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1 Introduction

In an effort to demonstrate the interdisciplinary value of the study of topological super-

conductors, let me begin with a problem in elementary particle physics in 3+1 spacetime

dimensions. In the Standard Model (SM) of particle physics, all fundamental fermions are

massless at energies above the electroweak scale, v = 246GeV. This is because one imposes

the gauge symmetry

GSM = SU(3)color × SU(2)weak ×U(1)hypercharge

and assigns a single generation of fermions to the representation:
(

3, 2,+
1

6

)

⊕
(

3̄, 1,−2

3

)

⊕
(

3̄, 1,+
1

3

)

⊕
(

1, 2,−1

2

)

⊕ (1, 1,+1) .

This representation is chiral and hence does not admit a GSM-invariant mass term for any

fundamental fermion field. The simplest way to give the fermions a mass at energies below

the scale v is to posit the existence of a spin-0 Higgs field transforming as (1, 2,−1
2) and then

to write a gauge-invariant Yukawa interaction. When the Higgs condenses, the electroweak

part of the gauge group, GEW = SU(2)weak ×U(1)hypercharge, is broken to U(1)EM, and the

fermions obtain mass.

It is by now widely accepted that the quarks and leptons of the SM obtain masses in

this way. The recent experimental discovery of the Higgs boson [1, 2] strongly reinforces

the expectation that the fermions should be massless in the GEW-symmetric phase and

massive in the GEW-broken phase.

As a matter of theoretical interest, it is worth emphasizing that the above pic-

ture is based on weak coupling perturbation theory. One might instead consider non-

perturbatively large interactions and ask the following question: is it possible for the

fundamental fermions of the SM to obtain mass in the GEW-symmetric phase?

This is exactly the type of question that condensed matter theorists ask when they

speak of “reducing the classification of topological superconductors” [3–10]. It turns out

that there are strong physical indications that, if one includes a gauge-singlet antineu-

trino per generation, then all physical excitations in the SM can be fully gapped without

breaking any part of the SM gauge group [11–13]. (The relationship between the reduced

classification of topological superconductors and the anomaly matching condition was dis-

cussed in [14].) It might be thought that the phenomenon studied in condensed matter

physics is simply an artifact of the lattice and should not have a continuum description.

However, there are recent numerical results which support the conjecture that the transi-

tions in question are second order and should be described by an interacting quantum field

theory [15, 16].

This paper focuses on this type of problem in 1+1 spacetime dimensions within the

framework of “symmetry protected topological” (SPT) phases [17, 18]. In this context, the

symmetry group G is a global symmetry of the model, but it is often a useful theoretical

device to gauge that symmetry by the usual minimal coupling procedure [10].

An SPT phase in d spatial dimensions with global symmetry G is a zero-temperature

state of quantum matter whose three defining phenomenological properties are:

– 2 –
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1) In a system without spatial boundaries, the ground state is unique and all excitations

above the ground state are gapped. (The bulk is said to be “trivial”.)

2) In a system with spatial boundaries, the ground state is degenerate or there exist gapless

excitations. (The boundary is said to be “nontrivial”.)

3) The boundary theory cannot be defined self-consistently as an independent quantum

theory in (d− 1) spatial dimensions.

If the global symmetry G is broken (either spontaneously or by an explicit G-breaking term

in the Lagrangian), then the formerly gapless boundary excitations become gapped, and

the theory flows to a trivial gapped state at low energy.

The simplest field theoretic example is the continuum limit of the 1d Kitaev chain [19].

(For a review, see appendix A.) Consider a (1+1)-dimensional relativistic theory of a

massless Majorana fermion,1

N =

(

η̄

iη

)

, (1.1)

coupled to a time-independent, spatially-dependent, semiclassical background scalar field

φ(x) (here x stands for the spatial coordinate only). The Lagrangian is:

L =
1

2
N̄

[

i/∂ − g φ(x)
]

N . (1.2)

Consider the infinitesimally thin kink profile:

g φ(x) =











+m , x > 0

0 , x = 0

−m , x < 0

. (1.3)

For x > 0 there is a free Majorana fermion with a physical mass m, and for x < 0 there is

also a free Majorana fermion with physical mass m. (By the value m being the “physical

mass” I mean that the fermion transforms as the Poincaré representation p2 = −m2.)

However, at x = 0 there is a time-independent real fermion stuck to the core of the

kink. To see this [20], write N = N+ + N−, where γ5N± = ±N±. The equations of

motion δL /δN̄+ = 0 and δL /δN̄− = 0 admit a solution of the form

N+ =

(

c

0

)

e−m|x| , N− =

(

0

−ic

)

e−m|x| (1.4)

where c is a real operator. In condensed matter theory, such real fermion operators are

called Majorana operators. The number of spinor components has been cut in half, and

there is a zero-energy fermion localized in the vicinity of x = 0.

1The spinor N satisfies the Majorana condition N
C ≡ C−1

N
∗ = N with C = C−1 = CT = σ3 when

η∗ = η and η̄∗ = η̄. My choice of gamma matrices is γµ = (σ1,−iσ2) and γ5 = γ0γ1 = σ3. It is more

conventional to choose C = I, but I prefer C = σ3 because that is compatible with an extension to 2+1

dimensions (with γ2 = iγ5). Alternatively, one could choose the “Majorana basis” with γµ = (σ2, iσ1), in

which case C = I would also work for 2+1 dimensions.
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Let mF be the coefficient of 1
2N̄N in the Lagrangian of eq. (1.2). In a system without

spatial boundaries, one typically assumes that the mF = +m phase and the mF = −m

phase describe the same quantum state, because the sign can be compensated by a trans-

formation N → γ5N . The existence of the Majorana mode at the kink core means that,

for a system with spatial boundaries, these phases are different: at the interface between

the two states, there is an additional degree of freedom [21]. The sign of the fermion mass

term will play a crucial role throughout this paper.

Now imagine a scalar field profile of the following form:

g φ(x) =



























−m , x > L

0 , x = L

+m , −L < x < L

0 , x = −L

−m , x < −L

. (1.5)

At x = L there is a real fermion, c, and at x = −L there is another real fermion, c′. These
can be paired up into a complex fermion annihilation operator,

f = c+ ic′ . (1.6)

If |0〉 is the vacuum with energy E0, then the state f †|0〉 has an energy2 E1−E0 ∼ e−mL. In

the limit L → ∞ (namely, the thermodynamic limit), the state f †|0〉 becomes degenerate

with the vacuum. So if one thinks of these states as belonging to the boundaries of the

mF > 0 phase while considering the mF < 0 phase as the “ordinary” gapped phase, then

this profile models a topologically nontrivial 1d system of length 2L.

But this 1d system of length 2L is not yet an SPT state, because the gaplessness of

the excitation is protected by the thermodynamic limit, not by the imposition of a global

symmetry. To emphasize this point, consider two flavors of the above setup, indexed by a

label a = 1, 2. Then it is possible to write the local interactions ic1c2 and ic′1c
′
2 at x = +L

and x = −L, respectively. All excitations above the ground state are gapped, and this is a

trivial phase (in the sense described earlier).

For this two flavor system, impose a flavor-independent antiunitary discrete symmetry,

which may as well be called a peculiar version of time reversal that squares to +1:

Z
T
2 : Na(t, x) → γ0Na(−t, x) , i → −i . (1.7)

This transformation leaves c1c2 and c′1c
′
2 unchanged, but it flips the sign of the prefactor i

(whose presence in the Hamiltonian is required for hermiticity). Hence if this ZT
2 is imposed

on the Lagrangian, then all fermion bilinears at the x = ±L boundaries will be forbidden.

This is true for an arbitrary number of flavors, n ∈ Z. Each value of n defines a

distinct phase. So this setup describes a 1d SPT phase which is classified by an integer that

2This is because the two ends at x = ±L have to talk to each other in order to form a term in the

Hamiltonian of the form icc′. The interior is fully gapped and admits only local interactions, so the

amplitude for the two ends to interact is exponentially suppressed for L ≫ m−1.
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labels the number of gapless edge modes.3 It is crucial to observe that the flavor-diagonal

transformation in eq. (1.7) leaves the bilinear N̄aNb invariant, so the bulk remains gapped.

The possible free-fermion SPT phases in various dimensions and with various global

symmetries have already been enumerated [22–24]. The question that connects this to the

particle physics problem described earlier is whether those systems with integer classifica-

tion are stable to interactions. In condensed matter physics one is typically concerned only

with time reversal, SU(2) spin symmetry, and particle-hole symmetry (or its incarnation

as an artificial redundancy in superconducting theories). But if the transition between the

trivial superconducting phase and the SPT phase is continuous, then it admits a field theo-

retic description, and the results obtained in that description hold for any system described

by the same low-energy effective Lagrangian.

Just as the electron of the SM is protected by SU(2)weak ×U(1)hypercharge, here in the

1d Kitaev chain the 0d edge fermions are protected by Z
T
2 . By turning on local interactions

for a system with n flavors, is it possible to gap out these symmetry-protected edge modes

without breaking Z
T
2 spontaneously? Kitaev and Fidkowski (KF) [3] showed that the

answer is yes, if and only if n = 8k, k ∈ Z. (The reader who is unfamiliar with this result

should not worry: it will be discussed thoroughly in the body of this paper.) One says that

the interactions “reduce the classification” from Z to Z8.

The purpose of this paper is to explore in greater detail the “m = 0” manifold of the KF

model purely within the continuum field theory description, with an eye toward extracting

general lessons for interacting field theories in higher dimensions. Just as 1+1 interacting

systems have proved insightful for studying confinement in higher dimensions, I hope that

a thorough analysis in 1d will provide guidance for interacting fermions in 3+1 dimensions.

The layout is as follows. First, in section 2, I will review the SO(8) Gross-Neveu

model (GN). The purpose of this is to provide necessary background material, to establish

notation, and to point out a subtlety in the “triality” invariance of the Lagrangian. Then,

in section 3, I will discuss the “m = 0” manifold of the SO(7) KF model with an emphasis

on the fermion propagator. In particular, I will argue that an analog of “parity doubling”

occurs, and that the leading term in the spectral decomposition is simply proportional to

pµ. In section 4.1, I will attempt to relate the KF model to physical conduction electrons

in the context of impurity scattering. In section 5, I will summarize the results and suggest

possible directions for future work.

3The reader may want to verify that this setup satisfies the three conditions described earlier. Conditions

(1) and (2) are obviously fulfilled. Condition (3) is fulfilled because the action of time reversal as in eq. (1.7)

cannot be implemented self-consistently on an independent 0d quantum system. Define the annihilation

operator for a fermionic oscillator at x = +L by a ≡ c1 + ic2. The Z
T
2 transformation flips the sign of i but

leaves c1 and c2 invariant. Therefore, ZT
2 : a → a†, and time reversal does not commute with (−1)F when

acting on physical states.

– 5 –



J
H
E
P
0
7
(
2
0
1
5
)
0
3
4

2 Eight Majorana fermions with SO(8) symmetry

The goal is to study the effects of interactions on the mass gap and excitation spectrum

for a theory of eight relativistic Majorana fermions,

Na =

(

η̄a
iηa

)

; a = 1, . . . , 8 . (2.1)

The free massless Lagrangian is:

L0 =
8

∑

a=1

1

2
N̄ai/∂Na =

8
∑

a=1

1

2
i (ηa∂−ηa + η̄a∂+η̄a) (2.2)

where ∂± ≡ ∂t±∂x. This Lagrangian has a continuous global symmetry SO(8)L×SO(8)R.

To the free Lagrangian in eq. (2.2), first add the following interaction, which breaks

SO(8)L × SO(8)R down to the diagonal SO(8):

L
(GN)
int = +

1

4
g

(

8
∑

a=1

N̄aNa

)2

= −g

(

8
∑

a=1

ηaη̄a

)2

. (2.3)

From now on, the standard repeated index summation convention will be used.

The Lagrangian LGN = L0 +L
(GN)
int defines the SO(8) Gross-Neveu (GN) model [29].

It has a global chiral Z2 symmetry:

Z2 : (ηa, η̄b) → (−ηa,+η̄b) . (2.4)

However, this symmetry is spontaneously broken at low energy: the coupling gets strong

and the fermion mass bilinear forms an SO(8)-invariant condensate,

〈iηaη̄b〉 = ±v δab , v > 0 . (2.5)

Perturbing around a fixed choice of minimum,

iηaη̄b = ±v δab + iη′aη̄
′
b , (2.6)

one finds nonzero fermion masses for the fluctuations described by the primed fields:

L
(GN)
int = const− (±16gv)

8
∑

a=1

iη′aη̄
′
a + . . . . (2.7)

This part of the story is the well-known analysis of the SO(N) GN model at large N (see,

for example, [31, 32]) and is not unique to the value N = 8.

