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1 Introduction and motivation

Despite the success of the standard model of particle physics (SM), the set of gauge theories

consistent with current experimental constraints remains very large. It is a striking fact

therefore that the SM is also a member of a much more restricted set of gauge theories —

those that may be reinterpreted as arising from non-commutative geometry (NCG) in the

sense of Connes [1–13]. NCG was developed over the past few decades as a generalization of

Riemannian geometry. For an in depth review of NCG and the standard model embedding,

aimed at physicists, see e.g. [14, 15].

The axioms of NCG place severe restrictions on the allowed symmetries and particle

content which may be geometrically modeled in this way (see e.g. [10, 11, 16]). One might

hope therefore to use the framework of NCG to explore beyond the standard model of

physics. In doing so, however, one should think carefully about which constraints are truly

natural or intrinsic to this approach, and which are imposed artificially. In this paper we

argue that there are good reasons to consider relaxing the associativity restrictions in the

NCG formalism, and we take some of the first steps towards such a generalization.

There are two main motivations for a non-associative generalization of the NCG frame-

work: a more general mathematical one and a more specific physical one.
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Let us start with the more general mathematical motivation. The fundamental point is

that, in the ordinary approach to physics, the basic input is a symmetry group. By contrast,

in the spectral approach, the fundamental input is an algebra, and the symmetry group

then emerges as the automorphism group of that algebra. Symmetry groups are associative

by nature, but algebras are not. Just as some of the most beautiful and important groups

are noncommutative, some of the most beautiful and important algebras (including Lie

algebras, Jordan algebras and the Octonions) are nonassociative. Just as it would be

unnatural to restrict our attention to commutative groups (as physicists originally did in

studying gauge theory, prior to Yang-Mills), it is unnatural to restrict our attention to

associative algebras. In either case, imposing such an unnatural restriction likely amounts

to blinding ourselves to something essential that the formalism is trying to tell us. From

this standpoint, our task is to formulate the spectral approach to physics in such a way

that the extension to nonassociative algebras becomes obvious and natural.

Next we turn to the more specific physical motivation. Although we would like to

use the framework of non-commutative geometry to explore beyond the standard model of

particle physics, many of the most interesting extensions are out of reach of the associative

formalism. As a specific example, in order to reformulate the most successful Grand Unified

Theories (GUTs) — e.g. those based on SU(5), SO(10) and E6 — in terms of the spec-

tral action, we are forced to use nonassociative input algebras. To appreciate this point,

first note that the representation theory of associative ∗-algebras is much more restricted

than the representation theory of Lie groups [16]: Lie groups (like SU(5)) have an infinite

number of irreps, but associative algebras (like the corresponding ∗-algebra M5(C) of 5×5

complex matrices, whose automorphism group is SU(5)) only have a small finite number.

In particular, if we ask whether key fermionic representations needed in GUT model build-

ing — such as the 10 of SU(5), the 16 of SO(10), or the 27 of E6 — are available as

the irreps of algebras with the correct corresponding automorphism groups, the answer is

“no” for associative algebras, and “yes” for nonassociative algebras. Furthermore, if we

ask whether the exceptional groups (including E6, which is of particular interest for GUT

model building, and E8, which is of particular interest in connection with string theory)

appear as the automorphism groups of corresponding algebras, again the answer is “no”

for associative algebras and “yes” for nonassociative algebras.

With these motivations in mind, in section 3 we consider the aspects of NCG which

must be generalized or recast in order to accomodate non-associativity, and we take some

of the first steps towards formulating non-associative geometry. Keeping in mind the

application to physics, we pay particular attention to a class of geometries that we call

‘almost-associative’. These are constructed by taking the product of an ordinary (com-

mutative, associative, infinite-dimensional) smooth Riemannian spectral triple on the one

hand, and a finite-dimensional non-associative spectral triple on the other.

One of our key physics results (explained in sections 3 and 4) is the following: from the

spectral action on an ‘almost-associative’ geometry, one obtains the action for an ordinary

gauge theory, coupled to ordinary Einstein gravity, built from ordinary scalar, spinor,

gauge and metric fields, and living on ordinary spacetime. In other words, the reader

might worry that perhaps if the underlying algebra is non-associative, then the spectral
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action will produce some sort of exotic non-associative theory — e.g. built from some

sort of exotic non-associative gauge fields, or living on some sort of exotic non-associative

spacetime — but this is not what happens. Instead, the non-associativity merely manifests

itself by permitting new gauge groups and fermionic representations to be obtained from

the spectral action. Ultimately, as we shall explain, this is because the symmetry group

which appears in the spectral action is the automorphism group of the underlying algebra,

and this automorphism group is always an ordinary associative group, even when the

algebra itself is non-associative. The bosonic fields which arise in the spectral action

come from the requirement that the formalism should be covariant with respect to the

automorphisms of the underlying algebra, and so they are built from the corresponding

derivation operators (the infinitessimal generators of those automorphisms) in a way that

continues to be perfectly sensible and unambiguous, even when the underlying algebra is

non-associative. In section 4, for illustration, we present the simplest almost-associative

geometry, based on the octonions, and work out the spectral action in this case as a proof

of principle.

In future works, [17–19] we take these ideas much further. In ref. [17], we show how

to construct non-associative geometries corresponding to more realistic physical models

that include Higgs fields, spontaneous symmetry breaking and fermion masses. In another

follow up paper [18], we show how a development of the formalism initiated here can be

applied to Connes and Chamseddine’s construction of the standard model, where it leads

to a unification and simplification of many of the traditional NCG axioms, together with

a new geometric constraint on the finite-dimensional part of the Dirac operator which

resolves a long-standing problem with that (otherwise strikingly successful) construction.

Then, in ref. [19], we show that the same formalism suggests that the standard model of

particle physics should be extended by two new particles — a U(1)B−L gauge boson and

a complex scalar field that carries charge B − L = 2 and is responsible for ”higgsing” the

new U(1)B−L gauge symmetry; this extension is experimentally viable, fixes the conflict

between the observed Higgs mass and the value traditionally predicted by NCG, and also

has other cosmological consequences that we are currently analyzing.

For earlier work on nonassociative geometry in different contexts, see [20–29].

2 Preliminaries

The purpose of this paper is to extend the formalism of non-commutative geometry. First,

however, we must briefly review the elements of the associative NCG formalism, to discuss

which elements need to be reformulated and generalized. In sub-section 2.1 we give a

very brief introduction to spectral triples and a short overview of the associative NCG

formalism (for more details, see [15]). We introduce two example spectral triples that will

be important later in the paper. In sub-section 2.2, we briefly introduce non-associative ∗-
algebras, along with their automorphisms and derivations; and we meet the non-associative

∗-algebra that will serve as our main example in this paper: O, the algebra of octonions.

Although there is already a rich literature on both topics (see e.g. [15, 30–32] and references

therein) this brief review draws together in one place those elements most necessary for
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understanding the remainder of the paper. In addition, the generalization we motivate

requires a certain shift in perspective from the traditional approach to NCG, which is

accompanied by a shift in notation, which we also outline here.

2.1 Spectral triples

To specify a geometry, one starts by giving some input data. In Riemannian geometry,

the input data is the manifold M and its metric gµν . In NCG, one instead provides the

corresponding input data in terms of a so-called ‘spectral triple’ of elements:

{A,H,D}. (2.1)

Here A is a ∗-algebra that is linearly represented on the Hilbert space H, while D is another

Hermitian operator on H. Roughly speaking, one can think of A and D as carrying the

(differential) topological and metric information, respectively. A spectral triple may also be

equipped with two additional operators J and γ, which provide some additional structure

to the geometry. One is able to describe the dynamics of an NCG using the so called

‘spectral action’ formula, which assigns a real number to a spectral triple [4] (much as the

Einstein-Hilbert action assigns a real number to an ordinary Riemannian geometry).

