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1 Introduction

Black holes have always been at the centre of theoretical interests in quantum gravity and

string theory. Through the non-perturbative formulation of string theory and quantum

gravity via gauge/string correspondence [1], significant progresses have been made in our

understanding of black hole microstates, especially its entropy counting. However, we still

need to understand better various aspects of quantum gravitational system, and one of the

important aspects is understanding their real-time evolution.

One model, which is more tractable to analyse the real-time dynamics compared with

many other theoretical models in the gauge/string correspondence, is a BFSS (Banks-

Fischler-Shenker-Susskind) matrix model [2]. This model is a 0 + 1 dimensional large N

matrix quantum mechanics, and conjectured [3, 4] to be dual to either ten-dimensional

string or eleven dimensional M theory depending on the various parameter limit. Since

BFSS matrix model is dual to the higher dimensional spacetime, it would be very interesting

to ask how the higher dimensional black hole formation can be understood from the dual

matrix model. In this set-up, we consider the various head-on collisions of two bunches of

D0-branes and their real-time evolution, which is expected to become a single bound state

of D0-branes at late time. This is a matrix model thermalization and dual to the formation

of one large black hole in either ten- or eleven dimension. Our main interest in this paper
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is, by solving the matrix model classical equation of motion, to study quantitatively how

such a bound state is formed in the real-time evolution of the large N matrix model.

In order to study the complicated time-evolution of large N matrix model, we make

several simplifications; First, we consider only the classical limit in this paper, namely we

solve the classical equation of motion numerically and find its time-dependent solution.

At first thought, this simplification might sound very boring limit. However, there are

several reasons why classical limit of late time evolution is interesting and capture aspects

of non-perturbative physics. Even though classical limit is justified in the weak coupling

limit, since what we conduct is not the perturbative analysis near the trivial vacuum

but rather the analysis seeking the time-dependent soliton configuration, this can capture

non-perturbative physics. Remember that thermalization is a very complicated but also

universal phenomenon which one cannot see in various solvable models, nor in perturbation

analysis from the trivial vacuum [5]. It has a property that all memories of the initial data

are lost in late time, and this late time thermalization may occur only in the large N limit.

Therefore even though we simply solve the classical equations of motion, we are looking

some non-perturbative physics through the late time evolution.

Another simplification is, that we neglect effects of fermions for simplicity. Since super-

symmetry is expected to be more crucial at low energy but not in high energy deconfined

phase, we expect that, for late time thermalization, the analysis with/without supersym-

metry does not change much. In our analysis, we have conduct N up to N = 24, and

regard it as large enough to perform an extrapolation to the large N limit.

Before we close the introduction, we comment on several related references. Thermal

equilibrium (i.e., static) properties of the BFSS matrix models for black holes are very well

studied. Thermodynamic simulations of BFSS matrix model was initiated by Kabat et

al. [6, 7] by the mean-field method [8], and recently by Monte Carlo method [9–11]. These

results confirmed that the duality is valid not just at supergravity level but also at stringy

level; at finite-coupling [12] and finite-N [13]. For non-equilibrium properties, a probe limit

thermalization was studied in [14–16]. For so-called BMN matrix model,1 Berenstein et

al. studied the thermalization numerically in the series of papers [18–20] in detail. BFSS

matrix model with initial conditions different from ours have also been studied in [19, 20].

Finally the black hole formulation at the correspondence point for the BFSS matrix model

was analytically studied recently in [21, 22]. In this paper we consider the similar setting

to these works, though the parameter range is different, which is possible since we solve

the model numerically.