2.1 Bosonization and triality

The “triality” of SO(8) is a cyclic permutation of the three real 8-dimensional representa-

tions, which are the vector (denoted by 8v) and the two chiral spinors (denoted by 8+ and

8−) [25]. Although the SO(8) group possesses this outer automorphism, the physics of the

– 6 –
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SO(8) GN model is a little more subtle. This is the same subtlety which occurs in the Ising

model: a theory with two ground states cannot be equivalent to a theory with one ground

state, so the Ising duality transformation must be accompanied by the introduction of a

topological Z2 gauge theory [33, 34]. This will be reviewed in section 2.4, but first let me

proceed with the SO(8) theory.

A physically clear way to implement the triality operation is to use abelian bosoniza-

tion [30, 35–37]. (For a discussion of triality in non-abelian bosonization, see [38].) First

bosonize the Majorana fermions in pairs:

η2A−1 + iη2A ≡ e i2πϕA , η̄2A−1 + iη̄2A ≡ e i2πϕ̄A ; A = 1, . . . , 4 . (2.8)

The chiral bosons ϕA(x + t) and ϕ̄A(x − t) are defined by the above relations. So if the

original physical model is given by eq. (2.3), then the bosons are compact and are defined

only modulo shifts by integers.4

Define the non-chiral bosons

ΦA(x, t) ≡ ϕ̄A(x+ t)− ϕA(x− t) . (2.9)

Then the SO(8)-invariant fermion mass term is:

8
∑

a=1

iηaη̄a =

4
∑

A=1

cos(2πΦA) . (2.10)

The triality transformation from the 8-vector to the 8+-spinor is defined by the following

special orthogonal transformation in the space of bosons (I use the conventions of Ludwig

and Maldacena [35]):











Φ1

Φ2

Φ3

Φ4











≡ 1

2











+1 +1 +1 +1

+1 −1 +1 −1

+1 +1 −1 −1

+1 −1 −1 +1





















Θ1

Θ2

Θ3

Θ4











. (2.11)

This change of basis defines the bosons ΘI , I = 1, . . . , 4. (To dispel any potential confusion,

I should note that I will not use the notation “Θ” for the dual of Φ. For the dual of Φ I

will write Φ̃ ≡ ϕA + ϕ̄A.)

By straightforward algebra, one obtains:

4
∑

A=1

cos(2πΦA) = 4

(

4
∏

I =1

cos(πΘI) +
4
∏

I =1

sin(πΘI)

)

. (2.12)

Therefore:
(

4
∑

A=1

cos(2πΦA)

)2

REN

=

(

4
∑

I =1

cos(2πΘI)

)2

REN

. (2.13)

4In eq. (2.8) a non-standard normalization for the bosons has been chosen, because the additional factor

of π1/2 would needlessly clutter the discussion.
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By the subscript “REN” I mean that this equality holds after the renormalization procedure

of subtracting the cosine-squared terms from both sides. The reason for doing this is

because the quantum theory possesses the unusual relation (see the appendix of [39]):

cos2(2πΦA) ∝ −1

2
(∂µΦA)

2 + constant . (2.14)

So these terms actually contribute to a renormalization of the boson kinetic terms and

should not be considered as part of the interactions.

In analogy with the definition ΦA = ϕA − ϕ̄A, now define the chiral bosons θI and θ̄I
via ΘI ≡ θI − θ̄I and Θ̃I ≡ θI + θ̄I . These new chiral bosons can be fermionized:5

e i2πθI ≡ ψ2I−1 + iψ2I , e i2πθ̄I ≡ ψ̄2I−1 + iψ̄2I ; I = 1, . . . , 4 . (2.15)

So after the subtraction described above, the following equality is obtained:

(

8
∑

a=1

ηaη̄a

)2

=

(

8
∑

i=1

ψiψ̄i

)2

. (2.16)

This process can be repeated starting from a modified version of eq. (2.11):











Φ1

Φ2

Φ3

Φ4











≡ 1

2











+1 +1 +1 −1

+1 +1 −1 +1

+1 −1 +1 +1

−1 +1 +1 +1





















Ξ1

Ξ2

Ξ3

Ξ4











. (2.17)

Then:
4

∑

A=1

cos(2πΦA) = 4

(

4
∏

X =1

cos(πΞX)−
4
∏

X =1

sin(πΞX)

)

(2.18)

and
(

4
∑

A=1

cos(2πΦA)

)2

REN

=

(

4
∑

X =1

cos(2πΞX)

)2

REN

. (2.19)

Again it is useful to define chiral bosons via ΞX = ξX − ξ̄X and fermionize them:

e i2πξX ≡ χ2X−1 + iχ2X , e i2πξ̄X ≡ χ̄2X−1 + iχ̄2X ; X = 1, . . . , 4 . (2.20)

Therefore [30, 40, 41]:

(

8
∑

a=1

ηaη̄a

)2

=

(

8
∑

i=1

ψiψ̄i

)2

=

(

8
∑

x=1

χxχ̄x

)2

. (2.21)

5A spinor of SO(2n) should pick up a minus sign after a rotation through 2π in the 2n-dimensional

Euclidean embedding space. Consider a rotation by 2π in the (1, 2)-plane. This corresponds to a shift Φ1 →

Φ1 + 1 with Φ2,3,4 fixed. From the inverse of eq. (2.11) one finds ΘI → ΘI +
1

2
for all I = 1, 2, 3, 4. So the

8+ fermions in eq. (2.15) indeed pick up a factor of (−1). The same is true for the 8− fermions in eq. (2.20).

– 8 –
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The kinetic terms also satisfy an analogous equality, so the whole Lagrangian takes the same

form whether written in terms of the η, the ψ, or the χ fermions. These fields are nonlocally

related to each other, but the Lagrangian written in terms of a given representation is local.

This is what is usually considered the physical manifestation of the group-theoretic

triality symmetry of the SO(8) GN model. The equality of the fourth-order polynomials

in eq. (2.21) was just derived explicitly above, so this part of the usual story remains

unchallenged. I simply wish to point out a subtlety in the analysis if one studies the

system in terms of the ψ-variables: the discrete “γ5” transformation ψψ̄ → −ψψ̄ is actually

a gauge symmetry.

2.2 Global Z2 symmetry and emergent Z
′

2
gauge symmetry

Consider the global chiral Z2 symmetry defined back in eq. (2.4). This corresponds to a

shift

Z2 : (ϕA, ϕ̄A) →
(

ϕA +
1

2
, ϕ̄A

)

(2.22)

for all A = 1, 2, 3, 4 simultaneously. The goal is to determine how this transformation

affects the fields ψ ∼ 8+ and χ ∼ 8−.
Recall the transformations in eqs. (2.11) and (2.17), which I repeat below for conve-

nience:

~ϕ = S ~θ = T ~ξ , S =
1

2











+1 +1 +1 +1

+1 −1 +1 −1

+1 +1 −1 −1

+1 −1 −1 +1











, T =
1

2











+1 +1 +1 −1

+1 +1 −1 +1

+1 −1 +1 +1

−1 +1 +1 +1











. (2.23)

I have written this relation in terms of the left-moving chiral bosons, because it is these

which are shifted by the chiral Z2 transformation. The matrices S and T satisfy S2 = I

and T 2 = I, and hence S = S−1, T = T−1. Therefore, in terms of the original chiral bosons

{ϕA}4A=1, the defining relations above imply:










θ1
θ2
θ3
θ4











=
1

2











ϕ1 + ϕ2 + ϕ3 + ϕ4

ϕ1 − ϕ2 + ϕ3 − ϕ4

ϕ1 + ϕ2 − ϕ3 − ϕ4

ϕ1 − ϕ2 − ϕ3 + ϕ4











,











ξ1
ξ2
ξ3
ξ4











=
1

2











ϕ1 + ϕ2 + ϕ3 − ϕ4

ϕ1 + ϕ2 − ϕ3 + ϕ4

ϕ1 − ϕ2 + ϕ3 + ϕ4

−ϕ1 + ϕ2 + ϕ3 + ϕ4











. (2.24)

If ϕA → ϕA + 1
2 , then

Z2 : θI → θI (mod 1) , ξX → ξX +
1

2
. (2.25)

Upon refermionization as in eqs. (2.15) and (2.20), I conclude that the physical Z2 sym-

metry acts as follows on the 8± fermions:

Z2 : (ψi, ψ̄j) → (+ψi, ψ̄j) , (χx, χ̄y) → (−χx, χ̄y) . (2.26)

Therefore, the 8+ mass bilinear ψiψ̄j is even and hence is not an order parameter for the

Z2 symmetry. It may self-consistently obtain an expectation value without spontaneously

breaking Z2.
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On the other hand, the 8− mass bilinear χxχ̄y is odd and hence cannot obtain an

expectation value if the Z2 transformation is to remain a symmetry of the low-energy

theory. In this way, perhaps counterintuitively, the two SO(8) spinors are not created

equal: it is not possible to use the 8− in order to connect the trivial and topological phases.

The point about the triality transformation is to consider the analogous chiral sign flip

for the 8+ variables, which I will denote by Z
′
2. This operation is defined as

Z
′
2 : (ψi, ψ̄j) → (−ψi, ψ̄j) . (2.27)

The goal is now to determine how this transforms the fields η ∼ 8v and χ ∼ 8−. To do

this, it is necessary to express the chiral bosons ϕA and ξX in terms of the 8+ bosons θI ,

which transform as

Z
′
2 : θI → θI +

1

2
. (2.28)

Recalling the triality transformation in eq. (2.23), one finds (also recall that T−1 = T ):

~ϕ = S ~θ , ~ξ = TS ~θ . (2.29)

The product of the two transformation matrices,

TS =
1

2











+1 +1 +1 −1

+1 −1 +1 +1

+1 +1 −1 +1

+1 −1 −1 −1











, (2.30)

contains an odd number of minus signs per row. Meanwhile, the matrix S has an even

number of minus signs per row. Therefore, the operation in eq. (2.27) shifts the other two

sets of bosons as

Z
′
2 :











ϕ1

ϕ2

ϕ3

ϕ4











→











ϕ1

ϕ2

ϕ3

ϕ4











+











1

0

0

0











,











ξ1
ξ2
ξ3
ξ4











→











ξ1
ξ2
ξ3
ξ4











+
1

2











+1

+1

+1

−1











. (2.31)

Since e iπ = e−iπ = −1, the relative sign in the transformation for the ξX is immaterial,

and I conclude:

Z
′
2 : ηa → +ηa , χx → −χx . (2.32)

Therefore, the alternative chiral reflection defined by eq. (2.27) leaves the original fermion

fields ηa totally unaffected. This transformation is invisible in terms of the original fields

in the Lagrangian and hence should be thought of as an emergent gauge symmetry.

Finally, one should consider the theory written in terms of the 8− variables and define

a third Z2 transformation which acts as (χx, χ̄y) → (−χx, χ̄y). I will not give this operation

a new name because it turns out to be equivalent to the original global Z2 symmetry. The

by-now-familiar triality transformations give:

~ϕ = T ~ξ , ~θ = ST ~ξ . (2.33)
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The product of S and T in this order contains an even number of minus signs per row,

ST =
1

2











+1 +1 +1 +1

+1 −1 +1 −1

+1 +1 −1 −1

−1 +1 +1 −1











, (2.34)

while the matrix T contains an odd number of minus signs per row. Therefore, the shift

ξX → ξX + 1
2 results in the shifts

ϕA → ϕA +
1

2
, θI → θI (mod 1) . (2.35)

This is exactly the same transformation as the one described by eqs. (2.22) and (2.25).

It is convenient to summarize this situation in terms of the mass bilinears. There are

two Z2 transformations, one global and one gauged. The physical Z2 global symmetry acts

as

Z2 : ηaη̄b → −ηaη̄b =⇒
{

ψiψ̄j → +ψiψ̄j

χxχ̄y → −χxχ̄y
. (2.36)

The artificial Z′
2 gauge symmetry acts as

Z
′
2 : ψiψ̄j → −ψiψ̄j =⇒

{

ηaη̄b → +ηaη̄b
χxχ̄y → −χxχ̄y

. (2.37)

So, strictly speaking, the physics of the SO(8) Gross-Neveu model is not quite invariant

under triality: the description in terms of the 8+ variables requires coupling to a topological

Z
′
2 gauge theory. This gauging procedure does not add any additional local degrees of

freedom, but it projects out sectors of the state space which are not invariant under the

transformation in eq. (2.37).