In order to form a valid spectral triple, the five elements {A,H,D}, J , and γ must

not be chosen arbitrarily. Instead, they must satisfy certain axioms and assumptions that

give the spectral triple its structure. The structure of a spectral triple may be described

by building it up in five steps, adding one element at a time, and starting (i) by choosing

a ∗-algebra A. (ii) In Step 2, one chooses a (left) representation of A on the Hilbert space

H: the representation is a map π which takes each element a ∈ A to a corresponding linear

operator ã ≡ π(a) that acts on H. The map π must preserve the structure of A: i.e. it must

be linear and satisfy π(ab) = π(a)π(b) and π(a∗) = (π(a))∗. In the next three steps, we

add three operators on H (D, γ and J) and describe the constraints they must satisfy. (iii)

In Step 3, we add the hermitian operator D: the commutator [D,π(a)] must be bounded

(∀a ∈ A). (iv) In Step 4, we add the hermitian and unitary operator γ: it must satisfy

{γ,D} = 0 and [γ, π(a)] = 0 (∀a ∈ A). (v) In Step 5, we add the anti-unitary operator J :

it satisfies J2 = ε, JD = ε′DJ , and Jγ = ε′′γJ , where ε, ε′ and ε′′ are three ± signs that

depend on the so-called “KO-dimension” of the spectral triple.1

Given any operator ã = π(a), we can use J to define a dual operator ã0 = Jã∗J∗. The

interpretation is that any a ∈ A is represented in two ways: as an operator ã that acts on H

from the left, and as an operator ã0 that acts on H from the right. In the traditional case,

where A is an associative ∗-algebra, one then usually imposes two additional requirements

given by the so called order conditions:[
ã, c̃0

]
= 0 ∀{a, c} ∈ A “the order zero condition,” (2.2a)[[

D, ã
]
, c̃0
]

= 0 ∀{a, c} ∈ A “the order one condition.” (2.2b)

These last two axioms must be modified when the underlying algebra A is non-associative

as we will discuss in subsection 3.3.
1See Definition 16 in section 6.8 of [33], or section 2.2.2 in [15].
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Next let us consider two examples of spectral triples satisfying the above axioms. Both

of these examples will play an important role when we describe the construction of almost-

associative geometries later in the paper.

Example 1. The first example is the ”canonical” spectral triple Tc =

{Ac,Hc, Dc, γc, Jc}. Just as Riemannian geometry contains Euclidean geometry, non-

commutative geometry contains Riemannian geometry, and reduces to Riemannian ge-

ometry for a special class of spectral data: namely for the canonical spectral triples. The

idea is that the Riemannian data {M, gµν} and the canonical triple Tc provide dual de-

scriptions of the same geometry, so that the canonical spectral triple may be obtained from

the Riemannian data, or vice versa. Starting from the Riemannian data {M, gµν}, the

corresponding canonical spectral triple Tc may be constructed as follows: Ac = C∞(M)

is the algebra of smooth complex-valued functions on M; Hc = L2(M, S) is the Hilbert

space of (square integrable) Dirac spinors on {M, gµν}; Dc = /D = −iγµ∇Sµ is the ordi-

nary curved-space Dirac operator on {M, gµν}; γc is the helicity operator on Hc (i.e. what

physicists usually call γ5 in 4 dimensions); and Jc is the charge conjugation operator on

Hc. As for the (left) representation of Ac on Hc, the functions f ∈ Ac act on the spinor

fields ψ ∈ Hc by pointwise multiplication: ψ(x)→ f(x)ψ(x). See [15] for more details.

Example 2. The second example is a finite dimensional, non-commutative, associative

spectral triple (as described e.g. in [4, 15]) TF = {AF , HF , DF , γF , JF }. Here we take AF
to be the algebra of n × n complex matrices AF = Mn(C) represented on themselves

HF = Mn(C) in the natural way. The real structure element is the natural anti-linear

involution on the input algebra (i.e. hermitian conjugation) JFh = h† (h ∈ HF = Mn(C)),

and the grading operator is the n×n identity matrix γF = I. The condition {γF , DF } = 0

then implies that the n× n hermitian matrix DF is equal to zero.

Finally, given any two spectral triples, T1 = {A1, H1, D1} and T2 = {A2, H2, D2},
we can construct a third spectral triple T12 = {A12, H12, D12}, where A12 = A1 ⊗ A2,

H12 = H1 ⊗ H2 and D12 = D1 ⊗ I2 + γ1 ⊗ D2.2 For so called ‘even’ and ‘real’ spectral

triples, which are additionally equipped with the operators γ and J , one also defines γ12 =

γ1 ⊗ γ2 and J12 = J1 ⊗ J2. The product Tc × TF of an infinite-dimensional canonical

spectral triple Tc with a finite-dimensional non-commutative spectral triple TF is called an

”almost commutative geometry”. For the almost commutative geometry where TF is the

simple example geometry given above, the corresponding spectral action is Einstein gravity

coupled to SU(N) Yang-Mills theory [4]. Einstein gravity coupled to the full standard model

of particle physics comes from evaluating the spectral action for an almost commutative

geometry involving a slightly more complicated finite geometry TF [15].

When the finite dimensional algebra AF is non-associative, we will refer to Tc × TF as

an “almost-associative geometry.” In section 4 we will present the simplest example of an

almost-associative geometry (based on the algebra AF = O) and give its spectral action.

2Strictly speaking, this is the formula for the product of two even spectral triples: for the more general

formula, see [34].
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2.2 ∗-algebras, automorphisms, and derivations

When constructing an NCG, the primary input is an algebra A. In this subsection we will

briefly introduce algebras, and introduce notation for the remainder of the paper, paying

particular attention to the general non-associative case.

An algebra A is a vector space over a field K, which is equipped with an additional

binary “product” operation: a K-bilinear map from A × A → A. (The product of two

vectors a, b ∈ A is another vector ab ∈ A.) A ∗-algebra A is an algebra that is equipped

with an additional anti-linear involution map ∗ : A→ A satisfying

(a∗)∗ = a, (ab)∗ = b∗a∗, a, b ∈ A. (2.3)

In a ∗-algebra A, the elements satisfying u∗ = u−1, h∗ = h or a∗ = −a are called ”unitary,”

”hermitian,” or ”anti-hermitian,” respectively.

When we say an algebra is non-commutative, we mean its product is non-commutative:

ab 6= ba, a, b ∈ A. Similarly, when we say an algebra is non-associative, we mean that its

product is non-associative: (ab)c 6= a(bc), a, b, c ∈ A. Just as we introduce the “commuta-

tor” [a, b] to characterize the failure of commutativity, we introduce the “associator” [a, b, c]

to characterize the failure of associativity

[a, b] ≡ ab− ba, [a, b, c] ≡ (ab)c− a(bc) a, b, c ∈ A. (2.4)

Lie algebras are familiar examples of non-associative algebras. For example, consider

the vector space of N × N complex anti-hermitian matrices. These do not form an al-

gebra under ordinary matrix multiplication (since the ordinary matrix product of two

anti-hermitian matrices is not, in general, anti-hermitian), but they do form an algebra if

we define the ”product” [a, b] to be the commutator of the matrices a and b. The resulting

algebra is a Lie algebra, since the product [a, b] is anti-symmetric and satisfies the Jacobi

identity [[a, b], c] + [[b, c], a] + [[c, a], b] = 0. But it is easy to check that this product is

non-associative: [[a, b], c] 6= [a, [b, c]].