2 The model and simulation method

BFSS matrix model [2] is the maximally supersymmetric matrix quantum mechanics, which

is the dimensional reduction of 4d N = 4 supersymmetric Yang-Mills theory to one dimen-

sion (time). In this paper, we concentrate on the classical dynamics, and set fermion to

zero for simplicity. Henceforth, we consider only the bosonic part of the Lagrangian of

1BMN matrix model [17] is a model which has mass for the adjoint scalars. This model is supposed to

be dual to the 11-dimensional pp-waves.
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BFSS matrix model and it is given by

L =
N

2g2
YMN

Tr

 9∑
M=1

(DtXM )2 +
1

2

∑
M 6=N

[XM , XN ]2

 . (2.1)

Here XM (M = 1, 2, · · · , 9) are N × N Hermitian matrices and (DtXM ) is the covariant

derivative given by (DtXM ) = ∂tXM − [At, XM ], where At is the U(N) gauge field. This

matrix model is a gravity-decoupled theory on the N D0-branes [23]. Large N bound state

of D0-branes with finite temperature T with large ’t Hooft coupling is dual to a black hole

(black 0-brane) with Hawking temperature T [3]. Such a bound state is described by highly

non-commutative matrices. On the other hand, if matrices are close to block-diagonal, it

describes multi-D0-branes and each of which is highly quantum2 black hole.

In the At = 0 gauge, the classical dynamics is described by the equation of motion

d2XM

dt2
−
∑
N

[XN , [XM , XN ]] = 0 (2.2)

with the Gauss’s law constraint ∑
M

[
XM ,

dXM

dt

]
= 0. (2.3)

In the rest of this paper we solve this classical equation of motion. From the action (2.1)

it is clear that ’t Hooft coupling λ ≡ g2
YMN appears only as an overall factor. Therefore the

classical limit, i.e., ~→ 0 limit, is equivalent to the effective coupling constant λeff ≡ λ/U3

goes to zero limit in the ’t Hooft scaling limit, where N → ∞ and U is the typical VEV

scale in the matrix model associated with the temperature, or quantum fluctuations of the

matrix degrees of freedom. Therefore, our analysis of solving classical equation of motion

is justified in hight temperature/energy limit.3

2.1 Discretization

In order to study the time evolution, we discretize the equation of motion (2.2) while

preserving the constraint (2.3) exactly. For that purpose, we write the EOM as

VM (t) =
dXM (t)

dt
, FM (t) =

dVM (t)

dt
(2.4)

and

FM (t) =
∑
j

[XN (t), [XM (t), XN (t)]]. (2.5)

2In order to have classical black hole picture we need both large ’t Hooft coupling and large N . For

single D0-brane, N = 1 therefore highly quantum description.
3From the scaling symmetry t → t/α, XM → αXM of classical equation of motion (2.2), one might

wonder if we can re-scale the total energy. However this is a symmetry only at the classical level and full

quantum theory does not possess such a symmetry.
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The constraint becomes ∑
M

[XM (t), VM (t)] = 0. (2.6)

Under the infinitesimal time evolution t→ t+ δt, XM and VM change as

XM (t+ δt) = XM (t) + VM (t) · δt+ FM (t) · (δt)2

2
+O

(
(δt)3

)
, (2.7)

VM (t+ δt) = VM (t) + (FM (t) + FM (t+ δt)) · δt
2

+O
(
(δt)3

)
, (2.8)

as one can easily check by using the standard Taylor expansion. We terminate this expan-

sion at the order of (δt)2,

XM (t+ δt) ≡ XM (t) + VM (t) · δt+ FM (t) · (δt)2

2
, (2.9)

VM (t+ δt) ≡ VM (t) + (FM (t) + FM (t+ δt)) · δt
2
. (2.10)

Then, a simple but tedious calculation shows that the constraint (2.6) is satisfied at t+ δt

if it holds at t, without any additional higher-order terms:∑
M

[XM (t), VM (t)] = 0 =⇒
∑
M

[XM (t+ δt), VM (t+ δt)] = 0. (2.11)

Therefore, we use (2.9) and (2.10), and choose the initial configuration to satisfy (2.6) at

t = 0, ∑
M

[XM (0), VM (0)] = 0. (2.12)