2.3 Fermion parity

In addition to the chiral Z2 transformation Na → γ5Na, it is also interesting to consider

the transformation Na → −γ5Na. The analysis goes through exactly as before, except

with the barred chiral fields playing the role of the unbarred chiral fields. The product of

both of these transformations is fermion parity,

(−1)F : Na → −Na . (2.38)

Therefore, the conclusions of the previous section imply that the fields Ψi =

(

ψ̄i

iψi

)

are

even under fermion parity, while the fields Xx =

(

χ̄x

iχx

)

are odd.

This presents a puzzle: if one wishes to describe the original theory of η variables in

terms of ψ variables, how is it possible to recover the sector of the original Hilbert space

which contains an odd number of fermions? It is clear that additional non-local data is

required, and I do not yet have a complete solution to this problem.
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Furthermore, it is also interesting to consider the “artificial” fermion parity,

(−1)F
′
: Ψi → −Ψi . (2.39)

This too is a gauge symmetry and should be modded out in the ψ-description of the original

theory.

2.4 Z2 transformations in the Ising model

It is useful to recall various properties of the 2d Ising model [42, 43, 52]. (The second

“spatial” direction in this context should be thought of as Euclidean time.) I will work

in the extreme anisotropic limit, which admits a description in terms of a transfer matrix

(formally equivalent to deriving the path integral formulation by cutting up the total time

interval into a large number of arbitrarily small steps).

In the transfer matrix description, there is a 1d lattice labeled by sites

s ∈ {1, . . . , N} , N ≫ 1 . (2.40)

On each site lives a “spin” variable σs which can be up or down, denoted by +1 and −1

respectively. In operator language, I choose this to be an eigenvalue of the third Pauli

operator, σ̂z
s . The states |∏N

s=1 σs〉 ≡ |σ1〉 ⊗ |σ2〉 ⊗ . . .⊗ |σN 〉 satisfy:

σ̂z
s |σ1σ2 . . . σN 〉 = σs|σ1σ2 . . . σN 〉 . (2.41)

The Hamiltonian is:

Ĥ = −
N−1
∑

s=1

σ̂z
s σ̂

z
s+1 − λ

N
∑

s=1

σ̂x
s . (2.42)

Free boundary conditions have been chosen in the spatial direction. The low temperature

phase is described by λ ≪ 1, and the high temperature phase is described by λ ≫ 1. The

critical point is λ = 1.

The Hamiltonian has the following reflection symmetry:

Z
spin
2 : σ̂z

s → −σ̂z
s (2.43)

for all s = 1, . . . , N simultaneously. There are two possible ground states: all spins are

aligned, and they all point either up or down:

|0〉↑ ≡ |++ . . . +〉 , |0〉↓ ≡ | − − . . . −〉 . (2.44)

The transformation of eq. (2.43) exchanges these states:

Z
spin
2 : |0〉↑ ↔ |0〉↓ . (2.45)

The total spin operator, or “magnetization” (normalized by the number of sites),

M̂ ≡ 1

N

N
∑

s=1

σ̂z
s , (2.46)
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has a nonzero vacuum expectation value:

↑〈0|M̂ |0〉↑ = +1 , ↓〈0|M̂ |0〉↓ = −1 . (2.47)

In either case, the system is ordered (or “magnetized”). The global symmetry Z
spin
2 is

broken spontaneously.

A local excitation above one of the two ground states is given by the flip of a single

spin. One can also consider a non-local type of excitation, in which all spins to the left of

a specified site, say r, are flipped. This excitation is called a kink (or domain wall), and is

formally created by the following operator:

µ̂z
r̃ ≡

r
∏

s=1

σ̂x
s . (2.48)

These “dual spins” live between the sites on the original lattice, which defines a dual lattice

with N − 1 sites:

r̃ ∈ {1, . . . , N − 1} . (2.49)

If one also defines the operator

µ̂x
r̃ ≡ σ̂z

r σ̂
z
r+1 (2.50)

then the µ variables define a good collection of Pauli matrices, and the Hamiltonian be-

comes:

Ĥ = λ

(

−
N−2
∑

r̃=1

µ̂z
r̃µ̂

z
r̃+1 −

1

λ

N−1
∑

r̃=1

µ̂x
r̃

)

− λ(σ̂x
1 + σ̂x

N ) . (2.51)

Comparison of this with eq. (2.42) reveals that the bulk energy spectrum obeys E(λ) =

λE(1/λ), showing the equivalence between the high temperature and low temperature

phases. This is well-known, but I wish to emphasize the following subtlety regarding this

description in terms of the µ variables [33, 34].

In analogy with the original description, define states in terms of “dual” spins, meaning

eigenvalues of µ̂z
r :

µ̂z
r̃ |σ̃1σ̃2 . . . σ̃N 〉 = σ̃r̃|σ̃1σ̃2 . . . σ̃N 〉 , σ̃r̃ ∈ {−1,+1} . (2.52)

At 1/λ = 0, there appear to be two possible ground states:

|0̃〉↑ ≡ |+̃+̃ . . . +̃〉 , |0̃〉↓ ≡ |−̃−̃ . . . −̃〉 . (2.53)

But the transformation λ ↔ 1/λ exchanges the high and low temperature phases, and the

high temperature (disordered) phase of the original Ising model is unique. Therefore, the

dual of eq. (2.43), namely the transformation

Z̃
spin
2 : µ̂z

r̃ → −µ̂z
r̃ for all r̃ = 1, . . . , N − 1 simultaneously (2.54)

must be gauged. This can be seen by explicitly calculating the operator which flips all of

the dual spins. Using the definition in eq. (2.50), one has:

Q̂ ≡ µ̂x
1 µ̂x

2 . . . µ̂x
N−1 = σ̂x

1 1213 . . . 1N−1 σ̂
x
N . (2.55)
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I have written the factors of 1r̃ to emphasize that, by direct computation, one observes

that the operation of flipping all dual spins simultaneously is simply the identity operator

in the bulk.

The situation is summarized as follows. If one begins with eq. (2.42), then this simply

describes an Ising model (by definition). If one begins with eq. (2.51), then this also simply

describes an Ising model, with a trivial change of Greek letters from σ to µ. However, if one

wishes to describe the partition function corresponding to eq. (2.42) using the dual Hamil-

tonian in eq. (2.51), then one must also impose the operator relations eqs. (2.48) and (2.50).

Equivalently, to describe the original Ising model in terms of the dual variables, it is

necessary to impose a “Gauss’s law” constraint on the physical states, |Ψ〉phys:

Q̂|Ψ〉phys = |Ψ〉phys , (2.56)

where Q̂ is the operator defined in eq. (2.55). This implies:

Q̂|0̃〉↑ = |0̃〉↓ , Q̂|0̃〉↓ = |0̃〉↑ . (2.57)

The physical ground state of the dual model is then the Q̂-invariant superposition

|0̃〉phys ≡
1√
2

(

|0̃〉↑ + |0̃〉↓
)

. (2.58)

The orthogonal combination,

|0̃〉unphys ≡
1√
2

(

|0̃〉↑ − |0̃〉↓
)

, (2.59)

is not gauge invariant and hence is projected out of the Hilbert space. The total dual spin,

or “disorder parameter,”

K̂ ≡ 1

N − 1

N−1
∑

r̃=1

µ̂z
r̃ , (2.60)

has nonzero expectation value in each of the two gauge-variant states:

↑〈0̃|K̂|0̃〉↑ = +1 , ↓〈0̃|K̂|0̃〉↓ = −1 . (2.61)

It is in this sense that the Zspin
2 -symmetric disordered phase of the Ising model is recovered

by the condensation of kinks. However, strictly speaking, the kink operator has zero

expectation value in the physical ground state:

phys〈0̃|K̂|0̃〉phys = 0 . (2.62)

This is consistent with the general principle that gauge symmetries can never actually be

broken spontaneously [44, 45]. But, as indicated for example by eq. (2.61), it is often

extremely convenient to fix a gauge and to use the terminology which is more correctly

reserved for the spontaneous breaking of global symmetries.

In summary, the Kramers-Wannier (KW) duality transformation

Z
KW
2 : σ̂z

s → µ̂z
s (2.63)
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must be accompanied by the introduction of a topological Z̃spin
2 gauge theory which imple-

ments the constraint given by the last equality in eq. (2.55). At the critical point, λ = 1/λ,

the bulk Hamiltonian is formally invariant under eq. (2.63), but the global structure of the

partition function must be modified to correctly reproduce eq. (2.58).

For the purpose of this paper, it is essential to recall the fermionic description of this

model. The fermionization can be viewed as a solution to the duality algebra

µ̂z
r̃ σ̂

z
s − (−1)θ(r̃−s) σ̂z

s µ̂z
r̃ = 0 (2.64)

in terms of unconstrained variables [33]. That the Hamiltonian written in terms of those

fermion variables is local and quadratic constitutes the miracle of the Ising model [43].

Define the operators

σ̂±
s ≡ σ̂z

s ± iσ̂y
s . (2.65)

Then the operators

f̂s ≡
(

s−1
∏

r=1

σ̂x
r

)

1

2
σ̂+
s =

(

e−iπ
4

∑s−1
r=1

σ̂+
r σ̂−

r

) 1

2
σ̂+
s (2.66)

satisfy canonical anticommutation relations:

{f̂s, f̂ †
s′} = δss′ , {f̂s, f̂s′} = 0 . (2.67)

By direct computation, one finds (f̂s − f̂ †
s )(f̂s+1 + f̂ †

s+1) = σ̂z
s σ̂

z
s+1 and 2f̂ †

s f̂s − 1 = σ̂x
s , and

therefore the Ising Hamiltonian of eq. (2.42) can be expressed as a quadratic function of

fermion operators:

Ĥ = −
N−1
∑

s=1

(f̂s − f̂ †
s )(f̂s+1 + f̂ †

s+1)− λ
N
∑

s=1

(2f̂ †
s f̂s − 1) . (2.68)

Define the real and imaginary parts of the fermionic operators in eq. (2.66):

f̂s ≡ ĉ2s−1 + iĉ2s , ĉ†a = ĉa , {ĉa, ĉb} =
1

2
δab , (2.69)

where a, b ∈ {1, . . . , 2N}. Then the Hamiltonian takes the form of the Kitaev chain with

λ = J1/J2 (see appendix A):

Ĥ = −4

(

N−1
∑

s=1

iĉ2sĉ2s+1 + λ
N
∑

s=1

iĉ2s−1ĉ2s

)

. (2.70)

The continuum limit is described by the Lagrangian for a free Majorana fermion:

L =
1

2
N̄ (i/∂ −m)N , m = λ− 1 . (2.71)

The KW duality exchanges λ > 1 with λ < 1 and hence changes the sign of the fermion

mass term:

Z
KW
2 : N̄ N → −N̄ N . (2.72)

This is the “γ5” transformation that emerges when the fermion mass term is tuned to zero.
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2.5 Ground state degeneracy in GN

In preparation for a later discussion of the SO(7) Kitaev-Fidkowski model (section 3.2), it

will be important to establish that the ground state of the SO(8) GN model is two-fold

degenerate. The potential written in terms of the bosons for the original Majorana fermion

fields (the ηa, η̄a) is:

V = −2g
∑

A<B

cos(2πΦA) cos(2πΦB) . (2.73)

This potential is invariant under the simultaneous sign flip of all cos(2πΦA). (This is just

the physical Z2 symmetry that I have already discussed at length). The minima occur

when all cosine terms equal +1 or −1. Following the terminology of Shankar [30], I will

call these “positive vacua” and “negative vacua” respectively.

Recall that the bosons ΦA were defined by the relations in eq. (2.8), so each ΦA is

defined only modulo 1. Therefore, all of the positive vacua correspond to a single state

|0〉> in the Hilbert space labeled by the configuration ΦA = 0 for all A ∈ {1, 2, 3, 4}:

|0〉> ↔ ΦA = (0, 0, 0, 0) . (2.74)

For the same reason, all of the negative vacua also correspond to a single state |0〉< labeled

by the configuration ΦA = 1
2 for all A ∈ {1, 2, 3, 4}:

|0〉< ↔ ΦA =

(

1

2
,
1

2
,
1

2
,
1

2

)

. (2.75)

There are two degenerate ground states, corresponding to the spontaneous breaking of the

global Z2 symmetry that interchanges them.