It will be convenient to introduce the standard notation given in [32] in which La
denotes the left-action of a, and Ra denotes the right-action of a:

Lab ≡ ab Rab ≡ ba, a, b ∈ A. (2.5)

In other words, La and Ra are two different linear operators on the vector space A. As

an illustration of this notation we can write a((cv)b) = LaRbLcv (with a, b, c, v ∈ A). In

particular, note that when A is nonassociative, the left-hand side of this equation requires

parentheses, but the right-hand side does not. For our later discussions, it is important to

keep in mind that La and Ra are associative operators, even when A is non-associative.

Also note that in the non-associative case LaLb 6= Lab.

If A is a ∗-algebra, then an automorphism of A is an invertible linear map α : A→ A

which respects the product and involution operations in A:

α(ab) = α(a)α(b) α(a∗) = (α(a))∗, (2.6)

– 6 –
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and a derivation of A is a linear map δ : A→ A which satisfies

δ(ab) = δ(a)b+ aδ(b) δ(a∗) = (δ(a))∗. (2.7)

Note that, when the automorphism α is infinitessimally close to the identity map “Id,”

it can be written as α = Id + δ where δ is a derivation. The derivations of A are the

infinitessimal generators of the automorphisms of A; they form a Lie algebra, with Lie

bracket given by [δ1, δ2] = δ1 ◦ δ2 − δ2 ◦ δ1 (where ◦ denotes composition of operators).

As a first example, consider the ∗-algebra which appears in the canonical spectral triple

Tc introduced in section 2.1 — i.e. the ∗-algebra A = C∞(M,C) of smooth functions from

a manifold M to the complex numbers C. In this case the automorphisms αϕ : A → A

are nothing but the maps αϕ(f) = f ◦ ϕ, where f : M → C is a smooth function and

ϕ : M → M is a diffeomorphism; and if we consider the automorphisms infinitessimally

close to the identity, we see that the corresponding derivations have the form δv(f) = vµ∂µf ,

where vµ(x) is a contravariant vector field on M.

Next consider a more general associative (but possibly non-commutative) ∗-algebra

A. Within its full group of automorphisms, Aut(A), there is a normal subgroup Inn(A)

of “inner automorphisms” of the form αu(a) = uau∗, where u ∈ A is unitary. The group

of “outer automorphisms” is then defined to be the quotient Out(A) = Aut(A)/Inn(A).

If we note that the unitary elements u are generated by anti-hermitian elements a ∈ A

(u = ea) and study the inner automorphisms infinitessimally close to identity map, we find

that the corresponding ‘inner’ derivations (i.e. the generators of the inner automorphisms)

are δa(b) = [a, b] or equivalently:

δa = La −Ra. (2.8)

In particular, in the spectral reformulation of Einstein gravity coupled to the stan-

dard model of particle physics, the idea is (roughly) the following: one starts from a

∗-algebra A = C∞(M, AF ), whose full automorphism group Aut(A) corresponds to the

full (gauge+gravitational) symmetry group of the spectral action; roughly speaking, the

inner automorphisms Inn(A) are the group of maps from M to Aut(AF ) and correspond

to the group of gauge transformations, while the outer automorphisms Out(A) = Diff(M)

correspond to the group of gravitational symmetries (i.e. the diffeomorphisms of M)). In

the subsequent sections, we will explain that a very similar story obtains when the finite-

dimensional algebra AF is non-associative.

Finally just as non-commutative associative algebras have inner automorphisms, so too

in general do non-associative algebras. In this paper, for the purposes of illustration, we

will focus on one of the most famous finite-dimensional nonassociative algebras: namely,

the algebra O of octonions. The octonions occupy a special place in mathematics. They

are one of only four normed division algebras (along side the real numbers R, the complex

numbers C and the quaternions H). The algebras R, C, H, and O are, respectively, 1, 2,

4 and 8 dimensional, with 0, 1, 3 and 7 imaginary elements which square to negative one.

The octonions are intimately connected to some of the most beautiful structures in math-

ematics, including the exceptional Lie algebras and the exceptional Jordan algebra. For

nice introductions to the octonions, and their connections to other areas of mathematics,
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see [30, 31]. Here, let us note three features in particular. (i) First, the octonions are an

example of an “alternative algebra” — i.e. an algebra in which the associator [a, b, c] flips

sign under interchange of any two of its arguments. (ii) Second, the general derivation

δ : A→ A may be written as a linear combination of derivations of the form [32]

δa,b = [La, Lb] + [La, Rb] + [Ra, Rb] a, b ∈ A. (2.9)

[In fact, the general inner derivation of any alternative algebra may be written this way.

Again, it is important to emphasize that although the alternative algebras are in general

non-associative, their derivations are associative (as is the case for all algebras); and in

particular the inner derivations δa,b are constructed from the associative operators La and

Ra defined in (2.5). One can check that these derivations form a Lie algebra under the Lie

bracket, and generate an associative Lie group under exponentiation.] (iii) Third, the alge-

bra of derivations of O is g2 (the smallest exceptional Lie algebra) and the automorphism

group of O is G2 (the smallest exceptional Lie group).

3 Non-associative geometry

Now we discuss how the structure of a spectral triple must be generalized in the case where

the algebra A is non-associative. The organization of this section is as follows:

(i) In subsection 3.1, we clarify what it means to represent a non-associative ∗-algebra

A on a Hilbert space H.

(ii) In subsection 3.2, we articulate the principle of ∗-automorphism covariance, which

ties together the transformations of the input algebra A with those of the Hilbert space

H, and all of the operators that act on it. The principle of ∗-automorphism covariance

subsumes and replaces the traditional covariance principles of physics: diffeomorphism

covariance (in Einstein gravity) and gauge covariance (in gauge theory).

(iii) In subsection 3.3, we re-introduce the grading and real structure operators γ and

J in the non-associative setting. In particular we explain how the usual “order zero”

condition given in equation 2.2 generalizes in the non-associative case. We address the

higher order conditions in future papers [17–19].

(iv) In subsection 3.4, we explain how to obtain a ‘fluctuated’ Dirac operator DA from

an ‘un-fluctuated’ Dirac operator D. Just as one creates a covariant derivative in regular

gauge theory by adding a one-form built from the generators of the underlying symmetry

group, in spectral geometry, one creates a covariant Dirac operator by adding a ‘one-form’

built from the derivations of the underlying ∗-algebra.

3.1 Representing a non-associative ∗-algebra

The starting point for the spectral formalism is a ∗-algebra A that is represented (or, more

correctly, ‘bi-represented’ — i.e. represented from both the left and the right) on H. But,

in attempting to extend the definition of a bi-representation of A on H to the case where A

is non-associative, we seem to encounter a problem. After all, by a representation of A on

H we usually mean a linear map from each element a ∈ A to a linear operator π(a) on H,

such that the composition of such operators represents the product on A: π(a)π(b) = π(ab).

– 8 –
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Yet the composition of linear operators is associative, so it seems that we cannot possibly

represent the non-associativity of A in this way.

The elegant solution to this problem (originally due to Samuel Eilenberg, we think,

and nicely explained in Ch. II.4 of [32]) involves a change of perspective. For a ∈ A and

h ∈ H, we let ah denote the left-action of A on H (a bilinear map from A×H → H); and

similarly we let ha denote the right-action of A on H (a bilinear map from H × A→ H).

Now, given a class C of (possibly non-associative) algebras defined by a set of multi-linear

identities Ii(a1, ..., ani) = 0, and an algebra A in C, we say that A is bi-represented on H

in C (or, equivalently, that H is a bimodule over A in C) if all of the identities obtained

by replacing any single aj ∈ A by any h ∈ H are satisfied [32]. (For an alternative way of

describing this generalization of bimodules to the non-associative case, see ref. [18].)