2.2 Initial condition — collision of two bunches of D0-branes

We consider a collision of two bunches of D0-branes, which is analogous to two black

zero-branes, or two black holes (the left of figure 1). The initial condition is4

X1 =

(
−L

2 · 1N/2
L
2 · 1N/2

)
,

V1 =

(
V
2 · 1N/2

−V
2 · 1N/2

)
,

V2 = · · · = V9 = 0, (2.13)

and

Xij
µ = (Xji

µ )∗ = σ(aµ,ij + ibµ,ij) (2.14)

4It would be better to introduce the off-diagonal elements also in the diagonal blocks. For simplicity, we

do not do that for the moment. (If we introduce them, then the width should be taken larger than that for

the off-diagonal blocks, σ.)
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Figure 1: If a single bound state of eigenvalues is formed, it is analogous to a formation of

one large black hole, and this is the dual to the thermalization process of the whole matrix

system.

for µ = 2, 3, · · · , 9, i = 1, 2, · · · , N/2 and j = N/2 + 1, · · · , N , where aµ,ij and bµ,ij are

Gaussian random numbers with the weights e−a
2/2 and e−b

2/2. Here σ is the source for

off-diagonal elements and therefore non-commutativity, which is crucial ingredients for the

bound state formation. If σ = 0, then commutator square potential vanishes and two

bunches just pass by. For nonzero σ, the quantitative details of the initial condition can

depend on the choice of random numbers, especially when N is small. Note that we

consider only even values of N . This initial condition satisfies the Gauss-law constraint∑9
M=1[XM , VM ] = 0. We consider the ’t Hooft large-N limit, where λ ≡ g2

YMN is fixed, L

and V are fixed, and then, the energy scales as N2. When two bunches are separated, the

off-diagonal element σ has larger mass as σ and so quantum mechanically path-integrated

out perturbatively in λ/σ3 and suppressed. This describes the quantum fluctuation of

open strings stretched between two bunches. Because the potential energy at t = 0 is

approximately N
λ Tr[XM , XN ]2 ∼ N · N2L2σ2, the natural scaling is σ ∼ 1/(

√
NL). We

will see that the energy actually scales as E ∼ N2 then.

3 Formation of a large quantum black hole

3.1 Formation of a single bound state

Let us first ask ‘when a single bound state of eigenvalues is formed’. This is the process

where two bunches of D0-branes, or equivalently two quantum black holes merge to form

one large quantum black hole (figure 1).

The easiest way to see this process is to plot TrX2
M , especially TrX2

1 , as a function of t.

In figure 2, TrX2
1/N for N = 8, for L = 5.0, V = 0 and

√
Nσ = 0.12, with several different

values of time step dt, is shown. Here we set the ’t Hooft scale λ = 1. At late time, errors

associated with discrete time steps become non-negligible. We can see that behaviours at

t ≤ 70 can reliably be studied with dt = 0.00010. TrX2
1/N bounces a few times and then

stays small, which suggests the formation of a single bound state. Note that, if instead two

bunches oscillated as shown in figure 3, TrX2
1/N would oscillate without decaying.

At late time, we expect that the system goes to the the “typical” configurations and

that such typical states are rotationally symmetric after taking the average over time and/or

different initial configurations. In figure 4, the average 〈TrX2
M/N〉 (M = 1, 2, · · · , 9), by

using 0 ≤ t ≤ 10, 10 ≤ t ≤ 20, · · · , 60 ≤ t ≤ 70, for 100 different initial configurations,

– 5 –
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Figure 2: TrX2
1/N for N = 8, for L = 5.0, V = 0 and

√
Nσ = 0.12; dt = 0.00025, 0.00010

and 0.00001. The horizontal axis is time t. We can see that dt = 0.00025 gives correct

answer up to t ' 60. Beyond there, the error becomes large quickly, even for dt = 0.00010.