2.6 Kinks and the 8+ basis

In the SO(8) GN model, the chiral Z2 symmetry is spontaneously broken by an SO(8)-

invariant fermion condensate 〈iηaη̄b〉 = ±v δab. There are 16 different kink configurations,

which interpolate from 1
8

∑8
a=1 iηaη̄a = +v at x = −∞ to 1

8

∑8
a=1 iηaη̄a = −v at x =

+∞ [39, 41, 46, 47]. These 16 kinks transform as 8+ ⊕ 8− under SO(8) and are precisely

the fermions ψi and χx.

Triality suggests that it should be possible to arrive at the conclusion of the previous

section by studying the GN model in terms of these kink fields. In the 8+ basis, the SO(8)

GN model has the Lagrangian

L (ψ, ψ̄) =

8
∑

i=1

1

2
i(ψi∂−ψi + ψ̄i∂+ψ̄i)− g

(

8
∑

i=1

ψiψ̄i

)2

. (2.76)

As discussed, it is understood that this should be coupled to a topological Z′
2 gauge theory.

Up to this subtlety, this Lagrangian looks formally equivalent to L (η, η̄), so the local

dynamics are the same: at low energy the theory forms an SO(8)-invariant condensate,

〈iψiψ̄j〉 = ±v δij . (2.77)
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Suppose the Z′
2 transformation were not gauged. Then the two choices of sign in eq. (2.77)

would correspond to different ground states, just like the two minima of a standard double-

well potential. Denote these two ground states by |0〉+ and |0〉−. The Z
′
2 transformation

exchanges these two states:

Z
′
2 : |0〉± → |0〉∓ . (2.78)

The physical implication of gauging the Z
′
2 symmetry is that the ground state is in fact

the gauge-invariant linear superposition of the two possible configurations:

|0〉phys =
1√
2
(|0〉+ + |0〉−) . (2.79)

The orthogonal combination, |0〉unphys = 1√
2
(|0〉+ − |0〉−), is not gauge invariant and hence

is projected out of the Hilbert space.

But the conclusion of section 2.5 was that the two possible choices of sign in the ηη̄

condensate do correspond to different physical ground states. How can one arrive at this

conclusion from studying the ψ variables?

For this purpose it is useful to think of the ψ1, . . . , ψ8 as eight Ising fermions [48–51].

Then, from the bosonization rules, one finds [52]:

8
∑

a=1

iηaη̄a ∝
8
∏

i=1

σ
(ψ)
i +

8
∏

i=1

µ
(ψ)
i . (2.80)

In this model, the condensate in eq. (2.77) induces an SO(8)-invariant mass for the ψi

variables. Just as in eq. (2.7), one expands around the condensate,

ψiψj = 〈ψiψj〉+ ψ′
iψ

′
j , (2.81)

and finds a nonzero mass term for the fluctuations:

L (ψ′, ψ̄′) =
8

∑

i=1

1

2
i(ψ′

i∂iψ
′
i + ψ̄′

i∂+ψ̄
′
i)− (±16gv)

8
∑

i=1

iψ′
iψ̄

′
i + . . . . (2.82)

The mass parameter for an Ising fermion is proportional to T − Tc:

mIsing ∝ T − Tc . (2.83)

For the “+” sign, the corresponding Ising models are in their disordered phase: 〈σ(ψ)
1 〉 =

〈σ(ψ)
2 〉 = . . . = 〈σ(ψ)

8 〉 = 0, while 〈µ(ψ)
1 〉 = 〈µ(ψ)

2 〉 = . . . = 〈µ(ψ)
8 〉 6= 0. For the “−” sign, they

are in their ordered phase: 〈σ(ψ)
1 〉 = 〈σ(ψ)

2 〉 = . . . = 〈σ(ψ)
8 〉 6= 0, while 〈µ(ψ)

1 〉 = 〈µ(ψ)
2 〉 =

. . . = 〈µ(ψ)
8 〉 = 0. Either way, the SO(8) symmetry requires all eight Ising models to be in

the same phase, either ordered or disordered, so at low energy one always has:
〈

8
∑

a=1

ηaη̄a

〉

6= 0 . (2.84)

The Z2 operation which flips the sign of this bilinear is a physical symmetry (not a gauge

redundancy) and transforms a given ground state into another inequivalent ground state.

This is one way to arrive at the conclusion of section 2.5 from the 8+ basis.
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For the SO(8) GN model, this argument was needlessly complicated: one could have

just analyzed the theory in terms of the original η variables and arrived at the correct

conclusion directly. The purpose of this exercise was to show that the formation of a

condensate in ψψ̄ does not necessarily imply ground state degeneracy. The ground state

may or may not be unique, irrespective of whether 〈ψψ̄〉 = 0.

3 Eight Majorana fermions with SO(7) symmetry

After this long but necessary preliminary discussion of the SO(8) Gross-Neveu model, I

can now proceed to the SO(7) Kitaev-Fidkowski model.

From the discussion surrounding eq. (2.80), it is clear that the goal should be to

single out a direction in the kink basis. Furthermore, the transformation properties under

Z2 [eq. (2.36)] indicate that only the 8+ can form a fermion bilinear condensate without

generating a mass term for the η variables at some order in perturbation theory.

Therefore, the appropriate course of action is to add an additional four-fermion inter-

action to the GN model which singles out a direction in the 8+ representation [3, 4]. The

KF Lagrangian is L = L0 + L
(GN)
int + L

(KF)
int , where the additional interaction term is:

L
(KF)
int = −g′

8
∑

a,b,c,d=1

〈S|Γ[aΓbΓcΓd]|S〉 ηaη̄bηcη̄d . (3.1)

The symbols Γa denote the gamma matrices for SO(8): there are 8 of these, and each is

a matrix of size 16×16. The state |S〉 is defined as a particular element of the 8+; in the

Wilczek-Zee notation [53, 54], the choice in this paper (and in [3]) is:

|S〉 = 1√
2
(|++++〉 − | − − −−〉) . (3.2)

The basis of field coordinates ψ1, . . . , ψ8 is chosen so that ψ8 corresponds to the state

|S〉. (In other words, I could self-consistently choose the notation ψS ≡ ψ8.) The square

brackets around the indices a, b, c, d denote complete antisymmetrization.

The interaction in eq. (3.1) explicitly breaks the SO(8) symmetry but conserves the

SO(7) subgroup which rotates among the 7 remaining states of the 8+ representation

(namely those states which are orthogonal to |S〉). Therefore, as explained in [3], a triality

transformation (understood in the sense discussed previously) to the ψ-fermion basis must

result in a local polynomial of the form:

L
(GN)
int + L

(KF)
int = −A

(

7
∑

i=1

ψiψ̄i

)2

− B

(

7
∑

i=1

ψiψ̄i

)

ψ8ψ̄8 . (3.3)

I will take A > 0 and B < 0. It is easiest to focus on the region 0 < |B| ≪ A .

First set B = 0. At low energy an SO(7)-invariant fermion condensate will form:

〈iψiψ̄j〉 = ±v δij ; i, j = 1, . . . , 7 only . (3.4)
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This will induce an effective mass parameter for the first seven fermions:

m1 = m2 = . . . = m7 = ± 14A v . (3.5)

Upon turning on a small negative B, one also induces a small mass parameter for the

eighth fermion:

m8 = ∓ 7|B|v. (3.6)

In this region, the lowest-lying excitation above the ground state is this eighth fermion,

and the mass gap of the theory is |m8|. Let me emphasize that the parameters m1, . . . ,m8

should not be confused with the ηη̄ mass parameter “m” which is forbidden by the chiral

Z2 symmetry in eq. (2.36).

3.1 Absence of spontaneous symmetry breaking

In the introduction, I defined the bulk of an SPT phase to be invariant under a symmetry

G and to have a unique ground state. The goal of this section is to argue, purely within the

low-energy field theory, that the Z2 symmetry of eq. (2.36) is not spontaneously broken.

The goal of the next section will be to show that the ground state is non-degenerate.

I showed in section 2.2 that the bilinears iψiψ̄j are even under the physical chiral Z2

symmetry. In contrast, the bilinears in the original fermion fields, iηaη̄b, are odd under the

chiral Z2 symmetry (by definition). So the goal is first to argue that 〈ηaη̄b〉 = 0.

Recall the relationship in eq. (2.80) between ηη̄ and the ψ order/disorder parameters,

repeated below for convenience:

8
∑

a=1

iηaη̄a ∝
8
∏

i=1

σ
(ψ)
i +

8
∏

i=1

µ
(ψ)
i . (3.7)

In the SO(8)-invariant GN model, all values of the index i = 1, . . . , 8 had to be interchange-

able: for a fixed sign of the condensate, all Ising models were either ordered or disordered,

and the expectation value
∑8

a=1〈iηaη̄a〉 was nonzero. By SO(8) invariance, this means

〈iηaη̄a〉 6= 0 (no sum on a) for each a = 1, . . . , 8.

Now that the SO(8) symmetry has been broken explicitly by a small negative B, one

has the situation described by eqs. (3.5) and (3.6). When 〈∑7
i=1 iψiψ̄i〉 > 0, one has

m1 = . . . = m7 > 0 and m8 < 0. The first seven Ising models are ordered, but the eighth

Ising model is disordered :

〈σ(ψ)
1 〉 = . . . = 〈σ(ψ)

7 〉 6= 0 , 〈σ(ψ)
8 〉 = 0 ,

〈µ(ψ)
1 〉 = . . . = 〈µ(ψ)

7 〉 = 0 , 〈µ(ψ)
8 〉 6= 0 . (3.8)

On the other hand, if 〈∑7
i=1 iψiψ̄i〉 < 0, then m1 = . . . = m7 < 0 and m8 > 0. The first

seven Ising models are disordered, but the eighth one is ordered:

〈σ(ψ)
1 〉 = . . . = 〈σ(ψ)

7 〉 = 0 , 〈σ(ψ)
8 〉 6= 0 ,

〈µ(ψ)
1 〉 = . . . = 〈µ(ψ)

7 〉 6= 0 , 〈µ(ψ)
8 〉 = 0 . (3.9)
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Either way, a small negative B allows the phase of the eighth Ising model to be anti -

correlated with the phase of the first seven, and one always concludes:

〈

8
∑

a=1

ηaη̄a

〉

= 0 . (3.10)

In the SO(7) theory, the eight ηa still transform as an 8-dimensional representation, so this

implies 〈ηaη̄a〉 = 0 (no sum on a) for each a = 1, . . . , 8.

It is also necessary to check that 〈∑8
x=1 χxχ̄x〉 = 0, since the χ mass bilinear is also

odd under the Z2 operation. From the bosonization transformations, one finds the relation:

8
∑

x=1

iχxχ̄x ∝
(

8
∏

i=1

σ
(ψ)
i −

8
∏

i=1

µ
(ψ)
i

)

. (3.11)

So the same argument will show that 〈
∑8

x=1 χxχ̄x〉 = 0 as well. Therefore, the physical

Z2 symmetry remains unbroken at low energy.

To emphasize the special nature of this particular model, now treat the original Majo-

rana fermion fields, η1, . . . , η8, as Ising fermions, and consider adding and subtracting the

analogs of eqs. (3.7) and (3.11):

8
∑

i=1

iψiψ̄i +
8

∑

x=1

iχxχ̄x =
8
∏

a=1

σ(η)
a ,

8
∑

i=1

iψiψ̄i −
8

∑

x=1

iχxχ̄x =
8
∏

a=1

µ(η)
a . (3.12)

Here I have dropped the unimportant overall numerical factor common to both equations.

In the usual critical Ising model, one has a gapless theory whose Lagrangian is invariant

under the exchange σ
(η)
a ↔ µ

(η)
a . Here, however, one has 〈ψψ̄〉 6= 0, 〈χχ̄〉 = 0, and

σ
(η)
a = σ

(η)
b , µ

(η)
a = µ

(η)
b for all a, b = 1, . . . , 8. (Remember now these are the order/disorder

operators for the ηa variables, which still transform as an 8-dimensional representation in

the SO(7) model.)

The SO(7) model on the “m = 0” manifold has a form of Kramers-Wannier invariance

while still being a gapped theory. This is very different from a garden-variety Ising model.

3.2 Uniqueness of the ground state

The ground state of the SO(8) GN model is two-fold degenerate, as discussed in section 2.5.

