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1 Introduction

N = 4 supersymmetric Yang-Mills theory with gauge group SU(Nc) is in many ways an

ideal theoretical laboratory to test our understanding of gauge theory and Quantum Field

Theory; it is complicated enough to capture many aspects of gauge theory dynamics yet

rendered simple enough to be tractable. A particular limit, introduced by ’t Hooft [1] is to

consider the theory when the number of colours Nc is taken very large with the coupling

g2YMNc fixed. In this limit only certain Feynman diagrams, those that can be drawn on

a sphere in ’t Hooft’s double line notation, dominate and the theory becomes even sim-

pler. A remarkable property that has come to the fore since 2002 is that in this planar

limit, the theory possesses a much enhanced underlying symmetry; in fact it is integrable.

This behaviour was first seen in [2] where the difficult question of determining the spec-

trum of certain gauge invariant operators is mapped to an exactly solvable (integrable)

system: the one-dimensional spin chain first introduced by Heisenberg in 1928 [3] and sub-

sequently solved by Bethe [4]. A second angle of attack on this gauge theory is provided

by the AdS/CFT conjecture [5] and at strong coupling, integrability has a very elegant

manifestation in the holographic dual description; it corresponds to the existence of an

infinite set of non-local conserved charges and corresponding underlying integrability of

the two-dimensional non-linear σ-model describing strings in the AdS5 × S5 spacetime [6].
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A very natural question we are led to ask is if we can relax some of the assumptions

of supersymmetry whilst preserving integrability? One reason to hope this is possible

is that it is known even QCD itself exhibits some integrability in certain limits [7, 8].

N = 4 Yang-Mills theory admits a class of marginal deformations contained with those

of [9], known as (real) β-deformations, that modify the superpotential, preserve only the

minimal amount of (conformal) supersymmetry but yet preserve integrability. From the

holographic perspective the geometry describing these β-deformations can be obtained by

the application of T -dualities in TsT transformations [10].1 Strings propagating in this

spacetime retain the properties of integrability [12].2 Can we go further in this direction

and find deformations of the gauge theory which still remain integrable but yet preserve

no supersymmetry at all? If so, what is the corresponding holographic dual geometry?

The past two years have seen the development of two new and related classes of inte-

grable deformations which we shall refer to as η- and λ-deformations. The η-deformations

were introduced by Delduc, Magro and Vicedo in [15, 16] and are based on Yang-Baxter

σ-models proposed by Klimcik [17]. These are described by σ-models propagating in a

spacetime that is deformed from the original AdS5 × S5 in a way that preserves no su-

persymmetries and only an Abelian isometry group. Despite this reduced symmetry, this

deformation does preserve classical integrability of the σ-model.

The second class of λ-deformations were proposed in [18] and are obtained by a gauging

procedure applied to a combination of a principal chiral model (PCM) and a Wess-Zumino-

Witten (WZW) model [19] for a semi-simple compact group. After integrating out all

non-propagating gauge fields one finds some resulting σ-models that have a seemingly

very complicated target spaces but remarkably also admit a Lax pair formulation and

an underlying Poisson (Dirac) bracket algebra of two commuting classical Kac-Moody

algebras [18] and corresponding Yangian [20]. The deformation parameter is given in

terms of the radius κ of the PCM and the level k of the WZW by

λ =
k

k + κ2
. (1.1)

For small values of λ this deformation looks like a current-current deformation of the WZW

model whilst in the limit λ → 1 then one arrives at the PCM but recast in a certain set of

(non-Abelian-)T-dual variables.

Moreover, it has been shown that by utilizing a limiting procedure one constructs

models interpolating between gauged WZW models [21–23] and the (non-Abelian) T-duals

of the PCM on geometric coset spaces [18]. The Lax pair formulation for λ-deformations

based on symmetric spaces has been explicitly given in [24]. In this case, the deformation

is driven by parafermion bilinears which are the natural object with definite chirality on

shell. Deformations of specific coset cases will be considered in detail in this paper and in

particular we will focus on the coset SO(n+ 1)/SO(n) and its analytic continuations.

1One can consider including S-dualities and to find geometries corresponding to complex β-deformations

but these are known to be non-integrable [11].
2We can abolish all together the property of integrability but retain that of minimal (conformal) su-

persymmetry. An example of that is AdS5 × T1,1 [13], where the propagation of strings can in fact be

chaotic [14]. However, in this case the background is not obtained by a deformation of an integrable one.
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Whilst some aspects of the relation between the η- and λ-deformations are not com-

pletely understood, at the level of Poisson algebras they correspond to complementary

ranges for a deformation parameter of the same algebra [25, 26], see the discussion in [27].

At the quantum level it is expected that both types of deformations can be understood in

terms of quantum group deformations of the S-matrix symmetries. A sequence of works [28–

31] have studied how the symmetries of the world-sheet S-matrix may be deformed to a

quantum group whilst still satisfying S-matrix axioms. The deformation is labeled by a

parameter q and there are two cases to consider. First is q = eη ∈ R which is thought to

correspond to the η-deformation — this has been supported by a matching in the large

tension limit of the tree-level bosonic S-matrix for world-sheet scattering on the η-deformed

σ-model with the prediction from the q-deformed S-matrix [32]. The second case is when

q is a root of unity and it was conjectured in [24, 33] that the λ-deformed theories give a

world-sheet realization for this scenario with the quantum group parameter related to the

level of the WZW by q = e
iπ
k .

One should sound a note of caution here. Despite their natural constructions, it is not

automatic that either the η- or the λ-deformations are marginal. Indeed, within bosonic

string theory these deformation are not marginal. The running of λ was calculated for a

general group in [34, 35] and found to be in agreement with CFT results (all loop in λ and

leading order in 1/k). Based on that, and symmetry arguments, it has been argued that

this σ-model action is the all loop effective action for the non-Abelian bosonized Thirring

model. For the Yang-Baxter σ-model, on which the η-deformations were based, the running

of the coupling was computed in [36].