The bottom panel is a zoom-up of the top one.

are plotted. We can see that the average values converge to the same value at late time,

suggesting the restoration of the rotational symmetry.

3.1.1 Insensitivity to initial conditions for thermalization

In order to add further evidence for thermalization, we studied two completely different

initial conditions with the same value of the energy. In order to tune the total energy, we
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Figure 3: A ‘bound state’ would not necessarily be a single black hole; for example, it

would be possible that two bunches oscillates at the late time. However such a configuration

cannot be regarded as thermalized state.

set VM = 0 and rescale XM to αXM . Then the energy scales as E → α4E. By using

this, we can tune the energy to any value. Here we consider (i) N = 4, L = 10.0, V = 0,√
Nσ = 0.12, and (ii) N = 4, all matrix components are generated Gaussian weight. Then

we rescale XM so that E/N2 = 0.5. Note that (i) is much more anisotropic initial condition

than (ii). We employed dt = 0.00001 and dt = 0.000001 in this calculation, which give

consistent results at t < 90. From figure 5, we can see that
∑9

M=1 TrX2
M/9N with two

different initial conditions behave the same manner in late time when the energies are the

same, and it is hard to tell the initial condition unless we explicitly solve the equation of

motion to go back to the past. These suggest typical thermalization, i.e., whatever initial

conditions it starts with, a system ends up with similar typical states.

3.2 Large-N limit and thermalization

In order to study the statistical nature of the BFSS matrix model, it is not essential to

take the step size dt very small, as long as the energy is conserved and we take enough late

time evolution. In the following, we take dt = 0.0005.

3.2.1 Large-N limit with fixed L, V and
√
Nσ

Let us first consider a large-N limit with fixed L, V and
√
Nσ. As a concrete example,

we consider L = 5.0, V = 0 and
√
Nσ = 0.12. Similar results were obtained for other

values too.

In figure 6, we plot TrX2
1/N for N = 8, 12, 16. We can see qualitatively similar

behaviours, and the fluctuation at late-time becomes smaller as N becomes larger. When

a bound state is formed, the Virial theorem relates the kinetic energy K and the potential

energy V as 〈K〉 = 2〈V 〉 = 2
3E, where 〈 · 〉 stands for the time average and E = K + V

is the total energy, which is conserved. Therefore, (K − 2
3E)/N2 is a good measure for

the fluctuation. As we can see from figure 7, this quantity fluctuates around zero and

suppressed more as N becomes larger.

In order to see the statistical property at late-time, we take the time average at 50 ≤ t ≤
100 and then take an average over random initial configurations (50 samples for N = 4, 8,

– 7 –
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Figure 4: 〈TrX2
M/N〉 (M = 1, 2, · · · , 9), N = 8, for L = 5.0, V = 0 and dt = 0.00010,√

Nσ = 0.12 (top) and
√
Nσ = 0.14 (bottom). The values along the horizontal axis are

the time range used for taking the time average. The error bar is purely statistical. We

can see the restoration of the rotational symmetry at late time.

20 samples for N = 12, 15 samples for N = 16 and 10 samples for N = 24). The error bar

is estimated purely statistically. The results are plotted in figure 8, especially the bottom

figure of figure 8 shows how N dependence appears in 〈|K− 2
3E|〉. Note that since |K− 2

3E|
is an absolute value, its fluctuation is always added up. The fact that

lim
N→∞

〈|K − 2

3
E|〉 = 0 (3.1)

– 8 –
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Figure 5:
∑9

N=1 TrX2
M/9N , N = 4, E/N2 = 0.5, dt = 0.000001. Blue and red lines

represent the initial conditions (i) and (ii) in the main text, respectively. The bottom

panel is the zoom up of the top one. The late time behaviours are indistinguishable.

suggests that the fluctuation is suppressed as N becomes larger. In finiteN ,
〈
|K − 2

3E|/N
2
〉

is proportional to 1/N , while the corrections to E/N2 and 〈
∑9

M=1 TrX2
M/9N〉 are propor-

tional to 1/N2. E/N2 is consistent with c1 + c2/N
2 behaviour with some constant c1 and

c2, where c2 could be zero.