As a first example, consider the class C of associative algebras. An algebra A in this

class satisfies the multilinear identity

[a1, a2, a3] = 0 (∀ai ∈ A). (3.1)

Replacing any one algebra element in (3.1) with a vector space element h ∈ H, we obtain

following conditions

[a1, a2, h] = 0, (3.2a)

[h, a2, a3] = 0, (3.2b)

[a1, h, a3] = 0, (3.2c)

for all ai ∈ A in h ∈ H. Here ah ∈ H denotes the left action of A on H, while ha ∈ H
denotes the right action of A on H. Note that eq. (3.2a) is just an unfamiliar way of

phrasing the familiar fact that A is left-represented on H: π(ab) = π(a)π(b). Similarly,

eq. (3.2b) says that A is right-represented on H. Finally, eq. (3.2c) says that the left and

right representations of A on H commute with one another, in the sense of the order zero

condition (2.2a). Thus, in this case we see that these three conditions, together, simply

recover the usual definition of an associative bi-representation of A on H.

Following equations (3.2), the products between elements in an associative representa-

tion ã, b̃ ∈ π(A) will be given by composition ãb̃ = ã◦ b̃. Composition is associative, and so

expressions like ãb̃c̃ and ãb̃h are unambiguous, and do not require any additional parenthe-

ses. By contrast, in the case where A is non-associative, the operator ã has two different

roles that should be carefully distinguished: on the one hand it can operate on a vector

h ∈ H, mapping it to a new vector ãh ∈ H; on the other hand, it can multiply another

operator b̃ to form a third operator (ãb̃). It is important to note that, since the operators

ã and b̃ represent elements in an underlying non-associative algebra A, their product (ãb̃)

will not be given by the composition of the operators ã and b̃ on H (which is associative);

instead, it will be given by some other product that reflects the non-associativity of A. In

left-right notation, this is again the statement that LãLb̃ 6= Lãb for non-associative input

algebras A.

Finally, the vector spaces H that we will be dealing with will also be Hilbert spaces in

the sense that they will be equipped with an inner product 〈 | 〉 — a rule for multiplying
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two vectors a and c to get a scalar 〈a|c〉 ∈ K. The inner product is skew-linear in its first

argument, linear in its second argument, skew-symmetric (〈a|c〉 = 〈c|a〉∗), and positive

definite (〈a|a〉 ≥ 0). As a simple illustration, consider the case where A is a non-associative

∗-algebra equipped with a natural inner product 〈 | 〉 (so that it may also be interpreted as

a Hilbert space H). Then A may be ‘represented on itself’ in an obvious way: we take the

Hilbert space H to be the same as the ∗-algebra A; we take the algebra homomorphism π

to be the identity map (ã = a); and we take the product of two operators ã and b̃, or the

action of an operator ã on a Hilbert space element h, to be given by the underlying product

in A: ãb̃ = ab, ãh = ah. In the example finite non-associative geometry we consider in

section 4, we take A = H = O the algebra of octonions, which is equipped with a natural

inner product 〈a|b〉 = (1/2)(a∗b+ b∗a) = Re(a∗b) where a∗ is the octonionic conjugate of a.

3.2 The principle of automorphism covariance

Consider an automorphism α of the input ∗-algebra A, which maps each element a ∈ A
to a new element a′ ∈ A. This induces a corresponding transformation α̃ that maps each

operator ã to a new operator ã′, and a corresponding transformation α̂ that maps each

vector h ∈ H to a new vector h′ ∈ h:

a → a′ = α(a), (3.3a)

ã → ã′ = α̃(ã), (3.3b)

h → h′ = α̂(h). (3.3c)

To tie the transformations α, α̃ and α̂ together, we demand that they satisfy the principle of

automorphism covarariance, which demands that our whole formalism should “commute”

with automorphisms of the underlying ∗-algebra. In other words, any sensible expression

should have the property that if we first transform its components and then evaluate the

expression, this should be the same as first evaluating the expression and then transforming

the result.

For starters, we apply the principle to the expression ã = π(a): it requires that

π(α(a)) = α̃(π(a)), ∀a ∈ A; or, in other words:

π ◦ α = α̃ ◦ π (3.4)

where ◦ denotes composition of functions. Next, we apply the principle to the expression

ãh: it requires that α̂(ãh) = α̃(ã)α̂(h); or, in other words:

ã′ = α̃(ã) = α̂ ◦ ã ◦ α̂−1 ∀a ∈ A. (3.5)

For illustration, consider the simple example of an algebra represented on itself H =

A. In this case, we would have α = α̃ = α̂, and all of the above equations would be

automatically satisfied.

When constructing a spectral geometry, there are three other important operators

which act on H: namely, D, γ, and J . Applying the principle to the expressions Dh, γh
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and Jh we see that, under an automorphism α, these operators must transform as

D →D′ = α̂ ◦D ◦ α̂−1, (3.6a)

γ → γ′ = α̂ ◦ γ ◦ α̂−1, (3.6b)

J → J ′ = α̂ ◦ J ◦ α̂−1. (3.6c)

In fact, as we shall see, J and γ are naturally invariant under this transformation (i.e.

J ′ = J and γ′ = γ); but D is not: instead, the automorphisms of the underlying ∗-algebra

A induce a transformation or “fluctuation” of D, from which the bosonic fields arise.

We take the principle of automorphism covariance to be a fundamental principle lying

at the base of the spectral reformulation of physics: as we shall see, it replaces (or subsumes

or implies) the more familiar principles of covariance under coordinate transformations and

gauge transformations, which are usually taken as the starting points for Einstein gravity

and gauge theory. We will also see that this principle will give us all the guidance we need

in formulating the spectral action principle unambiguously, even when A is nonassociative.

3.3 The real structure J , and the Z2 grading γ

A spectral triple is said to be “real” if it is equipped with a real structure operator J and

“even” if it is equipped with a Z2 grading operator γ. In this section we will discuss the

generalization of both operators to the non-associative setting, beginning with the operator

J . For a more complete exposition in the associative case see references [2, 3, 15].

First consider the real structure J . The basic observation, which remains perfectly

valid when A is non-associative, is that we can think of J as extending the ∗ operation

from the ∗-algebra A to the bimodule H over A. So we introduce the anti-linear operator

J on H to define the transformation (h ∈ H)→ (Jh ∈ H), which parallels the anti-linear

operation (a ∈ A)→ (a∗ ∈ A). And, since ∗ is an anti-automorphism on A, so that it acts

on any product of algebra elements a, b ∈ A as (ab)∗ = b∗a∗, J must have a compatible

action on any product of algebra elements a ∈ A and a Hilbert space elements h ∈ H:

in particular, J(ah) = (Jh)a∗ and J(ha) = a∗(Jh). In other words, we recover Connes’

familiar relations between left action and right action

Ra = JLa∗J
∗ (3.7a)

La = JRa∗J
∗ (3.7b)

and see that they remain unchanged in the non-associative case.

J also plays an important role in Connes’ so-called order-zero and order-one condi-

tions (2.2). But, from the perspective presented here, we can see that these are really

assumptions about the associativity of the bimodule H over A,3 which must be appropri-

ately modified in the case where A is non-associative. In particular, note that, from our

current perspective, the traditional order-zero condition (2.2a) directly follows from the

traditional assumption (3.2) that H is an associative bimodule over A — in particular, it

3or, more generally, the bimodule H over ΩA, where ΩA is the differential graded ∗-algebra of forms

over A: this generalization is treated in detail in our subsequent papers [17–19]

– 11 –



J
H
E
P
0
7
(
2
0
1
5
)
0
2
3

is nothing but the assumption that the associator [a1, h, a2] must vanish for any a1, a2 ∈ A
and h ∈ H.

