, it is important to clarify the restrictions that

determine the positivity of entropy. The result is trivial in the k = 0 case, as the entropy is

always positive. In the cases k = ±1 the condition will depend on the number of spacetime

dimensions. Substituting the dimensionless volume v from eq. (4.1) into the expression (3.5)

for the entropy and solving for the zeros gives

v± =

√

√

√

√

(

D − 2

D − 4

)

[

−kα±
√

α2 − 3(D − 4)2

(D − 2)(D − 6)

]

(4.6)

for the roots with v > 0. For D > 6, the result is the same as for 3rd order Lovelock

gravity [28]: for kα > 0 the entropy is always positive, whereas for kα < 0, the entropy is

positive provided |α| <
√

3(D−4)2

(D−2)(D−6) . In the case D = 5 positivity of entropy is satisfied

for v > v+, regardless of the sign of kα.

The requirement that asymptotically AdS regions exist for all branches of the solu-

tion was discussed in [28]. We examine the asymptotic behaviour of the discriminant of

eq. (2.10). If the discriminant is asymptotically (at large r) greater than zero, all three

possible branches have real-valued solutions. However, if the discriminant is less than zero,

only one of the branches will take real values at large r. This corresponds to the case where

only the branch that does not reduce to either of the Gauss-Bonnet solutions as α3 → 0

has AdS asymptotics.

Taking the asymptotic limit, the equation defining κ̃ becomes

h(κ̃∞) = 1− κ̃∞ +
λ

L2
κ̃2∞ − µ

L4
κ̃3∞ = 0 (4.7)

and we find that its discriminant yields the inequality

18µλ

L6
− 4λ3

L6
+

λ2

L4
− 4µ

L4
− 27µ2

L8
≥ 0 (4.8)

– 7 –
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Figure 1. A plot of the regions bounded by p+ and p
−

in 5 dimensions. Outside of the region,

in the majority of the plot, we have only one branch which has a valid AdS limit, while inside the

region all three branches have valid AdS limits.

which is quadratic in 1/L2 after multiplying through by L4. Writing L2 = (D − 1)(D −
2)/16πP and substituting the dimensionless parameters p and α in eq. (4.2) we obtain a

discriminant of

∆ =
π2p2

(D − 2)2(D − 1)2
(

16α2 − 64
)

+
π3p3

(D − 2)3(D − 1)3
(

1152α− 256α3
)

− 6912π4p4

(D − 2)4(D − 1)4
(4.9)

which equals zero when

p± =
(D − 1)(D − 2)

108π

[

9α− 2α3 ± 2
(

α2 − 3
)3/2

]

(4.10)

denoting a transition in the number of solutions with AdS limits. This is exactly the same

as for the cubic Lovelock case, but with the important distinction that we can now examine

the behaviour in 5 dimensions, as seen in figure 1.

We can examine the stability of the AdS vacuum to show that all regions of figure 1

possess at least one branch with a ghost-free AdS vacuum. We do this by applying the

condition [45]

h(κ̃∞) = 1− κ̃∞ +
λ

L2
κ̃2∞ − µ

L4
κ̃3∞ (4.11)

on the ghosty graviton, which will yield h′(κ̃∞) > 0 if the graviton is a ghost. This is be-

cause h′(κ̃∞) appears as the prefactor to the standard equations of motion for perturbation

about the AdS vacuum, and determines the sign of the kinetic term in the propagator for

the graviton. Substituting κ̃ as a solution of

0 = 1− κ̃∞ +
λ

L2
κ̃2∞ − µ

L4
κ̃3∞

– 8 –
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which is the condition for AdS asymptotics, we find that h′(κ̃∞) < 0 for two of the three

branches when both the conditions p > p− and p < p+ are satisfied (i.e. this is the region

where three AdS limits exist). Furthermore, in the region with only one valid AdS limit,

h′(κ̃∞) < 0 and so we again have a solution with a ghost-free vacuum.

Another important consideration for the thermodynamics of these black holes is the

existence of a thermodynamic singularity. It was shown in [28] that such a singularity

exists when k = −1 and when
∂p

∂t

∣

∣

∣

∣

v=vs

= 0 (4.12)

for D = 7 Lovelock gravity. In view of the preceding analysis, the same situation holds

in quasitopological gravity. Evaluating the condition above for the case k = ±1, one finds

that the real solution for the specific volume given by

vs =

√

−kα±
√

α2 − 3 (4.13)

results in a thermodynamic singularity. It is clear that only for kα < 0 can a thermo-

dynamic singularity occur. At this value of the specific volume the temperature diverges.

However, one can find a pressure for which the temperature is in fact well behaved at this

singularity. In [28] this was done by solving

∂p

∂v

∣

∣

∣

∣

t=ts

= 0 (4.14)

for the temperature, inserting it and vs into the equation of state to obtain the pressure at

this singular point, ps.