– 9 –



J
H
E
P
0
7
(
2
0
1
5
)
0
2
9

Figure 6:
∑9

M=1 TrX2
M/9N for N = 8, 12 and 16, for L = 5.0, V = 0 and

√
Nσ = 0.12.

The bottom panel is a zoom-up of the top one. Qualitatively similar behaviours can be

seen and the fluctuation at late-time becomes smaller as N becomes larger.

3.2.2 Large-N limit with fixed E/N2

Let us consider another, perhaps more natural large-N limit, in which E/N2 is fixed

exactly.5 We first generate initial configurations with L = 5.0, V = 0 and
√
Nσ = 0.12,

and then set E/N2 to 1.5, by rescaling scalars as we did in the end of section 3.1. We

collected 50 samples for N = 4, 8, 20 samples for N = 12, 15 samples for N = 16 and 10

5In the large N limit, which corresponds to the thermodynamic limit, this is the same as fixing the

temperature of the system.

– 10 –
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Figure 7:
K− 2

3
E

N2 for N = 8, 12 and 16, for L = 5.0, V = 0 and
√
Nσ = 0.12. Here K and

E are the kinetic energy and total energy. When the bound state is formed, the long-time

average of
K− 2

3
E

N2 must be zero due to the Virial theorem. The fluctuation around zero

becomes smaller as N becomes larger.

samples for N = 24. We use 50 ≤ t ≤ 100 again. In principle, since the energy is fixed,

the time average for all samples with different initial configurations should give the same

average value within errors for a sufficiently long time interval. (Still, we terminate the

simulation at t = 100 so that the conservation of the energy is not violated due to the

discretization error.) Therefore, statistical fluctuations of the average 〈
∑9

M=1 TrX2
M/9N〉

become much smaller compared to figure 8. The results are plotted in figure 9. We can see

that the correction to 〈
∑9

M=1 TrX2
M/9N〉 also starts with 1/N2.

3.2.3 Large-N limit and thermalization

As we have seen, the system shows typical thermalization process and the fluctuation

of macroscopic quantities disappears at large N . Therefore, the macroscopic quantities

converge to the same value at late time, irrespectively of the initial condition, as long as

the energy is the same. The information of the initial condition is hidden in the 1/N

correction. This is exactly what we expect. Since the large N limit corresponds to the

thermodynamic limit there is no distinguish between micro canonical ensemble (this is what

we did) and canonical ensemble where temperature is fixed. The difference only appears

in 1/N expansion. Note that an exact thermalization occurs only in the large N limit.

– 11 –
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Figure 8: N -dependence of 〈
∑9

M=1 TrX2
M/9N〉 (top), E/N2 (middle) and

〈
|K − 2

3E|/N
2
〉

(bottom). Collision parameters are L = 5.0, V = 0 and
√
Nσ = 0.12.

3.3 Thermalization time

Let us investigate the thermalization time. There are several different ways to define the

thermalization time. Although it involves the dual interpretation, perhaps one of the most

– 12 –
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Figure 9: N -dependence of 〈
∑9

M=1 TrX2
M/9N〉 (top) and

〈
|K − 2

3E|/N
2
〉

(bottom),

where the energy at each run is fixed to E/N2 = 1.5. 〈
∑9

M=1 TrX2
M/9N〉 behaves as

const.+ const./N2, while
〈
|K − 2

3E|/N
2
〉

is consistent with const./N behaviour.