This traditional order-zero condition (2.2a) is no longer appropriate in the case when

A is non-associative. To clarify this point, consider as an example the case where the input

data is A = H = O, with the octonions acting on themselves in the obvious way and J is

just octonionic conjugation. In this case we find

[JLb̃∗J
∗, Lã]h̃ = [Rb̃, Lã]h̃ = [ã, h̃, b̃] 6= 0, a, b ∈ A, h ∈ H (3.8)

As the octonions are non-associative, the associator is typically non-zero, so we see that

the traditional order-zero condition (2.2a) is incompatible with the representation of the

the octonions on themselves, which is the most natural representation. A similar ‘problem’

will arise for all non-associative algebras and their representations.

Fortunately, subsection 3.1 points to the solution: although a non-associative algebra

represented on a Hilbert space may not satisfy the traditional (associative) order zero

condition, it will instead satisfy a set of conditions appropriate to the associativity class

to which it belongs. The bimodule given above A = H = O will for example satisfy the

alternative order zero conditions, because the octonions are an alternative algebra:

[Rb̃, Lã] = [Lb̃, Rã], (3.9a)

[Rb̃, Lã] = Lb̃ã − Lb̃Lã = RãRb̃ −Rãb̃. (3.9b)

The main purpose of the order-n conditions is to ensure automorphism covariance. In an

associative NCG, the associative order zero condition ensures that the inner derivations

may always be written without loss of generality in the associative form given in (2.8). More

generally, the order zero condition, and higher order conditions, along with the operator

J define the bi-module structure of the Hilbert space H, and ensure covariance under the

automorphisms of the input algebra regardless of its associativity properties. In this paper

we will not have any use for the order one condition (or higher order conditions) and so

we will leave their elucidation to future work [17–19].

Now let us turn to the Z2 grading γ. It is a linear operator on H that commutes

with the action of A on H. It is both hermitian (γ∗ = γ) and unitary (γ∗ = γ−1): hence

it satisfies γ2 = 1, so its eigenvalues are ±1, and it correspondingly decomposes H into

two subspaces H = H+ ⊕H−. Note that all of these defining properties continue to make

perfect sense when A is non-associative, and require no modification.

For physicists, the familiar example is Dirac’s helicity operator γ5 which has the above

properties and decomposes the space of Dirac spinors into positive and negative (helicity)

subspaces: L2(M, S) = L2
+(M, S) + L2

−(M, S). Another nice way to think of γ5 is as

a volume form. This perspective may also be generalized to the non-commutative and

non-associative cases. Recall that on a spin manifold the Dirac operator is given by /D =

−iγµOSµ , where the γµ are the Dirac Gamma matrices, and OSµ is the Levi-Civita connection

on the spinor bundle. Although this Dirac operator may be unbounded, its commutator

with elements of the algebra of functions over the manifold df = [ /D, f ] = −iγµ(∂µf) is

bounded. In fact this bounded operator gives the Clifford representation of the 1-form
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df = dxµ(∂µf) [15]. Similarly, we see that the γ5 grading operator in the canonical case

can be considered as the Clifford representation of a volume form.

1
4!εµντργ

µγνγτγρ = γ1γ2γ3γ4 := γ5. (3.10)

Connes generalized this grading structure to non-commutative even dimensional orientable

spin manifolds [3]. Relatedly, he introduced a new differential calculus which generalizes

the De Rham cohomology of ordinary differential calculus to what is known as cyclic co-

homology [35, 36]. When extending to the non-associative case further generalization is

necessary. Fortunately, much work has already been done in this direction. As a de-

scription of this generalization will not be necessary for understanding our first example

non-associative geometry we will not give an account of it here, and instead refer to the

interested reader to the literature [24, 37].

Both the real structure J and the Z2 grading γ should be compatible with the auto-

morphisms of the underlying ∗-algebra: automorphisms should not affect the split between

positive and negative helicity states, or between particles and anti-particles. We can express

this requirement in terms of automorphisms:

γ′ = α̂ ◦ γ ◦ α̂−1 = γ, (3.11a)

J ′ = α̂ ◦ J ◦ α̂−1 = J. (3.11b)

or in terms of the derivations that generate them[
δ̃, γ
]

= 0 (3.12a)[
δ̃, J
]

= 0 (3.12b)

Readers can convince themselves that these conditions do indeed hold for inner derivations

in the associative case, and in the nonassociative example that will be discussed below in

section 4. We propose that it is natural to take these conditions to be true more generally;

i.e. to take them as axiomatic in non-associative geometry.

3.4 Fluctuating the Dirac operator D

We are finally able to discuss the fluctuations of the Dirac operator corresponding to a non-

associative geometry. In ordinary gauge theory, the principle of gauge covariance leads us

to replace the partial derivative ∂µ by the gauge covariant derivative Dµ = ∂µ+Aµ, which is

ultimately the object from which we build a gauge-invariant action. In a closely analogous

way, in spectral geometry the principle of ∗-automorphism covariance leads us to replace the

fiducial “Dirac operator” D with the “fluctuated” or “∗-algebra covariant” Dirac operator

DA, which is ultimately the object from which we build the the ∗-automorphism-invariant

spectral action.

It is helpful, then, to warm up by reviewing the story in ordinary gauge theory. We can

write a general gauge transformation in the form u(x) = exp[αa(x)Ta], where Ta are the

generators of the gauge group. Now consider a multiplet of matter fields ψ that transforms

covariantly under a gauge transformation: ψ → ψ′ = uψ. We would like to introduce
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a gauge-covariant derivative operator Dµ with the property that Dµψ also transforms

covariantly: Dµψ → D′µψ
′ = uDµψ. In other words, we want Dµ to transform as

Dµ → D′µ = uDµu
−1. (3.13)

Start with the special case where Dµ = ∂µ, and perform an infinitessimal gauge transfor-

mation to obtain D′µ = ∂µ − [∂µ, α
a(x)]Ta. By inspection of this formula, we see that in

the general case we can take

Dµ = ∂µ +Bµ where Bµ = Ba
µTa. (3.14)

Here Ba
µ are arbitrary gauge fields (one for each linearly independent generator Ta). To

make Dµ transform as in eq. (3.13), we should take Bµ to transform as

Bµ → B′µ = uBµu
−1 + u[∂µ, u

−1]. (3.15)

Now let us present the analogous story in spectral geometry, in which inner automor-

phisms act to ‘fluctuate’ the Dirac operator D → DA. To begin with, consider an element

h ∈ H; under an inner ∗-automorphism α of A it transforms as h → h′ = α̂(h) (for the

relationship between the hatted and un-hatted transformations, see subsection 3.2). We

would like to introduce a ∗-automorphism-covariant Dirac operator DA such that DAh also

transforms as DAh → D′Ah
′ = α̂(DAh). In other words, just as in equation (3.6a), the

covariant Dirac operator DA must transform as

DA → D′A = α̂ ◦DA ◦ α̂−1. (3.16)

In the case of almost-associative or almost-commutative geometries, the input algebra

C∞(M, AF ) is the algebra of functions from the manifoldM to the finite algebra AF , and

the inner automorphisms may be written as α = exp( δ ). Here the corresponding inner

derivations δ̃ acting on H may be written as δ̃ = ci(x) ⊗ δ̃i, where {δ̃i} are a basis of

derivations for the finite algebra AF , while ci(x) are spatially-varying coefficient functions

(i.e. functions from M to K, where K is the field over which AF is defined).

If we apply (3.16) to the Dirac operator for an almost-commutative or almost-

associative geometry, D = /D⊗IF +γc⊗DF (see subsection 2.1), and we expand α̂ = exp( δ̃ )

to first order in the inner derivation δ̃, we find

D′ ' D + [δ̃, D] = D − [ /D, ci(x)]⊗ δ̃i︸ ︷︷ ︸
Gauge terms

− γc ci(x)⊗ [δ̃i, DF ]︸ ︷︷ ︸
Higgs terms

. (3.17)

We see that in an almost-commutative or almost-associative geometry, we must add both

gauge fields and also higgs fields to the Dirac operator in order to make it ∗-automorphism

covariant. In the simple example almost-associative geometry that we construct in sec-

tion 4, the finite Dirac operator DF vanishes, so the Higgs fluctuations also vanish. We

further discuss the split in equation (3.17) in a later paper [17] where we explore models

with non-trivial Higgs fields.