Since the result here is identical to that found in the case of 3rd order Lovelock gravity,

we see that cubic quasitopological gravity has the same isolated critical points as 3rd-

order Lovelock gravity. These occur for α =
√
3 (ensuring their entropy is positive),

and correspond to the existence of two swallowtails, giving rise to two first-order phase

transitions between small and large black holes. This phase transition is characterized by

non-standard critical exponents in the phase diagram [44].

4.1 Thermodynamics in D = 5

In the previous section, we have shown that the extended phase space thermodynamics in

3rd order quasitopological gravity is identical to the thermodynamics of 3rd order Lovelock

gravity, as considered in [28]. For this reason, we now study the results in D = 5 to

see if there exist any new thermodynamic features not present in the Lovelock case, and

to see which of the thermodynamic results from Lovelock gravity are consistent with the

constraints of D = 5.

The first thing we note is that thermodynamic singularities in D = 5 are not physical.

They correspond to black holes with negative entropy, since upon comparison of eq. (4.6)

with eq. (4.13) we find v+ > vs. Hence cubic quasitopological gravity has no special isolated

critical points in five dimensions.

Moving on to a more detailed study, we note that due to the form of the equation

of state, there is no interesting thermodynamic behaviour when k = 0. Henceforth we

examine only spherical and hyperbolic black holes.

– 9 –
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4.1.1 Spherical

In the case k = 1, the conditions for critical points,

∂p

∂v
= 0,

∂2p

∂v2
= 0. (4.15)

can be solved analytically, although the resulting expressions for tc, vc and pc are not

illuminating. The result is that there exists one critical point which satisfies the constraint

conditions provided α>∼1.9909 (smaller values of α result in a pc that is smaller than p−).

We can calculate the critical exponents corresponding to this critical point by expand-

ing the equation of state in terms of the parameters

ω =
v

vc
− 1, τ =

t

tc
− 1. (4.16)

In terms of these parameters our expansion takes the form,

p

pc
= 1 +Aτ +Bτω + Cω3 +O(τω2, ω4) (4.17)

where A,B and C are complicated α-dependent coefficients. However, the important fea-

ture of this expansion is the form, which is identical to the cubic Lovelock case, and to

the van der Waals fluid. Because the equation of state entirely governs the macroscopic

behaviour of the system, the critical exponents are therefore given by the standard mean

field theory results:

α = 0, β =
1

2
, γ = 1, δ = 3. (4.18)

4.1.2 Hyperbolic

We begin by mentioning that there are no isolated critical points found inD = 5. In the case

of Lovelock gravity, isolated critical points were found in D = 7 and higher and correspond

to the case where the critical point occurs at the thermodynamic singularity. However,

as we discussed in the previous section, when D = 5 and k = −1 the thermodynamic

singularity occurs when the entropy is negative. Thus the black holes exhibiting the isolated

critical point are unphysical.

In fact, the D = 5 hyperbolic black holes appear to exhibit no critical behaviour at

all. When one solves for vc it is found that there are solutions for two critical points.

However, when one compares the solution for vc and pc against the constraints on pressure

and entropy, it is found that the solutions violate either one or both of these constraints.

Thus, the critical behaviour for the hyperbolic black holes is unphysical.

One can consider the thermodynamics outside the pressure wedge of figure 1, since

there do exist legitimate black hole solutions here. For example, in the case where α is

negative with k = −1, for small p we see discontinuities in the Gibbs free energy which

could be studied further to perhaps uncover new critical behaviour. However, because

this region exists beyond the pressure wedge of figure 1, we cannot be certain that the

branch we are considering has valid AdS asymptotics; it may be that this analysis jumps

to branches for which f(r) terminates at finite r. Ensuring that the asymptotics of the
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branches considered are well-behaved would require a non-trivial analysis of each branch,

since the asymptotic structure will be a function of m, q, α and p. We shall not consider

this case further.

5 Negative µ thermodynamics

We now wish to consider the thermodynamic behaviour of black holes which are solutions

to the field equations (2.7) in the case of negative coupling. We wish to employ the same

calculational machinery that was used in the previous section, but in order for this to be

consistent we must substitute everywhere in our thermodynamics µ → −µ. This substi-

tution allows us to explore the regions of negative coupling uses the same dimensionless

parameters as before. The fundamental relationship for solutions of the field equations

upon substitution µ → −µ becomes,

1− κ̃+
λ

L2
κ̃2 +

µ

L4
κ̃3 =

L2m

rD−1
− q2L2

r2(D−2)
(5.1)

where, as before,

κ̃ =
L2

r2
(F (r)− k) (5.2)

with F (r) = r2g(r)/L2 is defined so that the metric reads: −F (r)dt2 + · · · . Similarly, any

thermodynamic quantities can be obtained by substituting µ → −µ in the aforementioned

results. We can then employ the same dimensionless thermodynamic parameters as before

rh = vµ1/4, q =
q

2

√

(D − 2)(D − 3)