The question is if the inclusion of the fermionic content of the type-II superstring can

render these deformations exactly marginal. At the level of the string σ-model one should

check that the β-functions vanish i.e. that the supergravity equations for the background

fields are solved. Whilst it is relatively clear how to extract the NS sector of the target

space geometry for these deformations, a much harder task is to extract the background

RR-fields. This is particularly tricky to do from first principles since the constructions

of [15] and [33] are based on super-coset formulations — these are appropriate for exposing

algebraic properties but do obscure the geometry. At the moment the best route one has

is to consider the NS-sector and try to bootstrap the solution for the RR-fields by directly

solving the supergravity equations. If such a supergravity embedding exists one can take

it as strong evidence for the consistency of these deformations.

For η-deformations the full supergravity embeddings were constructed for examples

based on AdS2 and AdS3 in [37]. However, the complete supergravity embedding for AdS5×
S5 has not, at present, been established. In this note we will focus on the λ-deformations for

which some low-dimensional examples were recently given supergravity embeddings [38].

The primary purpose of this paper is to provide the full supergravity embedding for the

case of λ-deformations of AdS5 × S5. Along the way we shall take the opportunity to

clarify a number of geometric properties of λ-deformed σ-models. We shall show that the λ

deformations of theories based on SO(n+1)/SO(n) have a remarkably simple interpretation;

they correspond to squashing of certain directions in tangent space. Whilst it is known that

geometric cosets admit integrable squashings [39–42], here we are performing squashings on

– 3 –
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conformal cosets (i.e. on gauged WZW models). After analytic continuation one finds the

similar results for AdS conformal cosets. Finally we are, with a simple Ansatz motivated

by the underlying group theory, able to deduce the forms of the RR-fields.

The structure of this paper is as follows: in section 2 we review and clarify some

aspects of the λ-deformations in general before specialising in section 3 to the case of

SO(n + 1)/SO(n). In section 4 we briefly expound on the continuations that give rise to

deformations of AdS conformal cosets and finally in section 5 we present the full super-

gravity embedding for the case of the λ-deformed AdS5×S5. For completeness we provide

an appendix collating general results for the lower dimensional cases of n = 2, 3 and 4.

2 λ-deformations overview

We now review, and further develop, the results of [18] relevant for this paper. We begin

with some conventions. We consider a general (bosonic) compact group G and a corre-

sponding group element g parametrized by Xµ, µ = 1, 2, . . . , dim(G). The right and left

invariant Maurer-Cartan forms, as well as the orthogonal matrix (or adjoint action) relating

them, are defined as

LA
± = −iTr(TAg−1∂±g) , RA

± = −iTr(TA∂±gg
−1) ,

RA
µ = DABL

B
µ , DAB = Tr(TAgTBg

−1) .
(2.1)

The matrices TA obey [TA, TB] = ifABCTC and are normalized as Tr(TATB) = δAB. In

a coset G/H we will let T a, a = 1 . . . dim(H), be generators for the subgroup and Tα ,

α = 1 . . . dim(G/H), the remaining coset generators. World-sheet light cone coordinates

are σ± = τ ± σ.

2.1 λ-deformations for groups

Although our main interest is in λ-deformations for certain symmetric spaces let us begin

by reviewing the simpler case of λ-deformations for groups since it will prove to be quite

instructive. Here the two ingredients are a bosonic principal chiral model (PCM) on the

group manifold for an element g̃ ∈ G,

SPCM(g̃) =
κ2

π

∫

Σ
δABL

A
+(g̃)L

B
−(g̃) , (2.2)

and a Wess-Zumino-Witten model (WZW) for a second group element g ∈ G defined by

SWZW,k(g) =
k

2π

∫

Σ
δABL

A
+(g)L

B
−(g) +

k

12π

∫

B
fABCL

A ∧ LB ∧ LC , (2.3)

where B is an extension such that ∂B = Σ. To obtain the λ-deformation one simply takes

the sum of the PCM and the WZW and applies a gauging procedure that eliminates half

of the degrees of freedom. More precisely one gauges the left action of GL in the PCM and

the diagonal action of G in the WZW with a single common G-algebra valued one-form

gauge field A = iAATA. This is done by minimal coupling in the PCM and by replacing

– 4 –
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the WZW with the G/G gauged-WZW model. One can now choose a gauge fixing choice

g̃ = 1 such that the action becomes

Stot = SWZW (g) +
k

π

∫
A+L

A
− −AA

−R
A
+ +AA

+MABA
B
− , (2.4)

where the quadratic term in the gauge field couples to

MAB = λ−1δAB −DBA(g) . (2.5)

The deformation parameter is given in terms of the radius κ of the PCM and the level k

of the WZW by

λ =
k

k + κ2
. (2.6)

To give this theory a non-linear σ-model interpretation we can continue by integrating out

the gauge fields to give

MA− = −L− , MTA+ = R+ . (2.7)

Upon substitution of these equations the action becomes

Stot = SWZW (g) +
k

π

∫
RT

+M
−1L− . (2.8)

One can now go ahead and read off from this action the target space metric and the NS

two-form potential. Letting MD = N we can see that the target space metric is

ds2 = kLA(1 +DTM−1 +M−TD)ABL
B

= kLTN−1(NNT +NT +N)N−TL

= k(λ−2 − 1)LTN−1N−TL

= k(λ−2 − 1)AT
+A+ ,

(2.9)

where A+ is the push forward i.e. A+ = A+i∂+x
i. This shows that the push-forward of

the on-shell values of the gauge fields define frame fields for the deformed sigma model in

the case of groups. An analogous calculation shows that the push forwards A− also serve

as frame fields. Indeed from the equations of motion we have

A− = −M−1DTMTA+ = ΛTA+ , ΛT = (1− λDT )−1(λ−DT ) , (2.10)

which defines a local frame rotation between these frame fields.