As in regular gauge theory, we can determine the general form that fluctuations take

from the form of the inhomogeneous gauge and higgs terms, i.e. D → DA = D+B (except
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that now B includes both gauge and Higgs pieces). Under inner automorphisms of the

input algebra, ∗-automorphism covariance requires the fluctuations to transform as:

B → α̂Bα̂−1 + α̂[D, α̂−1]. (3.18)

Thus the fluctuation B ensures that the fluctuated Dirac operator DA transforms in the

desired way under inner automorphisms, as given in equation (3.16).

For illustration let us give two examples. In the first example, we determine the

form that inner fluctuations take for the special case of an associative almost-commutative

geometry. As discussed in section 2.2 the inner automorphisms for an associative ∗-algebra

A are generated by elements of the algebra of derivations δ̃c = Lc̃ − Rc̃ = ci(Lei − Rei),
where the coefficients ci are real, and the algebra elements ei are anti-hermitian. In this

case, equation (3.17) becomes

D′ ' D − ([D, ck]ẽk + ε′J [D, ck]ẽkJ
∗)︸ ︷︷ ︸

Gauge field terms

− (ck[D, ẽk] + ε′Jck[D, ẽk]J
∗)︸ ︷︷ ︸

Higgs field terms

(3.19)

where we have used the fact that JD = ε′DJ [15]. By inspection, the flucuated Dirac

operator should therefore be of the form:

DA = D +B = D +A(1) + ε′JA(1)J
∗ (3.20)

where D is the un-fluctuated Dirac operator, and A1 =
∑
ã[D, b̃] is a general one form.

The fluctuation B is determined by the form of the derivation of an associative ∗-algebra

δ̃c = Lc̃ − Rc̃ (with c anti-hermitian) along with the requirement that B should be of

order one (i.e. linear in D), and stable under fluctuations by the automorphisms of the

(associative) algebra. In this way, we recover the traditional formula for the fluctuation

of the Dirac operator in the associative case. The ‘fluctuation’ term B is analogous to

the connection term that appears in equation (3.14), and is given by a one form with

components valued in the algebra of derivations on A. Notice also that if D acts as a

derivation on the algebra representation and the Hilbert space, then the generalized one

form A(1) can be written as

A(1) =
∑

Lã(Db̃). (3.21)

In the second example, we fluctuate the Dirac operator for an almost-associative geom-

etry. Again the fluctuated Dirac opererator should transform under inner ∗-automorphisms

of the input algebra as shown in equation (3.16). The only difference is that now the au-

tomorphisms will be generated by elements of the algebra of derivations D(A) for the

non-associative algebra in question, rather than by associative derivations of the form

δc = Lc − Rc. Following the rest of the paper, the example we give is based on a finite

spectral triple in which we represent the octonions on themselves. The octonions are an

alternative algebra, and so their ∗-automorphisms will be generated by derivation elements

for an alternative algebra. A general derivation will be given by an arbitrary sum of ele-

ments δ̃b,c = [Lb̃, Lc̃] + [Lb̃, Rc̃] + [Rb̃, Rc̃] ∈ D(A) (see equation (2.9)). To first order the
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Dirac operator must transform as

D′ ' D − [D, δ̃b,c]

= D − [[D,Lb̃], Lc̃] + [[D,Lb̃], JLc̃J
∗]− ε′J [[D,Lb̃], Lc̃]J

∗

+ [[D,Lc̃], Lb̃]− ε
′[J [D,Lc̃]J

∗, Lb̃] + ε′J [[D,Lc̃], Lb̃]J
∗, (3.22)

where comparison between equations (3.19) and (3.22) should be stressed. Once again the

form of the fluctuated Dirac operator is determined by inspection of the inhomogeneous

fluctuation terms and is given in the form Da = D+B, where D is the un-fluctuated Dirac

operator, and the fluctuation term B is given by:

B =
∑

δA(1),A(0)
:=
∑

[A(1), A(0)]− [A(1), JA(0)J
∗] + ε′J [A(1), A(0)]J

∗, (3.23)

where the sum is taken over generalized hermitian ‘one forms’ A(1), and generalized ‘zero

forms’ A(0). In this case, the fluctuation B is determined by the form of the derivation of

an alternative ∗-algebra δ̃a,b = [Lã, Lb̃] + [Lã, Rb̃] + [Rã, Rb̃], along with the requirement

that B should be of order one (i.e. linear in D), and stable under fluctuations by the

automorphisms of the (alternative) ∗-algebra. The ‘zero forms’ A(0) will simply be given

by left acting elements of the alternative algebra. The generalized ‘one forms’ will depend

on the representation of the algebra π, the real structure J , and the form of the un-

fluctuated Dirac operator D. In the important case where D acts as a derivation on the

input algebra and Hilbert space however, we have in comparison with equation (3.21)

A(1) =
∑

Lã(Db̃), a, b ∈ A. (3.24)

Again, these fluctuation terms transform as in equation (3.18). All associative algebras are

also alternative algebras, and so the fluctuations given in equation (3.23) are a generaliza-

tion of the fluctuations given in equation (3.20) for the associative case. In particular, in

the standard associative case (i.e. when the input algebra A is associative, and the stan-

dard associative ”order one” condition [A(1), JA(0)J
∗] = 0 holds), the central term on the

right-hand-side of (3.23) vanishes, and (3.23) reduces to the associative expression (3.20).

Finally, in summarizing this section, let us return to recap a few important, but po-

tentially confusing points. Although the fluctuation of DA involves algebra elements a ∈ A
drawn from the non-associative algebra A, DA is simply a linear operator on H, and is not

in any sense non-associative. In particular, note that the fluctuations of D are built not

from the elements a ∈ A themselves, but from La and Ra, i.e. the (associative) operators

which represent the left-action and right-action of a on H. Furthermore, these operators La
and Ra are grouped together in a particular way, structured by the derivations of A. This

is ultimately done in order to ensure the ∗-automorphism covariance of the whole formal-

ism. We also remind the reader that, even when A is non-associative, its automorphisms

still form an ordinary (associative) group, and its derivations (from which the fluctuations

of DA are built) still form an ordinary Lie algebra. This means that, when we take an

almost-associative geometry, and plug DA into the spectral action, the spectral action will

yield an ordinary Yang-Mills theory, just as it does in the almost-commutative case. Let

us now look at a concrete example.
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4 The simplest almost-associative example

To illustrate and clarify the ideas introduced in section 3, in this section we will present

the simplest example almost-associative geometry, based on the octonions and giving rise

to a G2 gauge theory via the spectral action. We start by outlining the finite spectral data,

and then explain how to fluctuate D and compute the corresponding spectral action.

4.1 The spectral triple

We will consider the finite non-associative spectral triple given by

F = {AF ,HF , DF , γF , JF } = {O,O, 0, I, JO} (4.1)

where AF = O is the octonion algebra, HF = O is the Hilbert space of octonions (equipped

with its standard inner product), γF = I is the identity operator on HF = O, and JO
denotes the ordinary octonionic conjugation operation on O [31]. The left and right action

of AF = O on HF = O is the obvious one inherited from O: we can always simply

reinterpret an algebra — even a non-associative one — as bimodule over itself. Note that,

once we choose γF = I, the choice DF = 0 is forced upon us by the requirement that

{DF , γF } = 0 (see subsection 2.1). Then we can easily check that JF squares to unity, and

commutes with DF and γF , which implies that the KO dimension of the spectral triple is

zero (see e.g. section 2.2 in [15]). Because DF = 0, when we calculate the corresponding

spectral action below, we will obtain a model in which there are no Higgs fields and the

fermion fields are massless. Again, this is just a consequence of the fact that we are

considering the simplest non-associative spectral triple: in a forthcoming paper we will

show how to construct more realistic models with Higgs fields, spontaneous symmetry

breaking and fermion masses [17].