natural ones is the time scale for the “black hole” formation. In figure 10, we plot the

history of 〈TrX2
1/N〉 for N = 8, 12, 16, L = 5.0, V = 1.0 and

√
Nσ = 0.16. We used

10 different sets of random numbers and took average. Data at N = 12 and N = 16

are indistinguishable within errors, suggesting that the time evolution of 〈TrX2
1/N〉 has a

well-defined large-N limit. Remember that large N limit is a thermodynamic limit, where

canonical ensemble and microcanonical ensemble are distinguishable only by looking at

the 1/N suppressed order. Therefore, we call the system get thermalized at the late-

– 13 –
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Figure 10: One-point function 〈TrX2
1/N〉 for N = 8, 12, 16, L = 5.0, V = 1.0 and

√
Nσ =

0.16. Average over 10 samples. Results with different values of N are not distinguishable

within statistical error.

time if the system becomes indistinguishable “typical states”, and the deviations for the

macroscopic quantities from the typical states are only of order 1/N . Then, to read-off

the thermalization time, i.e., the time-scale system get thermalized, we have to read-off

the decay of the deviation at late-time in great detail to the order of 1/N . However this is

hard generically since the error bar is too large and we have initial-condition-dependence

for the late-time average.

To avoid this issue, we define the thermalization time by another way. This is defined

by the time scale for a small perturbation added on top of the bound state to become

invisible. Note that if N is not sufficiently large, then the thermalization time defined

in this way would depend on the detail of the perturbation. Let us consider two-point

function along time direction which does not require the perturbation, and from that, we

will read off the thermalization time. Let us consider a gauge-invariant operator

1

N
Tr(XM (s)Ws,s+tXM (s+ t)W †s,s+t), (3.2)

where Ws,s+t is the Wilson line,

Ws,s+t = Pei
∫ s+t
s dt′A(t′). (3.3)

– 14 –
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In our setup we took the A = 0 gauge, so

1

N
Tr(XM (s)Ws,s+tXM (s+ t)W †s,s+t) =

1

N
Tr(XM (s)XM (s+ t)). (3.4)

Let us consider

f(t) ≡
∑
M

〈
1

N
Tr(XM (s)XM (s+ t))

〉
, (3.5)

where the time average 〈 · 〉 is taken at late-time. We have already seen that f(0) is of

order one. When t becomes large, f(t) decays because XM (s+ t) “forgets” the information

of XM (s). Therefore, it should be possible to determine the thermalization time from the

time scale for the decay of f(t). The numerical result is shown in figure 11. It turned out

that f(t) can be fitted well as

f(t) ' c e−Γt2 cos (ωt) , (3.6)

where the overall constant c =
∑

M

〈
1
NTrXM (t)2

〉
, the decay width Γ and the frequency ω

are of order N0. The width Γ naturally gives the time scale for the thermalization,

(Thermalization time) ∼ 1/
√

Γ ∼ N0. (3.7)

We can also consider connected two-point functions of gauge invariant operators. We

consider one of the operators studied by Berenstein and collaborators, Tr(XM (t)XN (t))

(M 6= N). Although we did not find a simple fitting function for this, the decay is consistent

with e−Γ′t (figure 12). Then the thermalization time defined by this operator is

(Thermalization time) ∼ 1/Γ′ ∼ N0. (3.8)

Figure 12 suggests that the thermalization time, defined from the exponential decay, con-

verges to finite value in the large N limit. This is quite interesting since it is consistent with

finiteness of quasinormal modes in the black hole background, although this convergence

is more subtle at late time due to finite N effect. As is discussed in [24], although the

correlation function keep decaying to zero at any finite order in the 1/N -expansion, the

decay should disappear once full finite-N corrections are taken into account. The fat tail

at long time scale in figure 12 would demonstrate this property.

3.4 Under what initial conditions, does thermalization occur?

Let us consider at what values of V and σ the thermalization, or equivalently the formation

of the bound state, can be realized. For simplicity we fix L to be 5.0. Firstly let us note

that the off-diagonal elements are the source for the non-linearity, which is responsible for

the formation of the bound state. If we set the off-diagonal elements to be zero (σ = 0) at

t = 0, then the off-diagonal elements are not generated by the classical equations of motion

and no interaction appears at all. In such case, two bunches just pass through each other.