Just as is the case with gauged-WZW models, integrating out the gauge fields in a

path integral produces a determinant factor giving rise to a non-trivial dilaton as

Φ = −1

2
ln detM . (2.11)

Whilst such a construction may seem esoteric it has quite a natural motivation; it cor-

responds to performing a Buscher dualisation of the GL action in the PCM but upgrading

the Lagrange multiplier term to a fully dynamic sector - the WZW [18, 43]. Indeed one

– 5 –
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can consider a limit in which k ≫ 1 and λ → 1 in which we expand the group element of

the WZW as

g = 1 + i
vAT

A

k
+O

(
1

k2

)
. (2.12)

Then the gauged WZW term reduces exactly to a Lagrange multiplier enforcing the gauge

fields to be pure gauge as in the Buscher procedure. In this limit the final action (2.8) cor-

responds precisely to the non-Abelian T-dual of the PCM with respect to the GL isometry.

2.2 λ-deformations for cosets

Let us now consider the PCM on a geometric coset G/H. This can be obtained either by

a limiting procedure or a gauging procedure but can be expressed by restricting the sum

over generators in the PCM to a sum over coset generators

SPCM,G/H(g̃) =
κ2

π

∫

Σ
δαβL

α
+(g̃)L

β
−(g̃) . (2.13)

This action develops a local H invariance that can be fixed with an appropriate choice of

g̃. We now repeat exactly the same steps as for the group; we supplement with a WZW

model for an element g ∈ G and gauge the GL of the PCM and a Gdiag of the WZW with

a common gauge field. Once again we fix g̃ = I such that the total action is

STot = SWZW (g) +
k

π

∫
A+L

A
− −AA

−R
A
+ +AA

+MABA
B
− , (2.14)

but now the quadratic matrix MAB distinguishes between subgroup directions:3

MAB = EAB −DBA , EAB =

(
1ab 0

0 λ−1
1αβ

)
. (2.15)

However, in gauge fixing g̃ = 1 we have still not used up all the gauge freedom, and it

is clear from the form of eqs. (2.14) and (2.15) that the final action retains a residual H

gauge symmetry that will require gauge fixing on g.

We can continue exactly as with the case of groups and integrate out the gauge fields

to yield again

STot = SWZW (g) +
k

π

∫
RTM−1L− . (2.16)

To read off the target space metric we need some care; a key observation is that if

we denote N = MD and Ñ = DM , by virtue of the orthogonality of the adjoint action

DTD = DDT = I we have the identity

NNT +NT +N = ÑT Ñ + ÑT + Ñ =

(
0 0

0 (λ−2 − 1)1αβ

)
. (2.17)

3Roman lower case indices correspond to subgroup and Greek to coset directions.

– 6 –
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This can be used in a similar way to the derivation of eq. (2.9) to show that the target

space metric for the σ-model in eq. (2.16) is

ds2 = kLA(1 +DTM−1 +M−TD)ABL
B

= k(λ−2 − 1)(LTN−1)αδαβ(N
−TL)β

= k(λ−2 − 1)Aα
+δαβAβ

+ .

(2.18)

One sees that the push forward to target space of the gauge field Aα
+ with legs in the coset

directions of the algebra defines a frame field. An analogous calculation, making use again

of eq. (2.17), establishes also Aα
− to be a second set of frame fields. We must thus have

Aα
− = (ΛT )αβAβ

+ , (ΛT )αβΛβγ = δαγ . (2.19)

By comparison to the gauge field equations of motion we know that Λαβ must be no more

than the projection into coset indices of ΛAB = (−MDM−T )AB.

Our next goal is to describe exactly the form that these frame fields take, i.e. to examine

the structure of the on-shell value of the gauge fields. This can be achieved by explicitly

decomposing into subgroup and coset. We define

D =

(
d1 d2

d3 d4

)
, M =

(
1 − dT1 −dT3

−dT2 λ−1
1 − dT4

)
≡

(
A B

C D

)
(2.20)

in which the top left hand square block has dimension dimH and the bottom right

dim(G/H). Note that the blocks di, i = 1, 2, 3, 4, are not independent since the matrix D

has to be orthogonal. The standard matrix inversion formula gives

M−1 =

(
Q−1 −A−1BP−1

−P−1CA−1 P−1

)
(2.21)

where P = D−CA−1B and Q = A−BD−1C. The matrix P will be very important and

explicitly has elements

Pαβ = (λ−1
1 − dT4 )αβ − (dT2 (1− dT1 )

−1dT3 )αβ . (2.22)

Using the relations between the blocks di, it can be shown that the following identity is

obeyed

(P− λ−1
1)(PT − λ−1

1) = (PT − λ−1
1)(P− λ−1

1) = 1 , (2.23)

which also implies that [P,PT ] = 0. The proof of the second equality follows simply also

from the fact that P(g−1) = PT (g).

Expanding out the gauge field equations in this way gives the following expression for

the frame fields Aα
± entering into eq. (2.19)

Aα
− = −(P−1)αβ

(
Lβ − (CA−1)βaLa

)
,

Aα
+ = (P−T )αβ

(
(λ−1

1 −PT )βγLγ − (BTA−T )βaLa
)
.

(2.24)

– 7 –
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Consider for a moment the A− frame fields; notice that the term in parenthesis consists

of only the Maurer-Cartan forms and the matrices C and A none of which by definition

depends on the deformation parameter λ. Hence, the effect of the λ-deformation is entirely

contained in the matrix P−1 acting as an overall dressing factor.

We can also calculate the matrix relating left and right frame fields in eq. (2.19) and

we see again the matrix P plays a crucial role

(ΛT )αβ =
[
λ−1

1 + (1− λ−2)P−1
]
αβ

. (2.25)

In the above manipulations the identity (2.23) has been particularly useful.

Just as is the case of λ-deformations for groups, integrating out the gauge fields in a

path integral produces a determinant factor giving rise to a non-trivial dilaton. For the

case at hand the relevant quantity to consider is detM which can be computed by writing

M =

(
A 0

C 1

)(
1 A−1B

0 P

)
. (2.26)

Then

detM = detA detP =⇒ Φ = −1

2
ln detA− 1

2
log detP . (2.27)

By definition A is independent of λ and precisely gives the contribution to the dilaton for

an undeformed gauged-WZW whereas the matrix P depends on λ and gives an additive

contribution to the dilaton.4 It is evident that to proceed further we need to understand the

structure of this matrix P which one might anticipate having a rather complex coordinate

dependence. In fact this is not the case for the λ-deformations of SO(n+ 1)/SO(n) cosets;

the matrix P turns out to be coordinate independent and has eigenvalues that are simply

λ−1 ± 1. However since P is gauge dependent, to see this explicitly requires some effort

and is made easier by a judicious gauge fixing choice to which we now turn.