Next we can construct the “almost-associative geometry” Tc × TF : i.e. the product

of the canonical Riemannian spectral triple Tc with the finite-dimensional nonassociative

triple TF (see subsection 2.1):

Tc × TF = {C∞(M,O), L2(M, S)⊗O, Dc ⊗ I, γc ⊗ I, Jc ⊗ JO}, (4.2)

where Dc = −iγµ∂µ. Note that O is an algebra over R, so we take the tensor product

C∞(M,R)⊗O over R, as in [34, 38], to obtain C∞(M,O), the algebra of smooth functions

from M to O.

4.2 Fluctuating D

The first task in constructing the spectral action for our almost-associative geometry is to

fluctuate the Dirac operator D = Dc⊗ I. In our example, this task is simplified by the fact

that DF = 0: this means the fluctuation will produce gauge fields, but no Higgs fields.

As explained in section 3, we fluctuate D by asking what must be added to it in order

to make the spectral triple transform covariantly with respect to automorphisms of A. The

automorphism group of the ∗-algebra A = C∞(M,O) is the semi-direct product of two

pieces: the group of outer automorphisms Diff(M), and the group of inner automorphisms
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(the ”gauge group” of maps from M to the automorphism group of O). As compared to

the story for an ordinary (associative) almost-commutative geometry [15], there is nothing

new about the outer automorphisms (which require the formalism to be covariant with

respect to diffeomorphism, and give rise to Einstein gravity via the spectral action in

the usual way) so we focus here on the inner automorphisms. Since O is an alternative

algebra, its automorphisms are generated by derivations of the form (2.9); in particular, if

we choose any two of the seven ”imaginary” octonionic basis vectors, ei and ej , we obtain

a non-vanishing derivation: δi,j = [Lei , Lej ] + [Lei , Rej ] + [Rei , Rej ]. Although there are

(7× 6)/2 = 21 such derivations, only 14 are linearly independent, and together they form

the 14-dimensional exceptional Lie algebra g2 [31, 32]. Let us call the 14 independent

generators δk (k = 1, . . . , 14): each is simply an 8× 8 matrix from O→ O, and hence from

HF → HF . Thus, the inner automorphisms of A are generated by derivations of the form

δ = ck(x)⊗ δk, where the coefficients ck(x) are arbitrary real functions on M. Let us now

fluctuate the Dirac operator to account for these inner automorphisms. Starting with the

unfluctuated Dirac operator D = −iγµ∂µ ⊗ I we have, following section 3.4:

D → D′ = eδ̃Deδ̃ ≈ D − [D, δ̃] = −iγµ(∂µ ⊗ I− [∂µ, c
k(x)]⊗ δ̃k). (4.3)

The inhomogeneous terms tell us the form that our general fluctuations should take. The

Dirac operator with inner fluctuation terms is given by:

DA = −iγµ[∂µ ⊗ I +Bk
µ(x)⊗ δ̃k], (4.4)

where Bk
µ(x)⊗ δk is nothing but an ordinary Yang-Mills gauge field — and, in particular,

a G2 gauge field — written in slightly unfamiliar notation. As mentioned above, we have

focused here on inner fluctuations, but the full Dirac operator must also be covariant with

respect to the outer automorphisms of the algebra as well — i.e. we must restore the spin

connection. Thus we have

DA = −iγµOEµ (4.5)

where OEµ = OSµ ⊗ I+Bk
µ(x)⊗ δ̃k, and OSµ is the usual Levi-Civita connection on the spinor

bundle [15].

4.3 The spectral action

Now that we have constructed the fluctuated Dirac operator DA, we need no longer concern

ourselves with the non-associativity of A — it has already played its role in shaping the

bi-representation of A on H, and hence the number of fermion fields, and the type and

form of the bosonic fields we must add to make DA covariant. From this point on, as far

as evaluating the spectral action is concerned, all we need to know is that H is an ordinary

Hilbert space, and DA is an ordinary linear operator on H (and, in particular, a linear

operator of the form such that the formalism of section 3 in [15] and, in particular, their

Theorems 3.3 and and 3.7 directly apply).

To be very explicit, we present here the resulting spectral action. Calculating the

spectral action corresponding to an operator DA of the form given in equation (4.5) is

– 18 –



J
H
E
P
0
7
(
2
0
1
5
)
0
2
3

covered extensively in the literature, and we recommend e.g. the review given in section 3

of [15], whose notation we follow here. Again, we stress there is nothing non-associative

about the Dirac operator (4.5). The spectral action is given in terms of this DA as:

Sb = Tr

(
f(
DA

Λ
)

)
(4.6)

where f is a real, even function. Before we can perform the heat kernel expansion we first

need to calculate the square of the fluctuated dirac operator, which is given by

D2
A = (−iγµOSµ ⊗ I− iγµBk

µ ⊗ δ̃k)2

= 4E
A − 1

2γ
µγν ⊗ Fµν − 1

4R⊗ I, (4.7)

where R is the Ricci scalar, Bµ = Bk
µδk, and

4E
A = −gµν∇Eµ∇Eν (4.8)

Fµν = ∂µBν − ∂νBµ + [Bµ, Bν ]. (4.9)

Equation (4.6) can then be expanded as

Tr
(
f(DA

Λ )
)

= 2f4Λ4a0(D2
A) + 2f2Λ2a2(D2

A) + f(0)a4(D2
A) +O(Λ−2) (4.10)

where the fn =
∫∞

0 f(x)xn−1dx (n > 0) and ak(D
2
∗) are the Seeley-deWitt coefficients. For

a compact Euclidean manifold without boundary we have

a0(D2
A) =

∫
M
d4x
√
g

1

4π2
(4.11)

a2(D2
A) =

∫
M
d4x
√
g

1

48π2
R (4.12)

a4(D2
A) =

∫
M
d4x
√
g

1

16π2

1

360
Tr[(5

4R
2 − 2RµνR

µν + 2RµνρσR
µνρσ

+ 45γµγνγργσFµνFρσ + 30ΩE
µν(ΩE)µν ], (4.13)

where ΩE
µν = ΩS

µν ⊗ I + I4 ⊗ Fµν , and Tr(ΩS
µνΩSµν) = −1

2RµνρσR
µνρσ. The full bosonic

action is then

Sb '
∫
M
d4x
√
g

8

(4π)2
[8f4Λ4 +

2

3
Rf2Λ2

+
f(0)

360
(5R2 − 8RµνR

µν − 7RµνρσR
µνρσ − 240

8
Tr(FµνF

µν))] (4.14)

where we have used the fact that the finite Hilbert space has dimension N = 8. To the

bosonic spectral action we add the fermionic terms given by:

Sf = 〈ψ|DA|ψ〉 =

∫
ψ†i (x)Dij

Aψj(x)
√
gd4x, (4.15)

where Dij
A = −iγµ(OSµδ

ij + Bk
µδ̃
ij
k ), is hermitian. Note that, in this equation, we are

displaying explicitly the indices corresponding to the finite (8-dimensional) Hilbert space
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(i, j = 1, . . . , 8); the first δij denotes an ordinary Kronecker delta, while the second δ̃ijk
are the previously discussed G2 generators, now with their 8 × 8 indices displayed. In our

convention the generators δ̃ijk are anti-hermitian, which means that the gauge fields Bk
µ are

hermitian.