π
µ−(D−3)/4,

t = (D − 2)µ1/4T, α = λ/
√
µ. (5.3)

In terms of the quantities from eq. (5.3), the equation of state now reads,

p =
t

v
− (D − 2)(D − 3)k

4πv2
+

2αkt

v3
− (D − 2)(D − 5)k2α

4πv4

−3k2t

v5
+

(D − 2)(D − 7)k

4πv6
+

q
2

v2(D−2)
(5.4)

and the dimensionless Gibbs free energy is given by

g =− 1

16π (v4 + 2αkv2 − 3)

[

− 3(D − 2)kvD−7

(D − 6)
+

3(D − 2)(D − 8)αvD−5

(D − 6)(D − 4)

− 4(D + 3)kvD−3

D − 6
− 2(D − 2)α2kvD−3

D − 4
− α(D − 8)vD−1

D − 4
(5.5)

− 60πpvD−1

(D − 1)(D − 6)
− kvD+1 +

24παkpvD+1

(D − 1)(D − 4)
+

4πpvD+3

(D − 1)(D − 2)

]

+
q
2

4(D − 3) (v4 + 2αkv2 − 3) vD−3

[

(2D − 5)v4

D − 2
+

2(2D − 7)αkv2

D − 4
− 3(2D − 9)

(D − 6)

]

.
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We once again restrict our attention to only those black holes which have positive

entropy. In this case, the zeroes of the entropy are

v± =

√

√

√

√

(

D − 2

D − 4

)

[

−kα±
√

α2 +
3(D − 4)2

(D − 2)(D − 6)

]

. (5.6)

The positivity of entropy is straightforward for D ≥ 7 since the entropy will be positive

provided v > v+ for k = ±1. The situation is more complicated in D = 5 and is most

simply captured by rewriting the bound from (5.6) as

αk > −1

6

v4 + 9

v2
(5.7)

where v is the dimensionless specific volume defined earlier.

We must also be aware of the asymptotic behaviour of the different branches of the so-

lutions for this case. Substituting the dimensionless parameters from eq. (5.3) into eq. (5.1)

and taking the asymptotic limit, we find that the discriminant is given by

∆ =
16π2

(D − 1)2(D − 2)2

[

− 432π2p4

(D − 2)2(D − 1)2

−
(

16π

(D − 1)(D − 2)
α3 +

72π

(D − 1)(D − 2)
α

)

p3 +
(

4 + α2
)

p2
]

(5.8)

and is equal to zero for

p± =
(D − 1)(D − 2)

108π

[

−9α− 2α3 ± 2
(

α2 + 3
)3/2

]

. (5.9)

From this we see that p− is strictly negative (and so does not yield asymptotically AdS

behaviour) while on the other hand, p+ is strictly positive. A simple analysis reveals that

∆ > 0 for p < p+ and ∆ < 0 for p > p+. From this we can conclude that in the region

where p > p+, eq. (5.1) has one real branch and two complex conjugate branches, while

in the region 0 < p < p+ all branches admit AdS asymptotics. Along the line p = p+ all

branches have AdS asymptotics and two branches coincide.

As discussed in [45, 46], some AdS vacua are unstable in the sense that the graviton

in these spacetimes may be a ghost. One can determine whether or not this is the case by

examining the slope of the asymptotic form of eq. (5.1)

h(κ̃∞) = 1− κ̃∞ +
λ

L2
κ̃2∞ +

µ

L4
κ̃3∞ (5.10)

where h′(κ̃∞) determines the sign of the kinetic term for the propagation of gravitons in

the spacetime. The kinetic term has the correct sign when h′(κ̃∞) < 0 and the ‘wrong’ sign

when h′(κ̃∞) > 0. First, we write h(κ̃∞) in terms of the dimensionless quantities, yielding

h(κ̃∞) = 1− κ̃∞ +
4απpκ̃2∞

(D − 1)(D − 2)
+

16π2p2κ̃3∞
(D − 1)2(D − 2)2

(5.11)
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Figure 2. A plot showing the p−α parameter space in D = 5 describing stability and existence of

AdS vacua. The dark red curve is a plot of p+. For p > p+ only one branch admits AdS asymptotics,

while for 0 < p ≤ p+ all branches admit AdS asymptotics. Also shown is the stability of the AdS

vacua, for 0 < p < p+ there is one stable branch. For all values of D the plot is qualitatively the

same, with the value of D providing an overall scale for the plot.

and therefore,

h′(κ̃∞) = −1 +
8απpκ̃∞

(D − 1)(D − 2)
+

48π2p2κ̃2∞
(D − 1)2(D − 2)2

. (5.12)

Expressing κ̃∞ in terms of p and α by setting h(κ̃∞) = 0 we find that h′(κ̃∞) > 0 for

p ≥ p+ for all branches, while there is one branch with h′(κ̃∞) < 0 for p < p+. Hence the

separation between stable and unstable regions coincides exactly with p+. The existence

of AdS asymptotics and the stability of these regions is captured graphically in figure 2.