In the SO(7) KF model, however, since 〈ηaη̄b〉 = 0, then the physical Z2 symmetry is

unbroken and the ground state is unique. To determine the ground state, I study the

potential for the KF model:

V (ψ, ψ̄) = −A

(

7
∑

i=1

iψiψ̄i

)2

− B

(

7
∑

i=1

ψiψ̄i

)

iψ8ψ̄8 . (3.13)
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The bosonization rules in section 2.1 allow the bilinear of a single Majorana fermion to be

expressed in terms of a non-chiral boson and its dual:

iψ2I−1ψ̄2I−1 =
1

2

[

cos(2πΘI)− cos(2πΘ̃I)
]

, iψ2I ψ̄2I =
1

2

[

cos(2πΘI) + cos(2πΘ̃I)
]

.

(3.14)

For B = 0, the potential is simply proportional to:

(

7
∑

i=1

iψiψ̄i

)2

= 2
3

∑

I<J

cos(2πΘI) cos(2πΘJ) +

[

3
∑

I =1

cos(2πΘI)

]

[

cos(2πΘ4)− cos(2πΘ̃4)
]

.

(3.15)

The distinction with respect to the GN potential [eq. (2.73)] is the contribution of three

new terms involving cos(2πΘ̃4) and a relative factor of 1
2 in the cos(2πΘ4) terms. As

before, minimization with respect to Θ1,2,3 implies
∑3

I =1 cos(2πΘI) 6= 0. Extremizing6

with respect to Θ4 and the dual field Θ̃4 gives:
[

3
∑

I =1

cos(2πΘI)

]

sin(2πΘ4) = 0 ,

[

3
∑

I =1

cos(2πΘI)

]

sin(2πΘ̃4) = 0 . (3.16)

These conditions will only be satisfied if

sin(2πΘ4) = sin(2πΘ̃4) = 0 . (3.17)

There are four logical possibilities:

(1) Θ4, Θ̃4 ∈ Z =⇒ cos(2πΘ4) = cos(2πΘ̃4) = +1

(2) Θ4 − 1
2 , Θ̃4 − 1

2 ∈ Z =⇒ cos(2πΘ4) = cos(2πΘ̃4) = −1

}

=⇒ iψ7ψ̄7 = 0 ,

iψ8ψ̄8 6= 0 .
(3.18)

(3) Θ4 ∈ Z, Θ̃4 − 1
2 ∈ Z =⇒ cos(2πΘ4) = +1, cos(2πΘ̃4) = −1

(4) Θ4 − 1
2 ∈ Z, Θ̃4 ∈ Z =⇒ cos(2πΘ4) = −1, cos(2πΘ̃4) = +1

}

=⇒ iψ7ψ̄7 6= 0 ,

iψ8ψ̄8 = 0 .

If cos(2πΘI) 6= 0 for I ∈ {1, 2, 3}, then iψiψ̄i 6= 0 for i ∈ {1, . . . , 6} (no implied sum). By

SO(7) symmetry, this implies iψ7ψ̄7 6= 0. So the only consistent possibilities are options

(3) and (4).

I already argued that in the KF theory a simultaneous change in sign of all these

cosines is a gauge symmetry. Therefore, there is only one ground state. In a fixed gauge,

say choosing option (3) above, this ground state can be expressed as:

ΘI = (0, 0, 0, 0) , Θ̃I =

(

0, 0, 0,
1

2

)

. (3.19)

In conclusion, a continuous tuning from m > 0 (topological phase) to m < 0 (trivial phase)

does not pass through a point which breaks Z2, and it does not pass through a point for

6Strictly speaking, just as it is not possible to simultaneously determine position and momentum, it is

not possible to simultaneously determine Θ4 and Θ̃4. Nevertheless, the result obtained from this procedure

is consistent with all expectations for the KF model, so I expect the result to be correct at least in some

Gaussian sense. Perhaps the correct conclusion to draw from this exercise is that the formalism of abelian

bosonization simply cannot capture this effect in the full quantum theory. I thank A. Kapustin and L.

Fidkowski for discussions on this point.
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which the ground state is degenerate. This is consistent with the claim that there is no bulk

phase transition between the two situations. It is also consistent with the corresponding

study of the (0+1)d fermions at the spatial boundaries, which would amount to a repeat

of the lattice analysis in [3].

3.3 Propagator

The standard Lehmann-Källén spectral decomposition7 for the Na propagator in a trans-

lationally invariant system is [55, 56]:

D
αβ
ab (p) ≡

∫

d2x e ip·xi〈0|T
(

N
α
a (x)N̄ β

b (0)
)

|0〉

=
(−/p+mI)αβ

p2 +m2 − iε
δab +

∫ ∞

m2
th

dτ
(−/p ρ

(1)
ab (τ) + τ1/2ρ

(2)
ab (τ)I)

αβ

p2 + τ − iε
. (3.20)

Here α, β are SO(1, 1) Dirac spinor indices, m2 stands for the squared mass of the exci-

tations for which the Na(x) are good interpolating fields,8 mth is the threshold energy at

which the multiparticle continuum begins. In the SO(8)-invariant Gross-Neveu model, the

quantity |m| is the 8v-fermion mass, which is the same as the kink mass (as required by

triality).

In the SO(7)-invariant KF model, it is clear that the quantity |m| above should cor-

respond to the rest energy of the excitation which creates a kink in the value of εi ≡ ψiψ̄i,

i = 1, . . . , 7. Denote this rest energy by mkink ≡ |m|. The Na have the correct quantum

numbers to annihilate those kinks, so the leading term in the expansion for iD(p) should

have an isolated single-particle pole at p2 = −m2
kink.

The situation of interest is when the mass term for Na is absent in the Lagrangian.

As emphasized previously, the low-energy theory remains invariant under the chiral Z2

transformation N̄aNb → −N̄aNb: this symmetry is not spontaneously broken in the IR.

The factor of m in the single-particle contribution to the propagator would break this chiral

Z2 invariance and therefore cannot appear in eq. (3.20).

How can this apparent contradiction be reconciled? From an arithmetic point of view,

the simplest resolution would simply be to cross out the m in the numerator while keeping

the denominator equal to p2 +m2
kink − iε. This peculiar prescription actually seems to be

the correct answer. This requires careful consideration of the steps leading to the spectral

decomposition in eq. (3.20).

The decomposition follows from inserting a resolution of the identity between the

two fields Na(x) and N̄b(0) in the definition of the propagator. The vacuum gives zero

contribution. The single-particle states give the first nonvanishing contribution, which is

proportional to 1/(p2 + m2) for the appropriate choice of m2. It is this single-particle

contribution which requires further scrutiny.

7The notation in eq. (3.20) is more or less standard. For a review, please see appendix B.
8By this I mean that if the state with one such excitation is denoted by |1(p)〉, then the field N (x) has

a well-defined matrix element 〈0|N (x)|1(p)〉 = 〈0|N (0)|1(p)〉 e ip·x, and the state |1(p)〉 is responsible for

the single particle pole at p2 = −m2 in the Lehmann-Källén decomposition of the propagator.
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As remarked back in the introduction, in a (1+1)-dimensional field theory without

spatial boundaries one normally thinks of the m > 0 Lagrangian and the m < 0 Lagrangian

as equivalent descriptions of the same physical theory. One writes the Dirac Lagrangian

as L = Ψ̄(i/∂−mI)Ψ with a fixed sign of the mass parameter (say m > 0) and derives the

equation of motion (i/∂ − mI)Ψ = 0. (Here Ψ is a generic Dirac spinor with no relation

to the ψ variables discussed previously.) This equation of motion is to be thought of as

projecting out half of the degrees of freedom of the spinor Ψ(x).

But for a free theory on a compact space, the two choices of sign for m define different

phases. So it makes perfect sense that, if one is interested in the resolution of the identity

in the form “1 =
∑

states |state〉〈state|” for a particular phase, then one fixes a particular

sign of m and includes only that corresponding single-particle state in the sum.

For the special case of n = 8k flavors, for example in the case k = 1 studied above, the

whole point is that the m > 0 theory and the m < 0 theory can be adiabatically deformed

into each other without going through any phase transition. So in this model, in the

resolution of the identity, one should sum over both possible signs of the mass parameter.

This removes the chirality violating term from the propagator without removing the pole

at p2 = −m2 with |m| = mkink.

Therefore, the propagator for the Na(x) fields on the “m = 0” manifold of the SO(7)-

invariant KF model should take the form:

D
αβ
ab (p) =

(−/p)αβ

p2 +m2
kink − iε

δab +

∫ ∞

m2
th

dτ
(−/p)αβρab(τ)

p2 + τ − iε
. (3.21)

This peculiar expression shows that the excitations described by Na(x) propagate with an

ordinary relativistic massive dispersion relation but nevertheless do not ever flip chirality.

This is unfamiliar, but there is nothing wrong with it.

The amplitude for a left-handed fermion to flip chirality and turn into a right-moving

fermion is still proportional to the mass parameter m, whose magnitude is mkink. But in

this case there is a doubling of the number of degrees of freedom, one on-shell fermion for

each sign of the mass parameter, and the amplitude for a chirality flip is proportional to

mkink + (−mkink) = 0. I refer to this phenomenon as “parity doubling” in analogy with an

effect in hadronic physics [57]. (This term was also used by the authors of ref. [16].)

Along the “m = 0” manifold between the “trivial” and “topological” phases of the

free-fermion theory, indeed it is the case that the fermion propagator vanishes linearly

with pµ as pµ → 0 [58, 59]. The remaining issue is to identify the origin of the extra

“parity-conjugate” states.

3.4 Parity doubling

Before identifying the additional states in the KF model, let me pause briefly to discuss to

what extent the “parity doubling” effect is analogous to the one in hadronic physics. The

parity transformation in 1+1 dimensions acts on a Dirac spinor9 ψ as:

P : ψ(t, x) → iγ1ψ(t,−x) (3.22)

9In this general discussion I use the standard notation ψ for a Dirac spinor. The reader should not

confuse this with the 8+ particles described previously.
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Since γ1 ≡ γ0(γ1)†γ0 = +γ1, and since (γ1)2 = −I, the parity transformation flips the sign

of the mass term:

P : ψ̄ψ → −ψ̄ψ . (3.23)

The free Dirac Lagrangian in 1+1 dimensions is typically considered to be invariant under

parity because this sign flip can be compensated by a γ5 field redefinition:

Z2 : ψ(t, x) → γ5ψ(t, x) . (3.24)

But this is precisely the chiral Z2 transformation that has played such a crucial role in the

previous arguments. In this interacting theory, I argue that we do not have the license to

simply perform the field redefinition in eq. (3.24), and we should really think of the parity

transformation in eq. (3.23) as exchanging two different types of particles. It is for this

reason that the term “parity doubling” is an appropriate name for the interaction effect

that results in the KF propagator.

The parity doubling effect in hadronic physics in some ways is very similar to the effect

studied in this paper, but in other important ways it is very different. (In the following I

will have to assume that the reader has some familiarity with QCD. If not, the reader may

feel free to take my choice of terminology at face value and proceed to section 3.5.)

For a long time there has been some qualitative evidence that baryons with the same

transformation properties under flavor SU(2)L×SU(2)R but opposite eigenvalues of parity

happen to have identical pole masses.10 (See ref. [57] for a detailed review and a more

quantitative analysis of the data.) Since there are two types of fermions with exactly the

same quantum numbers which are exchanged under parity,11 the energy spectrum is said

to exhibit “parity doubling” under this hypothesis. In this way, the effect in hadronic

physics is completely analogous to the effect studied here. (Furthermore, it may be useful

to note that just as the fermions in the KF model should be thought of as the kinks of the

ψ particles, the baryons in low energy QCD should also be thought of as solitons [61].)

However, the two effects differ crucially in that the individual mass terms for the parity

doublers in low energy QCD are not forbidden by symmetry. Each type of particle has a

propagator of the standard massive Dirac form, with an explicit mass term in the numerator

(and the usual factor of p2 + m2 in the denominator). In contrast, the symmetry which

forbids the mass term in the KF model is conserved at low energy, so each parity doubler

cannot have a propagator of the standard massive Dirac form. This is of course exactly

why I interpret the KF model as having a parity doubled spectrum in the first place, in

order to consistently produce an isolated single particle pole at p2 = −m2
kink without a

term proportional to mkink in the numerator.