The full action of our theory is given by the sum of both the bosonic action and the

fermionic action S = Sb + Sf . It describes Einstein gravity coupled to a G2 gauge theory,

with 8 massless Dirac fermions which split into a singlet and a septuplet under G2. In

this paper, we have just presented the simplest possible model by way of illustration. In

a forthcoming paper [17], we show how to construct more realistic physical models that

include Higgs fields, spontaneous symmetry breaking and fermion masses.

A Twisted geometry

In the previous section we constructed what is in some sense the simplest finite non-

associative geometry TF and used it to form an almost-associative geometry corresponding

to a G2 gauge theory coupled to gravity. Its simplicity however was not the only reason

that we chose the octonion example. It turns out that one may obtain our example finite

non-associative geometry through a ‘twisting’ of an appropriate associative finite spectral

triple. One can therefore arrive at our example nonassociative spectral triple TF and check

that it makes sense, in two different ways. On the one hand, TF satisfies all of the required

axioms for a spectral triple (including the appropriate nonassociative generalizations of

the order zero and order one conditions presented in subsection 3.3), and is compatible

with the principle of automorphism covariance, as explained in subsection 3.2. On the

other hand, one can start with an appropriate associative spectral triple that satisfies the

standard axioms for an associative spectral triple of K0 dimension zero, and then perform

a so called ‘twist’ into our nonassociative triple TF . In this subsection we explain this

twisting procedure.

We begin by introducing a few pieces of mathematical background. The octonions

have a so called ‘quasialgebra’ structure. For our present purposes a quasialgebra can be

thought of as an algebra that is, in some well defined way, related to certain other algebras.

Specifically, starting with an associative quasialgebra (A, ·), we can perform what is known

as a ‘twist’ to obtain a new quasialgebra (AF ,×). The new algebra AF shares the same

underlying vector space as A but has a new product (“×” instead of “ · ”). It is possible

in this way to describe the non-associativity of a quasialgebra (AF ,×) as resulting from a

‘twist’ from an associative quasialgebra (A, ·).
The authors Albuquerque and Majid [39] have already described in full detail the oc-

tonions as a quasialgebra resulting from a ‘twist’ on a particular associative group algebra.

A group algebra is defined by taking the a group G and its field K together in a natural

way: namely, arbitrary linear combinations of the form
∑

i kigi, where ki ∈ K and gi ∈ G.

These elements may be added and multiplied in the obvious way, and thus form an algebra

over the field K; the dimension of the algebra KG is just the order of the group G. KG
is naturally a ∗-algebra, with the ∗ operation given by (

∑
i kigi)

∗ =
∑

i k
∗
i g
−1
i ; and it is
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also naturally a Hilbert space, with the inner product of two vectors v(1) =
∑

i k
(1)
i gi and

v(2) =
∑

i k
(2)
i gi given by 〈v(1)|v(2)〉 =

∑
i(k

(1)∗
i )k

(2)
i .

In the case of the octonions, the corresponding associative group algebra of interest

is KG, where K = R, and G = Z2 × Z2 × Z2, so that KG is an 8-dimensional algebra

over the real numbers [24, 39–41]. We can write each basis element of KG in the form

gi = (i1, i2, i3), where ij ∈ {0, 1}; and then KG simply inherits the group multiplication

law: j ·k simply means adding the two vectors (j and k), mod 2. From here, we can obtain

the octonions by performing a ‘twist’ — i.e. by replacing the multiplication law x · y with

the new multiplication law:

gi × gj = gi · gjF (gi, gj), ∀gi, gj ∈ G (A.1)

where F is known as a ‘2-cochain twist’ taking values in the field K over which the algebra

AF is defined. The 2-cochain F is given in our case as [39]

F (gi, gj) = (−1)f ,

f = i1(j1 + j2 + j3) + i2(j2 + j3) + i3j3 + j1i2i3 + i1j2i3 + i1i2j3. (A.2)

In discussing the twist from A = KG to AF = O the authors Albuquerque and Majid [39]

give a ‘natural involution’ (∗ operation) on the twisted algebra basis

Jei = F (ei, ei)ei (A.3)

From equation (A.2) it can be seen that this involution is simply octonionic conjugation.

Prior to twisting we can simply take F (ej , ei) = 1, ∀ei ∈ KG. Notice that in KG each

basis element is its own inverse. For this reason the ‘natural’ ∗ operation coincides in the

untwisted case with what is known as the ‘antipode’ operator S on KG:

Jei = Sei = e−1
i (A.4)

We can consider the data {A,H, J} = {O,O, JF } as being ‘twisted’ from the data

{KG,KG,S}. It is therefore natural to consider a spectral triple {A,H,D, γ, J} where

A and H are both given by KG, and A is represented in the obvious way: i.e. π is the

identity map (so ã = a), and the action of the operator ã on an element of H is given by the

ordinary product in KG. Furthermore, we can take γ = 1; the condition {γ,D} = 0 then

implies D = 0. Finally, the action of J on H is naturally given by the ∗-operation in KG:

Jh = J(
∑

i kigi) = (
∑

i kigi)
∗ =

∑
i k
∗
i g
−1
i . The twist given in equation (A.1) then maps

between the associative finite spectral triple corresponding to the group algebra KG and

the non-associative finite spectral triple corresponding to the octonion algebra AF = O.

We are now in a position to analyze how the order zero condition behaves under a

‘twist’ from the associative A = H = KG to the non-associative AF = HF = O. As A is
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associative it will satisfy the order zero condition given in (2.2a).

[π0
gj , πgi ]g̃k =(g̃i · g̃k) · g̃j − g̃i · (g̃k · g̃j) = 0, gi, gj , gk ∈ G,

‘twist’→ 0 =F−1(gi, gk)F
−1(gi · gk, gj)(g̃i × g̃k)× g̃j

− F−1(gi, gk · gj)F−1(gk, gj)g̃i × (g̃k × g̃j)

=
F (gi,gk·gj)F (gk,gj)
F (gi,gk)F (gi·gk,gj) (g̃i × g̃k)× g̃j − g̃i × (g̃k × g̃j)

=Φ−1
g̃i,g̃k,g̃j

(g̃i × g̃k)× g̃j − g̃i × (g̃k × g̃j)

:=[Rg̃j , Lg̃i ]Φg̃k (A.5)

where the ‘associator’ is defined as Φg̃i,g̃k,g̃j :=
F (gi,gk)F (gi·gk,gj)
F (gi,gk·gj)F (gk,gj) . After the twist we should

consider the basis elements gi, gj ∈ AF and gk ∈ HF . Equation (A.5) suggests we introduce

an augmented order zero condition in the general sense given by

[Rb̃, Lã]Φ = 0 ∀a, b ∈ AF . (A.6)

Here the subscript Φ can be seen as telling us to ‘flip’ the brackets on one side of the

commutator when acting on a hilbert space element. Note that for an associative algebra,

the ‘associator’ Φ will be trivial and our augmented order zero condition will collapse back

to that given in the associative case (2.2a). Note also, that for our octonion example, when

a = b, the ‘associator’ Φ will again be trivial, as would be expected following the conditions

given in equation (3.9a)

We would like to stress that we can arrive at the nonassociative spectral triple TF ,

and check that it makes sense, in two different ways. On the one hand, TF satisfies

all of the required axioms for a spectral triple (including the appropriate nonassociative

generalization of the order zero condition presented in subsection 3.3), and is compatible

with the principle of automorphism covariance, as explained in subsection 3.2. On the

other hand, we can start with the associative spectral triple: TF0 = {KG,KG, 0, I, JKG},
where KG is the group algebra based on K = R and G = Z2×Z2×Z2, and JKG denotes the

natural ∗ operation in KG (see subsection 2.1). This spectral triple satisfies the standard

axioms for an associative spectral triple of K0 dimension zero. But then, when one twists

KG into O (see [39]), the associative spectral triple TF0 is correspondingly twisted into our

nonassociative triple TF .
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