Luckily for us, this stable AdS branch permits black hole solutions. The easiest way

to see this is to solve

1− κ+
λ

L2
κ2 +

µ

L4
κ3 =

L2m

rD−1
− q2L2

r2(D−2)
(5.13)

where

κ = g(r)− L2

r2
k (5.14)

for g(r) and note that a black hole solution would correspond to g(rh) = 0. We use the

dimensionless parameters eq. (5.3) along with

m = µ−(d−3)/4m (5.15)

as a rescaled mass parameter. A representative plot of g(r) is shown in figure 3. Before

moving on to thermodynamic considerations we note that the analysis performed here

indicates that we are free to consider the thermodynamics of these black holes in the case

– 13 –
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Figure 3. A plot of the metric function g(r) demonstrating black hole solutions for the stable

branch with p < p+. The red curve is for m = 25 and q = 2, the blue curve is for m = 30 and q = 2.

α < 0, which corresponds to λ, µ < 0. This feature is captured in figure 2, where we see

that there exist stable AdS vacua in this case. Furthermore, since there are no stable vacua

for p ≥ p+ we regard this region of parameter space as unphysical.

5.1 Thermodynamic singularity

A general feature that emerges in the case of negative coupling is the existence of ther-

modynamic singularities for both k = ±1. The k = 1 result is novel since in the case of

Lovelock gravity, thermodynamic singularities were only found in the case k = −1 [28].

Here we outline some general considerations for the thermodynamic singularities that occur

for negative coupling.

As was discussed earlier, a thermodynamic singularity occurs when

∂p

∂t

∣

∣

∣

∣

v=vs

= 0 . (5.16)

Working with eq. (5.4) (first in the case where q = 0), we find that eq. (5.16) has the

positive solution,

vs± =

√

−αk ±
√

α2 + 3. (5.17)

We immediately see that for k = ±1 only vs+ will be real, indicating only one thermody-

namic singularity. We can define the thermodynamic singular point (ps, vs, ts) by,

ps = ps(vs, ts)
∂p

∂t

∣

∣

∣

∣

v=vs

= 0,
∂p

∂v

∣

∣

∣

∣

t=ts

= 0. (5.18)
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which yields

vs =

√

−αk +
√

α2 + 3

ts =
D − 2

12παkv3s + 2πv5s − 30πvs

[

k(D − 3)v4s + 2α(D − 5)v2s + 3k(D − 7) +
4πq2

v2(D−5)

]

ps =
(D − 1)(D − 2)k

4π
(

αk −
√
α2+3

)3(

αk
√
α2+3− α2 − 3

)

[

αk(2α2+5)
√

α2 + 3− 2α4 − 8α2 − 6)

]

+
q
2

(

αk −
√
α2 + 3

)D−2
. (5.19)

Let us now make a few comments regarding the thermodynamic singularity. Studying the

expression for ps in eq. (5.19) in the case k = −1, we find

ps = p+ +
q
2

(

α+
√
α2 + 3

)D−2
(5.20)

and so in the hyperbolic case the thermodynamic singularity occurs at ps ≥ p+ and is

therefore excluded by our pressure and stability constraints.

More interesting is the k = 1 case, where we have,

ps = p− +
q
2

(

−α+
√
α2 + 3

)D−2
. (5.21)

From eq. (5.9), p− < 0, so when q = 0 the thermodynamic singularity will occur for Λ > 0,

and is therefore unphysical. However it will always be possible to choose q such that,

for some range of α, ps will occur for physically relevant pressures. This is illustrated in

figure 4. We will return to a deeper discussion of the thermodynamic singularity in the

following sections.

5.2 Thermodynamics in D = 5

In five dimensions the equation of state reads (for k = ±1),

p =
t

v
− 3k

2πv2
+

2kαt

v3
− 3t

v5
− 3k

2πv6
+

q
2

v6
(5.22)

and the conditions for a critical point reduce to

tc =
3kv4c + 9k − 6πq2

πvc (v4c + 6αkv2c − 15)
,

0 = −kv8c + 6v6cα+ (10πq2 − 60k)v4c + (36πkq2 − 54)αv2c − 30πq2 + 45k. (5.23)
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Figure 4. A plot of ps for k = 1 for q = 0.8, 0.9, 1.0 (blue, green, and red curves, respectively);

the purple curve is p+. The thermodynamic singularity is physical for each value of q in the region

where 0 < ps < p+. The plot is for D = 5 but the basic result is identical for D ≥ 7 as well.