– 15 –
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Figure 11: f(t) ≡
∑

M

〈
1
NTr(XM (s)XM (s+ t))

〉
for N = 6, 8, 16, and 24, L = 5.0, V = 0

and
√
Nσ = 0.16. The fitting line is for N = 24, with the ansatz f(t) ' c e−Γt2 cos (ωt)

and fit parameters c = 0.182, Γ = 0.0311 and ω = 1.48. Better convergence to N =∞ can

be seen at earlier time.

Even if σ is nonzero, if it is too small, the non-linearity cannot grow large enough

before the collision. Therefore, it is clear that σ must be sufficiently large for the bound

state formation. However, as we will see shortly, it turns out that σ should not be too

small but also must not be too large in order to form the bound state. This indicates that

if the σ accelerates the two bunches before the first collision too much, they tend to pass

by without forming the bound state.

In order to illustrate these, we show the evolution of TrX2
1/N for N = 16, for L = 5.0,

V = 1.0 and various values of
√
Nσ in figure 13. For

√
Nσ = 0.16, 0.12 and 0.08, the late-

time behaviours at t & 20 look qualitatively the same. A fact that a bounce at
√
Nσ = 0.12

is larger than those at
√
Nσ = 0.08 and

√
Nσ = 0.16 suggests very complicated dynamics.

At
√
Nσ = 0.04, on the other hand, two bunches just pass through with each other. It

might be possible that the bunches comes back later after very long time and form a bound

state; in fact sometimes we observe that TrX2
1/N becomes as large as O(100) and then

come back and form a single bound state. As we can see from the early-time behaviour in

figure 13, as σ increases the bunches are accelerated more before the collision (i.e. TrX2
1/N

decreases more rapidly). So whether a single bound state corresponding to thermalised

state is formed or not depends on a very subtle competition of the acceleration before the

collision and deceleration after the collision, both of which are enhanced by a larger σ.

– 16 –
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Figure 12: Logarithm of 1
36 〈(TrXµ(s)Xν(s))(TrXµ(s+ t)Xν(s+ t))〉 as a function of t,

for N = 8, 16, and 24, L = 5.0, V = 0 and
√
Nσ = 0.16. The fitting line is for N = 24,

with 0.062 · e−0.245t. Better convergence to N =∞ can be seen at earlier time.

The green “×” symbols in figure 14 show (V,
√
Nσ) in which two bunches passed

through with each other and TrX2
1/N became at least twice bigger than the initial value.

A single-bunch state would be formed after long time, but not immediately. (See e.g.√
Nσ = 0.22 in figure 13.) The red “+” symbols show (V,

√
Nσ) where a single bound

state is formed without bouncing too much. We can see that a single bound state is not

formed when
√
Nσ is too large, which means the acceleration before the collision beats

the deceleration after the collision. We cannot get any conclusive pattern from these,

probably the result depends on the choice of the random numbers. We left this issue as

open questions.

4 Summary and discussions

In this paper, we considered the head-on collisions of two bunches of D0-branes and study

its real-time evolution in the BFSS matrix model. Especially our interests in this study are

how time evolution differs and under what conditions the big bound states corresponding

thermalized state are formed and what is the its time-scale.

We have seen that all of TrX2
M/N where M = 1, · · · , 9 converges at late time to

the same values and rotational symmetry is restored irrespective to the anisotropic initial

conditions in section 3.1. Especially the insensitivity to the initial conditions strongly

– 17 –
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Figure 13: TrX2
1 for N = 16, for L = 5.0, V = 1.0 and various values of

√
Nσ.

suggest the thermalization and formation of a large bound state dual to quantum black

holes in late time. In section 3.2, for various scaling limit, we have checked that at the

thermalized stage, Virial theorem, which is expected to hold at the equilibrium state, is in

fact satisfied and deviation from that occurs only at the subleasing order in 1/N expansion.