3 λ-deformations and squashed conformal spheres

Gauged WZW models for SO(n + 1)/SO(n), which we shall call conformal cosets CSn

to distinguish them from the geometric coset Sn = SO(n + 1)/SO(n), and their analytic

continuations have been studied for quite some time. For the case of n = 2 these were

considered in [44–46] and famously given an interpretation by Witten as a CFT description

of a black-hole target space [44]. Higher dimensional generalizations for the cases of n = 3, 4

were constructed in [47, 48] and [49], respectively. A second reason for the importance

of such models comes from the understanding that string theory in AdS5 × S5 can be

reduced by a clever gauge fixing to a gauged WZW for the conformal coset CAdS4 × CS4

supplemented by a suitable potential. The elimination of gauge degrees of freedom in this

way goes by the name Pohlmeyer reduction [50] and the application to superstrings in

AdS5 × S5 was described in [51] building on the earlier suggestions of [52, 53].

4We remark that in the case of η-deformations, the dilaton does not obey a simple factorization as it

does here; this probably indicates that η deformations can not arise via a gauging procedure.
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The first step is to specify a gauge fixing choice for the group element of SO(n + 1)

that uses up the SO(n) gauge invariance. The SO(n + 1) generators Tmn, with m,n =

1, 2, . . . , n+ 1 satisfy the commutation relations

[Tmn, Tkℓ] = δnkTmℓ − δmkTnℓ − δnℓTmk + δmℓTnk . (3.1)

In the fundamental representation the matrix elements are

(Tmn)ab = δmaδnb − δmbδna , m, n, a, b = 1, 2, . . . , n+ 1 . (3.2)

Then we can parametrize the gauged fixed group element in generalised Euler angles,

θi, i = 1, 2, . . . , n−1 and φ, as in [48, 51] (and advocated for the current context in [33]) by

g =

(
n−1∏

i=1

gi(θi)

)
gn(2φ)




n−1∏

j=1

gn−j(θn−j)


 , (3.3)

where

gk(x) = exp(xTk,k+1) , (3.4)

generates a rotation in the (k, k + 1)-plane. This gauge fixing has a couple of extremely

useful properties. First, as one can verify, the adjoint matrix reduces to

DMN [g] ≡ Dmn,pq[g] = gnpgmq − gmpgnq . (3.5)

This shows that the adjoint action in this gauge fixing coincides with the anti-symmetric

representation in this fixing. The second is that, as was emphasized in [51] that there

exists an automorphism of the algebra (and, by exponentiation, on the group) that acts

on a matrix M
(M)ab → (−1)a+b(M)ab , (3.6)

and which clearly preserves the trace of a matrix. Acting on the gauge fixed element in

eq. (3.3) g is sent to g−1. As a consequence, the three-form ω = (g−1dg)∧3 is odd under this

automorphism so Trω = 0 and the Wess-Zumino term can not contribute to the action. For

similar reasons, detailed in the appendix B of [51], no contribution to an anti-symmetric

Kalb-Ramond field can arise from integrating out the gauge field in the gauged WZW

model. This is in agreement with the explicit constructions for n = 3, 4 in [47–49]. Though

our theory is modified by the deformation, the couplings to the gauge field are also simply

linear in ∂g and so this argument is also explains why we have no B-field in the case at

hand.5

For calculational purposes it is also useful to consider a second parametrization of the

group element as in [49], namely that in which

g = Ht , (3.7)

5We note that having vanishing B-field is different to the case of η-deformations. However, one should

remember that the connection between the λ- and η- deformations appears to involve performing a non-

abelian T-duality transformation in which B-field can be traded for geometry. We thank Ben Hoare for

discussions on this point.
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where

H =

(
1 0

0 h

)
, h = (1 +A)(1 −A)−1 , (3.8)

and

t =

(
b (b+ 1)V t

−(b+ 1)V 1 − (b+ 1)V V t

)
, b =

1− V 2

1 + V 2
, (3.9)

where V is an n-dimensional vector and A is an antisymmetric n × n matrix. In this way

t ∈ SO(n+ 1) and h ∈ SO(n). Hence we write

g =

(
b (b+ 1)V t

−(b+ 1)Ṽ h− (b+ 1)Ṽ V t

)
, Ṽα = hαβVβ , α, β = 1, 2, . . . , n . (3.10)

One must then choose a gauge fixing to reduce to dimG − dimH degrees of freedom in

one-to-one correspondence with the dimG − dimH H-gauge invariants that can be built

from A and V . The correspondence to the generalised Euler angles introduced above can

be easily deduced. The general expressions are,

Ai,i+1 =
sin θi

cos θi−1 cos θi
, i = 1, 2, . . . , n− 1 , (3.11)

with θ0 = 0, all other entries not fixed by symmetry equal to zero and,

vi = (−1)i+n tanφ cos θi−1 sin θi sin θi+1 · · · sin θn−1 , i = 1, 2, . . . , n , (3.12)

such that b = cos 2φ.

In terms of these quantities we can express the components of the adjoint matrix

eq. (2.20) as

(d1)αβ,γδ = b2
[
(d−T

4 )αγ(d
−T
4 )βδ − (d−T

4 )βγ(d
−T
4 )αδ

]

(d−T
1 )αβ,γδ = b−2 [((d4)αγ(d4)βδ − (d4)βγ(d4)αδ] ,

(d2)αβ,γ = (b+ 1)Ṽ[αhβ]γ , (d3)γ,αβ = (b+ 1)hγ[αVβ] ,

(d4)αβ = bhαβ + (b+ 1)ṼαVb ,

(d−1
4 )αβ = b−1hβα − b−1(b+ 1)VαṼb .