5.2.1 Spherical

We specialize first to the case of spherical horizons (i.e. k = +1) with q = 0. We find in

this case that the number of possible critical points consistent with the constraints for a

stable, asymptotically AdS vacuum breaks down as:

α <

√

225 + 120
√
15

9
zero possible critical points

α =

√

225 + 120
√
15

9
single inflection point

α ∈
(√

225 + 120
√
15

9
,

√

282 + 102
√
17

6

)

two possible

critical points

α >

√

282 + 102
√
17

6
one possible critical point. (5.24)

At the point α =
√

225 + 120
√
15/9 the two inflection points ‘coalesce’ into a single in-

flection point. This inflection point is not a physical critical point: the Gibbs energy

has a cusp at this combination of (p, t, v), as shown in figure 5, and therefore no phase

transition occurs.

More interesting is the situation that occurs when α ∈ (
√

225 + 120
√
15/9,

√

282 + 102
√
17/6). The behaviour of the Gibbs free energy and a p − v plot is shown

in figure 6, while figure 7 shows a representative p − t plot. In this case there are two

candidates for critical points. We find that there is a single physical critical point (charac-

terized by the standard critical exponents), and the Gibbs free energy also shows a cusp.

We find that for pressures and temperatures lower than and close to the physical critical
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Figure 5. Left : p − v plot for α =
√

225 + 120
√
15/9 exhibiting an inflection point. Right : g − t

projection for p = pc, 1.1pc and 0.9pc (red, blue, green, respectively). The Gibbs free energy has a

cusp, indicating that the inflection point is not a critical point.

point the Gibbs free energy displays classical “swallowtail” behaviour and the p − v plot

shows typical van der Waals behaviour.

The swallowtail is only present on the minimal branch of the Gibbs free energy for

a small range of pressure and temperature, after which it is present on the upper branch

(see figure 6). After swapping to the upper branch, the tip of the swallowtail intersects the

minimal branch, resulting in both zeroth order and first order phase transitions. This com-

bination of zeroth and first order phase transitions leads to a reentrant phase transition [27],

so named because after multiple (in this case two) phase transitions, the system returns to

the same macroscopic type of state upon a monotonic change in the temperature [52].

To see this, first consider the lower left plot in figure 6. For a temperature t < t0 the

Gibbs energy is minimized for large black holes. Increasing the temperature, the system

undergoes a zeroth order phase transition to a small black hole at t = t0 as there must be

a discontinuous jump to minimize the Gibbs energy. Further increasing the temperature, a

first order phase transition occurs at t = t1, and the system is again a large black hole. In

figure 7 we see the same effect — for pressures in the range p ∈∼(0.0057828, 0.0059372), a

large-small-large reentrant phase transition is possible. The phase behaviour terminates at

the point where the zeroth and first order phase transitions coincide in what is known as

a “virtual triple point”. In all cases the critical behaviour is consistent with the maximal

pressure constraint.

In the region α >
√

282 + 102
√
17/6 the single candidate for a critical point is similar

to the one just described, and the plots presented in the previous discussion are qualitatively

identical to what is observed for these values of α.

We now turn our attention to the charged case. To begin with, we study the (q, α)

parameter space to determine the number of critical points for particular combinations of
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Figure 6. Reentrant phase transition: k = 1 case. Upper left : p − v plot for α = 4, q = 0,

k = 1. The two black curves correspond to the two possible critical points; only the upper black

curve corresponds to a physical critical point. The blue curve is for t = 1.05tc, the red curve is

for t = 0.96tc, and the green curve is for t = 0.83tc. Upper right : g − t projection for p = 0.95pc
displaying classical swallowtail behaviour on the minimal branch, corresponding to a first order

phase transition. Lower left : g − t projection for p = 0.92pc showing the swallowtail no longer

present on the minimal branch. At t0 minimization of the Gibbs free energy requires a discontinuous

jump, indicating a zeroth order phase transition. At t1 the swallowtail intersects the minimal branch

and here is a first order phase transition. These two phase transitions combine to yield a reentrant

phase transition. Lower right : g− t projection for p = 0.8pc. The swallowtail is on the non-minimal

branch and there is no intersection with the minimal branch. There is no criticality in this region.

q and α. The results of this investigation are presented in figure 8. There are no physical

critical points for α < 0. For α > 0, depending on the q, α combination there may be as

many as two critical points.

Figure 9 elucidates the thermodynamics in the case of two critical points. We present

a representative analysis for the case q = 0.795. Here we observe an interesting feature for

the critical pressure, namely that for α ≈ 1.958731054 and α ≈ 2.3834328996 two critical

pressures coincide, as can be seen in figure 9. For α ≈ 1.958731054 the two critical points

coincide, while for α ≈ 2.3834328996 only the critical pressures coincide, and the critical

– 18 –



J
H
E
P
0
7
(
2
0
1
5
)
0
7
7

Figure 7. Reentrant phase transition: p− t plot for α = 4, k = 1. The figure on the right zooms

in on the region of interest. The coexistence line (black) starts at the virtual triple point and

terminates at the physical critical point (green point). A zeroth-order phase transition (red) begins

at the virtual triple point and continues until it meets with the curve marking the boundary for the

‘no black hole region’ (blue). We see that in this case there is a large-small-large reentrant phase

transition.