In section 3.3, we estimated thermalization time from the time-direction two point functions

and its exponential decay at late time, and shows that the timescale is N0 order, which

seems to converge in the large N limit. This result is very interesting since it is consistent

with quasi-normal mode in the dual black hole. Finally in section 3.4, we studied the initial

condition dependence for the thermalization. Clearly for small σ, the off-diagonal sources

for non-commutativity, two D0-brane bunches pass by while we notice that for too large

σ, two bunches also pass by in such cases. We however have no clear interpretation for

this results.

Our analysis is conducted under several assumptions. The big assumptions we take

in our analysis is that we can completely neglect the quantum effects and fermion effects.

Quantum effects are important as the effective coupling becomes larger, and fermions are

also very important since they change the interactions between two bunches of D0-branes.

It is quite possible that once we take into account these effects, then the time-scale we

estimated at section 3.3 can be modified significantly. Obviously more detail study is

necessary to get conclusive results.

To better understand under what initial conditions does the system thermalized, let

us discuss what is the typical states in the BFSS matrix model. If the final states is made

– 18 –
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Figure 14: N = 16, L = 5.0. The green “×” symbols show (V,
√
Nσ) in which two bunches

passed through with each other and TrX2
1/N became at least twice bigger than the initial

value. A single-bunch state would be formed after long time, but not immediately. The

red “+” symbols show (V,
√
Nσ) where a single bound state is formed without bouncing

too much. We used the same set of random numbers aijµ and bijµ for all V and
√
Nσ.

up by sets of almost commuting matrices, then the entropy of the gas is made up by N

D0-branes, which has only O(N) entropy. Off-diagonal elements are highly suppressed in

such case and does not contribute to the entropy. On the other hand, a single large black

hole, which is a single bound state of the D0-branes, has the entropy of order N2, because

all of the off-diagonal elements are excited. We can also consider multi-black hole states.

Clearly a single black hole is entropically and therefore free-energy-wise dominant, since

all of the off-diagonal elements are equally excited and contributes to the entropy.

However there are subtle issues. In the BFSS matrix model, because moduli space

is not bounded, when the two bunches pass through each other, it is possible, at least

classically, that they just pass by and run to infinity. This is all due to the fact that all of

the adjoint scalars have zero mass.6 However by taking into account quantum fluctuations,

6There is a subtlety if the moduli space is infinity, how the ergodicity can hold. Probably the appropriate

limit is that, first we introduce a proper IR cutoff for matrix eigenvalues (for examples, by putting D0-

branes in a box or by introducing small but nonzero mass for the adjoint matrices) so that the phase space

becomes bounded, the ergodicity can hold for generic initial conditions. And then we evaluate spectrum

and correlators and in the end, we remove the IR cut-off. For the BMN matrix model [17], this IR problem

is avoided.
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this is unlikely, because in the real system involving quantum fluctuation, there are always

small but nonzero quantum fluctuation and when the non-linearity from the interaction

is large enough at late time, two bunches are likely to be pulled each other and merge

to a single bound state. If the entropy of the black hole is large enough (i.e. N is large

enough), then it is unlikely to see a large deviation from the black hole within a finite

simulation time.

Note that since our calculation is classical, it is crucial to take small effective cou-

pling limit i.e., λeff → 0 to justify our results. Even though effecting coupling is small,

the equation of motion can accumulate large non-linearity at late time, which can cap-

ture non-perturbative soliton formation physics. A large N effect (which plays the same

role as thermodynamic limit) and the late time universality effects (which capture enough

non-linearity of the interaction and scramble) are crucial ingredients for the thermaliza-

tion. There is an argument that the classical time evolution of the BFSS matrix model is

stochastic [25]. Such natures are probably crucial for the system get thermalized and show

the universal behaviour at late time.
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