(3.13)

Using this gauge fixing parametrization one can directly compute the matrix P matrix

defined in eq. (2.22) for SO(n+ 1)/SO(n). Indeed, eventually this takes the simple form

Pαβ =
(
λ−1 + (−1)n+α+1

)
δαβ . (3.14)

Notice that all coordinate dependence cancels out and that in this basis P is already

diagonal. This relation was verified explicitly for the physically relevant cases of n = 3, 4, 5

and one anticipates, though we did not show it analytically, that it holds in general given

the form of the adjoint action in eq. (3.5).

As a consequence one can now see that the effect of the λ-deformation is to perform a

squashing of the conformal coset’s tangent space by a diagonal matrix acting on the frames.
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To be precise let’s denote the frame from which one computes the deformed metric by eα(λ).

We have that

eα(λ) = Sαβ(λ)eβ(0) , (3.15)

where the lower index in eα(0) indicates that this is the frame for the undeformed metric.

The matrix S(λ) is diagonal and given explicitly by

n =even : S[λ] = diag

(
µ,

1

µ
, . . . ,

1

µ

)
,

n =odd : S[λ] = diag

(
1

µ
, µ, . . . ,

1

µ

)
, µ =

√
1− λ

1 + λ
, (3.16)

in which we have taken into account an overall constant of
√
λ−2 − 1 entering in the σ-

model metric given by eq. (2.18). Classical integrability has been observed in σ-models on

squashed geometric cosets (i.e. the squashed three-sphere) in the literature [39–42] but here

we are talking about squashing of a conformal coset preserving integrability - something

quite different.

Note also that the λ → 1 limit of this procedure is, naively, bad since the tangent space

metric degenerates. However, the correct procedure, as we explained above around (2.12),

is to perform a rescaling of the group element in such a way that the limit can be taken.

When this is done taking λ → 1 drives towards the non-Abelian T-dual of the PCM on the

geometric coset Sn dualized with respect to SO(n+ 1) [54].

3.1 The n = 5 case

It remains to give the explicit form of the frame fields which are, in fact, profoundly

complicated. Here we present the results for n = 5 which to our knowledge have not

appeared in the literature even for the undeformed gauged WZW model. Whilst the

metric for the cases n = 3, 4 are available in the literature [47–49], the frame fields in this

basis in which the deformation is a simple squashing had not been systematically given so

for completeness we include them in the appendix.

To simplify results we perform a coordinate transformation6

ω = tanφ , x = sin θ1 , y = cos θ1 cos θ2 ,

z = cos θ1 cos θ2 cos θ3 , u = cos θ1 cos θ2 cos θ3 cos θ4 . (3.17)

We also introduce the functions

A = 1− x2 − y2 , B = y2 − z2 , C = z2 − u2 , D = 1− x2 ,

E = u2y4 + u2x2z2 − y4z2 , F = u2y2 + z4ω2 .
(3.18)

Then the frame fields are given by, i.e. (3.15) and (3.16)

eα(λ) = Sαβ(λ)eβ(0) , S(λ) = diag

(
1

µ
, µ,

1

µ
, µ,

1

µ

)
, µ =

√
1− λ

1 + λ
, (3.19)

6With this transformation we will find that the metric for the λ = 0 coset CFT has no off-diagonal terms

in the du and dω components. Of course for λ 6= 0 the metric becomes intractably off-diagonal.
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where the frames for the undeformed metric corresponding to the coset CFT SO(6)/SO(5)

are

e1(0) = − 2
√
kx

yz
√
ABCDω

(
ABudu− B(u2x2 − z2ω2D)

dx

x

−(E − z4ω2D)
dy

y
−AF dz

z
+ABCωdφ

)
,

e2(0) =
2
√
k

yz
√
ABCω

(
ABudu−Bx(u2+z2ω2)dx−(E+x2z4ω2)

dy

y
−AF dz

z
+ABCωdφ

)
,

e3(0) = − 2
√
k

z
√
BCDω

(
Budu+

Bxu2
y2

dx+
E
y3

dy − 1

z
(F − u2D)dz + BCωdφ

)
, (3.20)

e4(0) = − 2
√
k

y
√
Cω

(
udu+ zω2dz + Cωdφ

)
,

e5(0) = −2
√
k

zω
(du− uωdφ) .

Making use of (2.27) one sees that the dilaton receives only a constant shift Φconst. =

−1
2 ln detP = 1

2 ln
√
1−λ√
1+λ

away from the gauged WZW dilaton. We find that

e−2Φ+2Φconst. =
1024AC2ω4B
(1 + ω2)4z2

. (3.21)

As discussed before there is no NS B-field.

For this theory to make sense one should first check that the dilaton beta-function

comes out as a constant in the deformed case. One should be clear that even though the

deformation looks, in tangent space, like a rather simple squashing, is not obvious from the

outset that this will work out; indeed one finds rather quickly that the squashing wreaks

havoc on the spin connection. Nonetheless one finds that the dilaton equation gives

R+ 4�Φ− 4(∂Φ)2 =
10

k

(
1 + λ2

1− λ2

)
. (3.22)

Hence, already a strong consistency check passed. The Einstein equation yields

eµae
ν
b (Rµν + 2∇µ∇νΦ) =

4

k(1− λ2)
diag(−1, 1,−1, 1,−1) . (3.23)

The fact that this is not satisfied indicates that we shall need to activate RR-fluxes in

the attempt to find the full solution. The simple form of the stress tensor on the right

hand side of the Einstein equations suggests that the RR-fields will be rather simple when

written in terms of the natural frame fields (3.20).

4 A comment on analytic continuation

We are interested in finding a full supergravity embedding for which we will want to combine

these results with some corresponding non-compact coset. In essence this is achieved
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by choosing appropriate analytic continuations of the corresponding compact geometry

combined with sending the level k → −k. For gauged-WZW models this procedure is quite

well established [47, 48] and in the case of λ-deformations was used for the examples of

SU(2)/U(1) and SO(4)/SO(3) in [38].

Suppose we start with some SO(n+1)/SO(n) gauge-fixed element g given by the Euler

angles as in (3.3) and make the continuation θ → iθ of one of the angles. The result will

be that g is now a complex matrix obeying gt = g−1. But what we wanted was to end

up with a real element of e.g. SO(n − 1, 2) gauged fixed under the action of SO(n − 1, 1).