Figure 8. Critical points in (α, q) parameter space for D = 5 and k = 1. Left : possible critical

points with (pc, vc, tc) satisfying pressure and entropy constraints. Gray dots indicate zero critical

points, blue dots indicate a single critical point, and red dots indicate two critical points. Right : a

close up view of the top plot focusing on 0.7 ≤ q ≤ 0.9 showing more detail.
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Figure 9. A plot of pc vs. α for D = 5, k = 1 and q = 0.795. We see that at the intersection of

the red and blue curves (α ≈ 2.3834328996) the two critical pressures coincide. The purple curve

is the maximum pressure constraint.

temperatures and volumes remain distinct. In each case, the critical point is governed by

the standard mean field theory critical exponents. Hence these are not isolated critical

points like that found in [28, 44].

For α ∈∼(1.95, 2.23) neither of the two possible critical points are physical as they

occur on a non-minimal branch of the Gibbs free energy. In this region we see an infinite

coexistence line separating small and large black holes, as shown in figure 10. For α & 2.23

we see the appearance of two separate physical critical points. A coexistence line beginning

at the origin terminates at one of these critical points, while a coexistence line emanates

from the second critical point, extending beyond physical pressures. As α is increased

beyond ∼ 2.23 these physical critical points occur for more widely separated pressures

and eventually one of the critical points becomes unphysical — exceeding the maximal

pressure constraint.

For a small range of α ∈∼(2.23, 2.38) we find a triple point. This feature is presented

for α = 2.33 in figure 11. Referring to the p − v plot, we see the ‘double van der Waals’

oscillation that is characteristic of a triple point. In the p− t plane we see two coexistence

lines for first order phase transitions that come together at the triple point. Near the triple

point we see the presence of a small/intermediate/large black hole phase transition that is

reminiscent of the solid/liquid/gas phase transition. Considering the Gibbs free energy, we

see in figure 11c that for pressures slightly above the triple point there are two first order

phase transitions. As the pressure is decreased, these first order phase transitions come

closer together until they finally merge at the triple point, as is shown in figure 11d.
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Figure 10. Charged case: p−t plots for q = 0.795, k = 1, D = 5. Left : p−t plot for α = 2 showing

the absence of physical critical points and a coexistence line indicating a first order phase transition

between small and large black holes. Center : p − t plot for α = 2.43 here we see two physical

critical points (green dots). The lower coexistence line displays standard van der Waals behavior:

beginning at (0, 0) and terminating at a critical point. The upper coexistence line displays ‘reverse

van der Waals’ behaviour: beginning at a critical point and continuing on indefinitely. Right : p− t

plot for α = 2.5 showing only a single physical critical point and van der Waals-type behaviour.

As discussed earlier, the k = 1 thermodynamic singularity can occur for physical

pressures when charge is included. One may wonder if the thermodynamic singularity ever

coincides with a critical point. Simple calculations show that provided

α =
1

2

√

36− 2π2q4 − 12πq2 + 2πq3
√

π(πq2 + 12)

2πq2 − 3
(5.25)

then the thermodynamic singularity occurs at a potential critical point; an analysis of its

features indicates that it is an isolated critical point. However we find that the maximal

pressure constraint is always violated for the value of α at which the thermodynamic singu-

larity coincides with the critical point. Hence this this critical point is always unphysical.

When the thermodynamic singularity is physical it appears as a point at which all of

the isotherms intersect at a particular volume. This feature is highlighted in figure 12 for

α = 2.4 and q = 0.795. Evaluating eqs. (5.19) for the these parameter values we find that,

ps ≈ 0.02835105681, ts ≈ 0.1267089635,

vs ≈ 0.7481508651. (5.26)

Expanding the Gibbs free energy and temperature about the thermodynamic singular point

we find that,

g(vs + dv, ps + dp) = A
dp

dv
+B +O(dp, dv)

t(vs + dv, ps + dp) = C
dp

dv
+ ts +O(dp, dv) (5.27)

where A,B and C are numerical constants. We observe that the Gibbs free energy expressed

as a function of v and p does indeed diverge at the thermodynamic singularity. However,
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Figure 11. Triple point: q = 0.795, α = 2.33, k = 1, D = 5. Upper left : p − v plot at the

triple point. Upper right : p− t plot for the triple point. Note the presence of two first order phase

transition coexistence lines distinguishing small, intermediate and large black holes. At the triple

point the coexistence lines meet. The lower coexistence line terminates at a critical point (green

dot), while the upper coexistence line continues indefinitely, eventually becoming unphysical when

it crosses the maximal pressure constraint (greater than the values of p shown on the plot). Lower

left : g− t projection for p > p3c showing the presence of two first order phase transitions, indicated

by the black dotted line. Lower right : g− t projection for p = p3c. At the triple point the two first

order phase transitions merge together.