10In order for this to happen, the couplings for interaction terms which are invariant under SU(2)L ×

SU(2)R and couple these baryons to pions must be parametrically small [60]. It is not a priori clear at

all what dynamical mechanism should be responsible for this. The point is that the mass degeneracy

of baryons with the same flavor quantum numbers but opposite parity cannot be explained solely by an

effective restoration of SU(2)L × SU(2)R.
11Let B+ be the baryon for which parity P acts as P : B+ → +B+, and let B− be the baryon for which

P : B− → −B−. Then P : 1√
2
(B+ + B−) → 1√

2
(B+ − B−), and P : 1√

2
(B+ − B−) → 1√

2
(B+ + B−), so

the particles B1 ≡ 1√
2
(B+ + B−) and B2 ≡ 1√

2
(B+ − B−) are exchanged under parity. Under the parity

doubling hypothesis, the pole mass of B1 equals the pole mass of B2.
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This may be summarized as follows. In the KF model and in the low energy limit

of QCD under the parity doubling hypothesis, each particle has a corresponding parity-

conjugate particle with the same internal quantum numbers and the same pole mass. There-

fore, both theories have a “parity doubled” single particle spectrum. However, because of

the very different symmetry requirements in the two theories, the fermion propagator in the

KF model exhibits a zero, while the baryon propagators do not. The surprising feature of

the KF model is that the fermions have mass without mass terms in the Lagrangian, while

the surprising feature of a parity doubled spectrum in QCD is simply that the magnitudes

of the baryon masses may be numerically equal.

3.5 Kinks in KF

Now I will attempt to identify the extra particles in the KF model. Recall that in the

SO(8)-invariant situation, the lowest-lying physical excitations transform as one of three

distinct 8-dimensional representations, namely 8v, 8+, or 8−. The explicit breaking of the

symmetry to SO(7) was defined by the decomposition

8+ → 7⊕ 1 . (3.25)

Under this decomposition, the two other 8-dimensional representations remain 8-

dimensional representations:

8v → 8 , 8− → 8 . (3.26)

I intentionally do not distinguish between the two instances of “8” above: the group SO(7)

has only one spinor representation. While the 8v and 8− were distinct in SO(8), these

degrees of freedom transform as the same representation of SO(7) and therefore can mix

in the low-energy theory.

One might worry that the nontrivial Z′
2 charge of the χ variables [recall eq. (2.37)] might

preclude this possibility. Another way to say this is that, in terms of the ψ description,

the theory contains “even” kinks (the ηa ∼ 8v) and “odd” kinks (the χx ∼ 8−). But this

Z
′
2 is broken (better to say “Higgsed”) by a nonzero condensate 〈ψiψ̄j〉. So, in a fixed

gauge, one should be able to think of the η particles and χ particles propagating together.

The χ particles contribute the additional degrees of freedom required to realize the form

in eq. (3.21) for the η propagator.

Although this explicit identification of the appropriate states came from the study of a

particular 1d model, it seems that this phenomenon should generalize to more complicated

systems in higher dimensions. Consider a fermionic SPT phase classified by an integer

n whose classification can be reduced by interactions to n ∼ n + k for some k. My

general conjecture is that the Hilbert space of the theory must be enlarged to include

states corresponding to the opposite sign of the mass parameter.

If this is correct, then along the “m = 0” manifold, the “m > 0” fermions and “m < 0”

fermions should propagate together with a dispersion relation p2 = −m2
∗ for some m∗ 6= 0.

The Green’s function will be proportional to 1
2 [(/p + m∗) + (/p − m∗)] = /p below the

multiparticle threshold. This appears to be the only possibility that is consistent with all

of the known results about Green’s functions for symmetry protected topological phases.

Unfortunately, I do not yet know how to check this proposal more explicitly.

– 25 –



J
H
E
P
0
7
(
2
0
1
5
)
0
3
4

3.6 A remark about ψ8

In the previous sections, the KF model was studied for 0 ≪ −B ≪ A . In the limit

B = 0, the Lagrangian describes one massless Majorana fermion (ψ8), seven degenerate

massive Majorana fermions (ψ1, . . . , ψ7), and massive kinks. The form of the Lagrangian

in this limit seems to indicate that the field ψ8 is totally decoupled from ψ1, . . . , ψ7, so one

might ask whether one could just “delete” ψ8 altogether and study the SO(7) Gross-Neveu

model [62].

Instead of performing any detailed calculations, let me argue based on general princi-

ples that this cannot be done. The argument rests on the observation that the Z
′
2 trans-

formation which flips the sign of ψiψ̄j is a gauge symmetry.

In 1+1 spacetime dimensions, it is possible to construct a Lagrangian formulation of

this Z′
2 gauge theory by embedding Z

′
2 into U(1)′ and writing a “BF” theory with 0-form

potential B and 2-form field strength F = dA, where A = Aµ dx
µ is the U(1)′ gauge

potential. (For more details, see the already mentioned ref. [34] as well as refs. [63–66].)

The Z
′
2 transformation of interest is chiral, in that it only rephases the left-moving

fermions ψi while leaving the right-moving fermions ψ̄i unchanged. So the only way for

this gauge theory to be non-anomalous is for the U(1)′ charges to sum to zero. For example,

the fermions can be paired up as ψ2I−1 + iψ2I and assigned the U(1)′ charges (−1)I , with

I = 1, . . . , 4.

In Dirac notation,

FI ≡ 1√
2

[(

ψ̄2I−1

iψ2I

)

+ i

(

ψ̄2I

iψ2I

)]

, (3.27)

the U(1)′ current for this embedding would be:

Jµ =
4

∑

I =1

(−1)I F Iγ
µ 1

2
(I − γ5)FI . (3.28)

The field ψ8 cannot be deleted from the Lagrangian, because an odd number of real fermions

cannot all be charged under U(1)′.

4 Relation to electronic systems

From the perspective of experimental condensed matter physics, the Kitaev-Fidkowski

interaction may seem somewhat foreign, in that it singles out “half” a fermionic degree of

freedom. Although I do not propose any explicit experimental realization of this interaction,

I do feel it would be useful to relate the model to another physical system with the same

symmetries.

The basic required ingredients are four complex fermionic degrees of freedom. Two of

these are already provided by spin, so one is interested in a problem with two degenerate

“channels,” or “flavors,” of spinful fermions.

One such system is the two-channel Kondo effect [67, 68], where itinerant conduction

electrons scatter off a two-state impurity localized at the origin. It turns out that this

system is not quite appropriate, because it possesses only the SO(5) × SO(3) subgroup
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of SO(8) instead of the larger SO(7) subgroup. However, the one-channel two-impurity

Kondo effect [69, 70] is another system with the correct number of degrees of freedom, and

in this model the global symmetry is exactly the desired SO(7) subgroup which leaves a

component of the 8+ fixed [35, 71].

4.1 Two-channel, one-impurity Kondo effect

It is conceptually simplest to begin with the two-channel, one-impurity Kondo problem.

One has two channels, or flavors, of conduction electrons in three spatial dimensions, labeled

by an index i = 1, 2. Each electron also has spin, labeled by α = ↑, ↓. The impurity is

taken to have spin-12 and is localized at the origin.

The scattering of the conduction electrons on the impurity is dominated by the ℓ = 0

angular momentum mode (“s-wave”), and hence can be reduced to a problem purely in the

radial direction. Upon integrating over the angular variables, one is left with an effective

1+1 dimensional action on the half-line. In the low-energy theory, the residual effect of the

impurity is to provide a boundary condition for the electronic degrees of freedom.

The complex left-handed fermion fields which describe the two flavors of electrons will

be denoted as follows:










e↑1
e↓1
e↑2
e↓2











≡ 1√
2











η1 + iη2
η3 + iη4
η5 + iη6
η7 + iη8











. (4.1)

There are 8 ⊗A 8 = 28 different left-handed currents which generate infinitesimal SO(8)L
transformations:

jij = iψiψj . (4.2)

In principle these SO(8)L currents can be written in terms of ηa ∼ 8v, ψi ∼ 8+, or χx ∼ 8−.
The corresponding expressions jab, jij , and jxy are related by a triality transformation. I

have chosen to work in the ψi ∼ 8+ basis because, as will be seen shortly, if the physical

conduction electrons are described as in eq. (4.1), then working in the ψi ∼ 8+ basis will

effect a generalized “spin-charge separation.”

Four of the SO(8)L currents, namely j2I−1,I (I = 1, . . . , 4), generate the four mutually

commuting U(1)L subgroups of SO(8)L. These define the four left-handed Cartan charges:

NI =

∫ ∞

−∞
dx iψ2I−1ψ2I . (4.3)

Since iψ2I−1ψ2I = i∂xθI and the θI are related to the ϕA in the same way as before, the
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NI can be expressed in terms of the conduction electrons as follows:

NI =
1

2

4
∑

A=1











+ + + +

+ − + −
+ + − −
+ − − +











IA

∫ ∞

−∞
dx iη2A−1η2A

=

∫ ∞

−∞
dx

1

2

∑

α,β=↑,↓

∑

i,j=1,2

e†αi











δαβδij
σz
αβδij

δαβσ
z
ij

σz
αβσ

z
ij











eβj . (4.4)

From the definition in eq. (4.1), it is clear that Q ≡ 2N1 measures the total electric charge,

Sz ≡ N2 measures the total z-component of spin, F ≡ N3 measures the total “flavor

number,” and B ≡ N4 measures a fourth quantum number associated with the internal

degrees of freedom of the impurity.

Since this problem turns out to be very closely related to the scattering of 3+1 dimen-

sional relativistic fermions from an SU(5) magnetic monopole [72, 73] (see also [74]) — and

in fact the two-impurity single-channel case is identical [35] — I will take the liberty of

calling this fourth quantum number “baryon number.” Thus for this problem the rotation

to the 8+ basis describes the separation of charge, spin, flavor, and baryon number.

The effect of the impurity is to impose the following boundary condition on the scatter-

ing of a left-moving fermion into a right-moving fermion at the physical boundary x = 0:12















ψ1

ψ2

ψ5

ψ6

ψ7















→ +















ψ̄1

ψ̄2

ψ̄5

ψ̄6

ψ̄7















,







ψ3

ψ4

ψ8






→ −







ψ̄3

ψ̄4

ψ̄8






. (4.5)

From this it is clear that the symmetry of the problem is reduced from SO(8) to SO(5)×
SO(3).

To make a connection with the Kitaev-Fidkowski model, the desired symmetry is the

larger subgroup SO(7), and in particular that SO(7) which is defined by 8+ → 7⊕1. It turns

out that this is exactly the symmetry group for the one-channel, two-impurity problem.

4.2 One-channel, two-impurity Kondo effect

In this case, one has only a single channel of physical conduction electrons, again labeled

by spin α = ↑, ↓. There are now two spin-12 impurities, distributed symmetrically about

the origin, say at locations ~x = ±1
2
~R for some fixed constant vector ~R. Because of this

spatial separation of the two impurities, the long-distance description is one of a single

effective spin-1 impurity, which couples differently to the different parities of the conduc-

tion electrons. Linear combinations of parity-even and parity-odd eigenstates provide the

“flavor” label, i = 1, 2.

12This is the location of the impurity; here x ∈ [0,∞) labels the radial direction in the original 3d

problem.
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Again the long distance theory reduces to an effective 1+1 dimensional theory of 8 Ma-

jorana fermions with a boundary condition at x = 0. In this case, the boundary condition is:

























ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

ψ8

























→ +

























ψ̄1

ψ̄2

ψ̄3

ψ̄4

ψ̄5

ψ̄6

ψ̄8

























, ψ7 → −ψ̄7 . (4.6)

Hence the continuous global symmetry of the low-energy theory is SO(7). Since these

boundary conditions are written, intentionally, in terms of the (ψi, ψ̄i) variables, indeed the

correct choice of SO(7) subgroup is singled out. This is exactly what happens for the KF

interaction (up to a trivial relabeling of ψ7 ↔ ψ8): the U(1) rotations in the (7, 8)-plane

are explicitly broken by the g′ term, which singles out the 8th component of the 8+.

To relate these two systems literally would require a physical implementation of the

interactions in eq. (3.1). In terms of electronic degrees of freedom on the lattice, these

can arise from a Hubbard-Heisenberg interaction (see, for example, [15]). Writing the

interaction in this manner has the advantage of being expressed in terms of familiar physical

variables, but it has the disadvantage of obscuring the SO(7) symmetry.