Suppose we find a matrix ρ such that g̃ = ρgρ−1 is real, then g̃ will preserve the metric

given by η = ρTρ and will be an appropriate gauge-fixed element of a non-compact group

G quotiented by the gauge action of a non-compact subgroup H. The original generators

are transformed as T → ρTρ−1 leading to a certain number of non-compact generators

inside G and H. The signature of the corresponding σ-model spacetime is deduced by

seeing how many time-like directions lie in the subspace in which the subgroup H acts. To

end up with a theory with only one time-like direction this procedure is supplemented by

sending the level k → −k. As geometric cosets the resulting SO(n− 1, 2)/SO(n− 1, 1) are

of Anti-de-Sitter type. De-Sitter cosets can be realised in a similar fashion; rotating angles

and performing an action ρ to give SO(n, 1)/SO(n− 1, 1); the difference in this case is that

one does not need to switch the sign of the level to end up with a single time-like direction.

There can be many different analytic continuations that all give rise to geometries of

the same signature which differ in how non-compact generators are assigned. Indeed to

end up in Minkowski signature starting from an n-dimensional Euclidean theory, we can

find n different analytic continuations depending on which of the n directions in tangent

space we wish to make time-like. The results for n = 5, the case of interest in the current

note, are summarised in table 1.

5 The supergravity embedding for AdS5 × S5

We are interested in understanding the circumstances in which we are able to find super-

gravity embeddings obtained by combining the deformation of a compact coset CFT with

that of a non-compact coset CFT. For n = 3 (also for n = 2 in which case the analytic con-

tinuation is quite simple) this was done in [38] giving the λ-deformation to the coset CFT

of SO(2,2)
SO(2,1) ×

SO(4)
SO(3) × U(1)4. Taking the deformation parameter λ → 1 (with the previously

discussed rescaling the group element) one recovers the non-Abelian T-dual of the PCM

for strings on AdS3 × S3 supported by RR flux. Here we will consider n = 5.

An important question is whether the bosonic geometry can be supported by real RR-

fields; this would certainly make the interpretation simpler than finding oneself in a Type-

II⋆ theory. To address this we need to use some intuition for the structure of the RR-fields.

We are not going to attempt a first principle derivation but to bootstrap a solution from

knowledge of the bosonic sector and compatibility with the end points of the λ-deformation.

For λ = 0 the RR-fields should vanish and for the λ = 1 limit they should match those

of non-Abelian T-duality determined in [54, 55]. The conservative ansatz, which actually
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G/H Angles Rotated Signature Type

SO(5, 1)/SO(5) φ {+,+,+,+,+} EAdS

SO(4, 2)/SO(4, 1) θ4 {+,+,+,+,−} AdS

SO(4, 2)/SO(4, 1) θ4, θ3, φ {+,+,+,−,+} AdS

SO(4, 2)/SO(4, 1) θ3, θ2, φ {+,+,−,+,+} AdS

SO(4, 2)/SO(4, 1) θ2, θ1, φ {+,−,+,+,+} AdS

SO(4, 2)/SO(4, 1) θ1, φ {−,+,+,+,+} AdS

SO(5, 1)/SO(4, 1) θ1 {−,+,+,+,+} dS

SO(5, 1)/SO(4, 1) θ2, θ1 {+,−,+,+,+} dS

SO(5, 1)/SO(4, 1) θ3, θ2 {+,+,−,+,+} dS

SO(5, 1)/SO(4, 1) θ4, θ3 {+,+,+,−,+} dS

SO(5, 1)/SO(4, 1) θ4, φ {+,+,+,+,−} dS

Table 1. Analytic continuations for n = 5; the signature column indicates which of the tangent

space directions becomes time-like in the basis of frames in eq. (3.20). For completeness we include

the rotations that would correspond to Euclidean AdS, AdS and dS type geometric cosets.

works, is to assume that they have the same structure as those obtained via non-Abelian

T-duality but are multiplied by a suitable overall function of the deformation parameter.

In T-duality (Abelian and non-Abelian alike) the transformation for RR-fields arises

due to the fact that left and right movers on the world-sheet couple to different frame

fields after T-duality and this induces a transformation on spinors [54–57]. This was also

the case in the λ-deformation; both the left- and right-moving gauge fields defined a set

of frame fields related by a Lorentz transformation given by eq. (2.25) in general. For the

case of SO(6)/SO(5), due to the simple form of the P matrix, this Lorentz transformation

reduces to

Λ = diag (−1, 1,−1, 1,−1) . (5.1)

This is the same relation between left and right moving frame fields as would be obtained by

performing three Abelian T-dualities giving reflections in the e1, e3 and e5 directions. Lets

temporarily pretend that we are just doing T-dualities. In general performing a T-duality in

a time-like direction produces imaginary RR-fluxes [58]. In order to avoid such a situation

we choose an analytic continuation in which e1, e3 and e5 remain space like. From table 1,

we see two possibilities either rotate angles {θ4, θ3, φ} or {θ2, θ1, φ}. For specificity and also

because this is the rotation can be used in lower dimensions as in [38] we choose the later.

The continuation on {θ1, θ2, φ } is achieved by sending {x, y, z, u, ω} → {ix̃, ỹ, z̃, ũ, iω̃}
in the Cartesian coordinate system and assigning ranges:

ỹ2 − x̃2 > 1 , z̃2 − ũ2 > 0 , ũ2 − ỹ2 < 0 , −1 < ω̃ < 1 . (5.2)

In addition, Φ̃ must also be rendered real by subtracting of an iπ/2 that comes from a

negative sign inside a logarithm and arrive at real frame fields by defining the time-like
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direction ẽ0 = −iẽ2. This process defines frame fields {ẽ0, ẽ1, ẽ3, ẽ4, ẽ5} for the non-compact

geometry given explicitly by,

ẽα(λ) = Sαβ(λ)ẽβ(0) , α = 1 . . . 5 , (5.3)

where the deformation matrix S(λ) was defined in eq. (3.19) and where the undeformed

frames are,

ẽ
1
(0) = − 2

√
kx̃

ỹz̃
√

ÃB̃C̃D̃ω̃

(

ÃB̃ũdũ− B̃(ũ2
x̃
2 − z̃

2
ω̃

2D̃)
dx̃

x̃
+ (Ẽ + z̃

4
ω̃

2D̃)
dỹ

ỹ
− ÃF̃ dz̃

z̃
− ÃB̃C̃ω̃dφ̃

)