as noted in [28], the Gibbs free energy is more naturally expressed as a function of t and

p. In terms of these natural variables, the expansion of the Gibbs free energy near the

thermodynamic singularity is,

g(ts + dt, ps + dp) =
A

C
dt+B +O(dp, dv) (5.28)

which is finite and smooth. We therefore conclude that the thermodynamics are well-

behaved at the thermodynamic singular point. We note that when the thermodynamic
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Figure 12. A p − v plot for q = 0.795, k = 1, D = 5, α = 2.4 showing multiple isotherms

intersecting at a single point, indicating the presence of a thermodynamic singularity.

singularity does not occur at a potential critical point (which is the case for the physical

critical points considered here), the system is governed by the standard mean field theory

critical exponents given by eq. (4.18).

5.2.2 Hyperbolic

In the case k = −1 we find that, regardless of the value of q, for both positive and negative

α there is only one possible critical point (positive vc, tc and pc). However, in all cases this

critical point is unphysical, since we find pc exceeds the maximum pressure constraints.

This being the case, we still observe interesting thermodynamic phenomena.

For α < 0, positivity of entropy is automatically satisfied. Here we observe the presence

of a large/small/large reentrant phase transition, as can be seen in figure 13 which shows

a representative p− t plot for α = −5 and q = 0. We find that the actual critical point is

unphysical: it occurs at a pressure exceeding the maximum pressure constraint. However,

the coexistence line that begins at this critical point dips below the maximum pressure

constraint, allowing for physical first order phase transitions. Since the coexistence line

forms a “U” shape, it is possible for two successive first order phase transitions to occur,

resulting in a reentrant phase transition. Note that a qualitatively similar p − t plot is

found for all α < 0 and for q > 0.

When considering α > 0, the positivity of entropy condition is no longer trivial and

must be enforced by ensuring that eq. (5.7) is satisfied for k = −1. For α <∼ 1.000 we

observe features qualitatively similar to the α < 0 case, and figure 13 suffices to display the

physics at play. However, as α becomes larger (still regarding black holes with negative

entropy as unphysical), discontinuities are introduced into the Gibbs free energy. These

discontinuities give rise to zeroth order phase transitions which lead to multiple reentrant

phase transitions. This feature is illustrated in figure 14 for q = 0 and α = 3.

– 23 –



J
H
E
P
0
7
(
2
0
1
5
)
0
7
7

Figure 13. A representative p − t plot using α = −5, q = 0, k = −1 showing the presence of a

large/small/large reentrant phase transition. The horizontal red line corresponds to the maximal

pressure constraint. The coexistence line originates at an unphysical critical point (green dot), but

the coexistence line itself extends into the physical regime for a large range of temperatures and

pressures. The temperature axis has been represented logarithmically to highlight the presence of

the reentrant phase transition.

Referring to figure 14(a) we see how the structure of the Gibbs free energy gives rise

to a multiple reentrant phase transition. Due to the positivity of entropy constraints,

there are only two physical branches of the Gibbs free energy, and these terminate at finite

temperature. Thus up to a certain temperature, there are no physical black holes. For

smaller pressures, we observe a zeroth order phase transition as there is a discontinuous

jump required to minimize the Gibbs free energy as the temperature increases. For larger

pressures, the two branches of the Gibbs free energy intersect twice giving rise to two first

order phase transitions. At a larger pressure (p ≈ 0.0581) the zeroth order phase transition

coincides with the first order phase transition that occurs at the lowest temperature. Above

this pressure we observe only a single first order phase transition.

Now considering figure 14(c) we see that for a fixed pressure p in the region (p0, p1) a

monotonic variation of the temperature will result in a zeroth order small/large phase

transition followed by a first order large/small phase transition and finally a first or-

der small/large phase transition. Thus we have a two reentrant phase transitions

(small/large/small and large/small/large). An identical result was found in [28] for 7D

3rd-order Lovelock gravity. This result is the first example of multiple reentrant phase

transitions for black holes in fewer than 7 dimensions.
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Figure 14. Multiple reentrant phase transition: q = 0, α = 3, k = −1, D = 5. Left : a plot of the

Gibbs free energy in the parameter range where multiple reentrant phase transitions are present.

Center : p − t phase plot. The solid black line represents the coexistence line associated with a

first order phase transition, the solid red line represents a zeroth-order phase transition. To the left

of the dotted blue line there can exist no physical black holes (those with positive entropy). The

maximal pressure constraint is shown as the dark red horizontal line. Right : a zoomed in view of the

center figure showing the presence of a small/large/small/large multiple reentrant phase transition

for pressures between p0 and p1.

By further increasing α we find that the range of pressure for which multiple reen-

trant phase transitions occurs decreases until eventually at α ∼ 4.916 we cease to observe

multiple reentrant phase transitions. For α & 4.916 we observe a single large/small/large

reentrant phase transition, as shown in figure 15. Again, the zeroth order phase transition

is a product of the fact that negative entropy black holes are regarded as unphysical, and

hence discontinuities are introduced into the Gibbs free energy.