It is enlightening to observe that, in terms of the χx ∼ 8− fermions, one has:

NI =
1

2

4
∑

X =1











+ + + +

+ − + −
+ + − −
− + + −











IX

∫ ∞

−∞
dx iχ2X−1χ2X

=

∫ ∞

−∞
dx

1

2

∑

α,β=↑,↓

∑

i,j=1,2

ẽ†αi











δαβδij
σz
αβδij

δαβσ
z
ij

σz
αβσ

z
ij











ẽβj , (4.7)

where I have defined new fields











ẽ↑1
ẽ↓1
ẽ↑2
ẽ↓2











≡ 1√
2











χ1 + iχ2

χ3 + iχ4

χ5 + iχ6

χ7 + iχ8











. (4.8)

Evidently these new fields have the same charge, spin, and flavor quantum numbers as the

original electron fields, but their baryon number is flipped: the ẽαi are the “antibaryons”

of the eαi. So if U(1)B is broken by the interactions, then the eαi and the ẽαi will carry

exactly the same quantum numbers. As discussed previously, these are the states which

combine together to form a propagator proportional to /p/(p2 +m2
∗) for some m2

∗ 6= 0.
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5 Discussion

In this paper I have emphasized a subtlety in the triality invariance of the SO(8) Gross-

Neveu model (section 2) and studied the SO(7) Kitaev-Fidkowski model along the “m =

0” manifold (section 3). The purpose was to obtain a more thorough understanding of

the latter model in the continuum limit and to extract lessons for interacting relativistic

quantum field theories in higher dimensions.

I pointed out that the two choices of sign for the 8+ condensate are gauge equivalent

[eq. (2.37)], and hence the formation of this condensate does not indicate anything about

the ground state degeneracy (section 3.2). I also noted the important distinction between

the 8+ and the 8−, and in particular the fact that only the 8+ bilinear is invariant under

the physical chiral Z2 symmetry which emerges when the original mass parameter is set to

zero [eq. (2.36)].

The main observation was that the fermion propagator should exhibit a form of “parity

doubling” for which states of equal and opposite mass parameters conspire to give a numer-

ator proportional to γµpµ while maintaining the single-particle pole at p2 = −m2
kink 6= 0.

This was motivated by the known spectrum of the SO(8) GN model and the conclusion

that the physical Z2 symmetry is not broken spontaneously.

Since I cannot imagine any other possibility consistent with the known results for

SPT phases as well as with the principles of relativistic quantum field theory, I conjecture

that the fermion propagator in eq. (3.21) should describe the general situation: when a

topological superconductor with Z classification can be reduced by interactions to some

Zk, then the Hilbert space of the theory along the “m = 0” must be doubled. It seems

necessary to include states for both projections in the Dirac operator, one for a mass term

+m and one for a mass term −m. That is how a relativistic fermion can obtain mass

without breaking any symmetry which forbids the mass terms in the Lagrangian.

I will conclude by proposing a novel application of the reduced classification of SPT

phases to the study of elementary particle physics. It was already recognized that this phe-

nomenon could be considered as a way to evade certain fermion doubling theorems on the

lattice [76]. However, there exists at least one example in which unwanted fermion doubling

occurs purely within a field theoretic framework without any reference to a discretization

of space.

In an attempt to unify not only the nuclear and electromagnetic forces in a grand

unified SO(10) theory [77–79], but also to combine the three generations of fundamental

fermions into a single representation of a larger gauge group, a grand unified theory of

families was proposed based on the gauge group SO(18) [53, 80]. In this model, all known

fermions could fit into a single 256-dimensional chiral spinor representation of SO(18),

and there was some hope that the peculiar repetitive family structure of the SM could be

explained by group theory.

However, the desired property that spinors of SO(2n+ 2m) contain spinors of SO(2n)

also proved to be the main phenomenological flaw of this approach: under the breaking

of SO(18) to SO(10), the chiral spinor of SO(18) splits into the desired families as well
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as “mirror” families with the opposite quantum numbers (see, for example, [81]). The

problem was to explain why this mirror matter is not observed at low energy.

Since the study of interacting symmetry protected topological superconductors has

suggested that the SO(10) mirror fermions can likely be gapped out without generating a

mass for the ordinary fermions, it is possible that this new insight from condensed matter

theory may revive the SO(18) model. This would be an interesting problem to work out

in detail, but it is clearly beyond the scope of this paper.
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A Lattice regularization

For the convenience of the quantum field theorist who is not necessarily familiar with the

ultraviolet regularization described in the introduction, I will review briefly the 1d Kitaev

chain [19].

A.1 Lattice

Consider a 1d chain of sites indexed by j, k = 1, . . . , 2N with one real Majorana operator,

cj , per site:

{cj , ck} =
1

2
δjk , c†j = cj . (A.1)

Introduce the following quadratic couplings between the fermions:

H = −i
2N−1
∑

j=1

{

1

2
[1 + (−1)j ]J1 +

1

2
[1− (−1)j ]J2

}

cjcj+1 . (A.2)

Define the sum and difference of J1,2:

t ≡ J1 + J2 , m ≡ J1 − J2 . (A.3)

Then the Hamiltonian is simply:

H = −1

2
i
2N−1
∑

j=1

[

t+ (−1)jm
]

cjcj+1 . (A.4)

In preparation for a change of basis into momentum space (Fourier transformation), it is

best to rewrite each term in a symmetric fashion:13

∑

j

cjcj+1 =
1

2

∑

j

(cjcj+1 − cjcj−1) ,
∑

j

(−1)jcjcj+1 =
1

2

∑

j

(−1)j(cjcj+1 + cjcj−1) .

(A.5)

13The boundary terms will be taken care of later. The first part of the derivation will be for the continuum

limit of the bulk of the chain.
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A.2 Fourier transform

Let a be the lattice spacing. With periodic boundary conditions, the wave at site j is the

same as the wave at site 2N + j:

e ipaj = e ipa(2N+j) =⇒ e ipL = 1 , L ≡ 2Na . (A.6)

Therefore, the momentum is discrete and runs from 0 to 2π/a [the “fundamental region”

or “Brillouin zone” (BZ)]:

p =
2π

L
n , n = 0, 1, . . . ,

L

a
. (A.7)

The momentum space operators will be defined by:

cj ≡
∑

p∈BZ

e ipaj c̃p . (A.8)

Plugging this into the Hamiltonian in eq. (A.4) and symmetrizing appropriately gives:

H =
1

2

∑

p∈BZ

(c̃−p, c̃−(p+π/a)) h(p)

(

c̃p
c̃p+π/a

)

(A.9)

with the single particle Hamiltonian matrix

h(p) = t sin(pa)

(

1 0

0 −1

)

+m cos(pa)

(

0 −i

i 0

)

. (A.10)

Squaring this gives the single particle dispersion relation:

h(p)2 = E(p)2I , E(p)2 = t2 sin2(pa) +m2 cos2(pa) . (A.11)

Fill up the band up to the points at which the hopping term vanishes. In other words,

define the Fermi momentum pF as the solutions to

sin(pFa) = 0 . (A.12)

Since p ∈ [0, 2π/a], there are two distinguished points about which to linearize:

pF = 0 or
π

a
. (A.13)

The goal is to describe fluctuations in the vicinity of both of these points. To do this,

define

k ≡ p− pF (A.14)

and expand the matrix in eq. (A.10) to linear order in k. The result is:

h(p = pF + k) = cos(pFa)

(

t

(

1 0

0 −1

)

ka+m

(

0 −i

i 0

))

+O(ka)2 . (A.15)

Define the continuum fields by:

c̃ p= pF+k ≡ a−1/2

∫

dx e ikx η1(x) , c̃ p+π/2= (pF+π/2)+k ≡ a−1/2

∫

dx e ikx η2(x) , (A.16)
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The form of the Hamiltonian in eq. (A.9) already explicitly describes both points at which

the hopping term intersects zero, so without loss of generality take pF = 0 and hence

cos(pFa) = +1. The Hamiltonian in eq. (A.9) becomes:

H ≈
∫

dx
2

∑

a,b=1

ηa
(

t σz
ab i∂x +ma−1 σy

ab

)

ηb . (A.17)

After rescaling the fields into their canonical form and defining an appropriately rescaled

mass parameter, one finds the standard Hamiltonian for a relativistic Majorana fermion

N ≡
(

η2
iη1

)

← (right-moving)

← (left-moving)
(A.18)

with mass

m = J1 − J2 . (A.19)

The corresponding Lagrangian is:

L =
1

2
N̄

(

i/∂ −m
)

N , γµ = (σ1,−iσ2) . (A.20)

From this derivation it is clear that the “m > 0” and “m < 0” phases can be realized from

the appropriate tuning of J2 relative to J1. In particular, the “m = 0” manifold is realized

when J2 = J1.

To determine which is the trivial phase and which is the topological phase, go back to

the original lattice Hamiltonian in eq. (A.2). If J2 → 0, then c1 and cN become decoupled

from the rest of the chain. The phase with J1 > J2 has an unpaired edge mode, while the

phase with J1 < J2 does not. Therefore:

m < 0 is trivial , m > 0 is topological . (A.21)

A.3 Time reversal

In the lattice model, the peculiar time reversal transformation which squares to +1 (and

is still antiunitary) is defined as

Z
T
2 : cj → (−1)jcj , i → −i . (A.22)

The goal is to see how this transforms the continuum fields ηa(t, x). The previous subsection

showed that there are two distinguished points in momentum space, namely p = 0 and

p = π/a. In the Fourier decomposition of the position space Majorana operators, this can

be made explicit by writing:

cj =
1

2

∑

p∈BZ

e ipaj
[

c̃0+p + (−1)j c̃π
a
+p

]

. (A.23)

The Majorana operators at even and odd sites are:

c2J−1 =
∑

p

e ipa(2J−1)
[

c̃p + (−1)2J−1c̃p+π/a

]

=
∑

p

e ipa(2J−1)
(

c̃p − c̃p+π/a

)

, (A.24)

c2J =
∑

p

e ipa(2J)
[

c̃p + (−1)2J c̃p+π/a

]

=
∑

p

e ipa(2J)
(

c̃p + c̃p+π/a

)

, (A.25)
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where J = 1, . . . , N . Since Z
T
2 flips the sign of c2J−1 but does not flip the sign of c2J , it is

clear that ZT
2 exchanges c̃p and c̃p+π/a.

Therefore, in the continuum limit, time reversal acts as

Z
T
2 : ηa → σx

ab ηb , i → −i . (A.26)

In relativistic notation with a choice of gamma matrices γµ = (σx,−iσy) and γ5 = γ0γ1 =

σz, this becomes (up to an overall phase):

Z
T
2 : N → γ0N , i → −i . (A.27)

B Lehmann-Källén form of the propagator

In this appendix I will review the steps that allow the fermion propagator to be expressed in

the form of eq. (3.21). I will also briefly review the constraints of positivity on the spectral

functions ρ1,2 in order to assuage the reader that the unfamiliar form of the propagator in

the KF model does not violate any theorems. In addition to the original papers [55, 56],

the reader may also wish to consult the textbook by Itzykson and Zuber [82].

B.1 Setup

The Feynman propagator for a Dirac field ψ(x) in the Poincaré representation −p2 = m2

in D = d+ 1 spacetime dimensions is defined as:

Dαβ(x) ≡ iθ(x0)〈0|ψα(x)ψ̄β(0)|0〉 − iθ(−x0)〈0|ψ̄β(0)ψα(x)|0〉 . (B.1)

The state space is:

• vacuum: |0〉

• single particle state: |1(p, s)〉, p2 = −m2, spin s = ±1
2

• single antiparticle state: |1̄(p, s)〉, p2 = −m2, spin s = ±1
2

• multiparticle state: |p, S, ξ〉, with some fixed value of τ ≡ −p2 ≥ m2
th ≥ m2 and some

spin eigenvalue S. The “threshold” scale mth defines the onset of the multiparticle

continuum. All additional labels besides total momentum, spin, and p2 are denoted

collectively by ξ.