,

ẽ
0
(0) ≡ −iẽ

2
(0) =

2
√
k

ỹz̃
√

ÃB̃C̃ω

(

−ÃB̃ũdũ+ B̃x̃(ũ2 − z̃
2
ω̃

2)dx̃− (Ẽ + x̃
2
z̃
4
ω̃

2)
dỹ

ỹ
+ ÃF̃ dz̃

z̃
+ ÃB̃C̃ω̃dφ̃

)

,

ẽ
3
(0) = − 2

√
k

z̃
√

B̃C̃D̃ω̃

(

B̃ũdũ− B̃x̃ũ2

ỹ2
dx̃+

Ẽ
ỹ3

dỹ − 1

z̃
(F̃ − ũ

2D̃)dz̃ − B̃C̃ω̃dφ̃
)

,

ẽ
4
(0) = − 2

√
k

ỹ
√

C̃ω̃

(

ũdũ− z̃ω̃
2
dz̃ − C̃ω̃dφ̃

)

,

ẽ
5
(0) = −2

√
k

z̃ω̃

(

dũ+ ũω̃dφ̃
)

.

(5.4)

Here we have defined the functions

Ã = ỹ2 − x̃2 − 1 , B̃ = ỹ2 − z̃2 , C̃ = z̃2 − ũ2 , D̃ = 1 + x̃2 ,

Ẽ = ũ2ỹ4 − ũ2x̃2z̃2 − ỹ4z̃2 , F̃ = ũ2ỹ2 − z̃4ω̃2 , ω̃ = tanh φ̃ .
(5.5)

One finds a dilaton equation for this geometry

R̃+ 4�̃Φ̃− 4(∂Φ̃)2 = −10

k

(
1 + λ2

1− λ2

)
, (5.6)

which provides an exact cancelation with the contribution coming from the compact space

in eq. (3.22).

We thus define the full type-IIB supergravity embedding by combining the compact

part defined by the frames in eq. (3.20) with the above non-compact part in eq. (5.4)

reordered such that the time like direction comes first:

e
I = {−iẽ2, ẽ1, ẽ3, ẽ4, ẽ5, e1, e2, e3, e4, e5} , I = 0, 1, . . . , 9 . (5.7)

The full dilaton is

Φ = −1

2
ln

(
−ω4

(
u2 − z2

)2 (
x2 + y2 − 1

)
(y2 − z2)

(ω2 + 1)4 z2

)

− 1

2
ln

(
ω̃4

(
ũ2 − z̃2

)2 (−x̃2 + ỹ2 − 1
)
(ỹ2 − z̃2)

(1− ω̃2)4 z̃2

)
+ φ0 .

(5.8)

There is no NS two-form and the dilaton supergravity equation is solved. The RR-fields

follow from the ansatz advocated in [38]; the frame rotation (5.1) together with the anal-

ogous rotation in the non-compact part of the theory give rise to an action on spinors

through ΩΓIΩ−1 = ΛI
JΓ

J with

Ω = Γ124Γ579 . (5.9)
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We then construct

/̂F = f(λ)eΦ /F 0 · Ω , (5.10)

where the slashed notation indicates contraction with Γ matrices and where

(F5)0 = e
01234 − e

56789 , (5.11)

is inherited from the type-IIB AdS5×S5 geometry and f(λ) is a function of the deformation

parameter that is fixed from the Einstein equations. The result is that we find the following

five-form flux

F̂5 = e−Φ 4
√
λ√

k(1− λ2)

(
e
03579 − e

12468
)
. (5.12)

This is self-dual and one can check it solves its Bianchi identity. With this one also finds

that the Einstein equations are completely solved.

6 Conclusions

Let us summarize what we have learnt. The first lesson is that for cases of SO(n+1)/SO(n),

the λ-deformation has a very natural action; it simply corresponds to squashing certain

tangent space directions in the metric. An indication that this makes sense is that at a

quantum level this gives a constant shift to the dilaton beta-function. The second main

point is that the λ-deformed SO(n + 1)/SO(n) gauged-WZW can be coupled via a non-

trivial Ramond-Ramond sector to a similarly deformed SO(n− 1, 2)/SO(n− 2, 1) theory in

such a way that the supergravity fields solve all the one-loop beta-function equations.

In general one should be able to derive these results from a direct application to the

superstring. There is a simple form due to Hollowood, Miramontes and Schmidtt [33] for the

action of the λ-deformation in terms of a deformed G/G gauged WZW for F = PSU(2, 2|4),

Sdef [F,A] = SgWZW [F,A]− k

π

∫
d2xSTr [A+ (Ω− 1)A−] ,

Ω = P0 + λ−1
P1 + λ−2

P2 + λP3 ,

(6.1)

in which Pi are the projectors onto the eigenspaces of the usual Z4 automorphism. The

powers of λ entering in this Ω are tuned precisely such that this theory admits a Lax

formulation. In the present paper we have considered a bosonic truncation of this theory

that shares exactly the same NS-sector. By completing this bosonic sector with RR-fields to

give the supergravity embedding, we have given some strong supporting evidence that the λ-

deformation of superstrings based on the PSU(2, 2|4) supercoset is a marginal deformation.

There are, however, a few caveats that remain: the first is that whilst the RR-fields

we have used are natural, and are suggested by an ansatz known from considerations

of non-Abelian T-duality, one can not be absolutely certain that they correspond to the

RR-sector obtained by performing the λ-deformation directly in the PSU(2, 2|4) super-

coset. (See note added.) Our solution of supergravity is bootstrapped from a precise

knowledge of the bosonic sector and unfortunately it is exceedingly difficult to extract the

RR-fields directly from σ-models (6.1) to compare with. It may be that a direct calculation
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of the renormalisation of eq. (6.1) is required. A second issue concerns the target space

interpretation. To obtain the RR-sector with real fluxes one has to pick an appropriate

Wick rotation and moreover we have contented ourselves to work on a particular patch. It

would be interesting to explore how global extensions of the geometries we consider can be

supported by RR-fluxes and whether they remain real. It is known from the work and the

examples worked out in [38] that this is a non-trivial issue.