As α increases further, we observe thermodynamic behaviour that is qualitatively

similar to what we previously described. However, as α becomes larger, the zeroth order

and first order phase transitions begin at larger values of the pressure. The result is that at

α ∼ 12 all phase transitions occur for pressures larger than the maximal pressure constraint.

In the case of nonzero q we observe no qualitatively different behaviour. The charge

simply acts to shift the phase transitions in both α and p.

5.3 Thermodynamics in D ≥ 7

Employing the positivity of entropy condition, we find that for k = ±1 there are no critical

points in D = 7, 8, 9, 10 that have pc < p+ regardless of the value of q. Furthermore, we

find there to be no interesting phase phenomena present. Accounting for the positivity of

entropy, the Gibbs free energy displays two branches that meet at a cusp for all values of

α and q.

Based on the form of the equation of state we expect this situation to hold for all

D ≥ 7. Furthermore, since the thermodynamics in quasitopological gravity and 3rd-order

Lovelock gravity are identical for D ≥ 7, we expect the same results will hold if this analysis

was performed for 3rd-order Lovelock gravity with negative coupling.
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Figure 15. Reentrant phase transition α = 10, q = 0, k = −1: Left : a g − t projection for

p = 0.0219. Enforcing the positive entropy constraint leaves only two physical branches of the

Gibbs free energy, both of which begin at non-zero temperature, indicated a ‘no black hole’ region.

Right : a representative p − t plot for showing the presence of a large/small/large reentrant phase

transition. The horizontal dark red line corresponds to the maximal pressure constraint. A first

order phase transition (black line) and a zeroth order phase transition (red line) are present. The

dotted blue line marks the region where the black holes have negative entropy (and hence are

regarded as unphysical).

6 Conclusion

Our investigation of the thermodynamic behaviour of black holes (coupled to a U(1) gauge

field) in cubic quasitopological gravity has yielded a number of interesting results. We

found that their thermodynamic behaviour was quite similar in a number of respects to

their counterparts in cubic Lovelock gravity, but also found a number of striking differences.

Throughout our study we have ensured that the parameters respect the physical criteria of

positive black hole entropy and stable ghost-free vacua via the implementation of various

thermodynamic constraints.

As far as the similarities are concerned, we found that the equation of state in D ≥
7 is identical to the cubic Lovelock case, and so µ > 0 black holes will exhibit phase

behaviour similar to that already studied for this case [28]. This means black holes in cubic

quasitopological gravity exhibit the same novel behaviour, particularly isolated critical

points with non-standard critical exponents [44].

However the equation of state for the quasitopological case extends to D = 5, unlike

the cubic Lovelock case. Our investigation of this sector indicated that for spherical black

holes there is a single critical point (with standard critical exponents) provided α & 1.9909.

In the hyperbolic case no critical phenomena were found.

The preceding considerations hold for µ > 0. For µ < 0 our study of the thermody-

namics of D = 5 black holes proved to be particularly fruitful. For k = +1 spherical black

holes we found examples of small/large/small black hole reentrant phase transitions in the

uncharged case, and the presence of a triple point and a small/intermediate/large black
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hole phase transition reminiscent of the solid/liquid/gas phase transition in the charged

case. Although both of these features have been previously found in gravitational systems

(first studied in the context of the Kerr-AdS solution in six dimensions [27]), this work

represents the first instance of these features observed in five dimensions. All of these were

obtained for ghost-free vacua satisfying constraints of standard AdS asymptotics and pos-

itive entropy. While we found an example of an isolated critical point, it occurred within

a ghosty AdS vacuum.

For k = −1 hyperbolic black holes we found examples of small/large/small black hole

reentrant phase transitions as well as small/large/small/large black hole multiple reentrant

phase transitions. This latter case represents the first time a multiple reentrant phase

transition has been observed in a five dimensional gravitational system, having previously

only been found in seven and higher dimensions [28]. We found all instances of isolated

critical points to occur for negative pressures.

We found no new or interesting thermodynamic phenomena in D = 7, 8, 9 or 10 for

negative quasitopological coupling. Based on the form of the equation of state, we expect

this situation to hold for all D ≥ 7 and for 3rd-order Lovelock theories with negative

coupling.

Further thermodynamic territory remains to be mapped out in quasitopological gravity.

Our analysis could be extended to negative α for µ > 0. While this region of parameter

space contains black hole solutions and appears to have some critical behaviour, the analysis

is complicated by the fact that one is not guaranteed to have AdS asymptotics for all

branches. Hence it could be that the thermodynamics corresponds to a branch of a compact

spacetime. To keep track of the asymptotic structure would require a nontrivial analysis

of the asymptotics for all branches as a function of the parameters q, m, and α.
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