This defines the resolution of the identity operator:

1 = |0〉〈0|+
∫

ddp

(2π)d2(~p 2 +m2)1/2

∑

s=±
(|1(p, s)〉〈1(p, s)|+ |1̄(p, s)〉〈1̄(p, s)|)

+

∫ ∞

m2
th

dτ

∫

ddp

(2π)d2(~p 2 + τ)1/2

∑

S

∫

∑

ξ

|p, S, ξ〉〈p, S, ξ| δ(p2 + τ) (B.2)

The delta function formally expresses the fact that the multiparticle state |p, S, ξ〉 is in the

Poincaré representation −p2 = τ .
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B.2 Wavefunctions

Define the following single particle wavefunctions:

〈0|ψα(x)|1(p, s)〉 ≡ uα(p, s) e
ip·x , 〈1̄(p, s)|ψα(x)|0〉 ≡ vα(p, s) e

−ip·x . (B.3)

These satisfy:

∑

s=± 1

2

uα(p, s) ūβ(p, s) = −/pαβ +mδαβ ,
∑

s=± 1

2

vα(p, s) v̄β(p, s) = −/pαβ −mδαβ . (B.4)

For the multiparticle states, define the following wavefunctions:

〈0|ψα(x)|p, S, ξ〉 ≡ Aα(p, S, ξ) e
ip·x , 〈p, S, ξ|ψα(x)|0〉 ≡ Bα(p, S, ξ) e

−ip·x . (B.5)

By Lorentz invariance and parity, the scalar functions ρ1(τ) and ρ2(τ) can be defined by

the following formula:

Mαβ ≡
∑

S

∫

∑

ξ

Aα(p, S, ξ)Āβ(p, S, ξ) δ(p
2 + τ) ≡ −/pαβ ρ1(τ) + τ1/2 δαβ ρ2(τ) , (B.6)

where p0 = (~p 2 + τ)1/2. Similarly, the scalar functions ρc1(τ) and ρc2(τ) (where the super-

script c is just part of the name of the function) can be defined by the formula:

∑

S

∫

∑

ξ

Bα(p, S, ξ)B̄β(p, S, ξ) ≡ −/pαβ ρ
c
1(τ)− τ1/2 δαβ ρ

c
2(τ) . (B.7)

The signs were chosen to match the analogous signs in eq. (B.4). Invariance of the vacuum

under charge conjugation implies:

ρc1(τ) = ρ1(τ) , ρc2(τ) = ρ2(τ) . (B.8)

B.3 Result

With eq. (B.2), the definitions in the previous subsection, and the relation

∫

dDp

(2π)D
−i

p2 +m2 − iε
e ip·x f(p)

=

∫

ddp

(2π)d2(~p 2 +m2)1/2
(

θ(x0) e ip·x f(p) + θ(−x0) e−ip·x f(−p)
)

, (B.9)

the Lehmann-Källén form is obtained:

Dαβ(x) =

∫

dDp

(2π)D
e ip·x

(−/pαβ +mδαβ

p2 +m2 − iε
+

∫ ∞

m2
th

dτ
−/pαβ ρ1(τ) + τ1/2 δαβ ρ2(τ)

p2 + τ − iε

)

.

(B.10)

The additional flavor labels in eq. (3.21) present no additional complication and can simply

be added on according to the invariance requirements of the appropriate flavor symmetry

group.
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B.4 Positivity constraints

The functions ρ1(τ) and ρ2(τ) satisfy certain inequalities as a result of positivity. Recall the

matrix M defined in eq. (B.6). Multiplying on the right by γ0 and taking the trace gives:

tr(Mγ0) =
∑

S

∫

∑

ξ

∑

α

|〈0|ψα(0)|p, S, ξ〉|2 δ(p2 + τ) = tr(I)(~p 2 + τ)1/2 ρ1(τ) . (B.11)

Since |〈0|ψα(0)|p, S, ξ〉|2 ≥ 0, the first positivity constraint is:

ρ1(τ) ≥ 0 . (B.12)

Similarly, but with a few more intermediate steps, multiplying the quantity

(γµpµ − τ1/2I)M(γµpµ − τ1/2I) on the right by γ0 and taking the trace gives:

tr
(

(/p− τ1/2I)M(/p− τ1/2I)γ0
)

=
∑

S

∫

∑

ξ

∑

α

∣

∣

∣
〈0|

[

(i/∂ + τ1/2I)ψ(x)
]

α
|p, S, ξ〉

∣

∣

∣

2
δ(p2 + τ)

= 2τ(~p 2 + τ)1/2 tr(I) (ρ1(τ) + ρ2(τ)) . (B.13)

Since
∣

∣〈0|
[

(i/∂ + τ1/2I)ψ(x)
]

α
|p, S, ξ〉

∣

∣

2 ≥ 0, the second positivity constraint is:

ρ1(τ) + ρ2(τ) ≥ 0 . (B.14)

As defined, the scalar function ρ2(τ) can have either sign. So really this second constraint

amounts to:

ρ1(τ) ≥ |ρ2(τ)| . (B.15)

Although it may be unfamiliar, it is internally consistent to have ρ2 = 0 even with massive

poles in the propagator.
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[31] P. Forgács, F. Niedermayer and P. Weisz, The exact mass gap of the Gross-Neveu model. 1.

The thermodynamic Bethe ansatz, Nucl. Phys. B 367 (1991) 123 [INSPIRE].
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[54] C.S. Aulakh and A. Girdhar, SO(10) à la Pati-Salam, Int. J. Mod. Phys. A 20 (2005) 865

[hep-ph/0204097] [INSPIRE].

[55] G. Källén, On the definition of the renormalization constants in quantum electrodynamics,

Helv. Phys. Acta 25 (1952) 417 [INSPIRE].

[56] H. Lehmann, On the properties of propagation functions and renormalization contants of

quantized fields, Nuovo Cim. 11 (1954) 342 [INSPIRE].

[57] R.L. Jaffe, D. Pirjol and A. Scardicchio, Parity doubling among the baryons,

Phys. Rept. 435 (2006) 157 [hep-ph/0602010] [INSPIRE].

[58] V. Gurarie, Single-particle Green’s functions and interacting topological insulators,

Phys. Rev. B 83 (2011) 085426.

[59] Y.-Z. You, Z. Wang, J. Oon and C. Xu, Topological number and fermion Green’s function for

strongly interacting topological superconductors, Phys. Rev. B 90 (2014) 060502

[arXiv:1403.4938] [INSPIRE].

[60] R.L. Jaffe, D. Pirjol and A. Scardicchio, Parity doubling and SU(2)L × SU(2)R restoration in

the hadron spectrum, Phys. Rev. Lett. 96 (2006) 121601 [hep-ph/0511081] [INSPIRE].

[61] E. Witten, Baryons in the 1/N expansion, Nucl. Phys. B 160 (1979) 57 [INSPIRE].

[62] P. Fendley and H. Saleur, BPS kinks in the Gross-Neveu model,

Phys. Rev. D 65 (2002) 025001 [hep-th/0105148] [INSPIRE].

[63] N. Seiberg, Modifying the sum over topological sectors and constraints on supergravity,

JHEP 07 (2010) 070 [arXiv:1005.0002] [INSPIRE].

– 39 –

http://dx.doi.org/10.1016/0550-3213(82)90173-0
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B210,448
http://dx.doi.org/10.1103/PhysRevD.12.3978
http://inspirehep.net/search?p=find+J+Phys.Rev.,D12,3978
http://arxiv.org/abs/hep-ph/0011333
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0011333
http://dx.doi.org/10.1103/PhysRevD.12.2443
http://inspirehep.net/search?p=find+J+Phys.Rev.,D12,2443
http://dx.doi.org/10.1103/PhysRevD.11.3026
http://inspirehep.net/search?p=find+J+Phys.Rev.,D11,3026
http://dx.doi.org/10.1103/RevModPhys.36.856
http://inspirehep.net/search?p=find+J+Rev.Mod.Phys.,36,856
http://dx.doi.org/10.1103/PhysRevD.15.2875
http://inspirehep.net/search?p=find+J+Phys.Rev.,D15,2875
http://dx.doi.org/10.1016/0550-3213(78)90499-6
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B144,80
http://dx.doi.org/10.1016/0550-3213(84)90052-X
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B241,333
http://dx.doi.org/10.1103/PhysRevB.39.6744
http://dx.doi.org/10.1103/PhysRevD.25.553
http://inspirehep.net/search?p=find+J+Phys.Rev.,D25,553
http://dx.doi.org/10.1142/S0217751X0502001X
http://arxiv.org/abs/hep-ph/0204097
http://inspirehep.net/search?p=find+J+Int.J.Mod.Phys.,A20,865
http://dx.doi.org/10.1007/978-3-319-00627-7_90
http://inspirehep.net/search?p=find+J+Helv.Phys.Acta,25,417
http://dx.doi.org/10.1007/BF02783624
http://inspirehep.net/search?p=find+J+NuovoCim.,11,342
http://dx.doi.org/10.1016/j.physrep.2006.09.004
http://arxiv.org/abs/hep-ph/0602010
http://inspirehep.net/search?p=find+J+Phys.Rept.,435,157
http://dx.doi.org/10.1103/PhysRevB.83.085426
http://dx.doi.org/10.1103/PhysRevB.90.060502
http://arxiv.org/abs/1403.4938
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.4938
http://dx.doi.org/10.1103/PhysRevLett.96.121601
http://arxiv.org/abs/hep-ph/0511081
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,96,121601
http://dx.doi.org/10.1016/0550-3213(79)90232-3
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B160,57
http://dx.doi.org/10.1103/PhysRevD.65.025001
http://arxiv.org/abs/hep-th/0105148
http://inspirehep.net/search?p=find+J+Phys.Rev.,D65,025001
http://dx.doi.org/10.1007/JHEP07(2010)070
http://arxiv.org/abs/1005.0002
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.0002


J
H
E
P
0
7
(
2
0
1
5
)
0
3
4

[64] S. Hellerman and E. Sharpe, Sums over topological sectors and quantization of

Fayet-Iliopoulos parameters, Adv. Theor. Math. Phys. 15 (2011) 1141 [arXiv:1012.5999]

[INSPIRE].

[65] T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity,

Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

[66] E. Sharpe, Decomposition in diverse dimensions, Phys. Rev. D 90 (2014) 025030

[arXiv:1404.3986] [INSPIRE].

[67] I. Affleck and A.W.W. Ludwig, Critical theory of overscreened Kondo fixed points,

Nucl. Phys. B 360 (1991) 641 [INSPIRE].

[68] A.W.W. Ludwig and I. Affleck, Exact conformal field theory results on the multichannel

Kondo effect: asymptotic three-dimensional space and time dependent multipoint and many

particle Green’s functions, Nucl. Phys. B 428 (1994) 545 [INSPIRE].

[69] V.J. Emery and S. Kivelson, Mapping of the two-channel Kondo problem to a resonant-level

model, Phys. Rev. B 46 (1992) 10812.

[70] I. Affleck and A.W.W. Ludwig, Exact critical theory of the two impurity Kondo model,

Phys. Rev. Lett. 68 (1992) 1046 [INSPIRE].

[71] I. Affleck, A.W.W. Ludwig and B.A. Jones, Conformal-field-theory approach to the

two-impurity Kondo problem: comparison with numerical renormalization-group results,

Phys. Rev. B 52 (1995) 9528.

[72] V.A. Rubakov, Adler-Bell-Jackiw anomaly and fermion number breaking in the presence of a

magnetic monopole, Nucl. Phys. B 203 (1982) 311 [INSPIRE].

[73] C.G. Callan Jr., Monopole catalysis of baryon decay, Nucl. Phys. B 212 (1983) 391

[INSPIRE].

[74] J. Polchinski, Monopole catalysis: the fermion rotor system, Nucl. Phys. B 242 (1984) 345

[INSPIRE].

[75] S.D. Drell, A.C. Finn and A.C. Hearn, Bounds on propagators, coupling constants, and

vertex functions, Phys. Rev. 136 (1964) B1439.

[76] M.A. Metlitski, L. Fidkowski, X. Chen and A. Vishwanath, Interaction effects on 3D

topological superconductors: surface topological order from vortex condensation, the 16 fold

way and fermionic Kramers doublets, arXiv:1406.3032 [INSPIRE].

[77] H. Fritzsch and P. Minkowski, Unified interactions of leptons and hadrons,

Annals Phys. 93 (1975) 193 [INSPIRE].

[78] H. Georgi, The state of the art — gauge theories, in Particles and fields — 1974, proceedings

of the Meeting of the Division of Particles and Fields of the APS, Williamsburg,

C.E. Carlson ed., AIP, New York U.S.A. (1975) [AIP Conf. Proc. 23 (1975) 575] [INSPIRE].

[79] J.D. Lykken, T. Montroy and S. Willenbrock, Group theoretic evidence for SO(10) grand

unification, Phys. Lett. B 418 (1998) 141 [hep-ph/9710492] [INSPIRE].

[80] J. Bagger and S. Dimopoulos, O(18) revived: splitting the spinor,

Nucl. Phys. B 244 (1984) 247 [INSPIRE].
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