There are a number of open avenues that we believe deserve exploration:

• Can one develop a more general theory of squashing conformal cosets and their geo-

metrical properties? In that respect we recall the work in [59] in which hierarchies of

non-Abelian coset CFTs of orthogonal groups were constructed via asymptotic limits.

It will be interested to investigate if these structures survive the λ-deformations.

• Can the λ-deformation be applied to other scenario’s where integrability is expected

e.g. AdS4 × CP 3?

• What can one say in general about multi-parameter or anisotropic λ-deformations in

which the deformation parameter is replaced with a matrix λ1AB → λAB?

• It has been shown that λ-deformations of WZWmodels have a an underlying Yangian

symmetry [20]. Would it be possible to establish in a similar fashion the expected

quantum group symmetries for λ-deformations of coset CFT models and in particular

for AdS5 × S5?

• How can we make more precise the linkage between the η-deformations of [16] and

these λ-deformations? See note added.

Of course the grandest, and most tantalizing question of all: What do both η and λ defor-

mations imply for N = 4 SYM?
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Note added. After this article appeared on the arXiv but before going to press we

received two preprints [60, 61] that address some of the points raised in the conclusion.

In [60] it is demonstrated that Yang-Baxter deformations on the real branch for sym-

metric cosets are Poisson-Lie T-dual to the sorts of λ-deformations considered in this letter.

The η-deformation is of Yang-Baxter type but on the complex branch (here complex and
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real essentially refer to a sign choice made in the modified Yang-Baxter equation deter-

mining a choice of R-matrix). However, it is expected that a combination of Poisson-Lie

T-duality and analytic continuation directly relates the η-deformation to the λ-deformation;

this was shown explicitly for the case based on SU(2)/U(1) in [61].

A second point concerns the relation to the geometry found within and that corre-

sponding to the σ-model of [33]. The prescription given for the dilaton in [33] does not im-

mediately correspond to that coming from eq. (2.27). It was shown explicitly in [61] for the

AdS3 ×S3 λ-deformation that the fermionic contributions from the supercoset produce an

additional contribution to the dilaton over that found in [38]. The expression given for the

dilaton in [61] is significantly more complicated than that of [38] but nonetheless the dilaton

equation of motion and the trace Einstein equations remain solved; the corresponding form

of the RR fluxes is not yet known but it seems that these too will receive complicated correc-

tions for the fermionic terms in the supercoset. The situation appears to be rather compa-

rable to fermionic T-duality which preserves the NS sector but modifies the dilaton and RR

sector of a background; presumably by performing the λ-deformation in the fermionic di-

rections one would receive a correction to the RR sector. We hope to return to these issues.

We thank the authors of [60, 61] for email correspondence on these points.

A Frame fields for λ-deformed SO(n + 1)/SO(n)

Here we present the frame fields for the λ-deformed SO(n + 1)/SO(n) for n = 2, 3, 4. We

use the same Cartesian coordinates and definitions referred to in the main text in (3.18)

and in addition define λ± =
√
k(1± λ)/(1∓ λ) and ω2

+ = 1 + ω2. A potentially useful

observation is that these geometries are nested; for instance for λ = 0 setting u = 0, du = 0

and sending φ → φ+ π
2 one has ds2

n=5 → ds2
n=4 perhaps hinting at a connection with [51].

A.1 The n = 2 case

The deformed frame fields read

e1 = −2λ−dx

ω
+

2xλ−dω

ω2
+

,

e2 = −2λ+xdx√
Dω

− 2λ+

√
Ddω

ω2
+

.

(A.1)

The non-constant part of the dilaton is

e−2Φ =
2ω2

ω2
+

. (A.2)

The spinorial counterpart of the Lorentz rotation between left and right moving frames is

Ω = Γ2. (A.3)

The dilaton beta function equation is

βΦ = R+ 4∇2Φ− 4(∂Φ)2 =
1

k

1 + λ2

1− λ2
. (A.4)

– 18 –
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A.2 The n = 3 case

For SO(4)/SO(3) the deformed frame fields read

e1 = −2λ+

(
Dω2ω2

+dx+ x
(
yω2

+dy +Aωdω
))

√
ADωω2

+

,

e2 = +
2λ−

(
−xω2ω2

+dx+ yω2
+dy +Aωdω

)
√
Aωω2

+

,

e3 = +
2λ+

(
ω2
+dy − yωdω

)
√
Dωω2

+

.

(A.5)

The dilaton, spinorial Lorentz rotation and the dilaton beta function yield

e−2Φ =
8Aω2

ω4
+

, (A.6)

Ω = Γ1Γ3, (A.7)

βΦ =
3

k

1 + λ2

1− λ2
. (A.8)

A.3 The n = 4 case

The four frame field are given by

e1 = −2λ−
(
Dyω2

+Bdx+ x
(
ω2
+

(
Dz2 + y4ω2

)
dy −Ay

(
ω2
+zdz + ωBdω

)))
√
ABDωω2

+y
2

,

e2 = +
2λ+

(
xyω2

+Bdx+ ω2
+

(
x2z2 − y4ω2

)
dy +Ay

(
ω2
+zdz + ωBdω

))
√
ABωω2

+y
2

,

e3 = +
2λ−

(
yω2ω2

+dy + ω2
+zdz + ωBdω

)
√
BDωω2

+

,

e4 = −2λ+

(
ω2
+dz − zωdω

)

yωω2
+

.

(A.9)

While the dilaton, spinoral Lorentz rotation and the dilaton beta function respectively read

e−2Φ =
64Aω4B

ω6
+

, (A.10)

Ω = Γ2Γ4, (A.11)

βΦ =
6

k

1 + λ2

1− λ2
. (A.12)
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